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Abstract. We present a novel method of exploring the effect of uncertainties in aerosol properties on

cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties

of a single involatile particle mode are randomly sampled within an uncertainty range and result-

ing maximum supersaturations and critical diameters calculated using the cloud droplet activation

scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncer-5

tainty are found to be comparable to experimental observations. A recently proposed cloud droplet

activation scheme that includes the effects of co-condensation of semi-volatile organic compounds

onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties

associated with the involatile particles, concentrations, volatility distributions and chemical compo-

sition of the semi-volatile organic compounds are randomly sampled and hygroscopicity parame-10

ters are derived using the cloud droplet activation scheme. The inclusion of semi-volatile organic

compounds is found to have a significant effect on the hygroscopicity and contributes a large uncer-

tainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of

semi-volatile organic compounds reduces their actual hygroscopicity by approximately 25%. A new

concept of an effective hygroscopicity parameter is introduced that can computationally efficiently15

simulate the effect of semi-volatile organic compounds on cloud droplet number concentration with-

out direct modelling of the organic compounds. These effective hygroscopicities can be as much

as a factor of two higher than those of the non-volatile particles onto which the volatile organic

compounds condense.

1 Introduction20

The Earth’s weather and climate are both strongly influenced by clouds (Morgan et al., 2010; Ohring

and Clapp, 1980). Cloud droplet number concentration and size can have a significant effect on cloud

albedo by changing the amount of reflected shortwave radiation and absorbed longwave radiation

(Twomey, 1977; McCormick and Ludwig, 1967). In addition, the abundance of cloud droplets and

their properties can influence precipitation rate and subsequently cloud lifetime (Stevens and Fein-25

gold, 2009; Albrecht, 1989), which itself has a strong interdependency with cloud albedo (Twomey,

1

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



1974, 1977). The net global mean radiative forcing is estimated to be reduced by about 0.7 W m−2

as a result of aerosol-cloud interactions (Forster et al., 2007). This figure, however, is subject to a

large degree of uncertainty.

In general, there is a positive correlation between aerosol number concentration and cloud droplet30

number concentration (Twomey (1959)), however, the details are much more complex. According

to Köhler Theory (Köhler (1936)), the presence of sufficiently large aerosol particles can impede

the growth, and subsequent activation, of smaller particles in a polydisperse aerosol by reducing the

water available to activate the remaining cloud condensation nuclei (CCN) (Ghan et al. (1998)). Size

and composition are significant in establishing how effectively individual aerosol particles will act35

as CCN (Pruppacher and Klett (1977)). In addition, the effects of other atmospheric constituents,

such as surfactants, can be equally as important in determining cloud droplet number as the number

concentration of aerosol particles ((Lance et al., 2004; Nenes et al., 2002)).

A dominant factor influencing aerosol composition is the co-condensation of semi-volatile or-

ganic compounds (SVOCs) onto CCN (Topping and McFiggans (2012)). Köhler Theory is limited40

to non-volatile compounds, so does not consider the effects of compounds of ranging volatility in

the atmosphere. It has been shown that SVOCs increase the tendency for activation of CCN which

consequently affects radiative properties of clouds, hence the necessity to quantify their influence

(Topping et al. (2013)).

Depending on geographical location, between 5% and 90% of total aerosol mass can be composed45

of organic material (Andreae and Crutzen, 1997; Zhang et al., 2007; Gray et al., 1986). A portion of

this will originate from primary sources but a significant and uncertain amount will be be produced

by secondary processes, namely, nucleation of new particles and condensation of SVOCs onto exist-

ing particles. The former process increases the number concentration of aerosol particles while the

latter increases the size, and consequently soluble mass, of existing aerosol particles. The enlarged50

size and altered chemical composition of the particles has a dominant effect on cloud droplet num-

ber (Dusek et al., 2006; Topping et al., 2013) and so uncertainties in the amount and composition of

secondary organic aerosol mass translate into large uncertainties in cloud properties.

Multiple parameterisations of cloud droplet activation have been developed (Fountoukis and Nenes,

2005; Abdul-Razzak et al., 1998; Abdul-Razzak and Ghan, 2000; Shipway and Abel, 2010; Ming55

et al., 2005) and have been effective at estimating CCN concentrations at a range of atmospherically

applicable conditions (Ghan et al., 2011; Simpson et al., 2014) whilst being more computationally

efficient than a detailed cloud parcel model. Although the work of Fountoukis and Nenes (2005)

and Abdul-Razzak et al. (1998) has shown to be representative of physical processes (Ghan et al.

(2011)), they lack the consideration of co-condensation of organic vapours.60

Connolly et al. (2014) extended the parameterisations of Fountoukis and Nenes (2005) and Abdul-

Razzak et al. (1998) to incorporate the effects of co-condensation of SVOCs in the presence of a

single non-volatile aerosol mode with lognormally distributed particle sizes. This is achieved by
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first assuming the SVOCs are in equilibrium between a vapour and condensed phase at the initial

temperature, pressure and relative humidity; calculated using a molar based equilibrium absorptive65

partitioning theory (Barley et al., 2009). The additional mass from the condensed phase of the or-

ganics is added to the non-volatile constituent and the particle size distribution altered so that the

number concentration and geometric standard deviation are the same as the non-volatile mode but

the median diameter is increased to conserve mass. Equilibrium absorptive partitioning theory at

cloud base (99.999%RH) is then used to calculate additional aerosol mass from the organics but70

both the median diameter and geometric standard deviation are changed to simulate the condensed

phase of SVOCs after undergoing dynamic condensation during cloud activation. This is carried out

whilst maintaining arithmetic standard deviation and conserving mass. The aerosol size distribution

and material properties at cloud base are then input into the existing cloud droplet activation schemes

of Fountoukis and Nenes (2005) and Abdul-Razzak et al. (1998). The Fountoukis and Nenes (2005)75

parameterisation was found to most successfully replicate the results from a detailed parcel model

with binned microphysics and is, consequently, the only parameterisation considered in this paper.

This parameterisation was later extended to include multiple non-volatile aerosol modes (Crooks

and Connolly, 2017).

Petters and Kreidenweis (2007) present the hygroscopicity, κ, as a method of characterising CCN80

activity through relating dry diameter and supersaturation into a single parameter. Typically, for at-

mospheric aerosol the hygroscopicity lies in the range 0.1< κ < 0.9 with insoluble particles having

a κ of approximately zero and κ > 1 indicating particles that are highly effective as CCN, such as

Sodium Chloride. The hygroscopicity parameter is capable of quantifying water uptake character-

istics for internally mixed particles, and aids in interpreting CCN particles where the composition85

is not fully known, by fitting to experimental data. Alternatively, when composition is known, a

volume-averaged mixing rule can be used to determine κ.

In the case of involatile particles, the hygroscopicity depends solely on chemical composition and

is independent of particle size. In environments that contain semi-volatile organic compounds, the

hygroscopicity becomes more ambiguous. Due to the condensed mass of semi-volatile organic com-90

pounds depends on relative humidity, aerosol particles have chemical compositions and sizes that

vary with the RH. Consequently, the properties of aerosol particles, including the hygroscopicity,

change drastically as they rise in the atmosphere from subsaturated air into cloud. We introduce

three single-parameter measures of the hygroscopicity that incorporate the semi-volatile organic

compounds in different ways. The first, which we denote by κSV OC , is calculated using a super-95

saturation and CCN concentration calculated in cloud and calculate the critical diameter of the dry

aerosol using the aerosol size distribution at 50% RH. This approach is similar to that used in field

measurements. The second hygrocopicity, κnoCC , includes semi-volatile organic compounds in the

condensed phase at 90% RH but neglects any further condensation as the humidity rises. This defi-

nition is used to reflect approaches that are currently used in models such as WRF-Chem to include100
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the partitioning of SVOCs into the particle phase under subsaturated conditions. The third measure,

called the effective hygroscopicity and carries a superscript e, describes the value of the hygroscop-

icity of the aerosol particles without co-condensation that is required in order to produce the same

number of CCN when co-condensation is included. This method is applied to the aerosol both with

and without the condensed phase of the SVOCs at 90% RH. The effective hygroscopicity could be105

used in models that currently do not have the capacity to simulate the formation of secondary aerosol

mass or co-condensation of SVOCs.

2 Methodology for involatile aerosol

There are many sources of uncertainties discussed in this paper and, in order to represent their effect

on cloud droplet formulation, we calculate the hygroscopicity parameter, κ, introduced by Petters110

and Kreidenweis (2007), which is defined as

κ =
4A3

27D3
d ln2Sc

. (1)

Here Dd is the diameter of the dry particle that activates at a percentage supersaturation of sc =

(Sc− 1)× 100, where Sc is the saturation ratio. The parameter A is defined as

A =
4τMw

RTρw
,115

where τ is the surface tension of water, Mw and ρw are the the molecular weight and density of

water, and R and T are the universal gas constant and temperature, respectively.

Both the critical diameter and supersaturation are dependent on the chemical composition of the

aerosol particles with less hygroscopic particles requiring a larger supersaturation to activate, which

also corresponds to a larger critical diameter. Typically, the critical diameter and supersaturation120

pairs are obtained from experiments (Svenningsson et al., 2006; Dinar et al., 2006; Petters et al.,

2006) but this is a costly and time consuming process. In order to calculate the sensitivity of κ to

each parameter, a large number of experiments is required. In this paper, a cloud activation parame-

terisation (Fountoukis and Nenes, 2005) is used to calculate the critical diameter and supersaturation

as a function of the aerosol properties. For each set of parameter values, the parameterisation can125

calculate the critical supersaturation and number of CCN in under a second. Consequently, this

approach offers a practical method to perform a large number of simulations to fully explore the

dependence of κ on the different model parameters.

In this section we demonstrate how the parameterisations can be used to calculate the uncertainty

in κ for common non-volatile compounds before extending the method to include SVOCs in Section130

4. The chemical properties of non-volatile compounds can often be measured accurately and so the

main source of uncertainty results from measuring the size distribution of the particles. Deviation

from ideality is simulated through an uncertainty in the van’t Hoff factor. This section demonstrates

that the uncertainty in the size distribution that we simulate produces similar uncertainty in κ that
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are observed in experiments. It also offers a comparison of the uncertainty in κ that result from the135

inclusion of the SVOCs in Sections 4 and 5.

Particle sizes are assumed to follow a lognormal size distribution of the form

dN

d lnD
=

N√
2π lnσ

exp

[
−
(

ln(D/Dm)√
2lnσ

)2
]
, (2)

where N , Dm and lnσ are the aerosol number concentration, median diameter and geometric stan-

dard deviation, respectively. The cloud droplet activation scheme calculates a maximum supersatu-140

ration, smax, and a number of CCN, which we denote NCCN . We define the critical diameter, Dd,

as the smallest diameter of particle that activates, assuming all larger particles also activate. As such,

the critical diameter can be obtained by integrating the size distribution, (2), with respect to D from

Dd up to infinity and equating to the number of CCN calculated by the parameterisation. Therefore,

Dd satisfies145

1
2
Nerfc

(
− ln(Dd/Dm)

lnσ
√

2

)
=NCCN , (3)

where erfc is the complementary error function.

In order to encapsulate the uncertainty in the measured size distribution in κ, we first ran a Monte

Carlo simulation that solves the parameterisation with each size distribution parameter sampled from

normal distributions with specified mean and uncertainty. The range of aerosol size distributions that150

this corresponds to is represented by the grey shaded region in the lower plot of Figure 1. After

running the parameterisation, a range of smax and NCCN are obtained; examples of the resulting

probability distributions are shown by the bar charts with blue bars in Figure 1. The mean and

standard deviation of smax and NCCN are calculated to produce approximate normal probability

distributions, shown by the solid black lines. To calculate κ, a random pair of smax and NCCN were155

selected at random from their probability distributions (solid black lines). The value of NCCN and

the mean value of Dm were used to calculate the critical diameter, Dd, through equation (3) . This,

together with smax, were used to calculate κ using equation (1) by setting sc = smax.

When measuring CCN concentrations experimentally, the supersaturation within an instrument is

kept fixed and the resulting CCN concentrations are then measured. Both the supersaturation and160

the counting efficiency of the CCN are subject to uncertainty and the normal distributions that are

calculated from the parameterisation are intended to represent this. The uncertainty in supersatura-

tion of a Droplet measurement Technologies dual-column CCN counter (Roberts and Nenes, 2005),

for example, is approximately ±10% (Roberts et al., 2010; Trembath, 2013) and the uncertainty in

counting efficiency is approximately ±6% (Trembath, 2013). The standard deviation in the analo-165

gous quantities in our approach are both approximately ±12%.

The focus of this paper is on the effect of semi-volatile organic compounds on the hygroscopicity

and, consequently, a thorough analysis of the sensitivity of κ to the mean values assigned to the

number concentration, median diameter and geometric standard deviation of the non-volatile particle
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Figure 1. A schematic of the method used to calculate the hygroscopicity, κ, for the non-volatile aerosol particle

case. Mean size distribution and uncertainty range is shown in step 1 by the solid black line and grey shaded

regions, respectively. Probability distributions ofNCCN and smax from the Monte-Carlo simulations are shown

by the blue bar charts step 2 and corresponding fitted normal distributions are shown by the overlaid solid black

lines. Step 3 combines the mean size distribution with randomly sampled NCCN to calculate a range of Dd. In

step 4, each Dd is used together with a randomly sampled smax to find the range of κ.
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size distribution is not performed. Plots showing the effects for a few select choices of mean size170

distribution parameters are given in the supplementary material. The mean values that are used in the

main body of this paper are given in Table 1. The number concentration was randomly sampled from

a normal distribution with a standard deviation of 10% of the mean value, see Appendix A for further

details. This results in 67% of simulations being run with a number concentration within ±10%

of the mean. The median diameter was also sampled with a normal distribution with a standard175

deviation of 10%. The geometric standard deviation was found to vary by 0.1 regardless of the mean

value. As such, the geometric standard deviation was randomly sampled from a normal distribution

with standard deviation equal to 0.1. The uncertainties in each size distribution parameter are also

given in Table 1 as standard deviations of the normal distributions. Ten different logarithmically-

spaced updraft velocities are used ranging from 0.01 m s−1 to 10 m s−1. Each updraft velocity180

produces a different mean value of Smax but the resulting hygroscopicity shows little dependence

and for this reason no distinction is made between the different updraft velocities.

Table 1. Mean and standard deviation of the size distribution parameters of the non-volatile particles.

Parameter mean standard deviation

N (cm−3) 1000 100

Dm (nm) 100 10

lnσ 0.5 0.1

When water condenses onto aerosol particles some or all of the aerosol may dissolve. In addi-

tion, the soluble compounds may dissociate into multiple ions. To simulate the uncertainty in the

solubility and dissociation we randomly sampled the van’t Hoff factors from normal distributions185

with means, standard deviations and maximum and minimum values stated in Table 2. The maxima

for ammonium sulphate, sodium chloride and sulphuric acid are dictated by ideal behaviour, while

the maximum for levoglucosan is chosen to avoid erroneously high values. The minimum values

of zero are enforced to avoid numerical complications associated with negative van’t Hoff factors,

however, this is purely academic as the means and standard deviations are chosen such that it is190

highly improbable that the chosen values will lie in this range.

3 Results for involatile aerosol

Using the methodology described in Section 2, we produced a range of κ for four test compounds;

levoglucosan, ammonium sulphate, sodium chloride and sulphuric acid. Although our method is

more similar to the CCN derived κ, our results are also compared against the values calculated using195

a growth factor. This is due to the lack of experimental uncertainty for the CCN derived κ. Of our

four test compounds, only levoglucosan has CCN derived mean and uncertainty. For comparison,

Table 3 shows the mean values and uncertainties from both experimental methods, where available.
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Table 2. Parameters of the normal distributions from which the van’t Hoff factors are sampled and the standard

deviations are chosen to be 10% of the mean. Randomly sampled values that lie outside of the range of the

minimum and maximum are ignored.

Compound minimum mean maximum standard deviation

Levoglucosan 0 1 2 0.1

Ammonium Sulphate 0 2.7 3 0.27

Sodium Chloride 0 2 2 0.2

Sulphuric Acid 0 3 3 0.3

Our Monte Carlo simulation was run for 1000 different particle size distributions, each of which

were run at ten different updrafts, evenly distributed in logspace from 0.01 m s−1 to 10 m s−1. This200

produced a range of NCCN and smax for each of the four compounds. Using these values, we were

able to calculate a range of critical diameters, Dd, using the method described in Section 2. The Dd

combined with their corresponding value of smax resulted in a range of κ, using equation (1). The

values of κ are restricted to be always positive but, theoretically have no upper bound. As a result,

the data is not necessarily normally distributed. Consequently, we have chosen to use the 16.5th and205

83.5th quantiles to represent the uncertainty in κ. This allows for non-symmetric uncertainties but

represents the same number of data points that would be represented by the standard deviation if

the κ values were normally distributed. In the case when the κ values are normally distributed, our

uncertainty will be equal to the standard deviation of the data.

In Figure 2, the growth factor derived κ values from Table 1 are plotted against our calculated210

hygroscopicity, which will be referred to as κnv . The mean values of each compound are displayed

by the dots and the horizontal error bars depict the growth factor derived κlow and κup. The vertical

error bars show the 16.5th and 83.5th quantiles of the range of κ values from our method and the

grey dashed line shows the 1:1 line. The mean CCN derived κ and the mean values from our data

are shown by the crosses.215

The mean values that our method calculate are in excellent agreement with those given in Table 3.

In general, our values are slightly higher than the growth factor derived values but are in much better

agreement with the CCN derived values. The growth factor derived hygroscopicity for sulphuric

acid is noticeably lower than κnv but the CCN derived hygroscopicity is, again, in much better

agreement. The error bars from our Monte Carlo simulations are comparable to those from the220

growth factor derived κ. In the growth factor derived case, the uncertainty in hygroscopicity for

levoglucosan is so small that the error bars are obscured by the dot representing the mean values

while the analogous uncertainty in κnv is about 20%, although this still represents a small absolute

uncertainty due to the mean value being small. For ammonium sulphate, both methods calculate an

uncertainty of approximately 40%. The error bars for sodium chloride represent 20% uncertainty225

for the growth factor derived κ while our approach produces an uncertainty of about 40%. The
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error bars in κnv for sulphuric acid are comparable to those for ammonium sulphate and sodium

chloride but no growth factor derived uncertainty is available for comparison. In general, our method

results in an uncertainty on the order of 20− 40% for all compounds and is a result of only varying

the size distribution and van’t Hoff factors. In reality, there may be additional chemical variations,230

such as surface tension, that may influence the hygroscopicity. Although we have chosen to use an

uncertainty in the van’t Hoff factor of 10%, it is possible that the range of values do not accurately

capture the deviation from ideality. Our simulations, however, indicate that the van’t Hoff factor has

little influence on the uncertainty in hygroscopicity compared to variations in the size distribution

(not shown).235

Table 3. Growth factor and CCN derived mean and uncertainties in κ taken from Petters and Kreidenweis

(2007).

Compound
Growth factor CCN

κlow κmean κup κlow κmean κup

Levoglucosan 0.15 0.165 0.18 0.193 0.208 0.223

Ammonium Sulphate 0.33 0.53 0.72 N/A 0.61 N/A

Sodium Chloride 0.91 1.12 1.33 N/A 1.28 N/A

Sulphuric Acid N/A 1.19 N/A N/A 0.9 N/A

4 Methodology including the effects of SVOCs

Calculating κ in the presence of SVOCs is highly sensitive to the method that is used. In field

measurements, atmospheric aerosol is passed through instruments under subsaturated conditions

in order to measure the size distribution and composition while the number of CCN is calculated

under supersaturated conditions. Due to the partitioning of SVOCs between a vapour and condensed240

phase being sensitive to the relative humidity, the two measurements will include different quantities

of SVOCs in the particle phase as some of the higher volatility SVOCs evaporate as the relative

humidity is reduced. This results in uncertainty in how much secondary aerosol mass results from

the SVOCs but, additionally, in the total abundance of SVOCs that exists, which will influence cloud

droplet activation.245

The volatile nature of SVOCs results in new pathways through which the SVOCs affect κ that

are not present in the non-volatile particle case. The CCN-based approach to calculating κ requires

integrating the aerosol size distribution to find the diameter, Dd, above which particles activate. The

aerosol size distribution, in this case, is measured at subsaturated conditions, typically ≈ 50% RH

(Taylor et al., 2016). The number of particles that activate, however, is controlled by the chemical250

composition and size of the aerosol under supersaturated conditions. This is also true of the maxi-

mum supersaturation, smax, that is calculated in the parameterisation. As such, the hygroscopicity of

9

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



 

 

κ (Petters and Kreidenweis 2007)

κ
n
v

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(NH4)2SO4

NaCl

Levoglucosan

H2SO4

Figure 2. Growth factor derived hygroscopicity, κ, of non-volatile compounds from Petters and Kreidenweis

(2007) plotted against the values from our Monte Carlo approach. Mean values from the CCN derived and

growth factor derived experimental methods are shown by the crosses and dots, respectively, with y coordinates

showing the mean from our approach. Horizontal error bars show κlow and κup from the growth factor derived

κ given in Table 3, and the vertical error bars show the 16.5th and 83.5th quantiles of our derived values.

Ammonium sulphate is shown in red with dashed error bars, sodium chloride is shown in blue, levoglucosan is

shown by the green and sulphuric acid is shown in black.
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the aerosol in the presence of SVOCs cannot simply be related to the chemical composition through

the mixing of Petters and Kreidenweis (2007),

κ=
∑

i

εiκi, (4)255

which is used for internally mixed non-volatile aerosol. Here, κi is the hygroscopicity of the ith

compound and εi is the volume fraction of the aerosol occupied by that compound. In the case of

ammonium sulphate, sodium chloride and sulphuric acid, adding non-volatile organic compounds

with a hygroscopicity of ≈ 0.15, typical of secondary organic aerosol (Varutbangkul et al., 2006;

Massoli et al., 2010), will decrease the hygroscopicity of the aerosol through the relation (4). Since260

the κ of levoglucosan is similar to the hygroscopicity of the organic compounds we consider, the

mixing rule will have little effect on the hygroscopicity of the internal mixture.

In the case of semi-volatile organic compounds, as considered in this paper, the condensed mass of

SVOCs at 50% RH is used to increase the diameters of the particles in the aerosol size distribution.

The additional condensed mass that partitions into the particle phase at cloud base will change the265

size of the particles but also their affinity to activate into cloud drops in the parameterisation using the

mixing rule, (4). To calculate the hygroscopicity including the SVOCs, κSV OC , we use the aerosol

particles at 100% RH to calculate NCCN and smax but integrate the aerosol size distribution at 50%

to obtain Dd. These are combined to calculate κSV OC through (1).

Semi-volatile organic compounds are subject to large uncertainties. These arise from the mea-270

surements of the saturation vapour pressure, the abundance and material properties; all of which are

difficult to measure due to the volatile nature of the compounds. In addition, atmospheric VOCs

originate from unknown sources and subsequently undergo an unknown series of gas-phase reac-

tions. The result is a mix of, largely, unidentifiable compounds with unknown chemical properties.

In our model, we use the log10 volatility basis set (VBS) of Donahue et al. (2006) with saturation275

concentrations, C∗, ranging from 1× 10−6 µg m−3 to 1× 103 µg m−3. Each volatility bin repre-

sents multiple organic species with unknown material properties. In our Monte Carlo simulations

we randomly select material properties of each volatility bin using a normal distribution with means

and standard deviations given in Table 5. The origins of these values are given in Appendix B2 and

are based on data in the literature. To simulate uncertainty in the saturation vapour pressures of the280

individual compounds that are represented by the volatility distribution, we initially begin with the

volatility distribution given in Cappa and Jimenez (2010), which is restated in Table 4. Some of the

mass concentration in each volatility bin is then randomly redistributed between neighbouring bins

to simulate uncertainties in the C∗ values of individual compounds. This process adds a random el-

ement to the relative mass concentrations in each volatility bin. The total concentration of SVOCs is285

then random chosen from a uniform distribution so that the bulk organic mass fraction of the aerosol

at 50% RH without its associated water is between 0.1 and 0.5. Further details on all of the simu-
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lated uncertainties of the SVOCs are given in Appendix B. The size distribution of the non-volatile

particles was sampled using the same uncertainties specified in Section 2.

Table 4. Volatility distribution of SVOCs from Cappa and Jimenez (2010).

logC∗ -6 -5 -4 -3 -2 -1 0 1 2 3

Cj (µg m−3) 0.005 0.01 0.02 0.03 0.06 0.08 0.16 0.3 0.42 0.8

Table 5. The range of effective material parameters used for the compounds in each volatility bin. Minimum

and maximum values are stated as well as the mean and standard deviation of the normal distribution from

which values are sampled.

Parameter minimum maximum mean standard deviation

Molecular weight (g mol−1) 100 300 200 100

Density (kg m−3) 1000 1500 1250 250

van’t Hoff factor 0 1 0.5 0.5

A Monte Carlo simulation was carried out that calculated the range of smax and NCCN that290

results from the parameterisation of Connolly et al. (2014) when the volatility distributions were

randomly chosen from the distributions described above. The aerosol size distributions of the non-

volatile particles were randomly chosen in the same way as in Section 2. In each simulation, a set

of non-volatile size distribution parameters and a volatility distribution and material properties of

the SVOCs were chosen randomly. Dry aerosol size distributions including condensed SVOCs were295

calculated at the initial RH of 50% and Dd calculated using a randomly chosen NCCN from within

its uncertainty range. The corresponding smax was then used to calculate κ. A schematic of this

process is shown in Figure 3.

We first investigate the effect of uncertainty in these measurements on κ that may result from

using a CCN-based method, common in insitu measurements. In Section 5.1, we investigate the300

dependence of the hygroscopicity on the relative humidity at which the aerosol size distribution

is measured. We then go on to calculate effective κ values that the non-volatile compounds in the

absence of SVOCs would have to have in order to simulate the same cloud droplet activation affinity

that the SVOCs induce. This presents a possible computationally efficient method to include the

effect of SVOCs on cloud in large-scale models that currently do not have the capacity to do so305

directly. The results from this work are presented in Section 5.2.
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Figure 3. A schematic of the method used to calculate the hygroscopicity including the effects of SVOCs. The

methodology is the same as in the non-volatile case but with the addition of randomly choosing a volatility

distribution together with the non-volatile size distribution parameters as inputs into the parameterisation (step

1). The median volatility distribution is used to calculate the median diameter at 50% RH that is integrated to

calculate Dd in step 3.

5 Results including the effects of SVOCs

Using the methods detailed in Section 4, we calculated a range of hygroscopicities, κSV OC , that

incorporate the full effect of SVOCs on ammonium sulphate, sodium chloride, levoglucosan and

sulphuric acid with 10%-50% of the total aerosol mass being composed of SVOCs. These are plotted310

against the hygroscopicities calculated for just the non-volatile modes, κnv , from Section 3 in Figure

4. Similarly to previous figures, the error bars show the 16.5th and 83.5th quantile in order to contain

the middle 67% of values. The error bars show a marginally smaller uncertainty for κSV OC , being

roughly 30% of the mean, which is, at most, 10% smaller than the uncertainty associated with the

non-volatile particles only.315

The influence of SVOCs reduces the hygroscopicity of ammonium sulphate, sodium chloride and

sulphuric acid. The hygroscopicity of levoglucosan is largely unchanged, with only a very slight
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increase, due to its chemical properties being very similar to that of the SVOCs and, consequently,

the mixing rule creates little difference between κnv and κSV OC . The more hygroscopic compounds,

by comparison, will be more heavily affected because of a larger difference in κ between the non-320

volatile aerosol and the semi-volatile organic compounds.

We also calculated a range of hygroscopicities that include the initial condensed mass of organic

vapours at 0% RH but do not consider any co-condensation that would occur during ascent to cloud

base. We denote this as κnoCC . In the absence of co-condensation of SVOCs, the aerosol particles

are composed of the non-volatile constituent plus the condensed organic mass at 50% RH and are,325

subsequently, assumed to be non-volatile in the parameterisation. The resulting κnoCC can be cal-

culated using the mixing rule (4) and due to the low hygroscopicity of the SVOCs will be lower than

κnv . Figure 5 shows that the result is nearly a 30% decrease in mean hygroscopicity in ammonium

sulphate, sodium chloride and sulphuric acid with a 15% reduction in levoglucosan.

Figure 6 shows κSV OC plotted against κnoCC . Both hygroscopicities are calculated using the330

same aerosol size distribution at 50% RH and the difference is that κSV OC has further condensed

mass of SVOCs added before activation. Due to the substantial decrease in hygroscopicity due to

the condensed SVOCs at 50% RH, the mixing rule, when applied at cloud base, has a much less

significant effect on the aerosol composition. The additional mass, however, will act to increase

the diameter of the particles that activate in the parameterisation and this will increase NCCN and,335

consequently, κSV OC . The result is that κSV OC is larger than κnoCC for all compounds due to the

enhancement in size dominating the change in composition due to co-condensation. Figure 6 shows

that the hygroscopicity of ammonium sulphate, sodium chloride and sulphuric acid increase by about

15% due to co-condensation and levoglucosan by 30%.

The difference between κSV OC and κnv in Figure 4 is the combination of both the suppres-340

sion seen in Figure 5 and the enhancement in Figure 6. For ammonium sulphate, sodium chloride

and sulphuric acid the decrease due to the mixing rule at 50% RH is larger in magnitude than the

enhancement due to co-condensation and the result is a net decrease of approximately 30%. For

levoglucosan, the mixing rule has a less dominant effect than the increase in size at cloud base and,

hence, the slight increase in hygroscopicity when co-condensation of SVOCs is included compared345

to the non-volatile compounds alone.

5.1 Dependence of κ on relative humidity

Under the supersaturated conditions experienced in clouds, the majority of the SVOCs partition into

the condensed phase. This increases the particle sizes and influences the activation process. A signif-

icant portion of the higher volatility SVOCs only condense at relative humidities at or above 100%,350

however, and exist in the vapour phase at lower RH. This means that they influence κ through the

maximum supersaturation attained and the number of cloud droplets that result. The lower volatility

SVOCs are almost always in the condensed phase and have little sensitivity to the relative humidity.
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Figure 4. Hygroscopicity including the SVOCs, κSV OC , plotted against κnv . The grey dashed line shows

equality between the axes, error bars showing the middle 67% of our derived values and the intersections of the

error bars depicting the means. Ammonium sulphate is shown in red with dashed error bars, sodium chloride is

shown in blue, levoglucosan is shown by the green and sulphuric acid is shown in black.

In contrast, the mid-volatility SVOCs are more sensitive to lower relative humidity values; partition-

ing differently at RH values between 50% and 90%. This range is typical for the relative humidity355

that is used when sizing aerosol particles and the concentration of these mid-volatility compounds in

the condensed phase can vary significantly. The overall effect on the total condensed organic mass

and consequently Dd and κ, however, is minimal due to the lower volatility compounds always

existing in the condensed phase.

To investigate the effect of relative humidity on κ, we ran the Monte Carlo simulation to calculate360

the uncertainty in supersaturation and number of CCN but have integrated the aerosol size distribu-

tion at different relative humidities in order to calculate different Dd. At each relative humidity, the

median diameter of the aerosol size distribution was calculated assuming constant geometric stan-

dard deviation and conservation of mass. At 99.999% RH only, the aerosol size distribution from the
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Figure 5. Hygroscopicity, κnoCC , plotted against κnv . The grey dashed line shows equality between the axes,

error bars showing the middle 67% of our derived values and the intersections of the error bars depicting

the means. Ammonium sulphate is shown in red with dashed error bars, sodium chloride is shown in blue,

levoglucosan is shown by the green and sulphuric acid is shown in black.

parameterisation at cloud base is used (Connolly et al., 2014). In this case, the geometric standard365

deviation of the composite aerosol size distribution was recalculated along with the median diameter

to simulate the dynamic condensation of the SVOCs during cloud activation.

Figure 7 shows the variation in the κ values that results from calculating the dry aerosol size

distribution at different initial RH values. The results show a modest dependence on RH with a

tendency for lower κ values at higher RH. Mean κ values decrease by about 0.07 from an RH of 70%370

to 95%, however, this decrease is dwarfed by the uncertainty range in κ and contributes no significant

variation. Due to the different method that is employed to calculate the aerosol size distribution at

99.999% RH, there is a significant difference in the hygroscopicity calculated with a reduction of

about 0.2 compared to the lower RH values. This is a result of the narrower size distribution that

results from altering the geometric standard deviation as well as the median diameter.375

Figure 8 shows the dependence of the condensed mass of SVOCs, calculated using equilibrium

absorptive partitioning theory, on RH for a typical volatility distribution used in this paper. As can

be seen, there is little difference in condensed mass between 70% and 80% RH. Some increase

in condensed mass occurs at 90% and 95% but it is not until the RH approaches 100% that there
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Figure 6. Hygroscopicity, κSV OC plotted against κnoCC . The grey dashed line shows equality between the

axes, error bars showing the middle 67% of our derived values and the intersections of the error bars depicting

the means. Ammonium sulphate is shown in red with dashed error bars, sodium chloride is shown in blue,

levoglucosan is shown by the green and sulphuric acid is shown in black.

is a significant difference in the higher volatility bins. Due to the presence of the lower volatility380

bins, all of which exist in the condensed phase at 70% RH, the increase in condensed mass in

the higher volatility bins contributes little to the total SVOC concentration in the condensed phase

below 95% RH. With the addition of the non-volatile aerosol mass, the total aerosol mass changes

very little between 70% and 95% RH. A more noticeable dependence may be observed for higher

concentrations of SVOCs, that represent a more significant portion of the total aerosol mass, as well385

as environments that do not contain lower volatility compounds. Overall, however, it is unlikely that

the relative humidity at which the size distribution is measured will have a significant effect on κ.
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Figure 7. Box and whisker plots showing the range of κ values that result from the uncertainties in the model

inputs using values of Dd calculated at different initial RH values, as specified on the x axis. Each box and

whisker represents 50 calculations using ammonium sulphate aerosol

5.2 Effective kappa

Including the production, condensation, evaporation, reaction and oxidation of SVOCs directly in

large-scale models is very computationally expensive and is rarely carried out, especially for more390

than one compound. For the purposes of aerosol transport, it is common to apply equilibrium absorp-

tive partitioning theory to calculate the particle phase of volatile compounds (Tsigaridis et al., 2014).

Comprehensively including the effect of SVOCs on cloud droplet activation in large-scale models is

yet to be carried out (Ervens, 2015). Although, a number of studies have attempted to parameterise

the relation between secondary organic aerosol and cloud liquid water content (Myriokefalitakis395

et al., 2011; Lin et al., 2014) an effective cloud droplet radius has to be assumed in order to incorpo-

rate them into large-scale models.

We suggest a potential method to include the effects of SVOCs on cloud droplet activation in large-

scale models that is computationally efficient and does include the process of co-condensation as the

relative humidity exceeds 100%. Our method, additionally, allows for a dependence on aerosol prop-400

erties rather than assuming an arbitrary effective radius of the cloud droplets. Our method involves

using our Monte Carlo simulations using the cloud droplet activation parameterisation including the
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effects of SVOCs (Connolly et al., 2014) to calculate the number of CCN for a given size distribution

of non-volatile particles and volatility distribution, together with their associated uncertainties. We

then iterate the parameterisation without SVOCs (Fountoukis and Nenes, 2005) to find the κ of the405

non-volatile particles that would be required in order to produce the same number of cloud droplets

that was calculated in the presence of SVOCs. The hygroscopicity of the non-volatile particles is

referred to as the effective hygroscopicity and is denoted κe
nv . At very low updrafts, the parame-

terisation can be insensitive to the hygroscopicity and, consequently, there may not exist a value of

κe
nv that produces the same concentration of CCN as in the SVOC case. Similarly, at high updrafts,410

the parameterisation often activates all particles, even when the hygroscopicity is very low. To avoid

these complications, we iterate the vertical updraft in the parameterisation with SVOCs until 90%

of particles activate. The parameterisation without SVOCs is then evaluated at this updraft while

iterating the hygroscopicity until 90% of particles activate. The resulting hygroscopicity is defined

as the κe
nv .415

Figure 9 compares the κnv values from our Monte Carlo simulations for just the non-volatile

aerosol against the effective κe
nv values of the non-volatile aerosol. The mean effective κe

nv values
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Figure 9. Effective hygroscopicity, κe
nv plotted against the hygroscopicity of non volatile compounds, κnv . The

dots show the mean values and the error bars represent the 16.5th and 83.5th quantiles. Ammonium sulphate is

shown in red with dashed error bars, sodium chloride is shown in blue, levoglucosan is shown by the green and

sulphuric acid is shown in black. The dashed grey line shows the 1:1 line.

are significantly higher than the mean κnv of the non-volatile compounds in all four cases with an

increase of 60% for sodium chloride and a factor of 2 in the case of levoglucosan. The reason for

this increase is that the non-volatile particles are much smaller than the particles that activate in the420

presence of SVOCs and, consequently, must have a larger κe
nv in order to compensate. An increase

in the hygroscopicity of aerosol particles on this scale could have a significant effect in large-scale

models. The uncertainty ranges are slightly larger in the effective κe
nv cases than the analogous

κnv values but a significant increase is only observed for levoglucosan. This is due to a very small

uncertainty in κnv for levoglucosan rather than a large uncertainty in the effective hygroscopicity.425

On average, the uncertainty spans about 30-40% of the mean.

For models that include the condensed mass of SVOCs but neglect the vapour phase during ac-

tivation, similar calculations can be carried out. The effective hygroscopicity of the aerosol size
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Figure 10. Effective hygroscopicity, κe
noCC , values plotted against the hygroscopicity including the condensed

SVOCs at 50% RH in the absence of further co-condensation, κnoCC . Error bars represent the 16.5th and

83.5th quantiles. Ammonium sulphate is shown in red with dashed error bars, sodium chloride is shown in blue,

levoglucosan is shown by the green and sulphuric acid is shown in black.

distribution at 50% RH, κe
noCC , in this case can then be calculated in an analogous way to the non-

volatile case. Figure 10 compares the hygroscopicity of the internally mixed aerosol at 50% RH in430

the absence of further co-condensation of SVOCs, κnoCC , against the effective hygroscopicity of

such particles, κe
noCC . As in the involatile case, the effective κe

noCC values are larger than those

without co-condensation, however, the increase is slightly less at only 40% for ammonium sulphate,

sodium chloride and sulphuric acid. Levoglucosan increases by a factor of 2, as before. The uncer-

tainty associated with the effective κe
noCC in this case is much smaller than in Figure 9, varying by435

only about 0.2-0.3, although this still represents a similar 30-40% of the mean value.
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6 Conclusions

We propose that semi volatile organic compounds have a significant impact on the hygroscopicity of

atmospheric aerosol, and therefore the ability for these aerosols to form cloud droplets. The effects of

SVOCs can both increase and decrease κ. The mixing rule detailed in section 5 can shift κ either way,440

dependent on the hygroscopicity of the non-volatile aerosol at 50% RH. If the hygroscopicity of the

non-volatile aerosol is lower than the mean hygroscopicity of the SVOCs then κwill be increased, as

is the case with levoglucosan. For non-volatile aerosol with higher hygroscopicity than the SVOCs,

the mixing rule will have a tendency to decrease κ when the SVOCs are included. The magnitude of

the shift in κ is dependent upon the difference between the κ of the SVOCs and κ of the aerosol along445

with the mass of SVOCs present. Semi-volatile compounds also affect κ by enhancing the size of

swollen aerosol in the atmosphere, which consequently increases NCCN , resulting in a smaller Dd

that then produces an increase in κ. These two effects contrast each other, with one being dominant

over the other and which is dominant is dependant on the situation. With a full consideration of

SVOCs, the overall effect is that non-volatile aerosol particles with κ greater than that of the SVOCs450

give a κSV OC which is less than κnv , whereas if κ of the non-volatile aerosol is smaller than the

SVOCs then κSV OC > κnv . A larger disparity between the hygroscopicity of the aerosol and the

semi-volatile compounds causes a larger translation of the mean κ.

The effects of SVOCs is also subject to the complexity of their inclusion in the model. We have

shown that by omitting the effects of semi-volatile compounds during co-condensation, we obtain455

a lower hygroscopicity values than if co-condensation is fully included since κnoCC is less than

κSV OC . It is crucial to include all the effects of SVOCs on activation, including co-condensation

because the magnitude of the underestimation of κnoCC compared to κSV OC can be of similar

magnitude to the overestimation of κnv compared to κSV OC .

Semi-volatile organic compounds in the atmosphere give an effective κ that is greater than that460

of the non-volatile compounds, despite the mixing rule causing a reduction in hygroscopicity for

many compounds. Consequently, the co-condensation of SVOCs can significantly increase the CCN

concentrations observed compared to those that would be expected from the involatile aerosol in

environments without SVOCs. There is the necessity for them to be included into large-scale global

models to avoid a drastic underestimation in the number of cloud droplets, with the potential for465

large global implications if not thoroughly considered.

Appendix A: Simulating instrument measurements

Aerosol particle sizes in large scale models are often represented by lognormal distributions (Mann

et al., 2012) and these are informed by measurements of atmospheric aerosol. The measured size

distributions often contain noise resulting from inaccuracies in the instrument used and the lognor-470

mal size distribution is obtained using a best-fit algorithm. The number of lognormal modes used
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to represent the measured size distribution will affect the output from the algorithm; specifying too

few modes can result in a poor fit but identifying too many can result in fitting an individual mode

to large noise artefacts. In the current work we focus only on situations containing a single mode

of particles and in this section we estimate potential uncertainties in the fitting of a lognormal size475

distribution to noisy measurement data.

Instruments that measure particle sizes measure the number of particles within a certain range of

sizes with no information on the distribution of particles with in this range. In addition, inaccuracies

in particle sizing can result in some particles being wrongly sized, as well as some particles not being

detected at all. This results in inaccuracies in the size distribution.480

In this section, we describe the process of generating random noisy size distribution data from a

perfect lognormal size distribution. The following section then describes how this method is incor-

porated into a Monte-Carlo simulation to generate uncertainties in the number concentration, median

diameter and geometric standard deviation of the lognormal size distributions that is used in the main

paper.485

We began by specifying a median diameter, geometric standard deviation and number concentra-

tion of particles before discretising the size distribution into bins of identically sized particles; this is

shown in Figure 11. The black line shows the original lognormal distribution and the bars show the

analogous binned quantities. The binned size distribution is used as a proxy for measurement data. In

Sections A1 and A2, we explain how uncertainties in the measured sizes and number concentrations490

of particles within each bin are simulated.

A1 Particle sizing uncertainty

The bars in Figure 11 represent a binned analogy to the lognormal distribution show by the solid

black line. The heights of the bars are assumed to be representative of the output from a perfect

instrument that detects and accurately sizes every particle within a lognormal size distribution. In495

this section, we explain how inaccuracies in the particle sizing are introduced to this idealised case

in order to better simulate instrument data.

The particles within a given size bin are assumed to be normally distributed with a mean value

equal to the bin centre. The standard deviation of the normal distribution is randomly chosen for each

bin from a uniform distribution within the range 0% and 50% of the bin width. This is inline with the500

estimated size bin inaccuracies from a Particle Measurement Systems passive cavity aerosol spec-

trometer probe resulting from the different refractive indices of ammonium sulphate and sulphuric

acid (Taylor et al., 2016). Larger standard deviations indicate more inaccuracies in the particle siz-

ing while a standard deviation of zero indicates perfect sizing of a monodisperse aerosol population

within that bin. One such normal distribution is shown by the red line in Figure 11 with the mean505

indicated by the vertical dashed line. Particles in this bin are redistributed among the neighbouring
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Figure 11. A representation of how noisy measurement data is simulated. A lognormal size distribution (black

line) is discretised into multiple bins of identically sized particles. The centre of the bar is the size of the particles

within each bin. The red line shows the assumed random distribution of particles within a particular size bin.

bins according to this normal distribution. This is carried out for all bins using a different standard

deviation for each bin. An example of the resulting binned size distribution is shown in Figure 12.

A2 Number concentration uncertainty

As well as instruments carrying inaccuracies in particle sizing, instruments that measure particle510

concentrations can introduce further inaccuracies of approximately 10% (Hering et al., 2005). To

simulate this source of uncertainty, we vary the height of each bar in Figure 12 by randomly choosing

a number concentration from a normal distribution with mean equal to the number concentration of

the bin and a standard deviation of 10% of the mean. The error bars in Figure 12 show one standard

deviation in the number concentration in each bin.515

The total concentration of particles after applying this randomisation remains mostly unchanged

due to there being an equal probability of increasing one bin by the same amount as decreasing

another. To introduce a variability in total number concentration we subsequently rescale the whole

binned size distribution. We randomly choose a new number concentration from a normal distri-

bution with a mean equal to the number concentration of the original lognormal and a standard520

deviation of ±10% of the mean.
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Figure 12. The bars in this figure demonstrate the result of randomising the particle sizes within each bin in

Figure 11. Uncertainties in the number concentration within each bin are shown by the error bars on the top of

each bar, which show one standard deviation. The solid blue line shows the best-fit lognormal size distribution

to the randomised binned size distribution.

A3 Uncertainty in lognormal size distribution parameters

In this section we demonstrate how randomising the binned size distributions translates into uncer-

tainties in the fitted lognormal size distributions that are used in the main paper. A schematic of this

process is shown in Figure 13. For a given number concentration, N , median diameter, Dm, and525

geometric standard deviation, lnσ, the corresponding lognormal size distribution was binned and

random noise added as described in Section A. A new lognormal size distribution was fitted to the

resulting bar chart size distribution to find new values of the number concentration, Nfit, median

diameter, Dfit, and geometric standard deviation, lnσfit. This process was repeated multiple times

and the mean and standard deviation for each parameter value calculated, which are denoted by530

superposed bars and hats, respectively. The whole process was repeated for the different size distri-

bution parameters chosen randomly from uniform distributions with maxima and minima given in

table Table 6.

Figure 14 shows the uncertainty in the median diameter of the fitted lognormal size distributions

for a range of median diameters of the initial lognormal mode, Dm. For each initial value of the535

median diameter, Dm, the mean D̄fit and standard deviation D̂fit of median diameters of the fitted

lognormal modes are shown by the black dots and blue vertical lines, respectively. The 1:1 line is
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Figure 13. Schematic showing how the uncertainty in the size distribution parameters is derived using the

randomisation process in Section A. Initial size distribution parameters, Dm, N , and lnσ are chosen and the

size distribution binned into 20 nm wide size bins. The concentration in each bin is then randomised and a new

lognormal size distribution fitted to the bar bar. After repeating 200 times, the mean and standard deviation in

each of the parameters of the fitted size distributions are calculated. This process is repeated multiple times for

different values of N , Dm and lnσ taken from Table 6.
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Table 6. Minimum and maximum of the size distribution parameters used for Figures 14 to 16.

Parameter minimum maximum

N (cm−3) 100 2000

Dm (nm) 50 500

lnσ 0.1 1

shown by the solid black line and lines showing deviation from the 1:1 line of 5% and 10% are shown

by the dashed, and dot-dashed lines. In all cases, the number concentration was between 100 cm−3

and 2000 cm−3 and randomly chosen and the geometric standard deviation was randomly selected540

from the range between 0.1 and 1. The mean values of the fitted median diameters deviate very little

from the 1:1. The blue vertical error bars show deviation from the mean of one standard deviation,

namely D̄fit± D̂fit, and for all initial median diameter values the error bars mostly lie within the

dot-dashed lines showing 10% deviation from the mean. Therefore, we represent the uncertainty in

the median diameter of the non-volatile modes by a standard deviation of 10% of the mean.545

Figure 15 shows the uncertainty in the number concentration of the fitted lognormal size distri-

butions. The black dots show the mean number concentration of the fitted lognormal modes, N̄fit,

against the original value of N . In the majority of cases, there is less than 5% discrepancy between

N̄fit and N . The uncertainty in the fitted number concentration is shown by the vertical blue lines

that represent N̄fit±N̂fit. In most cases, the uncertainty in the fitted number concentration deviates550

from the mean by about 10% - 15%. There are some cases that have error bars extending beyond the

dotted lines, which show 15% deviation from the 1:1 line, however, these mostly correspond to the

cases where N̄fit deviates from N by 10% - 15%. Consequently, the associated error bars still show

a standard deviation of 10% of N̄fit.

Figure 16 shows the mean and standard deviation in the geometric standard deviation of the fitted555

lognormal modes, lnσfit. A distinct feature of this figure that was not present in Figures 14 and

15 is that the mean of the fitted geometric standard deviations, ln σ̄fit, do not agree with the initial

values of lnσ but is approximately 0.1 higher. This is an artefact of the randomisation process that

moves particles between each bin. Particles are passed from one size bin into the neighbouring bins

and these bins pass particles back again. On average, size bins that contain the most particles will560

pass more particles into the neighbouring bins that contain fewer particles than are passed back. As

a result, the particles in the size bins containing the most number of particles diffuse out into the

smaller and larger diameter size bins. This produces a wider size distribution and, therefore, larger

values of ln σ̄fit compared to lnσ. The purpose of this graph, however, is to ascertain the relative

size of the standard deviation, ln σ̂fit, compared to the mean value ln σ̄fit. For all values of lnσ the565

error bars, which show ln σ̄fit± ln σ̂fit, span approximately 0.1 from the mean. As such, we use an

uncertainty in the geometric standard deviation of 0.1.
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Figure 14. Uncertainty ranges in the median diameter of the fitted lognormal size distribution parameters that

result from the randomisation process in the aerosol size distribution. The 1:1 line between Dfit and Dm is

shown by the solid line and the dashed and dot-dashed line show deviation of 5% and 10% from the 1:1 line

respectively. Black dots show the mean of the fitted median diameters, D̄fit, and the standard deviation, D̂m,

is shown by the vertical error bars.

Appendix B: SVOC uncertainty

B1 Volatility distribution uncertainty

The volatility distribution of SVOCs in the atmosphere is the largest source of uncertainties dis-570

cussed in this paper. Not only is the total concentration of SVOCs uncertain but also the volatility of

the different compounds. Due to the volatile nature of the SVOCs, making accurate measurements

is very difficult, often resulting in several orders of magnitude variability in the saturation vapour

pressure of each individual compound.

In this paper, we use a volatility basis set and assume the distribution is that measured by Cappa575

and Jimenez (2010) but we add a random element to simulate the uncertainty. This is achieved in
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Figure 15. Same as Figure 14 for the number concentration of the fitted lognormal size distributions. Mean

values and standard deviations of the fitted number concentrations are shown by the black dots and error bars,

respectively.

a similar way to the size distribution. A schematic is shown in Figure 17. The unaltered volatility

distribution is shown in the top left of the Figure. The volatility of the compounds represented by

the dark green bar are assumed to be normally distributed, rather than all having a single C∗ value,

and this simulates uncertainties in measuring the saturation vapour pressures. For each volatility bin,580

the mean is taken to be the C∗ value of the volatility bin and the standard deviation of the normal

distribution is chosen randomly from a uniform distribution ranging from 0% to 33% of the mean

log10C
∗ value, based on the measured compounds in Bilde et al. (2015). The normal distribution

is then integrated between each volatility bin boundary and the corresponding mass redistributed

between neighbouring bins. This process is repeated for each volatility bin using the mass in the585

original volatility distribution. A new randomised volatility distribution is then created by adding

together all of the binned normal distributions. We then simulate uncertainties in measuring the

organic mass in each volatility bin. To do this we assume the mass in each volatility bin is normally

29

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



 

 

Initial Geometric Standard Deviation, lnσ

F
it

te
d

G
eo

m
et

ri
c

S
ta

n
d
ar

d
D

ev
ia

ti
o
n
,
ln
σ
f
it

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

+/-0.1

+/-0.2

Figure 16. Same as Figure 14 for the geometric standard deviation of the fitted lognormal size distributions.
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error bars, respectively.
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Figure 17. A schematic showing the method used to randomly vary the volatility distribution given in Table 4.

The final distribution is rescaled so that the total mass concentration results in a specified organic mass fraction

in the aerosol size distribution at 50% RH. In each simulation, organic mass fraction is chosen randomly from

a uniform distribution between 10% and 50%.
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are shown by the lighter grey bars, and the interquartile range is shown by the darker shaded area. The median

mass concentrations are shown by the horizontal black lines.

distributed with mean obtained from step 4 and standard deviation of 25% of the mean. New masses

are then chosen from the resulting normal distributions. All SVOCs with a C∗ value less than the590

lowest volatility bin are placed in the first bin and, similarly, all SVOCs with a higher C∗ value than

the highest volatility bin are placed in the last bin.

For a given volatility distribution with total mass loading of 1 µg m−3, Figure 18 shows the

total variability of the mass concentration in each bin. A Monte Carlo simulation was run 100 times

with parameters randomly chosen as described above. Different quantiles are plotted to show the595

variability in the mass concentration in each bin.

B2 Material parameter uncertainty

Table 7 shows the molecular weight and density of a variety of compounds found in biogenic SOA.

The molecular weights are approximately uniformly distributed. A volatility basis set approach in-

volves binning large numbers of different compounds with different mass concentrations and ma-600

terial properties. For each of our simulations, we simulate volatility basis sets that are composed

of random numbers of compounds in different ratios. Although the molecular weights of individ-

ual compounds are uniformly distributed, the result of combining multiple random compounds and

averaging their individual molecular weights will result in a range of possible effective molecular
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weights that are normally distributed. This is because choosing a compound with a large molecular605

weight is likely to be mitigated by also choosing a compound with a very small molecular weight.

As a result, we choose molecular weights from a normal distribution with mean 200 g mol−1 and

standard deviation of 100 g mol−1. We further restrict the values to lie between 100 g mol−1 and

300 g mol−1 to avoid unphysical values. A similar approach is used for the van’t Hoff factors and

the densities and are summarised in Table 5.610

Table 7. Table of molecular weight and density for a range of biogenic SOA.

Compound Molecular Weight (g mol−1) Density (g mL−1)

α-Pinene oxide 152 0.964

β-Pinene oxide 152 0.97

Limonene-2-oxide 152 -

d-Limonene 136 0.8411

2-Hydroxy-3-pinanone 168 -

Cineole 154 0.922

Myrtenal 150 0.988

Citronellal 154 0.855

Citral 152 0.893

Ketopinic acid 182 1.238

cis-Isoketopinic acid 182 -

Nopinone 138 0.981

Menthone 154 0.895

Camphore 152 0.99

Myrtenol 152 0.954

cis-Verbenol 152 -

trans-Pinane-1,10-diol 170 -

trans-p-Menth-6-en-2,8-diol 170 -

Pinanediol 170 -

Bornyl acetate 196 0.986

Geranyl acetate 196 0.916

Linalyl acetate 196 0.895

Acknowledgements. The research leading to these results has received funding from NERC, through the Re-

search Experience Placement (REP) scheme, and the European Union’s Seventh Framework Programme (FP7/2007-

2013), under grant agreement n° 603445.

33

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



References

Abdul-Razzak, H. and Ghan, S.: A parameterisation for the activation 2. multiple aerosol types, Journal of615

Geophysical Research, 105, 6837–6844, 2000.

Abdul-Razzak, H., Ghan, S., and Rivera-Carpio, C.: A parameterisation for the activation 1. single aerosol type,

Journal of Geophysical Research, 103, 6123–6131, 1998.

Albrecht, B. A.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, 1989.

Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric620

chemistry, Science, 276, 1052–1058, 1997.

Barley, M., Topping, D. O., Jenkin, M. E., and McFiggans, G.: Sensitivities of the absorptive partitioning model

of secondary organic aerosol formation to the inclusion of water, Atmospheric Chemistry and Phyics, 9,

2919–2932, 2009.

Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M., Emanuelsson, E., McFiggans, G., Kreiger, U.,625

Marcolli, C., Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B., Hallquist, M., Hallquist,

Å., Khlystov, A., Kulmala, M., Mogensen, D., Percival, C., Pope, F., Reid, J., da Silva, M. A. V. R., Rose-

noern, T., Salo, K., Pia Soonsin, V., Yli-Juuti, T., Prisle, N., Pagels, J., Rarey, J., Zardini, A., and Riipinen,

I.: Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospherc

relevance: from dicarboxylic acids to comples mixtures, Chemical Reviews, 115, 4115 – 4156, 2015.630

Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic aerosol, Atmospheric

Chemistry and Phyics, 10, 5409–5424, 2010.

Connolly, P., Topping, D. O., Malavelle, F., and McFiggans, G.: A parameterisation for the activation of cloud

drops including the effects of semi-volatile organics, Atmospheric Chemistry and Phyics, 14, 2289–2302,

2014.635

Crooks, M. and Connolly, P.: A new parameterisation for the co-condensation of semi-volatile organics into

multiple aerosol particle modes, in preparation, 2017.

Dinar, E., Taraniuk, I., Graber, E. R., Katsman, S., Moise, T., Anttila, T., Mentel, T. F., and Rudich, Y.: Cloud

Condensation Nuclei properties of model and atmospheric HULIS, Atmospheric Chemistry and Physics, 6,

2465–2482, doi:10.5194/acp-6-2465-2006, http://www.atmos-chem-phys.net/6/2465/2006/, 2006.640

Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution and chemical

aging of semivolatile organics, Environmental Science and Technology, 40, 2635–2643, 2006.

Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings,

S., Jung, D., Borrman, S., and Andreae, M. O.: Size matters more than chemistry for cloud-nucleating ability

of aerosol particles, Science, 312, 1375–1378, 2006.645

Ervens, B.: Modeling the processing of aerosol and trace gases in clouds and fogs, Chemical Reviews, 115,

4157 – 4198, 2015.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe,

D. C., Myhre, G., Nganga, J., Prinn, R. G., Schulz, M., Van Dorland, R., and Van Dorland, R.: Changes in

Atmospheric Constituents and in Radiative Forcing Chapter 2., Cambridge University Press, 2007.650

Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation parameterization for global

climate models, J. Geophys. Res., 2005.

34

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



Ghan, S., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu,

J., and Shi, X.: Droplet nucleation: physically-based parameterizations and comparative evaluation, Journal

of Advances in Modeling Earth Systems, 3, 2011.655

Ghan, S. J., Guzman, G., and Abdul-Razzak, H.: Competition Between Sea Salt and Sulphate Particles as Cloud

Condensation Nuclei, Journal of the Atmospheric Sciences, 55, 3340–3347, 1998.

Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and Rau, J. A.: Characteristics of atmospheric or-

ganic and elemental carbon particle concentrations in Los Angeles, Environmental Science and Technology,

20, 580–589, 1986.660

Hering, S. V., Stolzenburg, M. R., Quant, F. R., Oberreit, D. R., and Keady, P. B.: A Laminar-Flow,

Water-Based Condensation Particle Counter (WCPC), Aerosol Science and Technology, 39, 659–672,

doi:10.1080/02786820500182123, http://dx.doi.org/10.1080/02786820500182123, 2005.

Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society, 32,

1152–1161, 1936.665

Lance, S., Nenes, A., and Rissman, T. A.: Chemical and dynamical effects on cloud droplet number: Impli-

cations for estimates of the aerosol indirect effect, Journal of Geophysical Research: Atmospheres, 109,

n/a–n/a, doi:10.1029/2004JD004596, http://dx.doi.org/10.1029/2004JD004596, d22208, 2004.

Lin, G., Sillman, S., Penner, J. E., and Ito, A.: Global modeling of SOA: the use of different mechanisms for

aqueous-phase formation, Atmospheric Chemistry and Physics, 14, 5451–5475, doi:10.5194/acp-14-5451-670

2014, http://www.atmos-chem-phys.net/14/5451/2014/, 2014.

Mann, G. W., Carslaw, K. S., Ridley, D. A., Spracklen, D. V., Pringle, K. J., Merikanto, J., Korhonen, H.,

Schwarz, J. P., Lee, L. A., Manktelow, P. T., Woodhouse, M. T., Schmidt, A., Breider, T. J., Emmerson,

K. M., Reddington, C. L., Chipperfield, M. P., and Pickering, S. J.: Intercomparison of modal and sectional

aerosol microphysics representations within the same 3-D global chemical transport model, Atmospheric675

Chemistry and Physics, 12, 4449 – 4476, doi:10.5194/acp-12-4449-2012, http://www.atmos-chem-phys.net/

12/4449/2012/, 2012.

Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkilä, J., Canagaratna, M. R., Brune, W. H.,

Onasch, T. B., Jayne, J. T., Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits, P., and Worsnop,

D. R.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated680

secondary organic aerosol (SOA) particles, Geophysical Research Letters, 37, doi:10.1029/2010GL045258,

2010.

McCormick, R. A. and Ludwig, J. H.: Climate modification by atmospheric aerosols, Science, 156, 1358–1359,

1967.

Ming, Y., Ramaswamy, V., Donner, L., and Phillips, V.: A new parameterisation of cloud droplet activation685

applicable to general circulation models, Journal of the Atmospheric Sciences, 63, 2005.

Morgan, W. T., Allan, J. D., Bower, K. N., Esselborn, M., Harris, B., Henzing, J. S., Highwood, E. J., Kiendler-

Scharr, A., McMeeking, G. R., Mensah, A. A., Northway, M. J., Osborne, S., Williams, P. I., Krejci,

R., and Coe, H.: Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components:

airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics, 10, 8151–8171,690

doi:10.5194/acp-10-8151-2010, http://www.atmos-chem-phys.net/10/8151/2010/, 2010.

35

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., and

Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmospheric

Chemistry and Physics, 11, 5761–5782, doi:10.5194/acp-11-5761-2011, http://www.atmos-chem-phys.net/

11/5761/2011/, 2011.695

Nenes, A., Charlson, R. J., Facchini, M. C., Kulmala, M., Laaksonen, A., and Seinfeld, J. H.: Can chemical

effects on cloud droplet number rival the first indirect effect?, Geophysical Research Letters, 29, 29–1–29–4,

doi:10.1029/2002GL015295, http://dx.doi.org/10.1029/2002GL015295, 1848, 2002.

Ohring, G. and Clapp, P.: The Effect of Changes in Cloud Amount on the Net Radiation at the Top of the

Atmosphere, Journal of the Atmospheric Sciences, 37, 447–454, 1980.700

Petters, M. and Kreidenweis, S.: A single parameter representation of hygroscopic growth and cloud condensa-

tion nucleus activity, Atmos. Chem. Phys, 7, 1961 – 1971, 2007.

Petters, M., Prenni, A., Kreidenweis, S., DeMott, P., Matsunaga, A., Lim, Y., and Ziemann, P.: Chemical aging

and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophysical Research Letters, 33,

2006.705

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Springer, 2nd edn., 1977.

Roberts, G. C. and Nenes, A.: A continuous-flow stream-wise thermal-gradient CCN chamber for atmospheric

measurements, Aerosol Science and Technology, 39, 206 – 221, 2005.

Roberts, G. C., Day, D., Russell, L. M., Dunlea, E. J., Jimenez, J. L. Tomlinson, J. M., Collins, D. R., Shi-

nozuka, Y., and Clarke, A. D.: Characterization of particle cloud droplet activity and composition in the free710

troposphere and the boundary layer during INTEX-B, Atmos. Chem. Phys, 10, 6627 – 6644, 2010.

Shipway, B. and Abel, S.: Analytical estimation of cloud droplet nucleation based on an underlying aerosol

population, Atmospheric Research, 96, 344–355, 2010.

Simpson, E., Connolly, P., and McFiggans, G.: An investigation into the performance of four cloud droplet An

investigation into the performance of four cloud droplet activation parameterisations, Geosci. Model Dev., 7,715

1535–1542, 2014.

Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system,

Nature, 461, 607–613, 2009.

Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari, S., Fuzzi, S.,

Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic growth and critical supersaturations for mixed aerosol720

particles of inorganic and organic compounds of atmospheric relevance, Atmospheric Chemistry and Physics,

6, 1937–1952, 2006.

Taylor, J., Choularton, T., Blyth, A., Flynn, A., Williams, P., Young, G., Bower, K., Crosier, J., Gallagher, M.,

Dorsey, J., Liu, Z., and Rosenberg, P.: Aerosol measurements during COPE: composition, size, and sources

of CCN and INPs at the interface between marine and terrestrial influences, Atmos. Chem. Phys., 16, 11 687725

– 11 709, 2016.

Topping, D., Connolly, P., and McFiggans, G.: Cloud droplet number enhanced by co-condensation of organic

vapours, Nature Geoscience, 6, 443–446, 2013.

Topping, D. O. and McFiggans, G.: Tight coupling of particle size, number and composition in atmospheric

cloud droplet activation, Atmospheric Chemistry and Phyics, 12, 3253–3260, 2012.730

Trembath, J.: Airborne CCN measurements, Ph.D. thesis, University of Manchester, 2013.

36

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E.,

Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M.,

Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S.,

Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma,735

X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller, J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L.,

O’Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø.,

Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta,

P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A.,

Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of organic740

aerosol in global models, Atmospheric Chemistry and Physics, 14, 10 845 – 10 895, doi:10.5194/acp-14-

10845-2014, http://www.atmos-chem-phys.net/14/10845/2014/, 2014.

Twomey, S.: The nuclei of natural cloud formation part II: the supersaturation in natural clouds and the variation

of cloud droplet concentration, Pure and Applied Geophysics, 43, 243–249, 1959.

Twomey, S.: Pollution and the planetary albedo, Atmospheric Science, 8, 1251–1256, 1974.745

Twomey, S.: The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences,

34, 1149–1152, 1977.

Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld,

J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of

cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmospheric Chemistry and Physics,750

6, 2367 – 2388, doi:10.5194/acp-6-2367-2006, 2006.

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A.,

Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,

T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y. Schneider, J., Drewnick,

F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin,755

R., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated

species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical

Research Letters, 34, 2007.

37

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-300, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.


