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We would like to thank referee 1 for her/his review of the manuscript and7

her/his constructive criticism. Comments by the referee are colored in blue, our8

replies are colored in black.9

We have thoroughly considered and discussed your input and after careful10

analysis of each review point concur with you that we have indeed not11

sufficiently ’articulate[d] what the new thing is that [we] bring to the table’,12

as you state as your ’overarching concern’. The work in this manuscript has a13

history of several years, over which we have discussed ideas and results with14

peers and internally many times, so that in writing the manuscript we may15

have taken several points for granted that are in fact new to a reader confronted16

with the study for the first time. In this spirit, we have now attempted, guided17

by your suggestions, to more carefully explain the whats, hows and whys of our18

research, as well as what is new, and what is not.19

20

I appreciate that the authors have attempted to diversify the ACI investi-21

gation field with the use of neural networks. It is often difficult with studies22

such as this that attempt a new analysis method to create a coherent message.23

However, I do not think this paper can be published in its current form. My24

overarching concern in this paper is that the authors do not articulate what25

the new thing is that they bring to the table besides the black box of a neural26

network.27

General response: See above. Figure 1 included in this document is intended to28

illustrate the concept of our study schematically: Frequently, aerosol-cloud in-29

teractions are studied in a rather isolated manner (in red). At the same time, it30

is commonly acknowledged that the influence of aerosols is modulated by many31

environmental factors. With this study, we aim at analyzing the aerosol-cloud-32

climate system in its entirety. This includes all variations in the environmental33
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conditions, including the seasonal cycle (and its variability) of clouds and me-34

teorology. Our first aim therefore is to find a way to statistically capture this35

system as completely as possible, including seasonality. Then, in a second step,36

we focus on and try to separate the effects of aerosols on cloud occurrence and37

properties from everything else. Our work is not intended to refute previous38

work done in this field. On the contrary: We would argue that most of the39

results presented within the study confirm many known aspects of the aerosol-40

cloud-climate system. But the fact that we were able to find these relationships41

in a statistical approach considering much more than only aerosol and cloud42

properties adds an additional line of independent evidence that strengthens the43

confidence in the existing system understanding. However, this is achieved with-44

out isolating specific processes of interest but rather by viewing the system in45

its entirety. Accordingly, these are the main new things we ’bring to the table’:46

Confidence that the observation data sets considered in a multivariate statisti-47

cal approach capture the natural variability, and that aerosol effects similar to48

those found in other studies can be identified in this system. No more, no less.49

Figure 1: A schematic illustration of the concept of this study (ACS: aerosol-
cloud sensitivity).
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I have grouped my concerns about this paper into the following categories:50

Statistical evaluation51

1) It is unclear to me why doing multiple neural networks on sub regions on52

monthly data tells us anything useful about what is going on. I need some sort53

of confidence that a high R2 model cannot be created by a large neural network54

using a collection of meteorological predictors picked at random. Monthly data55

has the issue of being driven by the seasonal cycle, which will drive almost56

everything else, and making it regional will mean that the neural network57

doesn’t need to tell us anything particularly meaningful about how the clouds58

are driven by their environment. The authors should consider using anomalies59

relative to the seasonal mean, or simply using annual means. Either of these60

options would be better than the approach taken in this paper. Admittedly the61

authors talk about this on page 2 line 25, but they don’t provide any convincing62

proof that they haven’t just created a regional seasonal cycle simulator.63

This is related to what we argue above: We intend to model liquid-water64

clouds including their seasonal cycle by using information on aerosol loading65

and a set of meteorological drivers that were identified as main drivers of66

liquid-water clouds after careful study of current literature. One could probably67

create a relatively high R2 model with a very large array of randomly selected68

predictors due to spurious covariation of seasonal cycles between predictors69

and predictands. However, in this study, we avoid this by capturing the70

aerosol-cloud-climate system with a small number of the known main drivers71

of cloud occurrence and properties. Within this modeled system we then try to72

understand the effects of each driver and its regional patterns. We argue that73

regionally specific neural networks are needed to capture the regional variability74

of liquid-water clouds. Regional patterns exist due to regional differences in75
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cloud type, aerosol composition, meteorology and the respective seasonal cycles.76

77

2) On page 4/line 10 the authors note that they throw out models that have a78

low R2. I’m not sure why this is ok to do.79

We have identified R2 and the root mean square error relative to the mean as80

good indicators for model skill. We are interested in understanding predictor-81

predictand relationships by analyzing their respective sensitivities, however, we82

choose to trust only models that can adequately represent the observed cloud83

patterns. We prefer to err on the side of caution to avoid reaching conclusions84

based on inadequate statistical relationships; thus we exclude models that in85

our opinion are not capable of representing the system well enough. We are86

open to other ideas regarding alternative ways to ensure adequate model skill.87

88

3) On page 6 I find this something of a straw man. A better test would be to89

compare multiple linear regression of all the predictors to the ANN, as opposed90

to a regression on AOD alone. Or to compare the ANN trained using only AOD.91

I think that the paper would actually be vastly improved by just repeating the92

analysis with a multiple linear regression to demonstrate to skeptical readers93

why their paper brings anything new to the table as compared to the numerous94

previous papers that have looked at ACI and low cloud variability in the past.95

We probably did not communicate the intention of this figure with sufficient96

clarity: This figure is intended to show how well a combination of aerosol and97

meteorological conditions can explain the variance of cloud properties (multi-98

variate statistics) as opposed to a simple bivariate approach. We have added99

results of a multiple linear regression using all the ANN predictors to the figure100

(2). The comparison of the results of the multiple linear regression and the ANN101
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Figure 2: Predictand correlation with ANN (multivariate) test output, multiple
linear regression (multivariate) and log(AI) (bivariate). The median is repre-
sented by the black horizontal line, framed by the interquartile range (boxes),
whiskers expand the boxes by 1.5 interquartile ranges.

suggest that the ANN is an appropriate method to be used in this context.102

Neural networks were our statistical method of choice, as they have the103

advantage of not being reliant on statistical assumptions on predictor and pre-104

dictand distributions and they are capable of modeling nonlinear relationships.105

That being said, we agree that other multivariate methods (e.g. multiple linear106

regression) could also have been used.107

108

4) Figure 5- If the error bars give the range in sensitivity does that mean that109

nothing except LTS and AOD have a robust relationship with cloud properties110

that holds outside of a few regions? Didn’t we already know this very well from111
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simple regression models that were easy to interpret (Klein & Hartmann, 1993;112

Nakajima, Higurashi, Kawamoto, & Penner, 2001)?113

We agree with the referee that many of the results of this study confirm what114

previous studies have already shown. Since we have reached these conclusions115

using a different methodology, we add another line of evidence. The lack of116

other relevant relationships would not have been obvious without such an117

analysis. In our opinion the value of our study is that the results were produced118

by looking at the entire system at once rather than at isolated relationships.119

Using this method, we can compare the relevance of each predictor to each120

predictand including spatial patterns.121

122

5) Choice of predictor/predictands: The choice of predictors by the authors is123

not appropriate for a paper in the last decade. Why have the authors chosen124

AOD to be a CCN proxy? AOD is not equivalent to CCN since it has a large125

contribution from larger, non-CCN relevant aerosols. Why don’t the authors126

use AI, which is far more relevant and typical of more recent studies (Patel,127

Quaas, & Kumar, 2017)? The authors acknowledge this, but then shrug this128

off because papers from almost a decade ago do it. In a similar vein, why129

do the authors use effective radius instead of CDNC? Effective radius for a130

fixed CCN increases with increasing LWC, making it sensitive to meteorological131

drivers. The authors do acknowledge this in page 10, section 25 noting that the132

interaction between inversion strength and effective radius is most likely driven133

by variations in LWC. This makes the interpretation of the CDR as a proxy for134

aerosol-cloud effects muddied. Further, the authors use LTS. Why not use EIS,135

which is used by every study investigating low cloud in the last decade (Myers136

& Norris, 2015; Qu, Hall, Klein, & Caldwell, 2014; Seethala, Norris, & Myers,137

2015; Webb, Lambert, & Gregory, 2013)? Finally, I am concerned with the use138

7



of RH. Clouds and RH are a semi-equivalent quantity, which may just mean that139

they are comparing ECMWF-interim’s cloud cover to MODIS, further aliasing140

in the seasonal cycle to their prediction model.141

AOD vs. AI: For this study, we used the newest version of MODIS products142

available, collection 6 (C6). In C6, the MODIS Ångström exponent (needed143

for the computation of the aerosol index as it is the product of AOD and the144

Ångström exponent) has been discontinued in level 3 (L3) data (p. 3018 Levy145

et al., 2013). We believe that for this and for other reasons, other recent studies146

also use the AOD as a proxy for CCN (see: Gryspeerdt and Stier, 2012; Tang147

et al., 2014; Chakraborty et al., 2016; Stathopoulos et al., 2017; Patel et al.,148

2017). We agree with referee 1 though, that the aerosol index is an appropriate149

measure for CCN and have chosen to use it in the ANN. The following figures150

3 and 4 are the new results of the ANN when using AI instead of AOD. The151

spatial patterns in the ANN skill, as well as the mean global sensitivities are152

nearly identical (compare with figures 3 and 5 in the original ACPD manuscript).153

Figure 3: Global patterns of ANN skill as in the manuscript; AI has been used
instead of AOD.

8



Figure 4: Global mean relative sensitivities as in the manuscript; AI has been
used instead of AOD.

Small differences can be observed in the regional patterns of ANN sensi-154

tivities (fig. 5 on the following page). The CLF sensitivity to AI is higher in155

the Southeast Atlantic than its sensitivity to AOD in that specific region. The156

Southeast Atlantic is of course dominated by biomass burning aerosol, which157

are mostly in the fine mode and thus feature a relatively larger AI than AOD.158

The sensitivity of CDR to AI differs from its sensitivity to AOD in regions159

that are dominated by desert dust. Dust is relatively coarse, so that the AI160

would be underproportional to the AOD in these regions which might explain161

the differences between the sensitivities of the two.162

9



180 ◦W 90 ◦W 0 ◦ 90 ◦ E 180 ◦ E
60 ◦ S

30 ◦ S

0 ◦

30 ◦N

60 ◦N

-0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30

CLF sensitivity to AI

180 ◦W 90 ◦W 0 ◦ 90 ◦ E 180 ◦ E
60 ◦ S

30 ◦ S

0 ◦

30 ◦N

60 ◦N

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2

CDR sensitivity to AI

180 ◦W 90 ◦W 0 ◦ 90 ◦ E 180 ◦ E
60 ◦ S

30 ◦ S

0 ◦

30 ◦N

60 ◦N

-3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2

CDR sensitivity to AOD

Figure 5: Difference in sensitivities of CLF and CDR to AI (left-hand column)
vs. AOD (right-hand column).

CDR vs. CDNC: We agree with the referee that CDNC is a better quantity163

for the direct analysis of the first aerosol indirect effect, however, its retrieval164

from satellite is quite problematic, as the retrieval of CDNC requires addi-165

tional assumptions on the cloud water profile. The commonly-applied adiabatic166

assumption might be a good proxy for many regions and cloud types (i.e. stra-167

tocumulus clouds), however, we are investigating all liquid-water clouds on a168

global scale. Bennartz and Rausch (2017) showed that the uncertainties in the169

CDNC retrievals are significantly increased in non-stratocumulus regions. As we170

are investigating global patterns for various liquid-water cloud types, we came171

to the conclusion that the uncertainty related to the CDNC retrievals outweighs172

the theoretical advantages of using CDNC rather than CDR.173

LTS vs. EIS: We do not see a specific advantage of using EIS over LTS, as e.g.174

Lacagnina and Selten (2013) found that for the Californian stratus, LTS is a bet-175

ter predictor than EIS. Some other recent studies that use LTS are e.g. George176

and Wood (2010); Chen et al. (2014); Gryspeerdt et al. (2014, 2016); Painemal177

et al. (2014a,b); Adebiyi et al. (2015); Adebiyi and Zuidema (2016); Coopman178
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et al. (2016); Eastman et al. (2016); Ghan et al. (2016). That being said, we179

would agree that EIS is an appropriate alternative measure for large-scale ther-180

modynamics.181

RH: As pointed out above, our intention is to capture the entire aerosol-cloud-182

climate system and in our opinion, relative humidity has a key role within this183

system. Thus, the inclusion of RH in the model was a necessity.184

185

Writing:186

The writing is rushed and hard to follow. Clearly expressing why the187

methodology is valid is crucial for this study and as such the writing needs188

to be tightened up substantially to clarify their ideas.189

See our comment at the beginning of this letter. We will attempt to describe190

the reason for the methodology, the hypotheses and the relevance of our work191

more clearly in the revised manuscript.192

193

Summary:194

The authors articulate their guiding hypotheses, which I think is a good195

thing to do. I am not sure why (1) is a hypothesis. It seems to be more of a196

statement about neural networks and is worrisome since I am still concerned197

that the neural network is just looking at the seasonal cycle and is guaranteed198

to get a high R2. (2) is odd. Why would we have regional patterns? I could199

see it if this was a regime-dependent analysis (eg stratus vs convection), but200

the use of w and LTS as predictors in the neural network should mean that the201

authors can create a single neural network that effectively does this for them.202

Why is this not the case? What makes a specific lat-lon box a natural choice.203
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(3) seems to imply that meteorology plays a secondary role to aerosols, which204

is not true. We don’t expect aerosol to tell us where convection and stratus205

are, for instance.206

1) Neural networks have not been used in this context before, so their capabili-207

ties in this context were not quite clear. This is also the case for the separation208

of aerosol and meteorological effects.209

2) While this study does not contrast e.g. stratus vs. convection, we analyze210

all liquid-water clouds globally. It is clear that these feature different cloud211

types in different regions and that different processes drive these different212

clouds. This is shown in figure 6. Regional patterns in aerosol-cloud sensitivity213

exist. They have been shown to be dependent on meteorology and aerosol214

species composition (e.g. Andersen et al., 2016). If we created a single neural215

network, all of the regional characteristics and regionally specific sensitivities216

(c.f. figure 6) would be blurred or missed completely.217

3) Our third hypothesis is certainly not intended to imply that meteorology218

plays a secondary role to aerosols. We will change the wording for clarity in219

the revised manuscript.220

221
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We would like to thank referee 2 for her/his review of the manuscript and7

her/his constructive criticism. Comments by the referee are colored in blue, our8

replies are colored in black.9

This paper addresses a topic of significant current research, namely10

quantifying the effect of aerosols on cloud properties. The authors note the11

importance of local meteorology in determining the properties of clouds and12

that as meteorological factors are also correlated to aerosol properties, this can13

obscure the influence of aerosols on cloud properties. To explore the role of14

meteorology and aerosols, they make use of an artificial neural network (ANN)15

to examine the sensitivity of cloud properties to different predictors. Similar to16

previous studies, they show that meteorology is a strong control on the cloud17

properties, such that the cloud properties can be accurately predicted on a18

monthly timescale using reanalysis data and observed aerosol properties.19

I think that this paper is a good addition to the literature on this topic,20

presenting a new way to investigate the drivers of cloud properties. However,21

there are a couple of points, listed below, that I think should be clarified22

before publication. I particular, I think that using monthly data rather than23

daily/instantaneous data must be better justified. It would also make the paper24

stronger if the ANN method was compared to a more comparable statistical25

technique, such as a multiple linear regression across meteorological parameters.26

This might help to highlight the benefits of using an ANN, especially if it27

results in a different sensitivity of cloud properties to aerosol. Following these28

changes, I feel that this article would be suitable for publication in Atmospheric29

Chemistry and Physics.30

We respond to each point individually below.31

32
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Main points33

1) While some previous studies have used monthly data for investigations into34

aerosol-cloud interactions, this disguises a lot of the variability in the cloud35

field and focuses on very large scale changes in cloud properties. The effect36

of seasonal variations can generate non-causal relationships between cloud37

properties and meteorological factors that might be accounted for if the study38

was done on a sub-seasonal scale using higher temporal resolution data. Can39

the authors explain why monthly data is used in this case and why daily data40

is unsuitable?41

With this study, we specifically aim at analyzing the aerosol-cloud-climate42

system at a very large scale (’system scale’). The monthly time scale is used43

here, as a) this enables a focus on the large-scale patterns and relationships44

and b) GCM output is also at a monthly time scale, so that future comparisons45

between our observationally-based results and GCMs can be conducted. We46

acknowledge the ’non-causal relationship’ argument by referee 2 by using only a47

very limited number predictors in ANNs that have previously been shown to be48

the main drivers of liquid-water clouds. The results of the ANNs are physically49

plausible (signs, magnitudes and regional patterns of the sensitivities) and50

give another line of independent evidence that strengthens the confidence in51

our current system understanding. That being said, we cannot exclude the52

possibility that some of the observed relationships might be in part non-causal53

(which is true for other averaging time scales as well).54

55

2) The use of an ANN seems to give a large improvement over just using AOD56

as a predictive variable for cloud properties. However, I am not sure this is a57

suitable comparison, as AOD is rarely assumed to be a good predictive variable58

for cloud properties on its own. As better comparison would be the predictive59
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ability of (log) AOD on its own using a linear regression and from the ANN.60

Alternatively a comparison of a multiple linear regression and an ANN for pre-61

dicting the cloud properties could show the added utility of using an ANN over62

existing methods. This might then highlight further useful properties of the63

ANN - for example, does it show a stronger (or weaker) sensitivity of cloud64

properties to aerosols when compared to current methods?65

We probably did not communicate the intention of this figure with sufficient66

clarity: This figure was simply intended to show how well a combination of67

aerosol and meteorological conditions can explain the variance of cloud prop-68

erties (multi-variate statistics) as opposed to a simple bivariate approach. We69

have added results of a multiple linear regression using all the ANN predictors70

to the figure as suggested to illustrate the skill of the ANN vs. another multi-71

variate method. The comparison of the results of the multiple linear regression72

and the ANN suggests that the ANN is an appropriate method to be used in73

this context. As suggested, we have switched from using the AOD to the AI74

and used log(AI) for this figure.75
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Figure 1: Predictand correlation with ANN (multivariate) test output, multiple
linear regression (multivariate) and log(AI) (bivariate).
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3) How do regional ANNs compare to a single global model? Presumably if76

enough meteorological parameters can be included, a single global model should77

be able to predict cloud properties everywhere. Requiring different models in78

different locations would then indicate that some meteorological parameter is79

missing from the ANN. A global pattern of the accuracy of the ANN might then80

give an indicator as to which parameters should be included. The ANN might81

be expected to differ as a function of cloud type, but perhaps a separate model82

for each cloud type (e.g. Gryspeerdt and Stier, 2012 or Oreopoulos et al., 2016)83

might be useful.84

If one trains a single global model to predict CLF, using the same predictors85

and model setup as for the regional ANNs, it cannot predict CLF as well as86

most regional ANNs (R2 of global model ≈ 0.45; median of regional ANNs87

> 0.60). While adding additional predictors to the global ANN could still88

improve the skill of the model, it is unrealistic to think that a single model89

could represent clouds as well as regional models can (it would also increase the90

probability of non-causal relationships). Regional ANNs are superior, as they91

are able to reproduce the regionally varying predictor-predictand relationships92

(c.f. fig. 6 in the manuscript). These regional differences would be blurred or93

missed completely when using a single global ANN. Regional ANNs also have94

the advantage that knowledge on typical regional characteristics (e.g. aerosol95

species composition) can be included in the interpretation of the results (as in96

Andersen et al., 2016). That being said, cloud type-specific ANNs seem to be97

an interesting idea for future work.98

Minor points99

P2L9: Perhaps only e.g. is necessary100

We agree and have changed the manuscript accordingly.101
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102

P2L24: Why is the 2.1um effective radius used with the 3.7um LWP retrieval?103

We have changed the cloud products used (see our response below).104

105

P2L29: Is the liquid fraction a suitable measure of cloud fraction, as it depends106

on the overlying ice cloud fraction? The authors could consider using cases107

where only liquid cloud exists in a gridbox, as this would remove this source of108

uncertainty.109

After internal and peer discussions, we have decided to run the ANN with110

monthly means of single layer clouds only. While the results are nearly111

identical, the argument is valid, so that we only use single layer cloud products112

the current version of the manuscript.113

114

P3L4: AOD is proportional to CCN (at least at some scales, see Andreae,115

2009), it is just not a direct measurement (the same as with mass, as it also116

depends on aerosol optical properties)117

Yes, we agree. We have corrected this in the revised manuscript.118

119

P3L7: Many recent studies have used aerosol index (AOD times angstrom expo-120

nent) or a reanalysis aerosol parameter (e.g. Lebsock et al., 2008; McCoy et al.,121

2016). As these have been shown to more accurately predict cloud properties,122

they might further improve the skill of the ANN. Although MODIS AI is not123

necessarily accurate over land (Levy et al., 2013), it could be used over ocean124

in this study.125

For this study, we used the newest version of MODIS products available, collec-126

tion 6 (C6). In C6, the MODIS Ångström exponent (needed for the computation127

of the aerosol index as it is the product of AOD and the Ångström exponent) has128
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been discontinued in level 3 (L3) data (p. 3018 Levy et al., 2013). We believe129

that for this and for other reasons, other recent studies also use the AOD as a130

proxy for CCN (e.g. Chakraborty et al., 2016; Stathopoulos et al., 2017; Patel131

et al., 2017). We agree with the referee though that the aerosol index might132

be a more appropriate measure for CCN and have thus chosen to compute the133

Ångström exponent (550 and 867nm) ourselves to use aerosol index instead of134

AOD in the ANN. The following figures 2 and 3 are the new results of the ANN135

when using AI instead of AOD. The spatial patterns in ANN skill, as well as the136

mean global sensitivities are nearly identical (cf. figures 3 and 5 in the original137

ACPD manuscript).138

Figure 2: Global patterns of ANN skill as in the manuscript; AI has been used
instead of AOD.

Small differences can be observed in the regional patterns of ANN sensitivi-139

ties (fig. 4) to AI vs. AOD. The CLF sensitivity to AI is higher in the Southeast140

Atlantic than its sensitivity to AOD in that specific region. The Southeast At-141

lantic is of course dominated by biomass-burning aerosols, which are mostly fine142

mode and thus feature a relatively larger AI than AOD. The sensitivity of CDR143

7



Figure 3: Global mean relative sensitivities as in the manuscript; AI has been
used instead of AOD.

to AI differs from its sensitivity to AOD in regions that are dominated by desert144

dust. Dust is relatively coarse, so that the AI would be disproportionally lower145

than the AOD in these regions, which might explain the differences between the146

sensitivities of the two.147
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Figure 4: Differences in sensitivities of CLF and CDR to AI (left-hand column)
vs. AOD (right-hand column).

P3L13: It is definitely a good idea to investigate variables that have been148

previously used in aerosol-cloud studies. Koren et al., (2010) might also provide149

some useful guidance here. Although it was focussed on looking at convective150

clouds, some of the results (e.g. Figs. 8,9) might help decide which variables151

should be included in the ANN).152

We agree that additional variables (e.g. geopotential height, horizontal winds)153

might improve the ANN performance in some regions. Our goal in predictor154

selection was to minimize the number of predictors to a few key variables, in155

order to prevent covaration between the predictors. Also, additional predictors156

increase the probability of highlighting non-causal relationships.157

158

P4L33: Is there any significance behind using five hidden nodes?159

After thorough testing, five hidden nodes appeared to be a good global number.160

In general, the optimum number of nodes is dependent on the problem at hand.161

The number of nodes needed is connected to the complexity of the relationships,162

the amount of noise in the data and the amount of training data available. Too163
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many nodes can lead to overfitting and poor generalization, whereas the ANN164

may not converge to a global minimum when too few nodes are used (Gardner165

and Dorling, 1998). We found that while regional ANNs may differ, five nodes166

where a reasonable choice, as additional nodes typically only marginally, if at167

all, increased model skill. To illustrate this, figure 5 is an example of the effect168

of the number of hidden nodes on ANN skill in the Southeast Atlantic region.169

This figure is obviously not the basis for our decision to use 5 nodes, but is170

intended to illustrate a typical example for the dependence of a regional ANN171

skill on the number of hidden nodes.172
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Figure 5: Example (Southeast Atlantic) for the effect of the number of hidden
nodes in the ANN.

P5L7: Are the sensitivities calculated using the local variation of meteorological173

values, or the same artificial values globally? If the relationship is non-linear174

and the mean values of the meteorological variables vary across the globe, this175

could strongly affect the calculated sensitivity.176

This sentence was intended to describe how sensitivities can generally be177

computed with an ANN. In the text passage further down (P5L14), we describe178
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how sensitivities are computed in this study. To answer your question: Yes,179

the sensitivities are calculated using the local variation of meteorological values180

(’grid cell specific mean values’). In the revised version of the manuscript, we181

will attempt to describe both text passages more clearly.182

183

P5L14: I am not sure I understand this sentence (which might explain my184

previous query?)185

We compute ANN-predicted outputs for two groups of input data:186

• All grid-cell specific retrievals of a specific predictor smaller than its 25th187

percentile.188

• All grid-cell specific retrievals of a specific predictor greater than its 75th189

percentile.190

In all cases, all other predictors are held constant at their grid-cell specific191

mean values. We then compute the average of both groups of ANN-predicted192

outputs. The difference between the two averages is defined as the sensitivity193

of the predictand to the specific predictor that was varied. We will try to more194

clearly describe this in the revised version of the manuscript.195

196

P5L20: If the other meteorological factors in the ANN are held constant, does197

this produce a different result for the simple sensitivity? (see main point)198

We have tested this for the sensitivity of CLF to AI. As above, we have also199

used data from the the Southeast Atlantic for this example. We found that the200

sensitivity (linear slope of AI-CLF relationship) of CLF to AI is ≈ 40 % lower in201

the ANN than in the observations. This is, of course, because in the sensitivity202

of the ANN, the other predictors are held constant, constraining their effect on203

CLF. This corresponds rather well to Gryspeerdt et al. (2016) who found that204

the sensitivity of CLF to AOD is reduced even further (80 %) when including205
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information on CDNC along the causal pathway of the AOD-CLF relationship.206

207

P6L7: As I understand it previous work focusses on the sensitivity as this is208

related to the strength of the cloud response to aerosol. It is not often assumed209

that aerosols can explain much of the variability in cloud properties which210

might explain the low skill here.211

Yes, we agree. This figure is not intended to illustrate sensitivities, but that we212

are in a space of large uncertainty when we derive sensitivities using bivariate213

methods. Using a multivariate approach (also the case for multiple regression,214

as outlined above) we are capturing more of the aerosol-cloud climate system.215

The derived sensitivities might thus be more reliable.216

217

P7L1: Perhaps another measure of skill might be useful in addition to the R2?218

It could be argued that the skill in the shallow cumulus regions is quite good,219

in that the ANN (presumably) gets the cloud properties roughly right (the rms220

error might be small)?221

Yes, indeed, we also looked at the relative RMSE. Actually, the a combination222

of relative RMSE and R2 thresholds (P7L4) are used to select the regions that223

are used for the computation of sensitivities (marked with a ’+’ in the maps).224

The relative RMSE and R2 are basically invertly related.225

226

P7L4: Does this removal of the poor skill models bias the results, perhaps as227

a function of meteorology (as would appear to be the case from the maps in228

Fig. 3)229

The computed sensitivities are only valid for the regions and are not intended230

to be ”global” in that sense.231

232
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P7L9: How does these sensitivities compare to previous results? Several studies233

have calculated AOD-CF or AOD-droplet number concentration sensitivities234

which could be compared here (e.g. Quaas et al (2008), Grandey et al. (2012),235

Gryspeerdt et al. (2016))236

We compute the sensitivity a slightly different way, so a straight-forward237

comparison is not possible. However, in a similar way that Gryspeerdt et al.238

(2016) constrain the aerosol-CLF relationship with CDNC, the ANN constrains239

the aerosol-cloud relationships by meteorology. In the updated version of the240

manuscript, we will include comparisons to sensitivities found by other recent241

studies.242

243

P12L3: Are the covariations really spurious? The argument here is not that244

the covariations don’t exist, but that they are not representative of the causal245

relationship. I would suggest that if ’direct physical relationship’ was replaced246

with ’causal relationship’, this could instead mention the issue of confounding247

variables, similar to Gryspeerdt et al.,(2016).248

We will restructure this text passage in the updated version of the manuscript.249

250

P12L4: To what extent has using RH in the ANN accounted for this effect?251

As shown in figure 6 within this document, the sensitivity of CLF to AI252

is weakened in the ANN, probably due to the meteorological constrains of253

the model. These are hard to track down to a single predictor, though254

(e.g. RH). It is likely that the main confounding factor for this relationship is255

RH and that most of the change in AI-CLF sensitivity is due to constraining RH.256

257
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We would like to thank referee 3 for her/his review of the manuscript and7

her/his constructive criticism. Comments by the referee are colored in blue, our8

replies are colored in black.9

This paper pursues a promising approach to study the sensitivity of10

marine liquid-water cloud properties on a set of meteorological and aerosol11

predictors, using an artificial neural network approach. It steers clear of12

correlative approaches for studying aerosol-cloud interactions and instead13

considers the meteorological context, segregated by region / meteorological14

regime. In essence, this amounts to a multi-variate analysis based on an15

optimal combination of satellite and re-analysis data. The paper is very well16

written, clearly represents new ideas, and has the potential to lead to major17

improvements in our assessment of ACI, regionally and globally. It is rare18

to see such a high-quality paper. I only have minor comments, which don’t19

necessarily have to be addressed in this manuscript, but could be considered in20

future work. The most important ones are probably #1 regarding scale, and21

regarding the quality (reliability) of the data. Also, follow-up papers might22

consider using the co-sensitivity of some predictors (details below).23

In a separate comment to the editor, I recommended that the paper be24

highlighted because it seems highly innovative in its approach and deviates25

from the traditional correlative aerosol-cloud interaction studies. I believe that26

it has potential to change the direction of this field of research.27

28

Thank you very much for this kind assessment. We respond to each point29

individually below.30

31
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General comments:32

p5,L18: In the spirit of the McComiskey and Feingold ACI papers, it would33

have been interesting to also consider the impact of scale on ACI relationships.34

Here, one specific scale has been used (dictated by the analysis grid) - but it35

may not be straightforward to generalize these relationships.36

This is a good point and we agree that the scale of the data sets used to study37

aerosol-cloud interactions influences the derived sensitivities (McComiskey38

et al., 2009; McComiskey and Feingold, 2012). Here, we use temporally and39

spatially highly aggregated data sets (monthly means in the defined equal-area40

regions), as with this study, we are specifically interested in the very large41

scale mechanisms and patterns of the aerosol-cloud-climate system. This42

is certainly not the scale at which the processes occur, so that our derived43

sensitivities may not match the magnitude of the sensitivities at the process44

scale. An analysis of the impact of the extent of spatial aggregation of the 1◦x1◦45

data on the derived sensitivities would be interesting; however, the spatial46

aggregation we chose was needed for sampling reasons (sufficient number of47

observations for the statistical model). In the revised version of the manuscript,48

we discuss this on P6L1–3. (”As the temporal and spatial scales considered49

in this study are not on the same scale as the actual processes, so that the50

calculated sensitivities may not match the magnitude of the sensitivities at51

the process scale (McComiskey et al., 2009; McComiskey and Feingold, 2012).”)52

53

p6,L4: ”skill of simple correlation between AOD & cloud properties”: It54

is a bit unclear, which ”simple correlations” specifically have been used for55

this study. This statement calls for elaboration. The statement on p6,L6/756

shows the intent - the ”simple correlations” are used as a baseline to show57

the improved predictive skill of ANN. The quantitative results would be more58

3



useful by including more information about that baseline.59

Here, with ”simple correlation” we referred to a ”simple” Pearson correlation60

between AOD and either CLF/CDR/LWP/COT in each equal area region. In61

the revised version of the manuscript, we describe this at P6L8, however, in the62

current version of the manuscript, the results of Pearson correlations between63

log(AI) and the respective cloud properties is illustrated in figure 2.64

65

p6,L11 (fig 4): How/where are the equal-area regions defined? Are those66

just pixel aggregated that meet the selection criteria for the sensitivity analysis?67

This is explained in the manuscript on P4L33-P5L3. The equal-area regions are68

defined by dividing the space between 60◦N and 60◦S (and all longitudes) into69

20x40 equally sized areas. The original 1◦x1◦ data is aggregated in these regions70

at their original spatial resolution. The selection criteria for the sensitivity71

analysis is checked for each equal-area region (but only for the sensitivity72

analysis - in figure 4, all equal-area regions are shown). In the revised version of73

the manuscript, we added some information to the caption of figure 4 for clarity.74

75

p9, Fig 5. How is the CF and LWP sensitivity to AOD compatible? Is it76

a fair statement to say that we get more clouds with lower LWP for higher77

aerosol loading, while COD stays the same (perhaps because the “classical”78

indirect effect kicks in) - or can we not make such a blanket statement?79

The CLF sensitivity to AOD/AI is probably the sensitivity that is the most80

uncertain, due to cloud contamination of the satellite aerosol retrievals and81

the influence of confounding variables on both CLF and the satellite retrieved82

aerosol quantity. While we weaken the influence of confounding variables by83

including them in the ANN, we are not able to reduce effects related to data84

quality (this is discussed on P13L4–6 in the revised version of the manuscript:85
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Figure 1: Global map of LWP sensitivity to AI: The globally averaged sensitiv-
ities are based on the regions marked with a ’+’.

”While the influence of confounding factors is limited by the multivariate86

approach, effects concerning data quality (e.g. cloud contamination) are not87

accounted for and need to be considered when interpreting the CLF sensitivity88

to AI.”). One should also note that the averaged LWP sensitivities rely on very89

few regions (due to the selection criteria) and should thus not be considered90

global. In most regions, the sensitivity of LWP to AI is relatively low.91

While it makes sense to combine the sensitivities as proposed by you, one needs92

to remember that these are derived from separate ANNs. While LWP and93

CLF in the respective ANNs respond to AI/AOD in the way that you point94

out, changes in LWP might also affect CLF and vice versa, which would not95

be accounted for. Therefore, we are somewhat cautious in the interpretation of96

combined sensitivities.97

98

p10, L5: Would it make sense to plot co-sensitivity maps, considering that99

many predictands co-vary with predictors. In the inverse theory equivalent,100

one would consider the off-diagonal elements of the covariance matrices. After101

all, one of the attractive features of this analysis is that it allows multi-variate102

5



analysis of ACI, fully considering the meteorologic conditions - but then the103

plots / analysis do not reap the full benefits of this approach. The authors do104

explain some of the co-variabilities/co-sensitivities, but then again it would be105

even better to have some graphical representation for some of these connections.106

Yes, this is a good idea - and an idea which we discussed internally, as well.107

Ultimately, this level of detail exceeds the scope of this study, as one would108

have to create co-sensitivity plots for each grid-cell-specific ANN individually109

and would thus not be able to produce summarized global co-sensitivities easily.110

This is an idea we are currently pursuing in a more detailed regional study.111

112

p10,L28: Does the CDR - AOD relationship for the SE Atlantic region113

make sense? For the outflow from the Arabian peninsula and the Sahara, it114

does, and the manuscript explains this with dust - but on the West coast of115

Namibia and Angola the dust is confined to the coast. It is possible that the116

identified relationships here points to limitations of the data set(s) that serve117

as the basis. Perhaps dust is overrepresented in the data? Overall, it would be118

good to see a discussion in which regions we would trust the correlations (given119

the uncertainties in the data).120

This is a good question - in a regional study some years ago, we found that in121

certain conditions (stable/humid), AI and CDR are positively related in the122

Southeast Atlantic (Andersen and Cermak, 2015). However, in most cases,123

the AI-CDR relationship was found to be negative as in (e.g. Costantino and124

Bréon, 2013). This specific regional sensitivity may be affected by retrieval or125

sampling issues, as now discussed in the revised version of the manuscript on126

P10L5–8 (”Issues of sampling (few aerosol retrievals in high CLF-regions) or127

scale (highly aggregated data) or their combination might affect the observed128

CDR sensitivity to AI in this region.”).129
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130

p12, L15: So, cloud radiative effect sensitivities are actually not (yet) ad-131

dressed in the manuscript. Instead, cloud properties are analyzed. Earlier in132

the manuscript (p4,L24), it is stated that cloud radiative effects are analyzed.133

This should be fixed (minor comment).134

Yes, you are correct. We have deleted the mentioned text passage in the revised135

manuscript.136
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List of important changes

P2 Wording of hypotheses modified for clarity (Referee 1)

P2–P3 Single-layer cloud products are now used (Referee 2)

P3 Aerosol index is now used instead of aerosol optical depth (Referees 1, 2)

P3 Discussion of the usage of cloud droplet effective radius vs. cloud droplet

number concentration (Referee 1)

P3–P4 Discussion of predictor selection (Referee 2)

P5 Discussion of regional ANNs (Referee 1)

P5 Discussion of quality criteria for sensitivity studies (Referee 1)

P6 Discussion on importance of temporal and spatial scales (Referee 3)

P6–P7 Multiple linear regression now included for comparison (Referees 1, 2)

P11 Discussion of data quality in certain regions (Referee 3)

P13 Comparisons with results of other studies (Referee 2)

P13 Discussion of contributions of this study (Referee 1)

P13 Outlook is expanded (Referee 2)
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Abstract. The role of aerosols, clouds and their interactions with radiation remain among the largest unknowns in the climate

system. Even though the processes involved are complex, aerosol-cloud interactions are often analyzed by means of bivariate

relationships. In this study, 15 years (2001–2015) of monthly satellite-retrieved nearly-global aerosol products are combined

with reanalysis data of various meteorological parameters to predict satellite-derived marine liquid-water cloud occurrence and

properties by means of regionally-specific artificial neural networks. The statistical models used are shown to be capable of5

predicting clouds, especially in regions of high cloud variability. At this monthly scale, lower tropospheric stability is shown

to be the main determinant of cloud fraction and droplet size, especially in stratocumulus regions, while boundary layer height

controls the liquid-water amount and thus the optical thickness of clouds. While aerosols show the expected impact on clouds,

at this scale they are less relevant than some meteorological factors. Global patterns of the derived sensitivities point to regional

characteristics of aerosol and cloud processes.10

1 Motivation and aim

Clouds and their microphysical properties play a central role in the Earth’s radiative budget by increasing the albedo but also

by interacting with outgoing thermal radiation, leading to a net cooling effect (Boucher et al., 2013). Low-level marine liquid-

water clouds are the cloud type with the biggest net cooling effect; their shortwave signal by far exceeds their longwave signal

(Hartmann et al., 1992; Wood, 2012; Russell et al., 2013; Chen et al., 2014). A global increase in the occurrence frequency15

or cooling properties of marine low-level liquid-water clouds could thus offset some of the greenhouse gas warming (Latham

et al., 2008). Thus, a complete understanding of the physical processes that determine marine liquid-water clouds and their

properties is critical.

Atmospheric aerosols are essential for the formation of clouds, influencing cloud properties as cloud condensation nuclei. An

increase in aerosol particles leads to a higher cloud droplet number concentration, and, assuming a constant cloud water content,20

to smaller droplet radii. This changes the cloud’s radiative properties, as the larger overall droplet surface area increases cloud

reflectivity (Twomey, 1977). These changes in droplet number concentration and size are also thought to have ramifications

on cloud lifetime (Albrecht, 1989) and cloud vertical extent (Pincus and Baker, 1994). However, these processes are nonlinear

(Bréon et al., 2002; Koren et al., 2014; Andersen et al., 2016; Glassmeier and Lohmann, 2016) and dependent on various
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environmental conditions
:::
that

:::
all

::::::
feature

::::::::
different

:::::::
patterns

:::
in

::::
time

::::
and

:::::
space

:
(e.g. Loeb and Schuster, 2008; Stevens and

Feingold, 2009; Su et al., 2010; Andersen and Cermak, 2015; Andersen et al., 2016).

Even though there have been significant efforts and advances in understanding aerosol-cloud interactions (ACI) over the last

decades, the overall scientific understanding is still considered as low (Boucher et al., 2013). This springs from the complexity

of ACI and cloud processes themselves, the temporal and spatial scales at which these processes occur, as well as challenges5

in observing them.

In the satellite observational community, a typical investigative approach to analyze ACI is to directly relate aerosol and

cloud observations quantitatively using bivariate statistics, often explicitly considering one or two meteorological variables

(c.f. e.g. Matsui et al., 2004, 2006; Chen et al., 2014; Andersen and Cermak, 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Matsui et al., 2004, 2006; Chen et al., 2014; Andersen and Cermak, 2015).

Even though important process inferences have been made on this basis, the limitation of said method set is clearly that the10

complexity of the processes is not mirrored by the complexity of the statistical method: only selected aspects of the aerosol-

cloud system can be analyzed at one time. A multivariate analysis of the relationships between cloud properties and various

predictors, including aerosol and meteorological conditions, might be more appropriate for an adequate representation of these

atmospheric interactions. In this spirit, this study combines near-global observational and reanalysis data sets as predictors in a

multilayer perceptron artificial neural network (ANN) to model near-global marine water cloud occurrence and properties. The15

main goal of this study is to identify the main drivers of marine liquid-water cloud occurrence as well as physical and optical

properties on a global scale, estimate sensitivities for each predictor, and determine regional patterns therein.

The guiding hypotheses are:

1. Neural networks are capable of skillfully modeling cloud patterns on monthly time scales, and allow for a separation and

estimates of the relative importance of aerosol and various meteorological factors.20

2. Global aerosol and cloud patterns are not only related at a global scale,
:::
but regional patterns exist

::
as

::::
well.

3. While aerosols are a key determinant for cloud occurrence and properties, other factors are at least equally relevant at
::
At

the spatial and temporal scales considered here,
:::::::::::::
meteorological

::::::::
conditions

:::
are

:::::
more

::::::::
important

:::
for

:::::
cloud

:::::::::
occurrence

::::
and

::::::::
properties

::::
than

:::::::
aerosols.

2 Data and methods25

2.1 Data sets

The analysis uses 15 years (2001–2015) of nearly global (60◦N–60◦S) satellite retrievals and reanalysis fields. Monthly

averages of level 3 collection 6 products based on measurements by the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) sensor on the Terra platform (Levy et al., 2013) are used for information on cloud fraction (CLF; data set:

Cloud_Retrieval_Fraction_
:::
1L_Liquid_FMean), cloud-top droplet effective radius (CDR; data set: Cloud_Effective_Radius

:
-30

:::
_1L_Liquid_Mean_Mean), cloud liquid water path (LWP; data set: Cloud_Water_Path_37

::
1L_Liquid_Mean_Mean) and cloud

2



optical thickness (COT; data set: Cloud_Optical_Thickness_
:::
1L_Liquid_Mean_Mean).

:::::
While

:::::
cloud

::::::::::::
microphysics

::::
may

::::
also

::
be

::::::::::
represented

::
by

::::::
cloud

::::::
droplet

:::::::
number

::::::::::::
concentration,

::
its

::::::::
retrieval

:::::::
requires

:::::::::
additional

::::::::::
assumptions

:::
on

::::::
vertical

::::::
cloud

:::::
water

::::::::::
distribution,

::::::
leading

::
to

::::::::
increased

:::::::::
uncertainty

::::::::::::::::::::
(Brenguier et al., 2000),

::::::::
especially

::
in

:::::::::::::::
non-stratocumulus

:::::
cloud

::::::
regions

:::::::::::::::::::::::::
(Bennartz and Rausch, 2017).

::
As

::::
this

::::
study

::::::::::
investigates

::::::::::
liquid-water

:::::
cloud

::::::::
properties

::::::::
globally,

::::
CDR

::
is

::::
thus

::::
used

::
as

:
a
:::::
more

:::::
robust

::::::
proxy,

::::
even

::::::
though

:
it
::
is

::::
also

::::::::
dependent

:::
on

:::::
cloud

::::::::::
liquid-water

::::::
content

::
to

:::::
some

:::::
extent

::::::::::::::::::::
(Brenguier et al., 2000). To confine the analysis to liquid-water clouds5

, only
:::
and

::
to

::::::
reduce

:::::::::::
measurement

:::::::::::
uncertainties

:::
due

:::
to

::::::::
overlying

:::
ice

::::::
clouds,

::::
only

::::::::::
single-layer

:
liquid-water cloud products are

used. Information on aerosol loading as a proxy for cloud condensation nuclei is provided by aerosol optical depth
:::::
index

::::
(AI;

::::::::
computed

::
as

:
a
:::::::
product

::
of

:::
the

::::::
aerosol

::::::
optical

::::
depth

::::::
(AOD;

:
at 0.55 µm(AOD; data set: Aerosol_Optical_Depth_Land_Ocean_Mean_Mean).

:
)
:::
and

:::
the

:::::::::
Ångström

::::::::
exponent

:::::
(0.55

::::
and

:::::
0.867

:::::
µm)).

::::::
While

:::::
many

::::::
studies

::::
use

:::
the

:::::
AOD

::
as

::
a
:::::
proxy

:::
for

:::::
cloud

::::::::::::
condensation

:::::
nuclei

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Andreae, 2009; Quaas et al., 2009, 2010; Peters et al., 2012; Koren et al., 2012),

::
the

:::
AI

:::
has

:::::
often

::::
been

:::::
found

::
to

:::
be10

:
a
:::::::
superior

:::::::
measure

:::
for

:::
this

:::::::
quantity

:::::::::::
(Stier, 2016),

::
as

::
it
:::::::
weights

:::
the

:::
fine

:::::
mode

:::::::
stronger

::::
than

::::
AOD

:::::
alone

::::::::::::::::::::
(Nakajima et al., 2001).

Some constraints of AOD
::
AI

:
are that it can be affected by aerosol swelling due to hydration in humid environments , that

it is proportional to aerosol mass and not CCN concentration
:::::::::::::::::::::
(Loeb and Schuster, 2008), and that the retrieval describes ver-

tically integrated information and not specifically aerosol at cloud base height where cloud condensation nuclei are typically

activated (Shinozuka et al., 2015). Stier (2016) discusses that in 71 % of the ocean area, AOD only explains 25 % of the cloud15

condensation nuclei (CCN) variance at cloud base. Still, it is commonly used as a proxy for the columnar aerosol concentration

or CCN in ACI studies (Andreae, 2009; Quaas et al., 2009, 2010; Peters et al., 2012; Koren et al., 2012).

Satellite retrievals are combined with reanalysis data sets from the European Centre for Medium-Range Weather Forecasts

(ECMWF) for information on meteorological predictors. The ERA-Interim reanalysis provides data for the time since 1979

and is still continued (Dee et al., 2011). Monthly means of mean daily reanalysis data are used for information on various me-20

teorological predictors at selected atmospheric pressure levels. Meteorological determinants may be grouped into information

on relative humidity (RH - at pressure levels 950 hPa (Andersen and Cermak, 2015), 850 hPa (Chen et al., 2014) and 700 hPa

(Engström and Ekman, 2010)), vertical velocity (W - at pressure levels 950 hPa, 850 hPa (Kaufman et al., 2005; Engström

and Ekman, 2010) and 700 hPa (Engström and Ekman, 2010)), boundary layer height (BLH (Painemal et al., 2014)) and lower

tropospheric stability (LTS - computed as the difference in potential temperature between 700 hPa and the surface (Klein and25

Hartmann, 1993; Chen et al., 2014; Andersen and Cermak, 2015; Andersen et al., 2016)). The reanalysis data used features an

original spatial resolution of 0.5◦x0.5◦ and is subsequently resampled to fit the MODIS 1◦x1◦ grid.

Typically, clouds form when air cools off, increasing RH. Once supersaturation is reached, water vapor can condense on the

CCN. Predictors are selected that are thought to capture this very basic concept well: Vertical velocity and relative humidity are

selected as indicators of cloud dynamics and stratification at various pressure levels. CCN are represented by AOD
::
AI, and BLH30

and LTS describe the large-scale setting. All predictors have been shown to be relevant determinants of liquid-water clouds

or their interactions with aerosols in the studies named above. When available, vertically resolved information is preferred

to column integrated (e.g. RH at three different pressure levels is preferred to total columnar water vapor), in order to trace

processes at various atmospheric levels. While a higher number of reasonable predictors
:::
(e.g.

:::::::::::
geopotential

:::::
height

::
or

:::::::::
horizontal
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:::::
winds

::
as

::
in

::::::::::::::::
Koren et al. (2010))

:
is likely to marginally increase the skill of the ANN, it would increase model complexity and

make interpretation more difficult.

By design the data sets applied in this study average over time and space
::
to

::::::::::
specifically

:::::
study

:::
the

::::::::::
large-scale

:::::::
changes

:::::
within

:::
the

:::::::::::::::::::
aerosol-cloud-climate

::::::
system

::::
and

::
to

:::::
allow

:::
for

::::::
future

:::::::::::
comparisons

::::
with

::::::
global

::::::
climate

:::::::
models. While on these

scales, the causal sequence of cloud processes may not be intact and the processes themselves cannot be observed, their5

overall ramifications are thought to be represented adequately, in that temporal averaging is intended as a proxy for process

relationships.

2.2 Artificial neural networks and study design

Basics of artificial neural networks

Machine learning systems consist of a set of numerical operators designed to compute a designated output on given input10

data. The basic principles, such as the number of numerical links between parameters, are fixed. Artificial neural networks can

be described as a branch of machine learning systems. Multilayer perceptrons are a specific type of neural network that are

commonly used in the atmospheric sciences and environmental sciences in general, as they are able to model highly nonlinear

functions. This type of ANN consists of several layers of interconnected neurons. In general, the architecture of multilayer

perceptron ANNs is variable but a typical ANN may consist of an input layer, at least one hidden layer and an output layer. The15

information from an input pattern is strictly passed from the input layer via the hidden layer(s) to the output layer that yields

the desired output pattern (feed-forward ANN). Multilayer perceptron ANNs are fully connected, i.e. each neuron is connected

to every neuron in the neighboring layer(s). All connections between neurons in the ANN are specifically weighted so that the

information passed to a neuron is the sum of the weighted outputs from the previous layer (net input). The neuron modifies

the information by multiplication with a nonlinear transfer function and passes this information through specific weights to all20

neurons of the following layer (Gardner and Dorling, 1998).

In general, these types of ANNs learn through training. During the training period a subset of the input and output data

sets are fed into the ANN. Using this training data, a learning algorithm adjusts the individual weights of each neuron in the

network to minimize the error of the output (e.g. the difference between the modeled and observed outputs). The speed of the

learning process is adjusted by a learning rate that determines the step size taken during the iterative learning process. While a25

high learning rate leads to faster convergence, it may miss a global optimum. An additional momentum term adds a fraction of

the previous weight change to the current weight change to assist the optimization algorithm out of local minima (Gardner and

Dorling, 1998). After the learning algorithm has reached convergence, the predicted output of the network can be compared

to the original output for an estimate of model skill. To ensure that the ANN does not only represent the particular data used

in the training (overfitting) and is able to generalize the functional relationships underlying the training data, the model is30

validated using a second independent subset of the input data. If the ANN is able to generalize the relationships between the

data sets, the difference between training and validation errors and the overall error are small. The ANN is tested on a third set

of independent data to ensure that the model is not overfit to the validation data.
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Design of the study and application of the neural network

The ability of the ANN to predict cloud occurrence , properties and radiative effects
::
and

:::::::::
properties

:
is dependent not only

on an informed choice of predictors, ANN also require sufficient data that fully represent all cases that the ANN is required

to generalize, as ANNs perform well for interpolation but poorly for extrapolation (Gardner and Dorling, 1998). In order to

circumvent sampling issues and to enable a direct comparability of results in different regions, the near-global data sets are5

summarized in 40x20 equal area grid cells by aggregating grid cells at the original spatial resolution of 1◦x1◦. This leads to an

increase from the original 180 data points (15 years, 12 months) for each input/output to between 8,000 and 14,000, depending

on the number of 1◦x1◦ pixels that fall into a specific region.
::::::::::::
Region-specific

::::::
neural

::::::::
networks

:::
are

::::::
needed

::
to

::::::
capture

:::::::::
regionally

::::::
varying

:::::::::::
relationships

:::::::
between

:::::
cloud

:::::::::
properties

::::
and

::::
their

::::::::::::
determinants.

:::::
These

:::::::::::
relationships

::::::
feature

:::::::
regional

:::::::
patterns

:::
as

::::
they

::::::
depend

::
on

:::::::::::
liquid-water

:::::
cloud

::::
type,

::::::
aerosol

:::::::::::
composition,

:::::::::::
meteorology

::::
and

:::
the

::::::::
respective

:::::::
seasonal

::::::
cycles,

:::
all

::
of

::::::
which

::::::
exhibit10

:::::::
regional

::::::
patterns

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Stevens and Feingold, 2009; Andersen et al., 2016).

:::::
These

:::::::
regional

::::::::::::
characteristics

::::::
would

::
be

::::::
blurred

:::
or

::::::
missed

:::::::::
completely

:::::
when

:::::
using

:
a
:::::
single

::::::
global

:::::
ANN.

:

The ANN is only applied in grid cells where a minimum of 2000 valid observations exist. In each equal area, an independent

ANN is trained over 500 epochs (i.e. number of times the network iterates over the training data) with 60 % of the data,

validated and tested on 20 % of the data each. A simple network topology with one hidden layer consisting of five hidden15

neurons is applied a) for a more comprehensible model and b) to reduce potential overfitting (Gardner and Dorling, 1998).

Multilayer perceptrons with just one hidden layer are frequently used in ecological studies (e.g. Hartmann et al., 2008; Cermak

and Knutti, 2009) as they have been shown by several independent studies to be able to approximate any continuous function

(Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989; Kecman and Vojislav, 2001; Olden and Jackson, 2002; Di Noia et al.,

2013). A hyperbolic tangent is used as the activation function, the weights are initialized randomly from a uniform distribution20

between -0.1 and 0.1. Gradient descent (Werbos, 1990; Le et al., 2017) is used as the optimization algorithm, with a learning rate

of 0.003 and a momentum of 0.01. In-depth testing was undertaken to adjust the details of the model’s settings by comparing

model skill for a wide number of model setups as in Hartmann et al. (2016). Once the ANN is trained and able to generalize the

relationships between the data sets adequately, sensitivity analyses are conducted. Sensitivities
:::
can

::
be

::::::::::
conducted.

::
In

:::::::
general,

:::::::::
sensitivities

:
are systematically tested by varying each input variable while holding all other input variables constant, e.g., at25

their average
::::::
(details

:::
see

::::::
below). In this way the individual contributions of each variable can be analyzed (Olden and Jackson,

2002). A schematic view on the general architecture of the ANN and the training, validation and sensitivity steps is given in

Fig. 1.

The ANN skill in modeling the desired outputs is evaluated with the correlation (R2) between ANN testing output and

the corresponding observation data. Sensitivities are only computed for grid cells, where the ANN R2 > 0.5 and the root30

mean square error relative to the mean (rel. RMSE) < its global average in order to exclude unreasonable models
::::
only

:::::::::
investigate

:::::::::
sensitivities

:::
of

::::::
models

:::
that

:::
are

:::::::
capable

::
of

:::::::::
adequately

::::::::::
representing

:::
the

::::::::
observed

:::::
cloud

:::::::
patterns.

::::
The

::::::
derived

:::::::
average

:::::::::
sensitivities

::::
are

::::
only

:::::
valid

:::
for

:::
the

:::::::::
considered

:::::::
regions

::::
and

::::::
should

::::
thus

:::
not

:::
be

:::::::::
interpreted

:::
as

:::::::
’global’. In order to derive a

representative and meaningful sensitivity, the mean of ANN-predicted outputs are compared for two groups of input data:

all retrievals of a specific predictor smaller than its 25th percentile and those
::
all

::::::::
retrievals

:
greater than its 75th percentile;35
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Figure 1. A schematic view on the general architecture and design of multilayer perceptron artificial neural networks. In this study, the ANN

features a single hidden layer with 5 neurons.

in all cases, the other predictors are held constant at their grid-cell specific mean values. In comparison to a stepwise in-

crease of one specific predictor, a more relevant measure of a typical sensitivity can be derived, as the predictor distribu-

tion is considered. Thus, in the context of this study, the sensitivity is defined as the mean difference between the predicted

cloud property in the groups of low and high predictor values. Typically, the aerosol effect on e.g. CDR is described by the

δlog(CDR)/δlog(aerosol) relationship, where aerosol can be either AOD or aerosol index
::
AI (e.g. Costantino and Bréon,5

2013). While this gives a regionally comparable estimate of the aerosol-cloud sensitivity, it does not explicitly consider the me-

teorological framework.
::
As

:::
the

::::::::
temporal

:::
and

::::::
spatial

:::::
scales

:::::::::
considered

::
in
::::
this

:::::
study

:::
are

:::::
much

:::::
larger

::::
than

:::
the

:::::
actual

:::::::::
processes,

::
the

:::::::::
calculated

::::::::::
sensitivities

::::::::
represent

:::
the

::::::
system

:::::
scale,

:::
and

::::
may

:::
not

:::::
match

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::::
sensitivities

::
at

:::
the

::::::
process

:::::
scale

::::::::::::::::::::::::::::::::::::::::::::::::::
(McComiskey et al., 2009; McComiskey and Feingold, 2012).

3 Results and discussion10

3.1 Skill of the ANN in predicting cloud occurrence and properties

The skill of the ANNs to predict marine liquid-water cloud occurrence, as well as physical and optical properties is shown

in Fig. 2 (blue boxes) and contrasted with the skill of a simple correlation between AOD
:::::::
multiple

:::::
linear

:::::::::
regression

:::::
using

:::
the

:::::::
identical

:::
set

::
of

:::::::::
predictors

::::
(red

:::::
boxes)

::::
and

:
a
::::::

simple
:::::::

Pearson
::::::::::

correlation
:::::::
between

:::::::
log(AI) and the cloud properties (red

:::::
black

boxes). In the ANN, CLF is predicted with the highest accuracy(mean R2 of 0.55). While for CDR the skill of the ANN is15

also > 0.5 for many regions(mean R2 of 0.45), LWP and COT are predicted less accurately(mean R2 of 0.35).
::::
The

::::
skill

::
of

:::
the

:::::::
multiple

:::::
linear

:::::::::
regression

::
is

::::
close

:::
to

:::
the

::::
skill

::
of

:::
the

::::::
ANN,

:::
but

:::::::
typically

::::::::
explains

:
a
::::
few

::::::
percent

::::
less

::
of

:::
the

::::::
cloud

:::::::::
variability,

:::::::
possibly

::::::::
indicating

::
a
:::::
small

:::::::::::
contribution

::
in

::::::
model

::::
skill

:::
by

::::::::
nonlinear

:::::::::::::
representations

::
of

:::::::::::
relationships

::::::
within

:::
the

:::::
ANN. It is

6



shown that AOD
::::::
log(AI) alone typically explains less than 10

::
20 % of the cloud property variability.

::
As

::
a

::::
much

::::::
higher

:::::::
fraction

::
of

:::
the

::::
cloud

:::::::::
variability

::
is

::::::::
explained

::
in

:::
the

::::::::::
multivariate

::::::::::
approaches,

:::
the

::::::::::
sensitivities

::::::
derived

::::
from

:::
the

:::::
ANN

:::
are

:::::
likely

::
to

::
be

:::::
more

::::::
reliable.

:
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Figure 2. Predictand correlation with ANN
:::
test

:::::
output,

:::::::
multiple

::::
linear

::::::::
regression

:
(
::::
both multivariate) test output and AOD

::::::
log(AI) (bivari-

ate). The median is represented by the black horizontal line, framed by the interquartile range (boxes), whiskers expand the boxes by 1.5

interquartile ranges.

For all predictands there is a large spread in model skill, leading to distinct regional patterns as illustrated in Fig. 3. The skill

of the ANNs is generally higher in the atmospherically stable regions off the western continental coastlines that are dominated5

by stratocumulus clouds. Less skilled ANNs can generally be found in the (sub-)tropic Pacific and the Indian Ocean.

The global spatial patterns of ANN skill are likely linked to the spatial patterns of the variability of the specific predictands

(Fig. 4). A strong dependence on the variability can be noted for CLF and CDR (Fig. 4a and 4b), i.e. a higher variability enables

the ANN to more skillfully represent the inherent relationships. This is sensible, as a higher predictand variability offers the

ANN a stronger signal from which it can learn.10
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Figure 3. Global patterns of ANN skill [R2] predicting a) cloud fraction, b) cloud droplet effective radius, c) cloud liquid water path and d)

cloud optical thickness. As only ANNs with R2 > 0.5 and rel. RMSE < its global average are used to compute the sensitivities, these are

marked by a ’+’.

3.2 Determinants of cloud occurrence and properties

Sensitivities are analyzed in all ANNs with a skill of R2 > 0.5 and with a rel. RMSE that is smaller than its global average.

Figure 5 shows globally summarized mean and standard deviation of all predictor sensitivities for CLF (Fig. 5a), CDR (Fig. 5b),

LWP (Fig. 5c) and COT (Fig. 5d). Positive sensitivities point towards a positive response to an increase in the specific predictor

while holding the other predictors constant at their regional average values. CLF shows the greatest sensitivity to LTS, where5

an increase in LTS leads to a strong increase in CLF, underlining the importance of LTS found in earlier studies (e.g. Klein and

Hartmann, 1993; Matsui et al., 2004; Andersen and Cermak, 2015). CLF is also positively related to relative humidity at all

assessed pressure levels, with the strongest sensitivity at 950 hPa, where stratocumulus clouds and transitional clouds between

stratocumulus and shallow cumulus are located (Gryspeerdt and Stier, 2012; Andersen and Cermak, 2015). While boundary

layer height and aerosol are also positively connected to CLF, W sensitivity varies in sign. Sensitivities associated with W10

can generally be interpreted as the change in the predictand when W changes from updrafts to downdrafts. The most relevant

pressure level in terms of W seems to be 700 hPa, with strong positive sensitivities, illustrating that the downdrafts at 700 hPa

associated with stable conditions in the lower troposphere correspond to an increase in CLF. In terms of CDR sensitivities,

8



Figure 4. The skill of the ANN predicting a) CLF, b) CDR, c) COT and d) LWP as a function of the predictand variability (standard

deviation). Each point illustrates the combination of skill and variability for a specific equal area region
::::
(pixel

::::::
regions

::
in

::::
figure

::
3).

LTS also displays the strongest effect, with an increase in LTS connected to a distinct reduction in droplet size. RH at 850 hPa

exerts the strongest positive CDR sensitivity, with many of the cloud tops located at this pressure level. AOD
::
AI has a notable

sensitivity, showing a distinct negative association to CDR as previously assumed. Generally, updrafts favor larger CDR, with

a stronger sensitivity at higher altitudes. Results of LWP and COT sensitivities are similar in terms of the signs and magnitudes

of the individual sensitivities. Both are mainly determined by BLH and LTS, both positively associated with the respective5

cloud property. RH facilitates thicker clouds containing more liquid water, especially free tropospheric relative humidity at

700 hPa seems to have a positive impact on LWP and COT, as higher humidity levels at 700 hPa are likely to weaken drying

effects of entraining air masses (Ackerman et al., 2004; Chen et al., 2012, 2014). While increases in aerosol lead to a negative

LWP response, this does not lead to a similarly strong COT reduction. W is negatively related to both cloud properties, as

situations with updrafts generally produce thicker clouds, the most relevant pressure level is at 850 hPa.10
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Figure 5. Global mean relative sensitivities as defined in section 2.3 of a) CLF, b) CDR, c) LWP and d) COT for all predictors of the ANNs

(x axes). Error bars illustrate the regional variability of the sensitivities (global standard deviation).

The application of an individual ANN in every grid cell enables the analysis of regional patterns of the derived sensitivities.

Panels of the left-hand column of Fig. 6 show regional patterns of CLF sensitivities, the panels of the right-hand column show

regional patterns of CDR sensitivities. The range of the colorbars is identical within each column, so that both the overall

magnitude as well as the spatial patterns of the sensitivities can be compared. LTS is the strongest determinant for CLF and

is positively related to CLF everywhere on Earth, with especially strong sensitivities in atmospherically stable regions off the5

western coasts of the continents, where stratocumulus clouds are predominant (Klein and Hartmann, 1993; Russell et al., 2013).

In these regions RH shows a strong positive CLF sensitivity at 950 hPa, pointing to the relevance of low-level humidity in these

regions of low boundary layer clouds. Liquid water cloud fraction in the intertropical convergence zone is more sensitive to

10



RH at 850 hPa, reflecting the thicker boundary layer in this region. The most pronounced relation between the aerosol and CLF

can be found at latitudes around 30◦, especially over the Northwest Pacific.

CDR is markedly reduced by AOD
::
AI

:
in the Northwest Pacific and the Southwest Atlantic and negatively associated with

AOD
::
AI

:
to a lesser degree in most other marine regions. The regions over the Northeast Atlantic and

:::::
region

:
close to the

coastline of the Arabian Sea are exceptions. In these regions
:
is

::
an

:::::::::
exception.

:::::
Here, dust particles make up a significant portion5

of the aerosol species composition (Prospero, 1999; Kaufman et al., 2005), which may lead to larger droplet sizes when

dust aerosols act as giant CCN (Levin et al., 2005; Barahona et al., 2010).
:::
The

::::::::
Southeast

:::::::
Atlantic

:::::::
features

:::::::
weakly

:::::::
positive

:::::::::
sensitivities

:::
of

::::
CDR

:::
to

:::::::
changes

::
in

:::
AI.

:::::
While

:::::
CDR

::
is

::::::::
typically

:::::
found

::
to

::
be

:::::::::
negatively

::::::
related

::
to
:::

AI
::
in

:::
the

:::::::::
Southeast

:::::::
Atlantic

::::::::::::::::::::::::::::
(e.g. Costantino and Bréon, 2013),

:::::::::::::::::::::::::::::
Andersen and Cermak (2015) found

::::
that

::
AI

::::
and

:::::
CDR

:::
can

::
be

:::::::::
positively

::::::::
associated

:::
in

::::
very

:::::
stable

::::::::::
atmospheric

:::::::::
conditions.

::::::
Issues

::
of

::::::::
sampling

::::
(few

::::::
aerosol

::::::::
retrievals

::
in

::::
high

:::::
CLF

:::::::
regions),

:::::
scale

::::::
(highly

:::::::::
aggregated

:::::
data)10

::
or

::::
their

::::::::::
combination

:::::
might

:::::
affect

:::
the

::::::::
observed

::::
CDR

:::::::::
sensitivity

::
to

:::
AI

::
in

:::
this

::::::
region.

::::
One

::::::
should

::::
note

:::
that

:::::::::
sensitivity

::::
maps

:::::
were

:::
also

::::::::
produced

:::::
using

:::::
AOD

::
as

:
a
::::::
proxy

:::
for

::::
cloud

::::::::::::
condensation

:::::
nuclei

::::::
instead

::
of

::::
AI.

:::::
While

:::
the

::::::
overall

::::::
results

::::
were

::::
very

:::::::
similar,

::::::
changes

:::
in

::::::::
sensitivity

:::
of

::::
CDR

::
to

:::
the

:::::::
aerosol

::::::::
quantities

::::
were

::::::::
observed

::
in

:::
the

:::::::::
Northeast

:::::::
Altantic

:::
that

::
is
:::::::::
dominated

:::
by

:::::::
Saharan

:::
dust

::::::::
aerosols.

:::::
Here,

:::
the

:::::::::
difference

:::::::
between

:::::
AOD

:::
and

:::
AI

::
is

:::::::::
substantial

::::
due

::
to

:::
the

:::::::::
abundance

::
of

::::::
coarse

::::
dust

::::::::
particles. LTS is

negatively associated with CDR, especially south of 30◦ and in the subtropical Atlantic as found by Matsui et al. (2006), as15

high LTS environments are connected with weaker updrafts and a shallower boundary layer, limiting cloud droplet growth. This

excludes the Southeast Atlantic, where stable conditions may trap the humidity in the boundary layer (Johnson et al., 2004;

Painemal et al., 2014; Andersen and Cermak, 2015). Similar effects may occur in the Southeast Pacific as well. RH features

the strongest positive CDR sensitivity at 850 hPa with distinctly strong sensitivities in the subtropic regions, where cloud tops

are frequently located at this pressure level (Gryspeerdt and Stier, 2012). Compared to these factors, W at 700 hPa seems to be20

a relevant determinant in very selected, mostly tropical regions only.

4 Summary and conclusions

The central aim of this study was to identify and analyze the main determinants of marine liquid-water clouds and their

sensitivities
:
at
:::
the

:::::::
system

::::
scale. Artificial neural networks were shown capable of predicting cloud patterns on a global scale

well, although ANN skill is dependent on the cloud property and its variability. Regions with a strong monthly variability such25

as the stratocumulus regions that feature a strong seasonal cycle are most skillfully represented.

Sensitivities were derived for all predictor-predictand combinations, revealing LTS to be the main determinant of monthly

liquid-water cloud occurrence and properties. LTS is positively related to CLF on a global scale, with especially strong re-

gional sensitivities in the subsidence regions and the mid-latitudes. In most of these regions, LTS features a strong nega-

tive sensitivity towards CDR. One exception to this negative CDR-LTS relationship is the Southeast Atlantic, where high30

LTS conditions may trap humidity in the boundary layer, causing larger CDR and hence a positve CDR-LTS relationship

(Johnson et al., 2004; Painemal et al., 2014; Andersen and Cermak, 2015). The sensitivity of cloud properties to changes

in relative humidity is dependent on both region and pressure level. CLF in regions that feature predominantly stratocumu-

11



Figure 6. Global relative sensitivity patterns of selected CLF predictors in the left-hand column and CDR predictors in the right-hand

column. Gray regions a) are over land or b) do not contain at least 2000 data points. Regions where the ANN test skill (R2) is > 0.5 and rel.

RMSE < its global average are marked with a ’+’.
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lus clouds or other low-level clouds is most sensitive to RH at 950 hPa, whereas tropical regions with thicker boundary

layers are more sensitive to RH at higher altitudes. CDR sensitivity to RH is stronger at higher pressure levels, where the

cloud-tops are likely located. In addition to this, BLH is found to be a main determinant of LWP and COT. One should

note though, that not all of the observed predictor-predictand sensitivities are necessarily a result of a direct physical re-

lationship between the predictor and the predictand, but may in part be due to spurious covariations
:::::::
spurious

:::
due

:::
to

:::::
cloud5

:::::::::::
contamination

:::
of

:::
the

::::::
satellite

:::::::
aerosol

::::::::
retrievals

::::::::::::::::::
(Grandey et al., 2013),

:::
or

:::
due

::
to

:::
the

::::::::
influence

::
of

:::::::::::
confounding

::::::
factors

:::
on

::::
both

:::::::
predictor

::::
and

::::::::
predictand

::::::::::::::::::::
(Gryspeerdt et al., 2016). For example, CLF and

:::
AI/AOD are both positively related to RH, potentially

contributing to the observed positive AOD-CLF sensitivity
::::
CLF

:::::::::
sensitivity

::
to

::::::::
AI/AOD.

::::::::::::::::::::::::
Gryspeerdt et al. (2016) found

::::
that,

:::
by

::::::::::
constraining

:::::::
potential

:::::::::::::
aerosol-induced

::::::
effects

::
on

:::::
CLF

::
to

::::::::
situations

:::::
where

:::::
cloud

::::::
droplet

::::::
number

:::::::::::
concentration

::
is
:::::::::::::
simultaneously

::::::::
increased,

:::
the

:::::::
MODIS

:::::::::::::
log(AOD)-CLF

::::::::::
relationship

::
is

::::::
reduced

:::
by

:::::
about

::::
80 %. Issues of this kind are addressed here by includ-10

ing information on all relevant parameters
::::::::::
confounding

::::::
factors

:::::::
directly

:
in the ANN,

::::
and

:
-
:::
for

::::::::::
comparison

:::::::
measure

::
-
:::::
when

::
all

:::::
other

:::::
inputs

::::
are

::::
held

:::::::
constant

::
at

::::
their

::::::::
grid-cell

:::::::
specific

:::::::
average,

:::
the

:::::::::::
log(AI)-CLF

::::::::::
relationship

::
is
:::

on
:::::::
average

:::::
about

:::::
40 %

::::::
weaker

::::
than

:::
the

::::::::
originally

::::::::
observed

:::::::::::
log(AI)-CLF

:::::::::::
relationship.

:::::
While

:::
the

::::::::
decrease

::
in

:::
the

:::::::::
sensitivity

::
is

:::
not

:::::
quite

::
as

:::::
strong

:::
as

::
in

::::::::::::::::::::
Gryspeerdt et al. (2016),

:::
the

:::::
results

::::::::::
correspond

::::
well

::
in

:::
the

::::
sense

::::
that

:::::::::
bivariately

:::::::::
determined

::::::::::::
aerosol-cloud

::::::::::
sensitivities

::
as

::
in

::::::::::::::::::
Quaas et al. (2008) are

:::::
likely

::
to

:::::::::::
overestimate

::::::
aerosol

:::::::
indirect

::::::
effects

:::::::::::
significantly.

:::::
While

:::
the

::::::::
influence

::
of

:::::::::::
confounding

::::::
factors15

:
is
:::::::
limited

::
by

:::
the

::::::::::
multivariate

:::::::::
approach,

::::::
effects

:::::::::
concerning

::::
data

::::::
quality

::::
(e.g.

::::::
cloud

:::::::::::::
contamination)

:::
are

:::
not

::::::::
accounted

:::
for

::::
and

::::
need

::
to

::
be

::::::::::
considered,

::::::::
especially

:::::
when

::::::::::
interpreting

:::
the

::::
CLF

:::::::::
sensitivity

::
to

::
AI.

The ramifications of the interactions between aerosols and cloud occurrence and properties seem to be represented well

in the ANN, following the general understanding of ACI. Specific regions of interest arise, such as the Northwest Atlantic

with strong sensitivities to AOD
::
AI

:
and regions that are affected by high dust loadings, with positive AOD-CDR

:::::::
AI-CDR20

relationships and an above average positive AOD-CLF
:::::::
AI-CLF sensitivity.

The results lead to the conclusion that on the system scale the aerosol may be viewed as a relevant determinant of marine

liquid-water cloud fraction and microphysical properties, but only a secondary determinant for cloud optical thickness. On the

scales considered here, lower tropospheric stability is the key controlling factor of cloud occurrence and droplet size, while

boundary layer height controls the liquid water path and thus optical thickness of the cloud.
:::
The

::::::
results

::::::
confirm

:::::::
findings

:::
of25

:::::::
previous

::::::
studies

:::
that

::::::::
analyzed

::::::::::
determinants

::
of

:::::
cloud

:::::::::
properties

::
in

:
a
::::
more

:::::::
isolated

::::::
manner

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Klein and Hartmann, 1993; Johnson et al., 2004; Matsui et al., 2006).

:::
The

::::::
results

::::
give

:::::::::
confidence

:::
that

:::
the

:::::::::::
combination

::
of

:::::::::::
observational

::::
and

::::::::
reanalysis

::::
data

:::
sets

::
in
::
a
::::::::::
multivariate

::::::::
statistical

::::::::
approach

:
is
::::
able

::
to

:::::::
capture

:::
the

::::::
natural

::::::::
variability

::
of

:::::
cloud

::::::::::
occurrence

:::
and

:::::::::
properties,

:::
and

::::
that

::::::::::::
meteorological

::::
and

::::::
aerosol

::::::
effects

::::::
similar

::
to

::::
those

:::::
found

:::
in

::::
other

::::::
studies

:::
can

:::
be

::::::::
identified

::
in

:::
this

:::::::
system.

::
In

:::
the

::::::
future,

:
a
::::::::
focussed,

:::::::::::
cloud-regime

:::::::
specific

:::::
ANN

::::::::
approach

::::::
similar

::
to

:::::::::::::::::::::::::
Gryspeerdt and Stier (2012) or

:::::::::::::::::::::::::
Oreopoulos et al. (2016) could

:::
add

::
to
::::
our

::::::
system

::::::::::::
understanding.

:
To address climate30

effects in a straight-forward manner, future research may
::::
also apply this study’s approach to investigate the global determinants

of cloud radiative effects.
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