
Reply to the Referee #2

July 14, 2017

We would like to thank the reviewers for their questions and comments.
Before we answer them, we need to point out that we found an inconsistency
in the way the collision efficiency tables were interpolated in the SDM and in
the Bott method. It only affected simulations that use efficiencies from Hall
(1980) for large droplets and from Davis (1972) for small droplets. This kind of
collision kernel was used in Sections 5 and 6. The SDM simulations presented
in Figs. 7, 8 and 9 were repeated with the problem fixed. The main difference
is that now we see convergence of the “one-to-one” results to the Smoluchowski
equation in the slow-coalescence case. What did not change is the fact that
using larger coalescence cells can decrease the rate of conversion of cloud to rain
drops due to additional collisions between rain drops. In consequence, using the
Smoluchowski equation can underestimate the amount of rain produced. The
problem affected only large drops, with radius greater than ca. 90 microns.
Therefore the lucky droplet analysis from Sec. 6, in which droplets grow only
up to 40 microns, remains valid.

Answer to the Anonymous Referee #2.

- The presentation is too short to fully understand what has been
done and to be able to judge it. Moreover, the statements are too gen-
eral. Also the motivation behind choosing the presented tests must
be made clearer. In the present style the presented tests resemble a
bit a random collection of tests related to a specific SD coalescence
algorithm.

We have made an effort to make the statements and the presentation more
specific. Regarding the motivation for different tests, we have rewritten the last
paragraph to the introduction to make it more clear:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some simplifications that may increase
the scale of fluctuations in the number of collisions, as described in Sec. 2.

1



These simplifications are not necessary in the limiting case of a single compu-
tational particle representing a single real particle, what we call “one-to-one”
simulations. Then, the Shima algorithm should be equivalent to the SSA, i.e. it
should produce a realization in agreement with the master equation. To show
that this is true, we compare the Shima algorithm with the master equation
and the SSA in Sec. 3. We also compare it with the more fundamental DNS
approach in Sec. 4. Once the “one-to-one” approach is shown to be at the
same level of precision as the master equation, we use it to study some physical
processes that are related to the stochastic nature of coalescence. The way the
sol-gel transition time changes with system size is studied in Sec . 3 and in
Sec. 6, we quantify how quickly the luckiest cloud droplets become rain drops.
In addition, we use the “one-to-one” approach to validate more approximate
methods. The Shima algorithm with multiplicities greater than one is studied
in Sec. 4. We determine how many computational particle s are required to
obtain the correct mean autoconversion time and correct fluctuations in the au-
toconversion time. Next, in Sec. 5, we determine how large the system has to be
for the Smoluchowski equation to correctly represent the rate of rain formation.
Throught the paper we observe that evolution of the system strongly depends
on its size. The size of a well-mixed air parcel is estimated in Sec. 7 and some
implications for cloud simulations are discussed in Sec. 8. ”

In addition, we changed the titles of Secs. 3 and 4 to make it more clear
what is their purpose.

General points 1. The description of your method and results is
too short and often not clear enough. For a reviewer it is difficult
to understand what you have done in detail and this makes it hard
to thoroughly rate your work. The description in section 2 must be
considerably expanded and be more precise. Also the results section
should be improved. For example the motivation behind showing the
comparison in section 3 is not really clear to me. As an example I
go over page 3 and try to highlight what I miss there and where I
suspect that other readers would get stuck:

The method was described in detail by Shima et al. (2009), so our intention
was only to describe how our simulation method differs from theirs. Apparently
this makes the method not clear, so we extend the description of the method as
asked by the Reviewer in the following points. Regarding the motivation behind
different comparisons, it is now given in the Introduction, as explained in the
answer to the previous comment.

It is not always clear if you talk about real droplets or super-
droplets. It should be always clear if your statement relates to the
real world or the super droplet world.

It is now clarified in Sec. 1:
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“ We will refer to these computational particles as super-droplets (SDs). The
words “droplets” and “drops” are reserved for real hydrometeors. ”

You should define the coalescence probability of a SD pair.

It is now given in Sec. 2: “ Probability of coalescence of two SDs i and j that
belong to the same collision pair is PSD(ri, rj , ξi, ξj) =max(ξi, ξj)P (ri, rj)(NSD(NSD−
1)/2)/bNSD/2c (Shima et al., 2009).

”

Can collections occur between droplets in one SD?

We use gravitational coalescence kernels, so droplets in one SD all have the
same terminal velocity and therefore cannot collide. We now say it explicitly in
Sec. 2:

“ Real droplets represented by the same SD cannot collide with each other,
because they have the same sedimentation velocities. ”

l.9: Do you use two types of simulations or is it only the initial-
isation that differs between the two types? Then I would not call it
types of simulations.

We use two types of simulations. The main difference, besides the initialisa-
tion, is that in the “one-to-one” simulations the timestep is adaptive, as stated
in Sec. 2:

”Timestep length is adapted at each step to ensure that none of the collision
pairs has coalescence probability greater than one.”

In the “constant SD” simulations the timestep is constant and multiple col-
lisions between SDs in a single timestep are allowed, as said in Sec. 2:

“ In this type of simulation, the time step length is constant ∆t = 1 s.
It is not adapted, as it is done in the “one-to-one” simulations, to make the
simulation computationally more efficient. Using constant time step length can
make the coalescence probability exceed unity. If it does, it represent multiple
collisions between a pair of SDs (Shima et al., 2009). ”

In general I can imagine how the constant SD initialisation works,
however I am confused by your description. o l.21: do you mean large
or small NSD? Or large r?

As written, we mean large NSD. For large NSD, ∆lr becomes small and
therefore rmax is small.

o rmin and rmax are defined by the relation in line 18. Using the
ln(r) definition of line 19, you end up with implicit equations in the
two variables. I am pretty sure this is not what you wanted to say.
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Yes, we end up with implicit equations for these variables. Many pairs of
values of rmin and rmax could satisfy them. We find our solution numerically,
what is now explained in more detail in Sec. 2:

“ The first step of the initialization is finding the largest and smallest initial
super-droplet radius, rmax and rmin. They are found iteratively, starting with
rmin = 10−9 m and rmax = 10−3 m. We require that they satisfy the condition

n(ln(re))∆lrV ≥ 1, (1)

where re is either rmax or rmin, n(ln(r)) is the initial droplet size distribution
and ∆lr = (ln(rmax) − ln(rmin))/NSD. In each iteration, if rmin (rmax) does
not satisfy (1), it is increased (decreased) by 1%. ”

o You initialise additional SDs to better represent the tails of the
SDs. Adding those SDs to your ensemble, isnt it necessary to reduce
the multiplicity of the SD drawn from the largest bin?

No, in “constant SD” the right edge of the largest bin is rmax, so effectively
the distribution is cut at rmax and droplets with r > rmax, that would be
present in the real system, are not accounted for. Adding additional SDs with
r > rmax fixes this problem and does not affect the number of droplets with
r ≤ rmax (i.e. the multiplicity of SDs with r ≤ rmax).

Is the refinement done at both sides?

No, only on the large radius side. We now write explicitly in Sec. 2:
“ We do not add SDs from the small tail of the distribution, because very

small droplets are of little importance for rain formation. ”

In the end, the actual number of SDs should be higher than the
nominal value NSD? How much higher?

Yes, it is a little higher, what is now written in Sec. 2:
“ This makes the actual number of SDs higher than the prescribed value

NSD, typically by ca. 1%. ”

Is the one-to-one initialisation the limiting case of the constant SD
initialisation?

No, because using NSD = N0 (i.e. multiplicity = 1) in a “constant SD”
simulation would result in relatively small rmax and large rmin. Then this type
of initialisation would not represent well the given distribution. Therefore a
different approach to initialisation is used in the “one-to-one” simulations.

Are the multiplicities in the constant SD approach integer values?
How is the rounding done?
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Yes they are, as explained in Shima et al. (2009). The rounding is done
to the nearest integer. The error introduced is small, because multiplicities are
high.

o l.20: To be more explicit, you should write that one SD is created
per bin and its radius is randomly selected.

It is written in Sec. 2:
“ Once rmin and rmax are found, radius of one SD is randomly selected

within each bin of size ∆lr. ”

o l.23: Do you want to say that the probability is allowed to ex-
ceed 1. Why does this occur only here, and not in the one-to-one
simulation? Is the time step longer? Why dont you reduce it then in
this case?

Yes, in the method of Shima et al. (2009) the coalescence probability is al-
lowed to exceed 1. It is a consequence of keepeing the time step length constant.
We added to Sec. 2:

“ In this type of simulation, the time step length is constant ∆t = 1 s.
It is not adapted, as it is done in the “one-to-one” simulations, to make the
simulation computationally more efficient. Using constant time step length can
make the coalescence probability exceed unity. If it does, it represent multiple
collisions between a pair of SDs (Shima et al., 2009). ”

o What are multiple collections?

It means that, during a single time step, a pair of SDs collides more than
once. The details are given in Shima (2009).

o Do you use a constant time step throughout a simulation?

In the “one-to-one” simulations it is adaptive, as said in Sec. 2:
“ Time step length is adapted at each time step to ensure that none of the

collision pairs has coalescence probability greater than one. ”
In the “constant SD” simulations it is constant, what is now explicitly stated

in Sec. (2):
“ In this type of simulations, the time step length is constant ∆t = 1 s. ”

2. Your conclusions are too general. Your paper reads like a
general comparison between the one and only SDM approach and
all kinds of other algorithms. Coalescence (or similarly coagulation
of aerosols and dust or aggregation of ice crystals) can be treated
in many ways in particle-based approaches (see algorithms by An-
drejczuk et al, Shima et al, Riechelmann et al, Solch & Karcher,
Zsom & Dullemond, Kolodko & Sabelfeld, deVille et al). There is
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not the one natural way to do this. Similarly, various algorithms ex-
ist for bin model approaches. Please make clearer which statements
hold in general and which are probably only valid for your specific
SDM.

Regarding coalescence, the main difference between these particle-based ap-
proaches (with the exception of the DeVille algorithm, which is based on the
Smoluchowski equation) is in what is the outcome of a collision of super-droplets
with multiplicities ξ > 1. Majority of our simulations were the “one-to-one” sim-
ulations, in which ξ = 1. In that case, it is straightforward what the result of
a collision should be, so differences between these algorithms disappear. More-
over, like the master equation, the “one-to-one” simulations are only based on
the assumption that the cell is well-mixed. The numerical trick of reducing the
number of collision pairs (”linear sampling”) does not affect the fluctuations, as
we show in Sec. 3. Therefore the “one-to-one” simulations are quite similar to
the SSA. They are at the same level of accuracy as the master equation: less
precise than the DNS, more precise than the Smoluchowski equation. It is now
cleary stated in the Introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some simplifications that may increase
the scale of fluctuations in the number of collisions, as described in Sec. 2.
These simplifications are not necessary in the limiting case of a single compu-
tational particle representing a single real particle, what we call “one-to-one”
simulations. Then, the Shima algorithm should be equivalent to the SSA, i.e. it
should produce a realization in agreement with the master equation. To show
that this is true, we compare the Shima algorithm with the master equation
and the SSA in Sec. 3. We also compare it with the more fundamental DNS
approach in Sec. 4. ”

In simulations with ξ > 1, we use the Shima method, as it was found to be
optimal by Unterstrasser et al. (2017) and by Li et al. (2017). These simulations
are used only in Sec. 4 in order to determine their accuracy, as explained by an
added paragraph in the introduction:

“ In addition, we use the “one-to-one” approach to validate more approx-
imate methods. The Shima algorithm with multiplicities greater than one is
studied in Sec. 4. We determine how many computational particles are re-
quired to obtain the correct mean autoconversion time and correct fluctuations
in the autoconversion time. ”

A recent study by Unterstrasser et al compared three different
SD algorithms for the collection process (your all-or-nothing SDM is
among the tested algorithms). Each algorithm has its strengths and
weaknesses. One major finding was that the performance depends
strongly on how the SDs are initialised from a given size distribution.
This has several implications: 1. an accurate description of your
initialisation is needed (see point 1) and
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Unterstrasser et al. (2017) found that the Shima method is optimal, what we
now say in the introduction: “ A thorough comparison of coalescence algorithms
from Lagrangian methods was done by Unterstrasser et al. (2017). It lead to
the conclusion that the method of Shima (2009) “yields the best results and is
the only algorithm that can cope with all tested kernels”. It was also found to
be optimal in DNS tests Li et al. (2017). In the light of these results, we choose
to use the coalescence algorithm of Shima (2009) in this work. ”

We also observed that the way the initialisation is done is important. We
believe that now our initialisation algorithm is described more clearly.

2.Are your simulations sensitive to initialisation details besides
the number of SDs?

It is only sensitive to the number of SDs. Initial values of rmin and rmax, if
reasonable, do not affect it much.

3. In my opinion you present five types of tests: 1. Compar-
isons with algorithms for the master equation (ME), 2. Comparisons
with DNS algorithms 3. Comparisons with algorithms for the Smolu-
chowski equation (KCE) 4. Comparison with analytical results and 5.
Stand-alone sensitivity tests of your SD algorithm. With each type
of test different aspects of your SD method can be tested. Each ref-
erence model you compare with (Bott, Alfonso, Onishi, Kostinski &
Shaw) differs in which physical processes are explicitly treated. You
often miss to clearly specify the purpose of and the motivation behind
the individual evaluation steps you take. This must be made clearer
in the revised version.

We believe that it is now made clear by the following paragraph in the
introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some more simplifications that may
increase the scale of fluctuations in the number of collisions, as described in
Sec. 2. These additional simplifications are not necessary in the limiting case
of a single computational particle representing a single real particle, what we
call “one-to-one” simulations. Then, the Shima algorithm should be equivalent
to the SSA, i.e. it should produce a trajectory in agreement with the master
equation. To show that this is true, we compare the Shima algorithm with
the master equation and the SSA in Sec. 3. We also compare it with the more
fundamental DNS approach in Sec. 4. Once the “one-to-one” approach is shown
to be at the same level of precision as the master equation, we use it to study
some physical processes that are related to the stochastic nature of coalescence.
The way the sol-gel transition time changes with system size is studied in Sec.
3 and in Sec. 6, we quantify how quickly the luckiest cloud droplets become
rain drops. In addition, we use the “one-to-one” approach to validate more
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approximate methods. The Shima algorithm with multiplicities greater than
one is studied in Sec. 4. We determine how many computational particles are
required to obtain the correct mean autoconversion time and correct fluctuations
in the autoconversion time. Next, in Sec. 5, we determine how large the system
has to be for the Smoluchowski equation to correctly represent the rate of rain
formation. ”

4. Your study is written in a style that implies that your SD al-
gorithm does not solve the KCE. By comparing your SD results with
KCE results you seemingly disclose shortcomings of the KCE descrip-
tion. In fact, SDMs also rely on KCE and your study is not really
suited to question the physics of the various formulations. In my
understanding, you compare different numerical strategies of solving
the KCE.

The SD algorithm is not a method of solving the KCE. Contrary to the
KCE, it does include correlations between number of droplets of different sizes.
The “one-to-one” simulations are similar to the SSA, i.e. they produce a single
trajectory that follows the master equation (c.f. Sec. 2). As such, they are more
precise than the KCE, so they are well-suited to discolse shortcomings of the
KCE. To us it is not clear how the “constant SD” simulations relate to the KCE
and the master equation. They have been shown to give mean result in agree-
ment with the KCE in large systems (Shima et al., 2009, Unterstrasser et al.,
2016). Regarding fluctuations, using the “all-or-nothing” algorithm should am-
plify fluctuations, because it introduces unrealistic correlations between number
of droplets of different sizes. In Sec. 4 we quantify how much the fluctuations
amplitude increases.

The probabilistic nature of your SDM is inherent to your specific
algorithm. The SDMs of Riechelmann or Andrejczuk are not proba-
bilistic. On the other hand, I agree that the probabilistic component
of your SDM looks like it attempts to mimic the processes in nature.
Nevertheless, the two should not be mistaken. In the superdropelt
world of your SDM, the probabilistic approach comes from the fact,
that each superdropelt represents a large number of real droplets and
you may or may not perform a superdroplet collection. This not per
se related to the stochastic nature of the real world processes that
accounted for in the master equation.

The probabilistic nature of our SDM has the same source as the probabilistic
nature of the master equation, i.e. the fact that a collision between a pair of SDs
happens with some probability, according to the assumption that the volume is
well-mixed. To our knowledge, this Monte Carlo approach to collisions is used in
all SDMs, including the ones of Riechelmann and Andrejczuk. If multiplicities
are equal to one (”one-to-one” simulations), the SDM is as much related to the
real world process as the master equation. If multiplicities are greater than one,
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various SDM algorithms start to differ. In the Shima algorithm that we use, the
scale of fluctuations is increased, because the number of collision trials is lower
than it would be in reality. We try to quantify how much it is increased. In the
Riechelmann and Andrejczuk SDMs, the fluctuations are lower than in the one
of Shima. Unfortunately, they do not give mean results as good as the Shima
algorithm (Unterstrasser et al., 2016).

Major points: 5. In my understanding there two mathematical
descriptions of the coalescence process: The Smoluchowski equation
and the master equation where only the latter accounts for corre-
lations. You never state it explicitly but I suppose that your SD
method is based on solving KCE. Many spectral bin methods exist
for the KCE and in the recent past SD methods for KCE were intro-
duced. Hence, demonstrating agreement between your KCE solver
and the ME solver by Alfonso is only reasonable for a physical prob-
lem where correlations are negligible. If you want to show the nu-
merical consistency of your approach, then a comparison with other
well-established KCE solvers would be more straightforward. Could
you give reasons why you compare results of your KCE solver and an
ME solver? Or do you want to claim that SDMs implicitly account
for correlations?

Our SD method is not based on solving KCE. The “one-to-one” simulations
are at the level of precision of the master equation, what is now explicitly written
in the introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some more simplifications that may
increase the scale of fluctuations in the number of collisions, as described in
Sec. 2. These additional simplifications are not necessary in the limiting case
of a single computational particle representing a single real particle, what we
call “one-to-one” simulations. Then, the Shima algorithm should be equivalent
to the SSA, i.e. it should produce a trajectory in agreement with the master
equation. To show that this is true, we compare the Shima algorithm with the
master equation and the SSA in Sec. 3. ”

We compare “one-to-one” simulations with the master equation to validate
the claim that they are at the same level of precision, i.e. that “one-to-one”
method accounts for correlations. In the problem of Alfonso, correlations are
very important and, as shown in Alfonso and Raga (2017), the KCE does not
solve it well.

6. I am not exactly sure what you intended to show in section 3.
Did you want to demonstrate the suitability of your linear sampling
of droplet pairs? Then you should compare results of your algorithm,
once with linear sampling and once considering all possible combina-
tion. For a simulation with 30 droplets (as done in the comparison
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with Alfonso) this should be feasible. How do the curves in Fig.3 and
4 change, if you evaluate all possible combinations instead of linear
sampling (at least for N0=10 and 100)?

We intended to show that “one-to-one” simulations agree with the master
equation. Linear sampling is an optimization technique that we expected might
be responsible for some differences between the master equation and “one-to-
one” simulations. To make the comparison more detailed, now in Section 3 we
compare “one-to-one” simulations, with and without linear sampling, with the
master equation. We find that linear sampling does not affect mean number of
collisions, nor the fluctuations in the number of collisions. Figs. 3 and 4 (up to
N0=100) do not change if linear sampling is not used.

The second paragraph of Section 3 has been rewritten to explain these new
results of simulations without linear sampling.

7. Is it all reasonable trying to sample a continuous exponential
distribution with 10 SDs? Are the total mass and number of the SDs
(averaged over all ensembles) equal to the prescribed values? What
about the higher moments, do they match the values of the analytical
distribution? This is an important aspect as much of your evaluated
variability may come from the initialisation and not so much from
stochasticity of the SDM.

Averaged over the ensamble, up to the 4-th moment of the distribution is in
agreement with the prescribed one. It is true that the initial distributions can be
very different between realisations and it may be the cause of large variability.
For this reason we removed the N0 = 10 case from Fig. 3.

8. Even though Fig.4 shows simulations with an initialisation
analogous to Onishi, the presented test is a stand-alone test (following
the above categorisation). Hence, further tests with other kernels or
other initial size distributions can be made (as no comparison with
Onishi is required) in order to corroborate your findings about how
many SDs are necessary to reach convergence.

Now in Fig. 4 we compare our results with Onishi’s results. Our expectation
is that for other kernels relevant for cloud physics the results would not be much
different. Nevertheless, we agree that tests with other kerneles, and with other
initial conditions, would be useful. Such tests could easily fill a whole new paper.
Our result can be considered as a guideline for users, who should do convergence
tests for the specific kernels they use.

9. In Fig.4 and following figures, does the Smoluchoswki line
depend on the parameter choices of the underlying Bott algorithm
(time step or number of bins)? Bott is known to be diffusive; this
may explain the faster generation of large droplets. Anyway I would
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not call it the Smoluchowski line, it is the Bott line. The line may
look differently for other bin KCE algorithms. Moreover, your lines
are also Smoluchowski lines (see general point 4).

We have done convergence tests of the Bott algorithm. It is now explained
in Sec. 4:

“ In the Bott algorithm, we used ∆t = 1 s and mass bin spacing mi+1 =
21/10mi. The same parameters were used in each simulation presented in this
manuscript. Convergence tests were done for each case. ”

We agree that the Bott algorithm produces rain too soon most probably due
to numerical diffusion. We now write in Sec. 4:

“ The “one-to-one” results converge with increasing system volume (i.e. in-
creasing N0) to a value higher than the Smoluchowski result. The difference is
probably caused by the numerical diffusion of the Bott algorithm. ”

Labels on figures are one of: DNS, master equation, SSA, SDM (”one-to-
one” or “constant SD”), Smoluchowski equation. In our view these are different
appproches to solving droplet coalescence, not different numerical methods for
solving some equation. The numerical methods used, i.e. the Bott algorithm for
the Smoluchowski equation and the Alfonso algorithm for the master equation,
are explained in text.

Minor points: 10. p.3, l21: Is the sol-gel transition an important
aspect in cloud physics? You note that mass conservation is not
guaranteed for some kernels. Are those kernels relevant in cloud
physics? In super-droplet approaches mass conservation should be
guaranteed by construction.

Mass is not conserved for the multiplicative kernel, which is not relevant
in cloud physics. Nevertheless, the paper Alfonso and Raga (ACP, 2017) is a
detailed study of the sol-gel transition in a small cloud volume. We decided that
it will be interesting to extend their results to more realistic cases.

11. I do not understand the statement the number of collision
pairs is reduced in p.4 l.4.

It was supposed to mean that linear sampling is used, i.e. less collision
pairs are considered than in an exact description. Now in Sec. 2 we define the
meaning of linear sampling, which is later used in the paper:

“ The second simplification, that we will refer to as linear sampling, is
that instead of considering all NSD(NSD1)/2 collision pairs, only [NSD/2] non-
overlapping pairs are randomly selected. ”

12. The paragraph starting p.4 l.11 should be moved to section
2.

In the paragraph it was shown that in the “one-to-one” method with linear
sampling, the probability of collision between any two real droplets is the same
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as in simulations without linear sampling. This does not ensure that fluctuations
in the number of collisions are also correctly represented. Therefore we removed
the paragraph. In its place we added to Figs. 1 and 2 the results of simulations
without linear sampling, i.e. with all collision pairs considered. Their agreement
with the linear sampling simulations implies that linear sampling does not affect
the scale of fluctuations. Proving that was the point of the removed paragraph.

13. For Figs.1 & 2 it would be ideal to obtain the data from
Alfonso and include it in the plots.

We did that.

14. P.2 l.13: Tanaka and Nakazawa present solutions for kernels
other than the constant kernel. See also Table 2 in Alfonso, 2015.

We now cite Tanaka and Nakazawa in the introduction:
“ The master equation was analytically solved only for monodisperse initial

conditions with simple coalescence kernels (Bayewitz et al., 1974; Tanaka and
Nakazawa, 1993). ”

Table 2 in Alfonso (2013) gives solutions of the Smoluchowski equation, not
the master equation.

15. P.5 l.5. Isnt this statement trivial? Probably any algorithm
for KCE is faster than solving the master equation. A comparison
among various KCE solvers would be fairer.

As explained previously, SDM is similar to the SSA and not to KCE solvers.
For this reason we compare with the SSA and a solver of the master equation.

16. Figs. 2&3 show relative standard deviation of the largest
droplet mass. Wouldnt it be interesting to know how large the largest
droplet mass is? How many collections have occurred to form the
largest droplet?

Relative standard deviation of the largest droplet mass is interesting as a
measure of the sol-gel transition. We do not see a reason to show the mass of it
or the number of collisions that lead to it.

17. P.7 l.10-12: I am confused. DNS simulations compute droplet
trajectories and directly evaluate if there are collisions between droplets.
Why do you need a coalescence kernel in this numerical approach?

It was our error. The DNS was done not for different coalescence kernels,
but for different turbulence strength. We changed that sentence to:

“ Small discrepancies are probably caused by the fact that the DNS included
turbulence of various strength for different N0. “
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18. Fig.8: Do you also use the 20um cut-off in the Bott simulation?
It is not explicitly stated in the text.

Yes, we do use it in the Bott simulation. It is now said explicitly:
“ In addition, we cut the distribution to 0 at r = 20 m. This cutoff is used

in SDM modelling as well as when solving the Smoluchowski equation. ”

Technical points: Figure caption should include the information
t=2500s.

We add it to the caption of Fig. 1.

P.5 l.9: droplet, not dropeltS.

Fixed.
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