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Response to comments from Anonymous Referee #1 
 
Referee comment: 
 
The meticulous preparation of the authors has resulted in a manuscript that will pass most 
requirements for publication in ACP. Yet this referee is left with an uncomfortable feeling 
about this paper. Primary concern is the fact that the authors have omitted a thorough 
review and discussion of the kinetic energy budgets of the fog layers as a means to deal with 
radiative heating and cooling. Throughout the manuscript it is stressed that the LW radiation 
constitutes a source of LWC capable of renewing the entire fog in 1 – 2 hours (see f.e. pg 11, 
line 16; but there are several other places). Renewal means that there is a substantial sink of 
LWC. The only sink that this reviewer can think of is precipitation or ‘wet deposition’. No 
credit or evidence is given to the existence of either of these two depletion mechanisms. If 
there is precipitation then the radar signal would be swamped by it, but there is no evidence 
of that either in this paper. Consequently there should be at least some credit given to the 
possibility that the LW cooling at the top gives rise to downdrafts that will mix the fog layer 
and evaporate the air towards the bottom of the layer. In other words the LW cooling does 
not give rise to additional condensation but is a source of kinetic energy. Some of the profiles 
in the back (f.e. Fig 6) show T-profiles with large vertical gradients indicative of an adiabatic 
state that could potentially be the result of turbulent mixing due to LW- cooling. In addition 
LW-cooling converted to TKE at the top can drive entrainment of dry air from above the fog 
top into the fog layer. This is a conversion of potential energy into kinetic energy. It seems to 
me that this paper needs a convincing treatment of aspects of the TKE budget as it relates to 
LW cooling and heating in addition to the current treatise which only discusses LW cooling 
and condensation rates. 
 
We would like to thank the referee for the instructive comments. From referee’s text, we 
interpret the following 3 major comments: 
 
Comment 1: The authors should consider the coupling between radiative cooling and 
vertical motions within the fog layer and its consequences for the condensation rates. 
 
Response 1: We agree with the referee that the radiative cooling of the upper fog is closely 
related to a destabilisation and vertical mixing of the fog layer, at least when the fog is 
opaque to LW radiation so that the cooling occurs primarily near the fog top. This is why we 
assume that the cloud has an adiabatic temperature profile (see Sect. 3.3). When the fog is 
well-mixed, the radiative cooling at fog top will be rapidly spread uniformly in the fog so 
that the entire layer cools at approximately the same rate. Our current methodology 
calculates the condensation rates directly from the radiative cooling where it occurs. 
However, since the fog is assumed to be saturated everywhere, the vertically integrated 
condensation rate (CLW) will not strongly depend on where in the fog the cooling occurs. The 
only change will be due to the lower parts of the fog being slightly warmer (up to 2 ˚C) than 
the fog top, so that the same cooling will give a larger condensation rate at the higher 

temperature (due to 
𝜕𝜌𝑠

𝜕𝑇
 increasing with temperature, see Sect. 2.4). We have repeated the 

calculations of condensation rates with a vertically uniform cooling rate, and this causes 
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only 1–2 % increase in CLW, which is insignificant. The relative effect on ESW is even smaller. 
In the revised manuscript, we have included a discussion of this point in Sect. 2.4. 
 
We would like to stress that the temperature profiles shown in Fig. 6c are adiabatic in the 
fog because we prescribe this (see Sect. 3.3). Many radiosonde observations in fog support 
that (thick) fogs are adiabatic within and capped by a sharp inversion (see Sect. 3.3). In the 
revised manuscript, we have clarified this in the figure text. 
 
 
Comment 2: The paper should explain better what are the sink processes of LWP which 
counteract the renewal of LWP by LW cooling. 
 
Response 2: We agree with the referee that there are important sink processes of LWP in 
the fog, notably the entrainment of unsaturated air at fog top (which causes evaporation as 
it mixes with the fog) and evaporation of droplets near fog base (due to heating from the 
ground). The radar does not detect any rain during the fog cases studied in this paper, but a 
weaker deposition of cloud droplets at the surface might contribute to limiting fog LWP, as 
has been found in previous fog studies (e.g. Brown and Roach, 1976; Price et al., 2015). 
Although these sink processes are all affected by the radiative cooling through the vertical 
motions it generates, including them in our analysis would require a dynamical model in 
addition to the radiative transfer code. We therefore consider that the inclusion of these 
processes should be the topic of a separate publication. We would argue that it is possible 
to study the effect of radiation in fog without taking these sink processes into account, as 
long as this limitation is clearly explained (which we strive to do in the revised manuscript, 
Sect. 2.4). We realise that a more thorough discussion of the fog LWP sink processes in the 
paper is necessary to allow readers to understand how our results fit into the larger context 
of the fog life cycle. We have therefore added some more background on the sink processes 
in Sect. 1 and discussion of the link between our results and the sink processes in Sect. 5.2. 
 
 
Comment 3: The paper needs a convincing treatment of the TKE budget of the fog, because 
the TKE budget is related to the radiative cooling. 
 
Response 3: As already argued in response 2, we consider that the analysis of the 
turbulence of the fog layer and its relations to radiative cooling, fog-top entrainment and 
interactions between the fog and the surface, is outside the scope of this paper. In the 
introduction to the revised manuscript, we have added a description of the full system of 
fog processes and their interactions, including the role of TKE. 
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Response to comments from Anonymous Referee #2 
 
This paper presents a study of how fog liquid water is impacted by radiation balance. 
Ground-based remote sensing observations of seven fog events in the Paris region are used 
in the analysis. The manuscript is well-written, clearly structured and of a very high scientific 
quality. I highly recommend publication in ACP. 
 
We would like to thank the referee for the thoroughly review of our manuscript and the 
many useful major and minor comments. 
 
 

1 Main review points: 
 
Comment 1: The main request I have is to somewhat more clearly highlight how 
representative or not the findings can be expected to be, in the main part of the manuscript 
as well as in the abstract. 
 
Response 1: The representativeness of the findings is a very important question, and we 
agree with the referee that we should write more about it. From radiative transfer theory, 
we know that the main factors that determine variations in the divergence of radiative 
fluxes are temperature, humidity, clouds and aerosols. While the impact of aerosols is only 
preliminary studied in this paper, the temperature, IWV and fog LWP of the studied cases 
cover an important range of values (see Table 2 and Figure 5a), and the sensitivity study to 
higher clouds include both thin and thick clouds at several altitudes. Therefore, the 
variability found in the radiative processes includes an important range of conditions found 
in mid-latitude winter. However, the results cannot be directly applied to situations outside 
this range, such as very cold weather, when ice crystals may form in the fog, or in the tropics 
or in summer, when the screen temperature and IWV can be much higher. Even though this 
study only covers radiation fog and stratus-lowering fog occurring over a continental 
surface, our methodology to quantify the radiative processes should in principle be 
transferable to all fog types, since the radiation is not directly impacted by the formation 
mechanism. However, the parameters of the model could change if the method was applied 
to a different location; for example, a larger effective radius should be used in clean 
background areas with fewer cloud condensation nuclei, and a different surface albedo and 
emission temperature for fog above the sea. Fog events occurring in rain have been left out 
from this study, because the retrievals from both radar and MW radiometer are biased 
during rain. In the revised manuscript, we have included some of the considerations 
discussed above in the abstract and in the conclusions. 
 
 

2 Minor points 
 
Comment 2.1: Page 1, line 15 (henceforth 1-15 etc.): what is meant by ’renewing’ here? 
Doubling? With a rate of 40gm-2h-1 or greater, it should be less than one hour, in this case. 
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Response 2.1: By ‘renewing’, we mean the time it takes before the LW cooling process have 
produced the same amount of liquid water as is currently in the fog. To understand the 
renewal time, one can look at Fig. 5a, where the LW-driven condensation is plotted against 
the current fog LWP. If the LW-induced condensation rate is fog LWP is 50 g m-2 and the LW 
cooling produces 50 g m-2 h-1, the renewal takes 1 hour. It is correct that in some cases the 
renewal time is even shorter than 1 hour, such as the green dots near (LWP=25 g m-2, 
CLW=50 g m-2) which have renewal time of 0.5 hours. To be more consistent with this, we 
have written “0.5–2 hours” instead of “1–2 hours” throughout the revised manuscript. 
 
Comment 2.2: 1-17: 100% of what? 
 
Response 2.2: We mean that the LW radiative cooling rate of the fog is reduced by up to 
100 % when a low cloud appears, relative to clear-sky conditions. We have written this more 
clearly in the revised manuscript. 
 
Comment 2.3: 1-22: 30% of what? 
 
Response 2.3: The heating rate of the fog due to absorption of SW radiation inside the fog 
increases by 30 % when the aerosols are taken into account, relative to the heating rate 
when only liquid droplets are taken into account. We have written this more clearly in the 
revised manuscript. 
 
Comment 2.4: 7-2: Why 15 minutes? Is this the temporal scale at which you expect changes 
to occur? 
 
Response 2.4: Yes, we expect significant changes to occur on timescales longer than 15 
minutes, which we can also see from the time series of e.g. LWP and cloud thickness (see for 
example Fig. 7). We also want to average out the high-frequent variability in LWP, which is 
due to instrumental noise or small-scale heterogeneity of the fog. Although small-scale fog 
heterogeneity is found to be of importance for fog dissipation (e.g. Bergot, 2016), it is not 
suitable to study this with a radiation model only, as this requires a treatment of the 
dynamics of the fog (e.g. by Large-Eddy simulations). With the methodology of our paper, a 
quantification of the mean impact of the radiation on the fog as a whole is more suitable. 
The exact choice of 15 minutes between each calculation is rather arbitrary. 
 
Comment 2.5: 7-2: Why only one event with clouds above, if you suspect this type of 
situation to be so important for radiation balance? What is the potential for generalization? 
 
Response 2.5: The fog observation dataset at SIRTA did not include many cases with a non-
precipitating cloud above the fog which was detected by the radar. In precipitating 
conditions, the retrieval of cloud optical properties only from radar is challenging because 
the cloud cannot easily be separated from the trailing rain below (this exclusion of rainy 
cases is explicitly mentioned in section 2.5 of the revised manuscript). Due to this lack of 
suitable cases where higher clouds occurred, we chose to focus mainly on the sensitivity 
study for the impact of higher clouds (Sect. 5.2). The results of this sensitivity study should 
be applicable to most clouds, since we study the effect on both altitude and cloud optical 
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depth, which are the two main factors determining the cloud radiative effect (e.g. Dupont 
and Haeffelin, 2008). 
 
The methodology for estimating the radiative properties of the higher clouds occurring on 1 
January 2016 was specific for these clouds. To generalize, we recommend to derive the 
cloud emission temperature from the altitude of the cloud (as seen by the radar) and then 
separate the clouds in two classes, optically thin (for which LW emissivity is less than 1) and 
optically thick (emissivity 1), inferred from thickness and the radar reflectivity. Such a 
methodology could be tuned or validated using simultaneous satellite observations of the 
clouds from which the LW emissivity and SW albedo can be derived. In the revised 
manuscript, we mention this perspective in the conclusions. 
 
Comment 2.6: 7-20: Why do you apply averaging to some parameters and not others? 
 
Response 2.6: The radar, ceilometer, visibility and MWR LWP observations are given at high 
temporal resolution (1 minute or less) and have high-frequent variability. In order to 
calculate radiation representative for a longer time window, we therefore average these 
quantities in time. The MWR temperature and humidity profiles are only given every 5 
minutes and have less fast variability than the other observations; it therefore seemed 
reasonable to pick the closest profile in time instead of averaging two profiles. The 
radiosondes are only launched twice a day, so time averaging is not feasible. 
 
Comment 2.7: 7-26: Do you mean ’at the surface’? If not, how do you determine visibility for 
situations with cloud-base height ’close to the surface’? 
 
Response 2.7: The wording “close to the surface” was used because we also check if the 
cloud-base is below 20 m by using the visibility measured at 20 m. Since the ceilometer has 
a vertical resolution limited to 15 m, the cloud-base height can in some cases be adjusted up 
or down to 20 m by using the information about the visibility here. However, as this is a 
minor detail, we agree that it is better to write “The cloud-base height is set to 0 m if 
visibility at 4 m is below 1 km”. This is done in the revised manuscript. 
 

Comment 2.8: 7-26: Given that the ceilometer is mostly blind below ∼ 50 m, what do you do 
with these situations, if they occur at all? 
 
Response 2.8: The CL31 ceilometer deployed at SIRTA does not have a blind zone. We 
therefore can detect cloud-base height with the ceilometer as low as 7.5 m, although it is 
true that several effects introduce uncertainty in the first gates, such as the partial overlap 
of transmitter and receiver. However, for cloud-base detection, the precision in the 
backscatter signal is not very critical. We also use the visibility meter at 20 m to verify if the 
cloud base is above or below 20 m, using the 1 km horizontal visibility threshold. The CL31 is 
described in the paper by Kotthaus et al. (2016); we have included this reference in the 
revised paper. 
 
Comment 2.9: 11-2: Please explain what is meant by ’renew’ here (and in the following 
sections). 
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Response 2.9: We refer to the answer to comment 2.1. In the revised manuscript, we have 
also added some explanation of what we mean by renewal at the first place we use it (page 
11, line 2 in the old manuscript version). 
 
Comment 2.10: 12-15: “The two parameters...” - Is this a qualitative statement? If not, can 
you provide a correlation coefficient, please? 
 
Response 2.10: We have calculated the correlation coefficient (R=0.56) and included it in 
the revised manuscript. 
 
Comment 2.11: 13-5: Is there no way to test this (ice phase) assumption using 
measurements? 
 
Response 2.11: Among the ground-based remote sensing instruments for cloud observation 
at SIRTA, only the backscatter lidars with dual polarization are able to distinguish between 
ice and liquid particles. These instruments cannot see through the fog, so we therefore 
cannot verify if the cloud has liquid or not. However, as we already mention in the paper, 
the MWR LWP goes to zero after the fog cloud dissipates and the higher cloud still is there, 
which is an indication that the cloud is purely ice. 
 
Comment 2.12: Conclusions section: What can be learned from your findings to improve 
numerical weather prediction? 
 
Response 2.12: The important effect on the fog LWP budget caused by clouds appearing 
above the fog could be studied in the context of numerical weather prediction (NWP). Based 
on the results of this paper, an NWP study of fog with and without elevated clouds could be 
designed to study how the presence of multilayer clouds affects NWP of fog life cycle. We 
have added this perspective in our Conclusions section. 
 
 

3 Technical remarks 
 
We thank the referee for having spotted all these small technical issues. 
 
Comments on English language and typing errors: 
• 2-3: real time 
• 2-5: Continental fog often forms by 
• 2-22, 3-2: fogs → fog [I am not sure the plural exists, and there is no need to use it here.] 
• 3-3: methodS or methodOLOGY 
• 3-16: 10m above ground 
• 3-24: wood → forest 
• 7-10: fogs → fog [I am not sure the plural exists, and there is no need to use it here.] 
• 8-4: only ON the liquid... 
• 11-26: higher by 14g... on 8 Nov 
• 14-27: above the fog ARE thus 
• 18-11: rateS 
• 21-34: is occurring → occurs 
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• 22-3: contributionS 
 
Response: The language errors mentioned by the referee have all been fixed in the revised 
manuscript. We have replaced the plural “fogs” with “fog”, “fog events” or “fog situations” 
wherever it occurred. We also spotted that an exponent 2 was missing for “T” in Clausius–
Clapeyron’s equation on page 6, line 10, and we have corrected this. 
 
Comments on figure layout: 
• 30-Fig1: In my version of the manuscript, some of the text is somewhat compressed 
(Winiarek) 
• 30-Fig3: Maybe decrease size of captions to avoid overlap with labels (as in b and h) 
 
Response: We have reduced the title font size in Figs. 3,4,7 to avoid the overlap and fixed 
the problem with the text in Fig. 1 in the revised manuscript. 
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Abstract. Radiative cooling and heating impact the liquid water balance of fogs and therefore play an important role in 10 

determining their persistence or dissipation. We demonstrate that a quantitative analysis of the radiation-driven condensation 

and evaporation is possible in real -time using ground-based remote sensing observations (cloud radar, ceilometer, 

microwave radiometer). Seven continental fog events in mid-latitude winter are studied, and the radiative processes are 

further explored through sensitivity studies. The longwave (LW) radiative cooling of the fog is able to produce 40–70 g m-2 

h-1 of liquid water by condensation when the fog liquid water path exceeds 30 g m-2 and there are no clouds above the fog, 15 

which corresponds to renewing the fog water in 10.5–2 hours. The variability is related to fog temperature and atmospheric 

humidity, with warmer fogs below a drier atmospheres producing more liquid water. The appearance of a cloud layer above 

the fog strongly reduces this cooling, especially a low cloud (up to 100 %), thereby perturbing the LW cooling relative to a 

situation with no cloud above; the effect is strongest for a low cloud, when the reduction can reach 100 %. Consequently, 

appearance of clouds above will perturb the liquid water balance in the fog, and may therefore induce fog dissipation. 20 

Shortwave (SW) radiative heating by absorption by fog droplets is smaller than the LW cooling, but it can contribute 

significantly, inducing 10–15 g m-2 h-1 of evaporation in thick fogs at (winter) midday. We also find that tThe absorption of 

SW radiation by unactivated aerosols inside the fog is likely less than 30 % of the SW absorption by the water droplets, in 

most cases. However, the aerosols may contribute more significantly if the airmass contains a high concentration of 

absorbing aerosols. may strongly increase this evaporation rate if a large concentration of absorbing aerosols is present, but 25 

that this increase likely is below 30 % in most cases. The absorbed radiation at the surface can reach 40–120 W m-2 during 

daytime depending on the fog thickness. As in situ measurements indicate that 20–40 % of this energy is transferred to the 

fog as sensible heat, this surface absorption can contribute importantly to heating and evaporation of the fog, up to 30 g m-2 

h-1 for thin fogs, even without correcting for the typical underestimation of turbulent heat fluxes by the eddy covariance 

method. Since the radiative processes depend mainly the profiles of temperature, humidity and clouds, the results of this 30 

paper are not site-specific and can be generalised to fog under different dynamic conditions and formation mechanisms, and 
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the methodology should be applicable to warmer and moister climates as well. The retrieval of approximate emissivity of 

clouds above fog from cloud radar should be further developed. 

1 Introduction 

Fog is defined as the presence of droplets in the vicinity of the Earth’s surface reducing the visibility to below 1 km 

(American Meteorological Society, 2017). Reduced visibility associated with fog is a major concern for traffic safety, in 5 

particular on airports, where delays caused by low visibility procedures causes significant financial losses (Gultepe et al., 

2009). In spite of significant advances in the skills of numerical weather forecast models in recent decades, the timing of the 

appearance and dissipation of fog is poorly forecasted (Bergot et al., 2007; Steeneveld et al., 2015). Fog is difficult to model 

with numerical weather forecast models because of its local nature and the subtle balance between the physical processes 

that govern its life cycle, which must be parametrized in the models (Steeneveld et al., 2015). Detailed ground-based 10 

observations of a fog situation in real -time therefore have a potential for capturing information which is missed by the 

models and which could help estimate whether the fog will dissipate or persist in the near future. 

Continental fogs often forms by radiative cooling of the surface under clear skies (radiation fog) or by the lowering 

of the base of a pre-existing low stratus cloud to ground level (Gultepe et al., 2007; Haeffelin et al., 2010). Once the fog has 

formed, its evolution depends on the physical processes that impact the liquid water. A delicate balance between  radiative 15 

cooling, turbulent mixing and droplet sedimentation has been found in observational and modelling studies of radiation fog 

(Brown and Roach, 1976; Zhou and Ferrier, 2008; Price et al., 2015). While radiative cooling produces liquid water by 

supersaturation, turbulent mixing usually is a loss mechanism for liquid water through the mixing of the fog with drier air or 

turbulent deposition of liquid water on the surface (Gultepe et al., 2007). 

Three radiative processes affect the evolution of the fog by cooling or heating it. Firstly, the cooling from emission 20 

of thermal (longwave, LW) radiation at the fog top produces liquid water by condensation, which maintains the fog against 

the processes that deplete the liquid water. The advection of a cloud layer above an existing fog will shelter the fog from this 

radiative cooling and can therefore be an efficient dissipation mechanism (Brown and Roach, 1976). Secondly, solar 

(shortwave, SW) radiation will be absorbed by the fog droplets, mainly in the near-infrared spectrum (Ackerman and 

Stephens, 1987), which causes heating and subsequent evaporation and loss of liquid water. Finally, heating of the ground by 25 

absorption of SW radiation can cause a sensible heat transfer to the fog, causing the fog to evaporate from below (Brown and 

Roach, 1976). Fog therefore often forms during the night, when thermal cooling dominates, and dissipates a few hours after 

sunrise due to the increasing heating from solar radiation (Tardif and Rasmussen, 2007; Haeffelin et al., 2010). 

The radiative cooling of fog not only drives condensation, but also turbulent processes. Once a fog contains a 

sufficient amount of liquid water, it becomes optically thick to LW radiation. It will then cool strongly at its top, while the 30 

lower part of the fog is shielded from cooling (Haeffelin et al., 2013). This cooling from above (and possibly heating from 

below) destabilizes the fog layer and gives rise to convective motions; the cold air sinks and the warm air rises. The fog layer 
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will therefore be turbulent, since convection constitutes a buoyant production of turbulent kinetic energy (e.g. Nakanishi, 

2000). Entrainment of warmer, unsaturated air from above the fog is therefore enabled, which will cause evaporation as it 

mixes with the fog (Gultepe et al., 2007). At the same time, turbulent eddies near the surface can deposit droplets onto the 

vegetation (Katata, 2014), and droplets transported downwards can evaporate when approaching the warmer surface 

(Nakanishi, 2000). In addition to vertical destabilisation, the wind shear can contribute importantly to the generation of 5 

turbulence in fog (Mason, 1982; Nakanishi, 2000; Bergot, 2013). 

In this study, we focus on the radiative aspect of this dynamical fog system. We aim to quantify the cooling (or 

heating) of the fog layer induced by the each of the three radiative processes introduced above, based on continuous 

observations of the atmospheric column from ground-based remote sensing instruments. From the cooling rate, we can 

estimate the condensation (or evaporation) rate that must occur in response for the fog to stay at saturation. Even though 10 

these condensation rates will be modified by the dynamical processes inside the fog, they still indicate how strongly the 

radiative processes influence the fog liquid water budget. In this study, we aim to quantify the impact of the three radiative 

processes mentioned above on the liquid water of continental fogs, based on continuous observations of the atmospheric 

column obtained from ground-based remote sensing instruments. Such instruments have been proven useful for the study of 

fog life cycle: the attenuated backscatter from a ceilometer can detect the growth of aerosols preceding fog formation 15 

(Haeffelin et al., 2016), while a cloud radar can provide information about the fog vertical development and properties once 

it has formed (Teshiba et al., 2004; Boers et al., 2012; Dupont et al., 2012). We search answers to the following questions: 

How large is the rate of condensation or evaporation induced by each of the three radiative processes? How much does this 

vary from one situation to another, and which atmospheric parameters are responsible for this variability? How can the 

magnitude of these impacts be quantified using ground-based remote sensing, and how large are the uncertainties? 20 

In Sect. 2, we define the quantitative parameters used to describe the three radiative processes and how they are 

calculated, and we present the instruments, the radiative transfer code and the fog events studied. Section 3 provides a 

detailed description of how the observations are used to provide input to the radiative transfer code. In Sect. 4, we present the 

results when applying the methodology to the observed fog events. In Sect. 5, we discuss the uncertainties of the 

methodology and explore how sensitive the radiative processes are to different aspects of the atmospheric conditions. We 25 

also discuss the implications of our findings for the dissipation of fogs. Finally, our conclusions are given in Sect. 6. 

2 Data and methodology 

2.1 Overview of the approach 

Each of the three radiative processes in the fog is studied using a quantitative parameter. For the process of cooling due to 

LW emission, we calculate the rate of condensation in the whole fog (in g m-2 h-1) that would occur due to this radiative 30 

cooling if no other processes occurred, and we call it CLW for short. Similarly, we calculate the evaporation rate due to SW 

heating inside the fog (in g m-2 h-1) and call it ESW. The third process is the radiative heating of the surface, which will 



4 
 

stimulate a sensible heat flux from the surface to the overlying fog when the surface becomes warmer than the fog. With this 

process in mind, our third parameter is the net radiative flux (SW+LW) absorbed at the surface (in W m-2), Rnet,s for short. 

The relationship between Rnet,s and the sensible heat flux is also studied (Sect. 4.2). 

Figure 1 shows schematically how the three parameters are calculated. Measurements from several in situ and 

remote sensing instruments (presented in Sect. 2.2) are used to estimate the input data to a radiative transfer model 5 

(presented in Sect. 2.3). The input data involve vertical profiles of clouds, temperature and humidity. The details of how we 

go from measurements to input data are presented in Sect. 3. The radiative transfer model calculates the profile of radiative 

fluxes and heating rates. The computed fluxes can be compared to measured fluxes at 10 m above ground level for 

validation. From the radiative heating rates, we can calculate the rates of condensation or evaporation in g m-2 h-1 (explained 

in Sect. 2.4). 10 

2.2 Observational site and instrumentation 

The multi-instrumental atmospheric observatory SIRTA in Palaiseau, 20 km south of Paris (France), provides routine 

measurements of a large number of meteorological variables since 2002 (Haeffelin et al., 2005). In situ and remote sensing 

observations taken at this site have been used to study fog life cycle since 2006 in the framework of the ParisFog project 

(Haeffelin et al., 2010). An advantage of SIRTA is the continuous measurements by several ground-based remote sensing 15 

instruments. Such instruments have been proven useful for the study of fog life cycle: the attenuated backscatter from a 

ceilometer can detect the growth of aerosols preceding fog formation (Haeffelin et al., 2016), while a cloud radar can provide 

information about the fog vertical development and properties once it has formed (Teshiba et al., 2004; Boers et al., 2012; 

Dupont et al., 2012). In this study, we use the observations from several instruments of SIRTA (Table 1) to analyse periods 

when fog occurred. The observatory is located in a suburban area, with surroundings characterized by small-scale 20 

heterogeneities including an open field, a lake and a small forestwood. 

In situ measurements of (horizontal) visibility, air temperature, wind speed, surface skin temperature and SW and 

LW radiative fluxes are continuously taken in the surface layer at the observatory. Radiosondes measuring the temperature 

and humidity profiles between ground level and 30 km are launched twice a day from the Météo-France Trappes station, 

located 15 km west of SIRTA. Measurements of sensible heat flux taken at 2 m using the eddy correlation method based on 25 

CSAT-3 sonic anemometer are applied to study the relationship between surface radiation budget and surface sensible heat 

flux. 

A Vaisala CL31 ceilometer operating at 905 nm provides the profile of (attenuated) light backscatter at 15 m 

vertical resolution (Kotthaus et al., 2016), from which the cloud base height can be determined (see Sect. 3.1). 

The 95 GHz cloud radar BASTA is a newly developed cloud radar, whose first prototype has been successfully 30 

operating at SIRTA since 2010 (Delanoë et al., 2016), observing the vertical profile of clouds in zenith direction. Unlike 

traditional radars, which emit short, powerful pulses of radiation, BASTA instead uses the frequency-modulated continuous 

wave technique, which makes it much less expensive than traditional radars (Delanoë et al., (2016), 
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http://basta.projet.latmos.ipsl.fr/). Unlike the ceilometer pulse, the signal of the radar is only weakly attenuated by clouds and 

can therefore observe thick and multilevel cloud layers. However, the signal weakens with the distance to the target, which 

limits the ability of the radar to detect clouds with small droplets. BASTA therefore operates at four different modes, with 

vertical resolution of 12.5 m, 25 m, 100 m and 200 m, respectively. The radar switches systematically between the four 

modes so that each of them produces a measurement every 12 seconds based on 3 seconds of integration time. Better vertical 5 

resolution comes at the cost of sensitivity. The BASTA prototype used in this study can detect clouds at 1 km range (i.e. 

altitude) with reflectivity (see Sect. 3.2) above -27.5, -32, -38 and -41 dBZ with the 12.5m, 25m, 100m and 200m mode, 

respectively. This lower limit for detection increases approximately with the square of the range, i.e. with 6 dBZ when the 

range increases by a factor of two. However, a new prototype that recently has been developed has improved the sensitivity 

with about 12 dBZ relative to the first prototype on all levels. The lowest ≈3 altitude levels in the radar data cannot be used 10 

because of coupling (direct interaction between the transmitter and receiver), which corresponds to the first ≈40 m when we 

use the 12.5m mode to study the fog layers. 

 The multi-wavelength microwave radiometer (MWR) HATPRO (Rose et al., 2005) is a passive remote sensing 

instrument that measures the downwelling radiation at 14 different microwave wavelengths at the surface. These radiances 

are inverted using an artificial neural network algorithm to estimate the vertical profiles of temperature and humidity of the 15 

atmosphere in the range 0–10 km and the total amount of liquid water in the atmospheric column (liquid water path, LWP, g 

m-2). As the profiles are based on passive measurements, the vertical resolution is limited; however, in the boundary layer the 

measurements at different elevation angles enhance the resolution of the temperature profile, giving 4–5 degrees of freedom 

for the full temperature profile. The humidity profile only has about 2 degrees of freedom (Löhnert et al., 2009). The 

integrated water vapour (IWV) is more reliable with an uncertainty of ±0.2 kg m-2, while the estimate of LWP in general has 20 

an uncertainty of ±20 g m-2, according to the manufacturer. However, for small LWP (<50 g m-2), investigations by Marke et 

al. (2016) indicate that the absolute uncertainties are smaller, with a root-mean-square (RMS) error of 6.5 g m-2. Moreover, 

much of the uncertainty in retrieving LWP is due to uncertainties in atmospheric conditions, such as cloud temperature and 

humidity profile (e.g. Gaussiat et al., 2007), which usually will not change dramatically during one fog event. In absence of 

higher liquid clouds, the detection limit of changes in fog LWP should therefore be smaller, probably in the order of 5 g m-2 25 

(Bernhard Pospichal, personal communication). To reduce the constant bias in MWR LWP, we subtract the mean LWP 

retrieved during the 1-hour period of clear sky that is nearest in time to the fog event of interest. For the three fog events in 

2014 studied in this paper (see Sect. 2.5), the imposed correction is 1.1, 5.2 and 23.9 g m-2, respectively. An improvement of 

the instrument algorithm provided by the manufacturer in 2015 reduced this clear-sky bias to less than 1 g m-2 for the rest of 

the fog events. An approximate evaluation of the LWP uncertainty using LW radiation measurements suggests an RMS error 30 

in LWP of about 5–10 g m-2 during fogs with LWP < 40 g m-2 (Appendix A). 
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2.3 Radiation code ARTDECO 

The radiative transfer is calculated using ARTDECO (Atmospheric Radiative Transfer Database for Earth Climate 

Observation), a numerical tool developed at LOA (Lille University) which gathers several methods to solve the radiative 

transfer equation and datasets (atmospheric profiles, optical properties for clouds and aerosols, etc.) for the modelling of 

radiances and radiative fluxes in the Earth’s atmosphere under the plane-parallel assumption. Data and user guide are 5 

available on the AERIS/ICARE Data and Services Center website at http://www.icare.univ-lille1.fr/projects/artdeco. In this 

paper, the radiative transfer equation is solved using discrete-ordinate-method DISORT (Stamnes et al., 1988) in the solar 

spectrum (0.25–4 µm) and the thermal spectrum (4–100 µm). The spectral resolution is 400 cm-1 in 0.25–0.69 µm, 100 cm-1 

in 0.69–4 µm and 20 cm-1 in 4–100 µm, which gives 303 wavelength bands in total. Gaseous absorption by H2O, CO2 and O3 

is taken into account and represented by the correlated k-distributions (Dubuisson et al., 2005; Kratz, 1995). In ARTDECO, 10 

the coefficients of the k-distribution are calculated using a line-by-line code (Dubuisson et al., 2006) from the HITRAN 2012 

spectroscopic database (Rothman et al., 2013). The use of correlated k-distribution makes it possible to account with 

accuracy for interaction between gaseous absorption and multiple scattering with manageable computational time. In 

addition, the impact of the absorption continua is modelled using the MT_CKD model (Mlawer et al., 2012). Optical 

properties of water clouds are calculated for a given droplet size distribution (DSD) using Mie calculations. In this study, the 15 

DSD is parametrized using a modified gamma distribution, applying parameter values presented by Hess et al. (1998) for fog 

and continental stratus. The effective radius is 10.7 µm for fog and 7.3 µm for stratus, but we modify the effective radius in 

the fog according to the radar reflectivity (see Sect. 3.2). Ice clouds are represented by the Baum & Co ice cloud 

parametrization implemented in the ARTDECO code (Baum et al., 2014), using an ice crystal effective diameter of 40 µm. 

 Radiative fluxes are calculated on 66 vertical levels spanning 0–70 km, 28 of which are located in the lowest 500 m 20 

in order to resolve fog layers well. A Lambertian surface albedo in the SW is applied, with a spectral signature representative 

of vegetated surfaces. However, as we observed that this albedo parametrization generally overestimates the observed albedo 

by ≈25 %, we downscale the albedo at all wavelengths to better fit the median albedo of 0.221 of October 2014–March 2015 

observed at SIRTA. In the LW, a constant emissivity of 0.97 is used. 

2.4 Calculation of radiation-driven liquid water condensation and evaporation 25 

The radiation-driven condensation (or evaporation) rate is calculated assuming the air remains at saturation while cooling or 

warming from SW or LW radiation only, neglecting all adiabatic motions or mixing, but taking into account the latent heat 

of condensation. The derivations below are based on the thermodynamics of a saturated air parcel, which is described by e.g. 

Wallace and Hobbs (2006). 

 For N model levels at height ℎ" (j=1,..,N), ARTDECO calculates the radiative heating rate in each of the N-1 layers 30 

between these levels, #$
#% &'#,"

 (j=1,…N-1). We assume that if the jth layer contains cloud, its water vapour content will 

always be at saturation with respect to liquid water. To satisfy this, the condensation rate 𝐶&'# due to the radiation must be: 
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𝐶&'#," = − #,-
#$

#$
#% "

,           (1) 

where 𝜌/ is the saturation vapour concentration (g m-3), and #,-
#$

 its change with temperature. #$
#% "

is the total air temperature 

tendency, which under the above assumptions equals the radiative heating rate plus the latent heat of condensation: 

#$
#% "

= #$
#% &'#,"

+ 12
,345

𝐶&'#,",          (2) 

where 𝐿7 is the specific latent heat of condensation, 𝜌' the air density and 𝑐9 the specific heat capacity of air at constant 5 

pressure. We estimate #,-
#$

 by combining the ideal gas equation for water vapour (𝑒/ = 𝜌/𝑅7𝑇) and Clausius–Clapeyron’s 

equation (#=-
#$

= 12=-
>2$$?

), which yields: 

#,-
#$

= =-
>2$?

12
>2$

− 1 ,           (3) 

where 𝑅7 is the specific gas constant of water vapour, and 𝑒/ is the saturation vapour pressure, which we estimate from the 

formula presented by Bolton (1980): 10 

𝑒/ 𝑇 = 	  611.2	  exp	   HI.JI	  ($LMIN.HO)
$LMQ.JO

,         (4) 

with 𝑇 in K and 𝑒/ is Pa. Combining Eqs. (1) and (2), we get an expression for the radiation-driven condensation rate: 

𝐶&'#," = −
RS-
RT

H	  U	   V2S3W5
	  RS-RT

#$
#% &'#,"

.          (5) 

We calculate this condensation rate for all layers within the fog and finally integrate in the vertical to obtain the total 

condensation rate in the whole fog (in g m-2 h-1), thus getting CLW and -ESW.  15 

 It is worth noting that the gradient #,-
#$

 increases strongly with temperature. This implies that a warmer fog 

condensates more liquid water than a cold fog given the same radiative cooling rate. In fact, the condensed water per 

radiative heat loss increases almost linearly from 0.55 to 0.90 g m-2h-1 per W m-2 when the fog temperature increases from -2 

to 15 ˚C (not shown). 

Thus, the vertical integral of Eq. (5) allows the immediate effect of radiation on the fog LWP budget to be 20 

calculated from the output of the radiative transfer model. This is possible because we have neglected all air motion. In 

reality, negative buoyancy induced by the radiative cooling will lead to downdrafts and turbulence, which favours 

entrainment, droplet deposition and other LWP sink processes, as described in Sect. 1. These indirect effects of radiation on 

the LWP budget are not studied in this paper, as a dynamical model taking into account forcings such as the wind and 

surface properties would be required in order to quantify them. When interpreting the results of this paper, it is important to 25 

keep in mind that the condensation rates CLW and -ESW are not the actual condensation rates that occur in the fog, but rather 
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the immediate condensational tendency to stay at saturation induced by the radiative temperature tendency, which could 

rapidly be modified by either drying or warming through mixing processes. Nonetheless, CLW and ESW are good indicators 

for how strongly the radiation impacts the fog LWP. 

To improve the calculation of condensation rates, we could have taken into account that fog is often vertically well 

mixed due to destabilisation (Nakanishi, 2000), so that the whole fog layer cools at the same rate. However, we found that 5 

CLW and ESW only change marginally (<2 %) if we apply the fog-layer vertical average radiative heating rate in Eq. (5) (not 

shown), which would not significantly affect our results. 

2.5 Overview of the analysed fog cases 

We calculate the radiation at 15min intervals in seven fog events that occurred at SIRTA during the winter seasons 2014–

2015 and 2015–2016. An overview of the atmospheric conditions during each of these fogs events is given in Table 2. The 10 

fog events were chosen to cover an important range of variability in atmospheric conditions such as 2m temperature and 

IWV, as well as fog properties such as geometric thickness and LWP, and we have included one fog event where cloud 

layers above the fog were observed. Considering all fog events at SIRTA in the winter seasons 2012–2016 with reliable 

LWP measurements from the MWR (e.g. excluding cases with liquid clouds above), in total 53 events, the 10th, 25th, 50th, 

75th and 90th percentile of the LWP distribution is 6.6, 16.4, 40.2, 68.0 and 91.2 g m-2, respectively (not shown). The chosen 15 

fog events thus cover the typical range of fog LWP. Fog types can be defined by the mechanism of formation (Tardif and 

Rasmussen, 2007). At SIRTA, radiation fogs and stratus-lowering fogs occur with about the same frequency, while other fog 

types are less common (Haeffelin et al., 2010; Dupont et al., 2016). Fog during rain occasionally occurs, but such cases have 

been avoided in this study because rain or drizzle drops generate very large radar reflectivities, yielding cloud property 

retrievals highly uncertain (Fox and Illingworth, 1997), and because of the wetting bias in the MWR retrievals in rain (Rose 20 

et al., 2005). 

Fog presence is defined by the 10min average visibility at 4 m being below 1 km (American Meteorological 

Society, 2017). For a 10min block to be part of a fog event, the visibility should be below 1 km at least 30 min of the 

surrounding 50min period, based on the method proposed by Tardif and Rasmussen (2007), thus defining the fog formation 

and dissipation time of each event. From this definition, fog event number 3 and 6 should each be separated into two events; 25 

however, we have chosen to regard them as single events because the cloud base lifts only a few tens of meters for 2–3 hours 

before lowering again. 

3 Retrieval of geophysical properties 

This section describes how the measurements at SIRTA are used to prepare the input data to the radiative transfer code: 

profiles of cloud properties, temperature and humidity. Before they are used, the data from all the instruments, except the 30 
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temperature and humidity profiles from the radiosonde and MWR, are averaged in a 10-minute block around the time of 

interest. 

3.1 Fog and cloud boundaries 

The fog or low stratus is searched for in the lowest 500 m of the atmosphere. Its cloud-base height is found using a threshold 

value in the attenuated backscatter from the ceilometer of 2 ∙ 10LZ m-1 sr-1, following Haeffelin et al. (2016), or a 1 km 5 

threshold in visibility if the cloud-base height is close to the surface The cloud-base height is set to 0 m if the horizontal 

visibility at 4 m is below 1 km. The cloud-top height is set to the altitude where the 12.5m resolution radar data no longer 

detect a signal above noise levels. In very thin fog situations where the visibility at 20 m is above 1 km, indicating that the 

fog top is below 20 m, the cloud-top height is set to 10 m. 

 The presence and vertical extent of higher cloud layers is determined from the radar. The clouds are assumed to 10 

extend over the gates where a signal is detected above the background noise. 

3.2 Fog microphysical properties 

We assume that the fog contains only liquid droplets, and no ice, which is a reasonable assumption as the screen temperature 

during the fogs events studied here is -1 ˚C at lowest (Table 2) and ice crystals in fog rarely occur at temperature above -

10˚C (Gultepe et al., 2007). The optical properties of the fog then depend only on the liquid water content (LWC) and the 15 

DSD. Only the extinction coefficient at 550 nm is required as model input in addition to the DSD, since ARTDECO can 

determine the optical properties at all 303 wavelengths by Mie calculations from this information (Sect. 2.3). The extinction 

coefficient of cloud droplets at visible wavelengths (including 550 nm) is well approximated by: 

𝛼=\%,7]/]^_= =
N	  1`a
Mbc	  &dee

,           (6) 

with LWC in g m-3, reff is the effective radius in µm and ϱ_ the density of liquid water in g cm-3 (Hu and Stamnes, 1993). The 20 

optical depth at visible wavelengths (OD) is obtained by integrating 𝛼=\%,7]/]^_= in the vertical. 

The 12.5m resolution mode of the radar is used to estimate LWC and reff at each level in the fog. For liquid droplets, 

the backscattered radar signal is proportional to the sixth moment of the DSD, a quantity known as radar reflectivity 𝑍: 

𝑍 = 	   𝐷J𝑛(𝐷)𝑑𝐷k
l ,           (7) 

where 𝐷 = 2𝑟 is the droplet diameter and 𝑛(𝐷)𝑑𝐷 is the number concentration of droplets with diameter between 𝐷 and 25 

𝐷 + 𝑑𝐷. 𝑍 has units mm6 m-3, but is usually expressed in units of dBZ, defined by 𝑑𝐵𝑍 = 10 ∙ log10(𝑍). We have chosen to 

apply the empirical relationships of Fox and Illingworth (1997) relating the radar reflectivity 𝑍 (dBZ) to LWC (g m-3) and reff 

(µm): 

𝐿𝑊𝐶 = 9.27 ∙ 10l.lJZH	  r           (8) 
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𝑟=ss = 23.4 ∙ 10l.lHII	  r           (9) 

These relationships were derived from aircraft measurements of the droplet spectrum in stratocumulus clouds, covering the 

range -40 dBZ to -20 dBZ. The relationships are not valid in the presence of drizzle, which strongly increases Z as droplets 

are larger. Drizzle presence typically occurs when Z > -20 dBZ (e.g. Matrosov et al., 2004). We therefore use the value of 

LWC and reff obtained at Z = -20 dBZ for any higher Z. The relationships are plotted in Fig. 2. 5 

LWC and reff are estimated in each radar gate from cloud base to cloud top using these relationships, assuming no 

attenuation. For the lowest altitudes, where the radar data cannot be used, we apply the reflectivity of the lowest usable gate 

(usually at ≈50 m). The LWP of the MWR is then applied as a scaling factor to improve the estimate of LWC. This scaling is 

not performed if the MWR LWP is less than 10 g m-2. If a higher cloud that may contain liquid is detected, the LWP should 

be partitioned between the fog and this cloud (see Sect. 4.3). Having obtained LWC and reff, the profile of 𝛼=\%,7]/]^_= can 10 

thus be determined using Eq. (6). Below 30 m, we instead use the visibility measurements, which relate to visible extinction 

through Koschmieder’s formula (e.g. Hautiére et al., 2006): 

𝛼=\%,7]/]^_= =−
vwl.lO
xyz

≈ 	   N.l
xyz

          (10) 

Examples of the profiles of Z, LWC, reff and 𝛼=\%,7]/]^_=  are shown in Appendix B. Uncertainties in the retrievals of 

microphysical properties are also discussed in Appendix B. To reduce the computational cost, only four different DSDs are 15 

given to the radiative transfer code, with effective radii of 4.0, 5.5, 8.0 and 10.7 µm, respectively. In one model run, the same 

DSD is used at all altitudes, and it is selected by applying Eq. (9) on the vertical median of Z. 

3.3 Profiles of temperature and gases 

The radiation code requires the vertical profiles of temperature and the concentrations of the gaseous species (H2O, CO2, O3) 

as input. For CO2, a vertically uniform mixing ratio of 400 ppmv is used, while for O3 we use the AFGL mid-latitude winter 20 

standard atmospheric profile (Anderson et al., 1986) which is provided in ARTDECO. This standard atmosphere is also used 

for temperature and humidity (i.e. H2O) above 20 km. Below 10 km, the temperature and humidity from the MWR is 

applied, while the previous radiosonde at Trappes is used in 10–20 km. The measured surface skin temperature is used for 

surface emission temperature, while the in situ measured air temperature is used in the 0–30 m layer. When there is no cloud 

base below 50 m, the MWR temperature profile is modified in the lowest 200 m of the atmosphere to gradually approach the 25 

temperature measured at 30 m. 

 Due to fog top radiative cooling and subsequent vertical mixing, the temperature profile is often characterized by a 

saturated adiabatic lapse rate inside the fog, capped by a strong inversion above the fog top (Nakanishi, 2000; Price et al., 

2015). This vertical structure was also observed by the majority of the 12 radiosondes launched during four fog events in the 

ParisFog field campaign of 2006–07 (not shown). If a cloud base is present below 50 m, we therefore let the temperature 30 

decrease adiabatically with height from the measured value at the top of the mast, and then impose an inversion of 5 K per 
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100 m from the fog top until the temperature profile of the MWR is encountered. This inversion strength corresponds to 

what was typically observed by the aforementioned radiosondes. When a cloud base is present below 50 m, we also increase 

the humidity within the whole fog layer to saturation and decrease the humidity in the atmosphere above with the same 

integrated amount, thus improving the estimate of the humidity column above the fog top. 

4 Results 5 

We will now present the results obtained by applying the methodology described above to the seven fog events in Table 2. 

We first describe in some detail two contrasting fog events (Sect. 4.1), then we study the statistics of the radiative properties 

in all six fogs events without clouds above (Sect. 4.2), and finally we study the impacts of the clouds appearing above the 

last fog event (Sect. 4.3). 

4.1 Quantitative analysis of two contrasting fog events 10 

Figure 3 shows the time series of several observed and calculated quantities during the fog event on 27 Oct 2014. The 

visibility and LWP time series (Fig. 3a) reveal that this fog has two distinct stages. From 02 UTC to 06 UTC, intermittent 

patches of very thin fog exist, seen from the fluctuating 4m visibility and the 20m visibility remaining well above the fog 

threshold. After 06 UTC, the fog develops in the vertical, causing the visibility at 20 m to drop. The fog grows to a thickness 

of about 100 m, as can be seen by the radar (Fig. 3b), reaching a maximum LWP of about 20 g m-2 just after sunrise, at 07 15 

UTC. A minimum visibility at 4 m (155 m) and at 20 m (87 m) is also reached at 07 UTC. After sunrise, the visibility 

steadily improves, fog dissipating at the surface at 08:50 UTC and nearly one hour later at 20 m. 

Figure 3c–d shows the time series of temperature, wind speed and the net SW and LW downward radiation 

observed at 10 m. Before fog formation, the ground undergoes radiative cooling of ≈60 W m-2, which gives rise to the 

observed strong temperature inversion in the first 20 m of the atmosphere. The surface radiation budget stays unchanged 20 

during the period of intermittent fog, indicating that the fog is restricted to below the 10m level where the flux is measured. 

Once the fog starts developing in the vertical, however, the 10m net LW radiation increases and becomes close to zero at the 

fog peak time at 07 UTC, indicating that the fog is nearly opaque to LW radiation at this time. In the same period, from 06 to 

07 UTC, the stable temperature profile evolves into a nearly isotherm layer. After sunrise, strong SW absorption at the 

surface (reaching >100 W m-2) is associated with a sharp rise in temperature, which likely explains the dissipation of the fog. 25 

Figure 3e–h shows quantities that are calculated using our methodology. Until 06 UTC, the fog OD is based on the 

observed 4m extinction and an assumed thickness of 10 m, resulting in a very low fog OD. The estimated fog OD increases 

strongly from 06 to 07 UTC, reaching 4 at 07 UTC. This is associated with a distinct increase in downwelling LW at 10 m, 

qualitatively consistent with the observations (Fig. 3g). As the LW emissivity of the fog increases, the radiative cooling is 

transferred from the surface to the fog, causing an increase in the calculated CLW, which reaches a maximum of 50 g m-2 h-1 30 

(Fig. 3h). The magnitude of this parameter indicates that the radiative cooling process can produce the observed maximum in 
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fog LWP is less than one hour, which is consistent with the observed increase in LWP. The underestimation of the 

downwelling LW at 10 m after 06 UTC can indicate that the calculated LW emissivity of the fog is slightly underestimated, 

and thus also CLW. The calculation also underestimates the LW flux by about 15 W m-2 before 06 UTC, which is probably 

due to uncertainties in the vertical profile of temperature and humidity (see Sect. 5.3). ESW is small, only ≈2 g m-2 h-1 (Fig. 

3h). The heating of the fog via surface absorption is probably much more important for evaporating the fog. 5 

 Figure 4 shows the same quantities as Fig. 3, but for the fog event on 13 Dec 2015. In contrast to the fog on 27 Oct 

2014, this fog forms from the gradual lowering of the cloud-base of a pre-existing low stratus, which is already much thicker 

than the fog on 27 Oct 2014. During the whole day, this fog has an LWP of 50–100 g m-2 and a thickness of 250–300 m and 

thus remains optically thick. A transition from fog to low stratus occurs at 12:20 UTC, but the cloud base rises only to ≈20 m 

before descending again to form fog at 15 UTC (not shown). As the fog is opaque to LW, the good agreement between the 10 

modelled and observed downwelling LW at 10 m (Fig. 4g) reflects only the temperature of the fog. More interesting is the 

good agreement between the modelled and observed downwelling SW radiation at 10 m (Fig. 4f), which indicates that the 

estimated fog OD is rather precise. CLW is around 50 g m-2 h-1 with little variability. The ratio of the fog LWP and CLW has 

units of time, and it can be interpreted as a characteristic time scale for the renewal of the fog by radiative cooling; it is the 

time in which CLW could produce the same amount of liquid water that is currently in the fog. This time scale is 1–2 hours in 15 

this fog event. , indicating that this process can renew the fog LWP in 1–2 hours. ESW reaches 9 g m-2 h-1 around midday and 

is thus of less importance. This thicker fog also reflects more SW radiation than the fog 27 Oct 2014 so that less SW reaches 

the surface (Fig. 4f), which probably helps the fog to persist, although the LWP decreases during the day. 

4.2 Radiation-driven condensation and evaporation in six fogs events without clouds above 

Figure 55 shows the values of our three radiation parameters calculated every 15 minute during the six fog cases without 20 

higher clouds (Table 2). CLW varies significantly, from 0 to 70 g m-2 h-1 (Fig. 5a). Firstly, when the fog is not opaque to LW 

radiation, CLW is smaller, because the fog emits less than a blackbody. The optical depth of a cloud in the LW is principally 

determined by its LWP (Platt, 1976). We therefore plot CLW against the MWR LWP in Fig. 5a, which shows that CLW 

increases strongly with LWP when LWP is smaller than 20–30 g m-2. Remember, though, that the MWR LWP is not used in 

the input data to the radiation code when it is less than 10 g m-2 (Sect. 3.2). When the fog is opaque (LWP >≈ 30 g m-2), the 25 

radiative cooling is restricted to the uppermost 50–100 m of the fog (Appendix B), in agreement with previous studies 

(Nakanishi, 2000; Cuxart and Jiménez, 2012). CLW then ranges 40–70 g m-2 h-1, varying significantly between fog events and 

to a lesser degree (≈5–15 g m-2 h-1) within the same event (Fig. 5a), but this variability is not related to LWP since the LW 

emissivity is already close to 1 at an LWP of 30 g m-2. We can interpret from Fig. 5a that the time scale of renewal by LW 

cooling (introduced in Sect. 4.1) in opaque fog ranges 0.5–2 hours, being longer for fog with higher LWP, even reaching 3 30 

hours for parts of the fog on 28 Oct 2014. Considering that the opaque fogs typically have an LWP of 30–100 g m-2, the 

cooling by LW radiation constitutes a source of liquid water capable of renewing the entire fog in 1–2 hours, which  This is 

alsosimilar to the typical time scale for observed major changes in the fog LWP (not shown). The magnitude of CLW can be 
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compared to the results of Nakanishi (2000), who studied the liquid water budget of fog in a large-eddy simulation. His Fig. 

14a shows the domain-averaged profile of condensation rate in a 100m thick fog with LWP of about 15 g m-2 (seen from his 

Fig. 5b) in the morning. Condensation occurs in the upper 50 m of the fog, and the integral over these 50 m gives roughly 

30–40 g m-2 h-1, which is similar to our results (Fig. 5a). 

To investigate possible causes for the observed variability of CLW in opaque fogs, three situations with opaque fog 5 

(OD > 10) are compared in Fig. 66. CLW is 63.4, 47.7 and 61.6 g m-2 h-1, respectively (Fig. 6a). Since the fogs isare opaque, 

the budget of LW radiation at the fog top is the main determining factor for the radiative cooling. Figure 6b shows the LW 

fluxes at fog top in the three situations; the length of the vertical line indicates the net negative LW budget. The net LW 

budget is -73 W m-2 both on 2 Nov 2015 and 8 Nov 2015, but the condensation rate is still higher by 14 g m-2 h-1 higher on 8 

Nov 2015. This is explained by the higher temperature of the fog top on the latter date (Fig. 6c), causing a higher 10 

condensation rate with the same cooling (see Sect. 2.4). The fog situations on 28 Oct 2014 and 2 Nov 2015 differ in 

condensation rate by 16 g m-2 h-1. These two fog situations have a very similar temperature, so the difference is explained by 

the LW radiative budget at fog top, which is -100 W m-2 on 28 Oct 2014, i.e. 27 W m-2 more negative than on 2 Nov 2015. 

This higher LW deficit can be explained by the lower humidity above the fog (Fig. 6d) and possibly also the lower 

temperature in the first 1 km above the fog (Fig. 6c). Thus, CLW in the fogs without a cloud above varies significantly both 15 

from differences in fog OD, the fog temperature and the LW emission from the atmosphere above. 

Figure 5b shows ESW, which varies in 0–15 g m-2 h-1. ESW obviously depends on the amount of incoming SW 

radiation, so we plot it against the solar zenith angle. At one given angle, there is a variability of a factor of 4 between the 

fog cases. This variability is explained by the fog OD. Thinner fogs, such as on 27 Oct 2014 and 14 Dec 2014, will interact 

less with the SW radiation and therefore absorb less than the thicker fogs, such as on 28 Oct 2014 and 2 Nov 2015. ESW will 20 

also depend on fog temperature through #,-
#$

, just like CLW. All in all, ESW is generally much smaller than CLW, even for thick 

fogs near (winter) midday, but it still represents a significant reduction in the net radiation-driven condensation rate in the 

fog in daytime relative to nighttime. 

Rnet,s varies from 0 to 140 W m-2 during daytime in the six fog cases (Fig. 5c). Absorption of SW is the dominant 

term, and therefore we highlight the dependency on solar zenith angle. However, net LW emission significantly reduces Rnet 25 

below the non-opaque fogs (27 Oct 2014 and 14 Dec 2014) with up to -60 W m-2, and also frequently reaches -10 W m-2 in 

the opaque fog situations because the ground is warmer than the fog (not shown). Since thicker fogs reflects more SW 

radiation, the absorbed SW is smaller below thick fogs than thin fogs at a given solar zenith angle, and this gives rise to the 

case-to-case variability in Rnet,s of a factor of 3 seen in Fig. 5c, e.g. from 40 W m-2 to 120 W m-2 at a solar zenith angle of 

70˚. To study to what extent this absorbed heat is transferred to the fog, we compare the measurements of Rnet,s (at 10 m) 30 

with the sensible heat flux measurements at 2 m in the fogs during fog in daytime (Fig. 5d). The two parameters are clearly 

correlated (R=0.56). The fraction of sensible heat flux to Rnet,s in these data is found to have a 25 and 75 percentile of 0.20 

and 0.40, respectively. Since 1 W m-2 heating of the fog corresponds to an evaporation rate of about 0.7 g m-2 h-1 (Sect. 2.4), 
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the sensible heat flux will cause an evaporation rate of roughly 0.15–0.30 g m-2 h-1 per W m-2 of radiation absorbed at the 

surface. With a surface absorption of 100 W m-2 at midday below thin fogs, this correspond to 15–30 g m-2 h-1 of 

evaporation, which is almost as large as CLW. Considering that measurements using the eddy covariance method could 

underestimate the turbulent heat fluxes (Foken, 2008), the heating of the fog by Rnet,s might in reality be even stronger than 

what we found here. 5 

4.3 Radiation-driven condensation and evaporation in a fog with clouds above 

Figure 7 presents the fog event occurring 1 January 2016, during which the BASTA cloud radar detects cloud layers 

appearing above the fog: traces of a stratus at ≈1.6 km from 07 to 08:30 UTC, and a higher and thicker stratus after 11 UTC. 

During the presence of the second cloud, the fog evaporates rapidly around 12–13 UTC, leaving only traces of a cloud at 

≈150 m (Fig. 7b). 10 

The radar mode at 200m resolution is just sensitive enough to detect the cloud at ≈1.6 km, so its geometrical 

thickness is uncertain. However, peaks in the LWP (Fig. 7a) appear at corresponding times when the cloud is observed by 

the radar. We therefore model the cloud as a liquid stratus and partition the LWP between the fog and overlying stratus cloud 

in the following way: In the period 06:45 to 07:30 (07:30 to 08:45) UTC, the first 30 (20) g m-2 is attributed to the fog layer, 

and the rest to the stratus. This results in an OD of the stratus of ≈10 when it is present (Fig. 7e). The stratus has a strong 15 

impact on CLW (Fig. 7h), reducing it by 90–100 %, because it increases the downwelling LW radiation at the fog top (not 

shown). The presence of the stratus may therefore explain why the fog does not develop vertically, but instead decreases its 

geometric thickness and LWP while the stratus is present (Fig. 7a–b). 

A second higher cloud appears at 11 UTC between 4 and 6 km. The cloud persists and deepens while the fog 

dissipates. From the radiosounding at ≈12 UTC, we know that the temperature in the 4–6 km layer is -25 to -13 ˚C. Since the 20 

LWP drops to zero after the fog cloud disappears, we choose to model the overlying cloud as a pure ice cloud, even though it 

is possible that it also contains liquid water while overlying the fog, which could explain the peaks in LWP around 12 UTC 

(Fig. 7a). To get a rough estimate of the OD of this cloud, we use an ice water content of 0.05 g m-3, which corresponds to 

the average ice water content found by Korolev et al. (2003) for glaciated frontal clouds at temperatures of around -20 ˚C. 

This results in an OD of ≈5 in the beginning, growing with the observed thickness of the cloud (Fig. 7e). This cloud reduces 25 

CLW by ≈70 % (Fig. 7h), which is less than the effect of the first stratus. This is because the cloud is higher and colder, thus 

emitting less LW than the first cloud (Stephan Boltzmann’s law). However, its effect is still more important than the 

variability in CLW found between cases without a higher cloud (Sect. 4.2). The cloud at 4 km also reduces ESW by 50–80 % 

and the SW reaching the surface by 15–30 %, due to reflection and absorption in the cloud, the effects increasing with time 

as the cloud thickens. Thus, in the SW the cloud has the opposite effect on the fog LWP as in the LW. However, the LW 30 

effect is more important than the SW effect for the fog LWP budget in this case: CLW decreases by ≈35 g m-2 h-1 due to the 

cloud presence, which is much more than the decrease in ESW of ≈4 g m-2 h-1 or the ≈10 W m-2 reduction in the SW absorbed 
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at the surface (not shown) which should correspond to less than 5 g m-2 h-1 decrease in evaporation by sensible heat flux (see 

Sect. 4.2). 

 The modelled and observed downwelling SW at 10 m are compared in Fig. 7f. They agree well both when there is 

only the fog (e.g. at 10 UTC), when both the fog and the cloud at 4 km are present (e.g. at 12 UTC) and when only the cloud 

is present (e.g. at 14 UTC), which provides a validation of the estimated OD of the fog and the cloud. 5 

5 Discussion 

We link the variability in the radiative parameters found in Sect. 4 to various properties of the atmospheric conditions, such 

as fog LWP and the presence or not of clouds above the fog. In order to understand better how each factor impacts the 

radiation-driven condensation and evaporation, theoretical sensitivity studies, where each input parameter is varied 

separately, are performed. Sensitivity to fog microphysical properties, temperature and humidity is analysed in Sect. 5.1, 10 

while impacts of higher clouds are explored in Sect. 5.2. Finally, a discussion of uncertainties is presented in Sect. 5.3. 

5.1 Sensitivity of radiation-driven condensation and evaporation to fog properties, temperature and humidity 

Figure 8 explores the sensitivity of our radiation parameters to the LWP and droplet sizes of the fog, which together 

determine its optical properties (see Sect. 3.2). The model runs use the input of the semi-transparent fog situation on 27 Oct 

2014 at 08:30 UTC (Fig. 3), modifying only the fog LWP and/or the droplet effective radius. 15 

Figure 8a shows that CLW increases fast with fog LWP when LWP is less than ≈30 g m-2. For higher LWP, the 

increase is much weaker, and beyond 50 g m-2 it approaches a constant value as the emissivity of the fog approaches 1. The 

dependency on reff for a given LWP is weak, which is due to a near cancellation between decreasing surface area and 

increasing absorption efficiency with reff, so that the LW optical depth of liquid clouds are almost entirely determined by 

LWP (Platt, 1976). The LW cooling process is thus sensitive to the fog LWP only if LWP <≈ 40 g m-2, and it is not sensitive 20 

to droplet sizes within the range of effective radii studied here. Figure 8d shows that the downwelling LW flux at the surface 

increases with LWP in a very similar way as CLW, which we use to evaluate the uncertainty in CLW due LWP uncertainty 

(Appendix A). 

Figure 8b shows that ESW also increases with LWP. Compared to CLW, ESW depends less strongly on LWP for thin 

fogs, but it keeps increasing with LWP also for opaque fogs with LWP well above 50 g m-2. This is due to the SW radiation 25 

being largely diffused in the forward direction, rather than absorbed, so that there still remains much SW to be absorbed even 

far down inside an optically thick cloud. Note also that some absorption occurs even in when LWP=0, because of absorption 

by water vapour inside the cloud (Davies et al., 1984). ESW is also sensitive to the sizes of the droplets: for a given LWP, the 

largest effective radius (10.7 µm) gives a ≈50 % larger evaporation rate than the smallest effective radius (4 µm), which can 

appear counter-intuitive since the total surface area of the DSD decreases with reff. This occurs due to an increase in 30 

absorptivity in the near-infrared with droplet size (Ackerman and Stephens, 1987).  
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The dependency of Rnet,s on fog properties (Fig. 8c) is the sum of LW and SW cloud effects. The fog reduces the 

SW reaching the surface by reflecting SW radiation, and this effect increases with LWP and decreases with reff (Twomey, 

1977). In the LW, radiative cooling of the surface is reduced as LWP increases, thus increasing Rnet,s with LWP, because the 

cooling is transferred to the fog top. Beyond LWP ≈ 40 g m-2, the sensitivity of Rnet,s to LWP is only due to SW. Rnet,s is 

about half as large when LWP is 100 g m-2 than for LWP of 20 g m-2. ForIn thick fogs, the smallest droplets only let through 5 

half as much SW as the biggest droplets, while the dependency on droplet size is less pronounced for thin fogs. 

In Fig. 9, we explore the sensitivity of CLW to the vertical profiles of temperature and humidity. In these tests, we 

use the opaque fog on 13 Dec 2015 at 10 UTC. Figure 9a confirms that an increase in fog-top temperature leads to a higher 

CLW, by about 3 g m-2 h-1 per ˚C, caused both by higher emission of LW radiation by the fog (Stephan–Boltzmanns law) and 

the increase with temperature of the condensation rate per W m-2 (Sect. 2.4). A temperature change in the atmosphere above 10 

the fog has a weaker impact of about 1.4 g m-2 h-1 per ˚C (Fig. 9c). Figure 9b illustrates that the first 100 m above the fog 

areis in fact responsible for half of this effect, which is because most of the downwelling LW radiation under a cloud-free 

sky comes from the first few tens of meters, as noted by Ohmura (2001). The sensitivity to temperature above the fog is thus 

mainly related to the strength of the inversion at the fog top. The sensitivity of CLW to increased water vapour above the fog 

is about 2 g m-2 h-1 per added kg m-2 of IWV (Fig. 9d), which confirms the importance of the dryness of the atmosphere 15 

found in Sect. 4.2. 

5.2 Impact of radiation-driven condensation and evaporation on fog dissipation 

The evolution of a fog depends on the competition between processes that produce liquid water and processes that remove it. 

Radiative cooling from emission of LW iswas found to be capable of producing 40–70 g m-2 of liquid water per hour in the 

absence of a higher cloud layer, which is a significant source for maintaining the fog LWP, capable of renewing itthe fog 20 

water in 10.5–2 hours (see Sect. 4.2) against processes that remove LWP (deposition, turbulence). If a fog layer does not 

increase its LWP in spite of the LW cooling, it is because the sink processes for liquid water amount to a similar magnitude. 

Sink processes can be heating which counteracts the cooling, either the radiative heating processes studied in this paper or 

other sources of heat, such as entrainment at fog top or adiabatic heating from subsidence. Another sink process is the 

deposition of fog droplets at the surface, which has been found to be important for limiting fog LWP (Mason, 1982; Price et 25 

al., 2015). If the LW cooling decreases while the sink processes don’t, it will shift the LWP balance towards a reduction, 

eventually leading to fog dissipation. We found that CLW increases with fog temperature and decreases with the humidity in 

the overlying atmosphere; thus, warm fogs with a dry overlying atmosphere will be more resilient to dissipation than colder 

fogs with a more humid overlying atmosphere. However, these factors cannot be expected to vary very fast, so they will 

probably not be an initiating factor for the dissipation of a fog layer. On the contrary, the appearance of a second cloud layer 30 

above the fog can occur very fast by advection and instantly reduce CLW by several tens of g m-2 h-1 (Sect. 4.3). This should 

be sufficient to shift the balance in LWP in the direction of a fast reduction, leading to the dissipation of the fog. 
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In Fig. 10, we explore how a higher cloud affects the radiation-driven condensation and evaporation in an opaque 

fog as function of the OD and base altitude of the cloud. The impact on CLW (Fig. 10a) increases with the cloud OD, but 

beyond an OD of 5 this dependency is no longer very strong. The effect of the cloud weakens with increasing altitude of the 

cloud base; an opaque cloud at 10 km reduces CLW by only ≈30 %, while a cloud at 2 km reduces it by ≈100 %. This altitude 

dependency is due to the decrease of the temperature of the cloud with altitude due to the atmospheric lapse rate. At a given 5 

cloud OD and altitude, the effects of ice and liquid clouds are very similar. ESW is also reduced by the presence of a higher 

cloud (Fig. 10b), since the cloud absorbs and reflects the SW radiation that would otherwise be absorbed in the fog. It also 

decreases with OD of the cloud, while the altitude matters little. The decrease with cloud OD continues even for opaque 

clouds. However, beyond an OD of 5 it has already been more than halved and it decreases less rapidly. Since the fog in this 

case is opaque to LW, the cloud affects Rnet,s (Fig. 10c) mainly through its reflection of SW radiation, and the change is not 10 

dramatic since the fog is already reflecting most of the SW radiation. However, for a thin fog, Rnet,s is more strongly affected 

by the cloud, increasing due to the LW emission by the cloud and decreasing due to the SW reflection, similarly as it is 

affected by fog LWP for thin fogs in Fig. 8c (not shown). 

The following conceptual comparison of the fog case on 13 Dec 2015 (Fig. 4) and the fog case on 1 Jan 2016 (Fig. 

7) illustrates the possible role of radiation in determining the different evolutions of these two fogs events. Both occur near 15 

mid-winter at a temperature of about 5 ˚C, and both are optically thick with LWP≈100 g m-2 around midday (a). While the 

fog cloud dissipates completely right after midday on 1 Jan 2016, the fog on 13 Dec 2015 only slightly reduces its LWP 

during the afternoon, from ≈70 to ≈50 g m-2. Based on the radiative transfer calculations, on 13 Dec 2015 CLW is ≈50 g m-2 h-

1 and varies little, while on 1 Jan 2016 CLW is reduced from 50 g m-2 h-1 to 15 g m-2 h-1 when the higher cloud appears (h). 

The production of liquid water by LW cooling is thus 35 g m-2 h-1 higher in the fog on 1 Jan 2016 than in the fog on 13 Dec 20 

2015, and the sink processes for liquid water must be stronger to dissipate the former. Conversely, the cloud also reduces the 

SW heating of the fog; at midday, ESW is ≈5 g m-2 h-1 less on 1 Jan 2016 compared to 13 Dec 2015, and the SW reaching the 

surface is ≈40 W m-2 less (f) (which means that the evaporation rate from sensible heat is likely ≈10 g m-2 h-1 less, see Sect. 

4.2); however, this is less important than the difference in CLW. Differences in other processes probably also play a role in 

the very different developments of the two fogs events. For instance, the higher wind speed on 1 Jan 2016 (≈3 m s-1, against 25 

1–1.5 m s-1 on 13 Dec 2015) could indicate that loss of liquid water by turbulent processes are more important on 1 Jan 2016 

and also contributes to its dissipation. 

5.3 Uncertainty analysis 

Table 3 provides rough estimates of the relative impact of the uncertainties in different measured and retrieved input data to 

the calculated values of CLW, ESW and Rnet,s. We assume that the uncertainties in these input data are more important than 30 

uncertainties related to the physics of the radiation model itself. The quantitative estimates are based on the results found in 

the sensitivity studies, and on some further investigations that will be explained below. 
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Firstly, uncertainty arises from the estimates of fog optical properties. The uncertainty in fog LWP is found to be in 

the order of 5–10 g m-2 when LWP < 40 g m-2 (Appendix A). This corresponds to an uncertainty in CLW of 10–15 g m-2 h-1 

(or 50 %) when LWP < 20 g m-2 and 3–5 g m-2 h-1 (or 10 %) when LWP in 20–40 g m-2 (Fig. 8a). ESW is affected both by the 

fog LWP and reff (Fig. 8b). The estimated uncertainty in reff of 30 % (Appendix B) indicates an uncertainty of ≈20 % in ESW, 

while the LWP uncertainty of ≈5–10 g m-2 causes a similar uncertainty for small LWP, but lower for higher LWP (Fig. 8b). 5 

These uncertainties in LWP and reff will also cause uncertainties in the order of 20–30 % in Rnet,s, based on Fig. 8c. The 

uncertainties in Rnet,s is also estimated using the observed and modelled downwelling fluxes at 10 m, finding an RMS error of 

0.046 in the SW transmissivity (translating to 20 W m-2 SW absorption at solar zenith angle of 70˚), and an RMS error in the 

LW absorption of 13.8 W m-2 when LWP < 20 g m-2 and 4.8 W m-2 when LWP is in 20–40 g m-2 (Appendix A). Finally, it 

should be noted that in the presence of a higher cloud containing liquid, the partitioning of LWP between the fog and this 10 

cloud will increase the uncertainty in the fog LWP. 

Neglecting aerosols in the calculations is another source of uncertainty. While the scattering by aerosols will be 

small compared to that of the fog, additional in-fog heating by aerosol absorption of solar radiation can significantly increase 

ESW, since multiple scattering by droplets increases the probability of absorption (Jacobson, 2012), and since the fog droplets 

themselves only weakly absorb in the near-infrared. Previous studies (Chýlek et al., 1996; Johnson et al., 2004) have found 15 

that this increase in absorption is limited to ≈15 % in stratocumulus clouds. However, this effect might be enhanced in fog, 

since the aerosol concentration can get higher because the boundary layer is shallow and the fog is in direct contact with the 

surface. We test the impact of aerosols on ESW by adding two standard aerosol populations described by Hess et al. (1998) to 

the fog layer on 13 Dec 2015, with relatively low (0.05) and relatively high (0.15) aerosol optical depth at 550 nm (AOD) 

(Table 4). The main difference between the two populations is that the urban aerosols include more black carbon particles 20 

than the continental average aerosols. Black carbon is responsible for most of the absorption, while its contribution to AOD 

is only 20 % and 6 % in the two populations, respectively. The resulting increase in ESW ranges from ≈10 % for continental 

average aerosols of AOD 0.05 to more than 100 % for urban aerosols with AOD 0.15 (Table 4). Retrievals of AOD at 

SIRTA from a sun photometer, which requires direct sunlight and therefore has sparse temporal coverage, indicate that AOD 

is closer to 0.05 than 0.15 most of the time in October–March. Considering this, and that some aerosols will be located above 25 

the fog, the runs where AOD is set to 0.05 are the most realistic and show that the increase in ESW due to aerosols is probably 

not higher than 10–30 %. However, if black carbon optical depth increases due to a strong pollution event, ESW could be 

more strongly enhanced. To investigate the aerosol effect on ESW in more detail, measurements of the aerosol chemical 

composition should be used in addition to the AOD, since the important parameter to estimate is the fraction of AOD 

represented by absorbing aerosols. Due to swelling of non-absorbing water soluble aerosols, this fraction is also impacted by 30 

the relative humidity at which AOD is measured. The interaction of the aerosols with the fog (e.g. immersion, wet 

deposition) can also modify their optical properties (Chýlek et al., 1996). 

CLW has uncertainty related to the temperature and humidity profiles. As the screen temperature is known, fog 

temperature is more uncertain in opaque fogs than in thin fogs through the temperature difference between screen level and 
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fog top. Since there is observational evidence that fog temperature profile is near adiabatic (Sect. 3.3), we assume that the 

uncertainty of the fog top is less than 1 ˚C even for very thick fogs, which should impact CLW less than 10 % (Fig. 9a). The 

MWR temperature profile has an uncertainty of less than 1 ˚C in the lower atmosphere (Löhnert and Maier, 2012), and even 

with significant uncertainty in the shape of the temperature inversion above the fog, the sensitivity studies indicate that the 

impact on CLW is well below 10 % (Fig. 9b–c). The IWV of the MWR has an uncertainty of 0.2 kg m-2 (Sect. 2.2), which 5 

corresponds to a very small uncertainty in CLW (Fig. 9d). However, as the vertical distribution of humidity is roughly 

estimated with only two degrees of freedom (Löhnert et al., 2009), sharp decreases in humidity, e.g. at the top of the 

boundary layer, will not be correctly represented. By analysing a case study where the humidity profiles from the radiosonde 

and the MWR disagree strongly due to such a sharp decrease, we find an induced bias in CLW of less than 10 % (≈4 g m-2 h-

1). 10 

We finally turn to the uncertainties related to the properties of the higher clouds. Firstly, as shown in Sect. 4.3, 

higher clouds may be undetected by the radar due to their low reflectivity. This is confirmed from non-fog situations, when 

the ceilometer often detects low stratiform clouds which affect significantly the downwelling LW at 10 m but that are 

invisible to the radar (not shown). For the method of this paper to be reliable in cases where such thin clouds may occur, a 

more sensitive radar is required. According to Stephens et al. (2002), low level liquid clouds frequently have reflectivity 15 

down to -40 dBZ. The radar should therefore preferably have a sensitivity of -40 dBZ for all altitudes where liquid clouds 

occur (≈1–6 km), even though it is probably less critical for mid-level clouds, which often contain some ice, which enhances 

their reflectivity. At high altitudes, thin cirrus clouds may also have reflectivity down to -40 dBZ, but those with reflectivity 

below -25 dBZ rarely has OD > 1 (Stephens et al., 2002). Since high-level clouds with OD < 1 do not impact our results 

dramatically (Fig. 10), a sensitivity of -25 dBZ at high altitudes is acceptable. 20 

Given that the higher cloud is detected, its altitude and thus temperature is readily estimated, so the uncertainty in 

its radiative impact is mainly related to its emissivity, which based solely on radar observations probably cannot be less 

uncertain than a factor of 2. If we are confident that the cloud is opaque (OD >≈ 5), the uncertainty in its impact on CLW is 

only a few g m-2 h-1, while a less opaque cloud will cause uncertainty of several tens of g m-2 h-1 (Fig. 10a). The relative 

uncertainty in ESW and Rnet,s caused by higher clouds are smaller than for CLW when the cloud is semi-transparent, but on the 25 

other hand it is also important for thick clouds (Fig. 10b–c). Finally, it should be noted that cases of fractional cloud cover 

also will cause uncertainty, since the radar only sees what appears directly above, while clouds covering only parts of the sky 

also affect the radiation, in particular if they block the direct sunlight. 

To conclude, the uncertainty in CLW is small (≈10 %) when the fog is opaque (LWP >≈ 30 g m-2) and there either is 

no higher cloud or the higher cloud is opaque and covers all the sky, while a non-opaque fog and/or higher cloud will 30 

introduce higher uncertainty. A similar conclusion can be drawn for ESW, although the uncertainty in the case of opaque 

fog/cloud remains higher than for CLW, since the SW radiation penetrates deeper into the clouds than the LW cooling. 
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6 Conclusions 

In this study, the magnitude and variability of the radiation-driven condensation and evaporation rates in continental fogs 

during mid-latitude winter have been quantified from observations of the atmospheric profile. We used a radiative transfer 

code to quantify the immediate tendencies in fog liquid water due to radiative cooling and heating, before they are modified 

by turbulent motions. Based on the results of this study, Table 5 summarizes how different atmospheric conditions will 5 

impact the susceptibility of a fog to dissipation by affecting the radiative processes. 

 Firstly, the cooling of the fog by emission of LW radiation provides an important source of liquid water. In opaque 

fogs (LWP >≈ 30 g m-2) without an overlying cloud layer, this cooling seen in isolation will cause 40–70 g m-2 h-1 of 

condensation, which means that the fog typically can renew its liquid water in 10.5–2 hours through this process. Its 

variability can mainly be explained by fog top temperature and the humidity above the fog, with warmer fogs below a drier 10 

atmospheres producing more liquid water. In thin fogs, the condensation is weaker, and the estimate is more uncertain due to 

the uncertainty in LWP of the fog. 

The solar radiation absorbed by fog droplets causes a radiative heating of the fog layer during daytime. This heating 

decreases with solar zenith angle and increases with droplet effective radius and fog LWP. At (winter) midday, the 

evaporation rate from this heating can reach 15 g m-2 h-1 in thick fogs, while it is weaker for thin fogs (0–5 g m-2 h-1), based 15 

on absorption by pure liquid droplets only. The role of absorbing aerosols in fog is not extensively studied in this paper, but 

our results indicate that it increases the absorption of solar radiation by 10–30 % in a typical airmass at SIRTA. This aerosol 

absorption effect can be worth investigating in more detail using observations of aerosol chemical composition, as it could 

be stronger during pollution events. The important parameter is the optical depth of the absorbing aerosols, which might be 

only a small fraction of the total aerosol optical depth. 20 

The radiative heating of the surface in daytime is more important forin thin fogs than thick fogs, and it is found to 

vary from 40 to 140 W m-2 at a solar zenith angle of 70˚ from the thickest to the thinnest fog studied here. In situ 

observations indicate that at least on average 20–40 % of this energy is transferred to the fog as sensible heat. Since 1 W m-2 

heating of the fog corresponds to an evaporation rate of ≈0.7 g m-2 h-1, this process can cause an evaporation rate of up to 30 

g m-2 h-1 when the sun is high and thus likely be very important for reducing the LWP of the fog. A more detailed 25 

investigation of the surface energy budget during fog could lead to a more precise quantification the evaporation of fog by 

sensible heat. 

The appearance of a second cloud layer above the fog strongly reduces the LW cooling of the fog, especially a low 

cloud. The LW-induced condensation rate can be reduced by 100 % if the low cloud is optically thick, and even by more 

than 50 % for a semi-transparent cloud of optical depth 1. The presence of an overlying cloud can therefore be a determining 30 

factor for fog dissipation as the fog will then have much of its production of liquid water cut off. In cases where no cloud 

appears above the fog it is unlikely that the LW cooling can change fast enough for it to be a determining factor for the 

dissipation. The detection of clouds above the fog with the cloud radar is therefore crucial for analysing the impact of 
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radiative processes on fog dissipation. To detect all important clouds above the fog, the radar sensitivity must be sufficient to 

capture thin water clouds, requiring a sensitivity of -40 dBZ in the lower troposphere, and optically important high clouds, 

requiring a sensitivity of -25 dBZ in the upper troposphere. Current generation BASTA radars, which have a sensitivity of -

40 dBZ up to 4 km and -30 dBZ at 10 km, should be able to detect most of the important clouds. 

The results were obtained from seven observed fog events at the SIRTA observatory (Table 2) as well as sensitivity 5 

studies. Since our methodology treats radiative processes isolated from dynamical processes, these results should be 

applicable to all fog occurring in the range of temperature and integrated water vapour (IWV) of the events in this study, 

which covers the range (-1)–14 ˚C and 6–28 kg m-2, thus an important portion of mid-latitude winter conditions. The same 

methodology should in principle be applicable to other climate zones as well, although ice crystals in fog occurring in very 

cold conditions would require a different retrieval method for fog optical properties due to the larger particle sizes (Gultepe 10 

et al., 2015). For pure liquid fog, the methodology should be generalizable to all fog types, as the radiative processes are not 

directly dependent on the fog formation mechanism. 

The results of this paper have been obtained from the use of multiple instruments, in particular cloud radar, 

ceilometer and microwave radiometer. If these measurements can be rapidly transferred and processed, the methodology of 

this paper could be applied to quantify the radiation-driven condensation and evaporation rates in the fog in real -time, to be 15 

used to support short-term fog forecast. In order to be less instrumentally demanding and thus more applicable to other sites, 

a simplified method using only the cloud radar and ceilometer could be envisaged, supplemented by screen temperature and 

visibility measurements and IWV integrated water vapour from a GPS. Even though LWP will be less accurately estimated 

without the microwave radiometer, this method would still be able to capture the most important factors: higher cloud 

presence, fog vertical extent, fog temperature and  integrated water vapourIWV. For the efficient application of this 20 

methodology, a generalised retrieval algorithm of the (approximate) SW and LW emissivity of all clouds above the fog using 

cloud radar only would be very useful. Such a retrieval could be developed by relating cloud altitude, thickness and 

reflectivity to satellite products of cloud optical depth. 

The methodology of this paper could also be used to verify radiation schemes in numerical weather prediction 

models during fog, and as a reference when studying how the presence of multilayer clouds affects the prediction of fog life 25 

cycle by these models. 

Data availability 

Radar, ceilometer and radiosonde data as well as the measurements of radiative fluxes at 10 m, surface meteorological 

parameters and visibility are available from the SIRTA public data repository, which is accessible online 

at http://www.sirta.fr. The data policy and a data download are available from the website. The data from the MWR and the 30 

data used for calculating the sensible heat fluxes are available on request on the SIRTA web site: 
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http://sirta.ipsl.fr/data_form.html. The data and code of ARTDECO are available on the AERIS/ICARE Data and Services 

Center website: http://www.icare.univ-lille1.fr/projects/artdeco. 

Appendix A: Validation of surface radiative fluxes and LWP using radiation measurements at 10 m 

Figure A1a evaluates the accuracy of the modelled downwelling SW fluxes at 10 m with the observed fluxes during the six 

fog events without higher cloud (Table 2). To eliminate the dependency on solar zenith angle, the fluxes are normalized with 5 

the incoming flux at the top of the atmosphere; we thus validate the atmospheric SW transmissivity. The disagreements 

between the observed and modelled transmissivity is mainly caused by uncertainty in the fog opacity. The RMS error was 

found to be 0.046, and the spread is similar for different values of transmissivity (Fig. A1a). This corresponds to an 

uncertainty in the downwelling SW at the surface of about 20 W m-2 when the solar zenith angle is 70˚. 

We validate the downwelling LW flux at the surface when modelled fog LWP < 20 g m-2 and when it is 20–40 g m-10 
2, respectively (Fig. A1b). In this LWP range, the fog is not yet completely opaque to LW radiation, so that the downwelling 

LW at the surface increases with fog LWP, typically by several tens of W m-2 in the range 0–40 g m-2 in absence of higher 

clouds (Fig. 8d). Because the disagreement between modelled and observed surface clear-sky downwelling LW at the 

surface is typically no more than 5–15 W m-2 (based on two days of clear sky, not shown), the disagreement between 

modelled and observed downwelling LW flux below a non-opaque fog with no higher clouds will mainly be due to the error 15 

in fog LWP. Thus, the validation of the surface downwelling LW flux can be used to estimate the uncertainty in LWP. Since 

the LWP dependency of the downwelling LW flux at the surface is very similar to the LWP dependency of CLW (Fig. 8ad), 

we are also able to estimate the uncertainty in CLW related to fog LWP. Based on the six fog events without higher clouds 

(Table 2), we find an RMS of the difference between observed and modelled downwelling LW flux at the surface of 13.8 W 

m-2 when the (estimated) LWP < 20 g m-2 and 4.8 W m-2 when LWP is 20–40 g m-2. This corresponds to about 5–10 g m-2 of 20 

uncertainty in LWP in both cases, considering Fig. 8d, which would cause roughly 10–15 g m-2 h-1 uncertainty in CLW for 

LWP < 20 g m-2 and 3–5 g m-2 h-1 for LWP 20–40 g m-2 (Fig. 8a), which is a relative uncertainty of 50 % and 10 %, 

respectively. 

Appendix B: Estimation of vertical profiles of microphysical and radiative properties in fog 

The method used in this study for relating the radar reflectivity Z to microphysical properties (Sect. 3.2) is only one of many 25 

possible approaches. The relationships can be derived by assuming a theoretical shape of the DSD (e.g. Maier et al., 2012), 

from a purely empirical fit to measurements from field campaigns (Fox and Illingworth, 1997; Sauvageot and Omar, 1987) 

and by modelling of microphysical processes (Khain et al., 2008). However, accurate and general relationships cannot be 

found from Z alone, since Z is most sensitive to the largest droplets, which may only weakly impact LWC and reff. As the 

shape of the DSD varies significantly during and between fog events (Boers et al., 2012; Gultepe et al., 2007; Price, 2011), 30 
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retrievals of LWC and reff using Z alone will only be rough estimates, even in the absence of drizzle. A synergy with the 

more reliable LWP from MWR is therefore used in several methods in the literature, with varying approaches for vertically 

distributing this liquid water inside the cloud. For example, the LWC can be assumed to increase linearly with height due to 

sub-adiabatic up- and downdrafts (e.g. Boers et al., 2000). More complex algorithms to retrieve LWC and reff which also 

utilize the ceilometer extinction (e.g. Martucci and O’Dowd, 2011) or the radar Doppler velocity (e.g. Kato et al., 2001) have 5 

also been developed. 

Comparisons during 25 fog events observed at SIRTA reveal that the LWP estimated from Eq. (8) is often a factor 

2–3 smaller than the MWR LWP (not shown). However, since we normalise the LWC with the MWR LWP, only the 

vertical distribution of LWC is impacted by the Z–LWC relationship, except when LWP < 10 g m-2. This vertical 

distribution will not strongly impact our main results, since they are based on vertically integrating throughout the fog. On 10 

the other hand, the uncertainty in reff remains and will impact the calculated optical properties of the fog. The results of Fox 

and Illingworth (1997) indicate that the estimate of reff from Z comes with an RMS error of about 20 %. Using the optical 

particle counter LOAC (Renard et al., 2016) lifted by a tether balloon during a few hours of a fog event at SIRTA when Z 

varied from -40 to -20 dBZ, we found a Z–reff relationship similar to Eq. (9), even though reff was ≈25 % smaller (not 

shown). Although only based on one case, this still indicates that Eq. (9) is an acceptable estimate for reff in fog, and that the 15 

uncertainty in reff is roughly in the order of 30 %. Finally, a calibration uncertainty of the radar of 1–2 dBZ also impacts the 

retrieval of LWC and reff, but it is apparent from Fig. 2 that the impact of this uncertainty is less important than the 

uncertainties in relating Z to LWC and reff. 

Figure B1a–d shows some examples of the vertical profiles of microphysical properties in the fog calculated using 

the method of our study, for one thin and two thick fog situations. The observed profile of Z typically has a maximum 20 

somewhere in the middle of the fog and decreases towards the bottom and top, as seen in Fig. B1a. This therefore translates 

into profiles of LWC, reff and visible extinction with a similar shape (Fig. B1b–d). The visibility meters indicate that the 

extinction decreases strongly on approaching the surface (Fig. B1d). This vertical gradient in extinction is probably related to 

evaporation and deposition of fog droplets near the surface, which means that the LWC is probably in reality also decreasing 

strongly on approaching the surface, in continuation of the decrease observed above the radar blind-zone in the thick fog 25 

situations (Fig. B1b). Compared to methods assuming a linear increase of LWC with height, our method usually produces a 

stronger vertical gradient in LWC in the lower fog and a lower LWC near the fog top, with the level of maximum LWC 

often significantly below the fog top.  

The LW radiative cooling occurs predominantly in the first 50 m below fog top (Fig. B1e), as also found in 

modelling studies of fog (Nakanishi, 2000). The peak cooling rate is stronger and more vertically restricted in the thick fogs 30 

situations than in the thin fog situataion, due to the extinction coefficient near the fog top being higher (Fig.  B1d). The 

extinction coefficient in the thin fog may be underestimated, though, since the MWR LWP is not used to scale the fog LWP 

in this case (as MWR LWP < 10 g m-2). Near the surface, there is radiative heating when the surface is warmer than the fog. 

This occurs in all the shown cases. In absence of solar radiation on 28 Oct 2014 at 04:30 UTC, this warmer surface can be 
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explained by the fog being cooled from above while the ground is sheltered by the fog. The SW heating rate (Fig. B1f) is 

also strongest near the fog top, but it penetrates further down into the fog than the LW cooling, which can be explained by 

the strong forward scattering by droplets and also agrees with the results of Nakanishi (2000). The SW heating rate is also 

significant above the fog, due to molecular absorption (dominantly by water vapour), which indicates that water vapour 

absorption inside the fog can also be important for heating the fog, as discussed by e.g. Davies et al. (1984). Finally, the 5 

calculated condensation rates (Fig. B1g–h) show the same patterns as the radiative heating rates with opposite sign, as 

expected. Condensation is occursring mainly near the fog top due to LW cooling, while a weaker evaporation is induced in 

the lower parts of the fog from SW and LW heating. 
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Table 1: Vertical and temporal resolution of the observations used in this study. All instruments are located at the SIRTA 
observatory main facility, apart from the radiosondes which are launched at Trappes (15 km west of the site) at approximately 
11:15 and 23:15 UTC. The measurements by the cloud radar, ceilometer and microwave radiometer are obtained from remote 
sensing, while the other instruments measure in situ. 

Instrument Measured quantity Vertical range and resolution Temporal resolution 

Cloud radar BASTA reflectivity (dBZ)  RA 0–6 km, RE 12.5 m 12 s 

RA 0–12 km, RE 25 m 

RA 0–12 km, RE 100 m 

RA 0–12 km, RE 200 m 

Microwave radiometer Liquid water path (g m-2) Integrated 60 s 

Temperature profiles (K) RA 0–10 km, 4–5 degrees of 

freedom 

≈5 min 

Humidity profile (g m-3) RA 0–10 km, 2 deg. of fr. ≈5 min 

Ceilometer CL31 Attenuated backscatter RA 0–7.6 km, RE 15 m 30 s 

Visibility meters Horizontal vVisibility (m) At 4 m, 20 m 60 s 

Thermometers on 30m mast Air temperature (K) At 1, 2, 5, 10, 20, 30 m 60 s 

Thermometer (unsheltered) Surface skin temperature (K) At ground level 60 s 

Cup anemometer Wind speed (m s-1) At 10 m 60 s 

CSAT-3 sonic anemometer and 

LI-7500 infrared gas analyser 

Sensible heat flux and latent heat 

flux (W m-2) 

At 2 m 10 min 

Radiosondes Temperature (K) and humidity (g 

m-3) profiles 

RA 0–30 km, RE ≈ 5 m 12 h 

Pyranometers Down- & upwelling irradiance in 

the solar spectrum (W m-2) 

At 10 m 60 s 

Pyrgeometers Down- & upwelling irradiance in 

the terrestrial spectrum (W m-2) 

At 10 m 60 s 

 5 
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Table 2: Main characteristics of each fog event studied in this paper. Dissipation time is relative to sunrise (–: before, +: after). The 
fog events are classified as radiation fog (RAD) or stratus-lowering fog (STL), as defined by Tardif and Rasmussen (2007). 
Pressure is measured at 2 m and is indicated for the time of formation, while the bracketed value indicates how much higher (+) or 
lower (-) the pressure is 24 h later. 

No Time of formation 

(UTC) 

Duration 

(hh:mm) 

Diss. time 

rel. to 

sunrise (h) 

Fog 

type 

Pressure 

(hPa) 

Higher 

clouds 

(y/n) 

Min. visi 

(m) at 4 

m 

Median 

(Max) LWP 

(g m-2) 

Max 

thickn

ess (m) 

2m temp. 

range (˚C) 

IWV range 

(kg m-2) 

1 27 Oct 2014 04:30 4:20 +2.3 RAD 1006(-5) n 135 6 (22) 110 7.2–9.4 ≈9–13 

2 28 Oct 2014 00:50 8:20 +2.5 RAD 1001(-3) n 145 130 (209) 450 7.0–9.8 ≈7–9.5 

3 14 Dec 2014 06:00 17:10* –8.6 RAD 999(+0) n 103 18 (56) 210 (-1.1)–2.5 ≈6–9 

4 2 Nov 2015 05:00 9:20 +7.6 RAD 1007(-8) n 74 62 (105) 275 5.1–8.5 ≈9–11 

5 8 Nov 2015 05:50 4:00 +2.9 RAD 1009(-1) n 128 40 (61) 210 13.7–14.4 ≈22–28 

6 13 Dec 2015 06:20 29:20* +3.9 STL 1003(-3) n 72 69 (135) 360 2.8–5.7 ≈10–14 

7 1 Jan 2016 07:00 5:20 +4.5 RAD 1006(-17) y 125 67 (154) 410 4.6–5.9 ≈12–15 

*the cloud base lifted to a few tens of meter on 14 Dec 2014 during 13:40–15:10, and on 13 Dec 2015 during 12:20–15:00. 5 

 

Table 3: Rough estimates of the relative uncertainty (in % of the estimated value) of each radiation parameter (defined in Sect. 
2.12.1), due to various sources of uncertainty, for thin (LWP <≈ 30 g m-2) and thick (LWP > 30 g m-2) fog situations. The (second-
)last row is relevant when an opaque (semi-transparent) cloud overlies the fog. See text for details. 

Uncertainty source CLW ESW Rnet,s (day) 

 Thin Thick Thin Thick Thin Thick 

Fog LWP 10–50* <10 20–40* 10 10 10 

Droplet effective radius <5 <5 20 20 20 30 

Neglecting absorbing aerosols – – 10–30p 10–30p <5 <5 

Temperature profile 5 5–10 – – – – 

Humidity profile 5–10 5–10 – – – – 

OD of semi-transparent cloud above 20–80** 20–80** 50–80 50–80 30 20 

OD of opaque cloud above <10 <10 50 50 30 20 
p Uncertainty towards higher values only 10 
*Uncertainty is highest for the thinnest fogs. 

**Uncertainty is bigger for low clouds than high clouds. 
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Table 4: Effect on ESW (defined in Sect. 2.1) by adding aerosols to the fog layer on 13 Dec 2015 at 12 UTC. Urban and continental 
average aerosols are defined as in Hess et al. (1998). The aerosol optical depth (AOD) is spread evenly across the 275m thick fog 
layer. 

Type of aerosol Aerosol single scattering albedo at 550 
nm, at 80 % relative humidity 

AOD at 550 nm, at 80 % 
relative humidity 

ESW (g m-2 h-1) 

No aerosols – 0 7.9 
Urban 0.817 0.05 11.0 
  0.15 16.5 

Continental average 0.925 0.05 8.8 
  0.15 11.5 
 

 5 

Table 5: Summary of how the susceptibility of fog to dissipation is affected by variability in atmospheric conditions through 
radiative processes. ”Positive” (“negative”) means that the fog is more (less) likely to dissipate due to lower (higher) net production 
of liquid water by the indicated radiative process (defined in section 2.1) due to the indicated atmospheric property. See text for 
details. 

Atmospheric property Less LW-driven 

condensation (CLW) 

More SW-driven 

evaporation (ESW) 

More surface heating 

(Rnet,s) 

Clouds above fog strongly positive negative negative 

Low fog LWP (< 30 g m-2) strongly positive negative positive 

Absorbing aerosols in fog – positive – 

Higher fog temperature negative weakly positive weakly positive 

More humidity in atmosphere above fog positive – – 

Stronger temperature inversion above fog weakly positive – – 
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Figure 1: Schematic overview of the methodology. 

 

 

 5 

Figure 2: Empirical relationships between radar reflectivity (Z) and LWC and effective radius used in this study, modified from 
Fox and Illingworth (1997). 
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Figure 3: The fog event on 27 Oct 2014. (a–d) Time series of observed variables: (a) LWP from MWR (g m-2) and visibility (m) at 4 
m and 20 m; (b) profile of radar reflectivity (dBZ), and estimated cloud-base height (CBH) and cloud-top height (CTH); (c) 
temperature (˚C) at 2 m, 10 m and 20 m, and wind speed (m s-1) at 10 m; (d) net downwelling SW and LW radiative flux (W m-2) at 5 
10 m. (e–h) Time series of calculated variables: (e) fog optical depth at 550 nm; (f) downwelling SW flux (W m-2) at 10 m, 
comparing model runs including the fog, model runs not including the fog (clear sky) and the measurement; (g) as f, but for the 
downwelling LW flux; (h) the vertically integrated condensation rates (g m-2 h-1) due to LW and SW radiation (CLW and ESW, 
defined in Sect. 2.1). 
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Figure 4: Same as Fig. 3, but for the fog event on 13 Dec 2015. 
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Figure 5: CLW (a), ESW (b) and Rnet,s (c) (defined in Sect. 2.1), calculated every 15 minute from formation time to dissipation time 
for the six fog events without clouds above in Table 2. (d) Measured 10min average sensible heat flux at 2 m vs. measured 10min 
average Rnet,s (at 10 m) during the daytime fog hours of all fog events in Table 2, excluding 28 Oct 2014 because the measurements 5 
are biased. 

 

 

Figure 6: Comparison of three fog events at 07:30 UTC: (a) CLW (defined in Sect. 2.1); (b) LW fluxes at fog top (cross is 
downwelling, circle is upwelling, thus length of vertical line indicates the (negative) LW budget at fog top); (c) Temperature 10 
profile; and (d) humidity profiles estimated with the method described in Sect. 3.3. The fog top is located at the sharp drop in 
humidity.  
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Figure 7: Case study of the fog event on 1 Jan 2016, when clouds appeared above the fog. Panels are the same as in Fig. 3, with a 
few additions: In (b), there are two panels, the upper one showing the reflectivity from the 200m mode of the radar and the lower 
one that of the 12.5m mode. In (e), the optical depths of the cloud layers above the fog are also indicated, and in (f–h) the results 5 
obtained when including only the fog (and not the higher clouds) have been added. 
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Figure 8: Dependency of CLW (a), ESW (b), Rnet,s (c) (defined in Sect. 2.1), and the downwelling LW flux at the surface (d), on the 
fog LWP and effective radius. All other input data are fixed to the values of 27 Oct 2014 at 08:30 UTC: the fog is 100 m thick with 
no above clouds and a solar zenith angle of 73.9˚. 5 

 

 

 

Figure 9: Sensitivity of CLW (defined in Sect. 2.1) to changing the fog-top temperature (a), the temperature in the first 100 m above 
the fog (b), the temperature in the first 3 km above the fog (c) and the humidity above the fog (d). All other input data are kept 10 
constant at the values for 13 Dec 2015 at 10 UTC: the fog is 290 m thick with no clouds above and a visible optical depth of 16.4. 
To the right of each result is a plot showing how the profile of temperature or humidity is modified from the original profile (thick 
line). 
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Figure 10: Sensitivity of CLW (a), ESW (b) and Rnet,s (c) (defined in Sect. 2.1) to the altitude, type and visible optical depth of a cloud 
appearing above the fog. The tests are performed for the same situation as in Fig. 9. Solar zenith angle is 75.7˚. 

 

 5 

 

 

 

Figure A1: Comparison of modelled and measured SW and LW downwelling radiative flux at 10 m during the six fog cases 
without a higher cloud (Table 2): (a) Atmospheric SW transmission (fraction of downwelling SW at 10 m and at the top of the 10 
atmosphere), including only times when observed flux exceeds 10 W m-2; (b) downwelling LW flux at 10 m, in cases where fog 
LWP is estimated to less than 20 g m-2 and between 20 and 40 g m-2, respectively. 
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Figure B1: For three different fog situations: Vertical profile of (a) 10min mean radar reflectivity, (b) LWC estimated with Eq. (8) 5 
before and after normalisation with the MWR LWP (normalisation not performed for red line, as LWP < 10 m-2), (c) reff estimated 
from Eq. (9), (d) visible extinction coefficient estimated from Eq. (6) (above 30 m) and from Eq. (10) (below 30 m; circles indicate 
estimates from the visibility meters), (e–f) radiative heating rate calculated from LW and SW radiation, and (g–h) the 
subsequently calculated condensation rates with Eq. (5). The solar zenith angle is similar in the two situations in day. 
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