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Abstract. Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation 

experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron 

microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total number of 4202 particles 

(TEM=3872; SEM=330) was analyzed from these samples which were collected mostly inside the polar vortex in the altitude 

range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and 15 

hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in 

the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72% to 100% of the 

refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the 

refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg 

air)-1. 20 

Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a 

graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only 

detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with 

the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 

0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation). 25 

High resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix, i.e., 

heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between 

particles collected inside and outside the polar vortex. 

Based on chemistry and nanostructure, aircraft exhaust, volcanic emissions and biomass burning can certainly be excluded as 

source. The same is true for the less probable, but globally important sources: wood burning, coal burning, diesel engines and 30 

ship emissions. 
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Recondensed organic matter and extraterrestrial particles, potentially originating from ablation and fragmentation remain as 

possible sources of the refractory carbonaceous particles studied. However, additional work is required in order to identify the 

sources unequivocally. 

 

1 Introduction 5 

The chemistry of stratospheric aerosols has been studied for more than half a century (Junge et al., 1961; Junge 1963), and it 

was discovered that sulfur is the main element in the particles. Junge and Manson (1961) supposed the particles to consist of 

ammonium sulfate, and Bigg et al. (1970) suggested sulfuric acid with varying amounts of ammonia. Rosen et al. (1971) 

strengthened the evidence for the material to be sulfuric acid as most of the material evaporated at the temperature expected 

for this substance. According to Bigg (1975), the majority of the particles is composed of sulfuric acid with varying amounts 10 

of ammonium sulfate. A comprehensive summary of stratospheric aerosol and sulfur chemistry is given by Kremser et al. 

(2016). 

 

In addition to the dominating sulfur-rich particles (sulfuric acid, sulfates), refractory particles were reported frequently. Dense, 

mineral-rich particles presumably originating from the eruption of the Mt. Agung volcano were observed by Mossop (1963, 15 

1965) using scanning electron microscopy. However, due to the lack of instrumentation, the chemistry of the particles could 

not be investigated. Refractory particles with diameters >1 µm were studied in more detail by Zolensky and Mackinnon (1985), 

and several particle groups were distinguished: chondrite, silicate, aluminum (Al), aluminum with variable amounts of other 

elements, iron (Fe) with or without sulfate (S), calcium (Ca)-Al silicates and “other” particles. The silicate particles were 

dominant and interpreted to be volcanic, probably from the Mt. St. Helens eruption in 1980. In contrast to prior findings, a 20 

large number of refractory stratospheric particles was recognized by Zolensky et al. (1989). The particles they analyzed had 

diameters of >> 1 µm. The authors assumed that this increase was caused by solid rocket exhaust or the re-entry of debris 

associated to human space flight activity (inoperative satellites, burnt out rocket stages, tools, etc.). According to Sheridan et 

al. (1994) approximately 97% of all analyzed stratospheric particles were sulfuric acid. Also non-sulfate materials, soot, other 

C-rich substances and crustal material were detected. Carbonaceous aerosol was found to contribute to the aerosol population 25 

at all latitudes in the stratosphere and interplanetary dust was significantly abundant above 30 km for particles ≥ 0.35 µm 

(Renard et al., 2008). Della Corte et al., 2013 found calcium-oxygen (CaO) -rich particles probably originating from a bolide 

that penetrated the Earth’s atmosphere. Single particle mass spectrometry (SPMS) brought new insights into the chemistry of 

stratospheric particles (e.g., Murphy et al., 1998, 2007, 2013). The method is capable to measure particles in the size range of 

120 nm – 3 µm (with a very low detection efficiency for particles < 220 nm; Murphy et al., 2007). According to these authors, 30 

stratospheric particles are dominated by pure sulfuric acid, sulfuric acid internally mixed with material from ablated 

meteoroids, and mixtures of organic-sulfate particles. A recent SEM study by Ebert et al. (2016) focused on refractory particles 
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in the late winter stratospheric polar vortex. The main particle groups encountered included Fe-rich, Si-rich, Ca-rich, metal 

mixtures and Carbon (C)/Si-rich particles. 

 

Refractory particles in the UT/LS (Upper Troposphere / Lower Stratosphere) can act as condensation nuclei for cirrus clouds 

(Kojima et al., 2004; 2005; Cziczo et al., 2013) and as surfaces for heterogeneous chemical reactions in the polar stratosphere 5 

which play a significant role in polar ozone depletion (e.g., Peter, 1997; Solomon, 1999; Peter and Grooß, 2012). In addition, 

the particles can serve as surfaces for the heterogeneous condensation of saturated gases in the polar stratosphere (Saunders et 

al. 2010, 2012; Voigt et al. 2005). Due to the acidic environment, the particles can (partially) dissolve in the acidic solution 

droplets (binary HNO3-H2O or ternary HNO3-H2SO4-H2O) and, thus, change their freezing properties. Therefore, the dissolved 

particles in a ternary HNO3-H2SO4-H2O solution could have an important impact on the formation of polar stratospheric clouds 10 

(PSCs). As gaseous compounds will condense on refractory particles, they will grow, both in size and mass, which leads to a 

change in their sedimentation velocity (Fromm et al. 2000; Jost et al., 2004). Therefore, the gaseous compounds can both be 

redistributed in the stratospheric region and sediment out more quickly. 

 

There are multiple sources which contribute to the stratospheric refractory particle load. Interplanetary dust particles are 15 

considered to be the major component of refractory material (Murphy et al., 1998; 2007; Plane, 2012). Another important 

source of stratospheric refractory particles are volcanic eruptions which may either eject material directly into the stratosphere 

(Vernier et al., 2011) or lead to particle transport through the tropical transition layer (TTL) (Mattis et al., 2010). Further 

potential sources of stratospheric refractory particles are high-flying aircraft (Fahey et al, 1995; Pueschel et al., 1997, Petzold 

et al., 1999), rockets (Newman et al., 2001), ablated material from meteorites (Hunten et al. 1980; Turco et al., 1981; Murphy 20 

et al., 1998; Cziczo et al., 2001) and all kinds of terrestrial material being lifted and entrained into the stratosphere by the 

Brewer-Dobson-Circulation (Holton et al., 1995, Austin and Li, 2006). As the frequency of particle emissions from the listed 

sources is highly variable, the individual contribution of the various sources is, in general, not quantifiable.  

In summary, a variety of different refractory particle types is observed in the stratosphere. Due to the still limited number of 

sampling and measurement campaigns, the occurrence as well as the sources of refractory particles is not known precisely. 25 

The present paper first aims at improving the database on the observed particle groups. Second, it is attempted to infer potential 

sources by a detailed characterization using high-resolution transmission electron microscopy (TEM), scanning electron 

microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). 

2 Experimental 

2.1 Sampling 30 

Stratospheric particles were sampled on board of the NASA ER-2 aircraft during the SAGE III Ozone loss and validation 

experiment (SOLVE), which was conducted in January-March 2000 in Kiruna (Sweden). The Multi-Sample Aerosol 
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Collection System (MACS) (Kojima et al., 2004), a thin-plate low-pressure impactor, was used for sampling. The particles 

were deposited on TEM copper (Cu) grids covered with a formvar film. MACS is designed to collect up to 23 samples per 

flight. The first sample is not exposed to flow and serves as a blank sample. The MACS was designed to sample and transmit 

all particles in the diameter range from 20 to 1000 nm to the impactor. Particles larger than approximately 20 nm are collected 

on the impactor in the pressure range shown in Table 1. In situ measurements of aerosol abundance were obtained with a 5 

Condensation Particle Counter (Wilson et al., 1983) simultaneously with the samples. Sampling date, flight characteristics, 

potential vorticity (PV), pressure altitude, pressure, potential temperature and ambient aerosol number mixing ratio (particles 

per milligram of air) for the analyzed samples are shown in Table 1. In situ detection of nitrogen oxides on particles (Fahey et 

al., 2001) was used to determine if samples were collected when the aircraft was in polar stratospheric clouds (PSCs) containing 

nitrogen. Measurements of N2O provide insight into the residence time of the air parcel in the stratosphere, called age of air 10 

(Wilson et al., 2008). These values are also shown in Table 1. 

The meteorological conditions of the early winter (November – January) northern hemispheric polar vortex of 1999/2000 are 

described in detail by Manney and Sabutis, 2000. The early winter (November – January) northern hemispheric polar vortex 

of 1999/2000 had much lower averaged temperatures compared to any previously observed Arctic winter. The vortex was 

weaker than the early winter polar vortices of the previous years. It was discontinuous in the middle of December, with a large 15 

extent in the upper and small extend in the lower stratosphere. During the period of airborne measurement operations, from 

mid-January on, the vortex evolved to be continuous and stable until mid-March (Greenblatt et al., 2002). Jost et al. (2002) 

describe anomalous single mixing events occurring during that time at the potential temperature (Θ) range of 350-500 K. These 

events are probably the result of mixing between deep vortex and extra vortex air. 

The stratospheric particle samples (deposited on TEM grids) taken within the polar vortex, were packed into single plastic 20 

boxes and stored in a desiccator prior to analysis, starting in 2014. Based on the investigation of blank samples, contamination 

of the samples during the time of storage (e.g. by vapours from the plastic boxes) can be excluded. Furthermore, a change in 

particle morphology and nanostructure is not expected, since the particles found are either amorphous or show very little 

ordering. This conclusion is based on the fact that graphitization of carbonaceous material is an irreversible process (Diessel 

et al., 1978; Itaya, 1981; Pesquera and Velasco, 1988). Anyhow, it should be kept in mind that other parameters (chemical 25 

composition, mixing state) may be changed to a variable extent by aging. In total, 122 samples from 15 sampling days were 

collected. 

2.2 Electron microscopy 

A total of 4202 particles (3872 TEM; 330 SEM) from 11 samples were investigated by transmission and scanning electron 

microscopy. The samples were selected according to meteorological conditions and suitability for electron microscopy (i.e., 30 

substrate area covered by particles). Table 2 gives an overview on how many particles were investigated with which method. 
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The objective of this study is the detailed characterization of refractory stratospheric particles. Similar to Ebert et al., 2016, we 

have classified all particles that are stable (no visible morphological change) under the high vacuum conditions and electron 

beam excitation in the SEM and TEM as refractory. 

The size, morphology, mixing state, nanostructure and chemical composition of 60 refractory particles per sample were studied 

by TEM using a Philips CM20 instrument (FEI, Eindhoven, The Netherlands) operated at 200 kV electron accelerating voltage. 5 

The chemical composition of the particles (all elements with an atomic number Z ≥ 5) was determined by EDX using a Silicon-

drift X-ray detector (Oxford Instruments, Oxfordshire, United Kingdom) and a measurement time of 20 seconds. Particle size 

and graphene sheet separation distance were analyzed by the ImageJ software (1.48v; Rasband, W. S. National Institutes of 

Health, USA, 1997-2016). Element distribution images were acquired with a JEOL JEM 2100F (JEOL, Tokyo, Japan) operated 

in Scanning Transmission Electron Microscopy (STEM) mode at an electron acceleration voltage of 200 kV. The instrument 10 

is equipped with the same type of EDX-detector as the Philips CM20 instrument. 

In order to detect elements present at low abundance, additional 30 refractory particles per sample were analyzed by SEM 

using a Quanta 200 FEG instrument (FEI, Eindhoven, The Netherlands) equipped with an EDX detector (EDAX, Tilburg, The 

Netherlands) operated at 15 kV electron accelerating voltage. X-ray spectra were accumulated over fifteen minutes per particle 

to obtain a low detection limit. These long exposures were not feasible in the TEM due to its higher beam energy and resulting 15 

particle evaporation. Element concentrations were obtained from the X-ray count rates by applying a “standard-less” ZAF 

correction. Detection limits of element/carbon ratios (at% / at%) for the long-time measurements are as follows: O/C = 0.0034; 

Si/C = 0.0010; S/C = 0.0008; Cr/C = 0.0008; Fe/C = 0.0009 and Ni/C = 0.0011. 

The particles were studied by TEM and SEM without coating. 

Potential contamination of the samples was checked by investigating blanks (samples transported in the MACS but not exposed 20 

to stratospheric air flowing through the impactor orifice) for each sampling day. A few titanium (Ti) and zinc (Zn) oxide 

particles, as well as few pure C particles were encountered on the blank samples. They look similar to some carbonaceous 

particles being described as contaminants on TEM grids (Harris et al., 2001). However, these particles are different in both 

size and morphology compared to the carbonaceous particles observed in the impaction spot of the samples. 

In order to verify that the small amounts of Fe, chromium (Cr) and nickel (Ni) detected during long-term SEM measurements 25 

are not artifacts from the substrate, five points on each substrate far away from particles were analyzed. These three elements 

were not detected in the measurements of the clean substrates. 

Another artefact can result from scattered radiation within the SEM. This could lead to the detection of chemical elements in 

the vacuum chamber’s housing material. To test this possibility, one sample was measured at larger sample chamber pressures 

(5x10-3, 200 and 500 Pa) which result in increased scattering of beam electrons in the sample chamber. According to Stokes 30 

(2008), scattering varies between 40 – 80 % at 200 Pa and 70 – 98 % at 500 Pa. Fe, Cr, and Ni did not show increased 

concentrations at higher pressure, but rather their count rates decreased. The small Fe, Cr and Ni concentrations detected in 

individual particles were not the result of stray radiation. 
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The elemental composition of the particles was determined by EDX in TEM (n = 529) as well as SEM (n = 330). Due to the 

small size of the particles, TEM is the preferred method of analysis. As mentioned above, particles were additionally analyzed 

by SEM. Both measurements led to small but systematic differences in the ratios of O, Si, S, Mg (magnesium), Fe and Al to 

C. For example, the median O/C value is 0.236 for TEM and 0.117 for SEM (Figure S1 and S2 of the electronic supplement). 

For all elements TEM-EDX yielded somewhat higher elemental ratios relative to carbon than SEM-EDX. These differences 5 

most likely result from differences in the detectors, such as thickness of detector windows, and the different acceleration 

voltages (15 kV in SEM versus 200 kV in TEM). However, as the differences are small (Figure S2 of the electronic 

supplement), our conclusions are independent of the method used. SEM-EDX data are reported here since the counting time 

on each particle was much longer in SEM (15 minutes) than in TEM (20 seconds) leading to higher precision as well as lower 

detection limits. The much lower detection limits of SEM-EDX are important for source identification as minor elements may 10 

serve as fingerprint for several anthropogenic and natural sources. Thus, the SEM-EDX data are preferred despite the lower 

number of particles investigated with this technique. In addition, the chemical composition of particles could not be analyzed 

by TEM-EDX on two samples (labeled as G and K) due to the inappropriate position of the impaction spot on the substrate 

(too close to the Cu grid leading to a very high count rate for Cu). 

In order to assess the mixing state of the refractory particles, additional image analysis was performed in TEM. For this purpose 15 

image series before and after TEM analysis were prepared.  

All particles which showed no signs of destruction or morphological change were defined as refractory. Particles which 

changed under the electron beam were deemed volatile, allowing quantification of the fraction of aerosol which is volatile. In 

total 3316 particles were analyzed by this method. 

To ensure unbiased results, the individual images as well as particles for EDX analysis were randomly taken in inner and outer 20 

areas of the impaction spot. 

2.3 Statistical analysis 

Censored boxplots show data taking into account the fraction of values below detection limit. Lower and upper quartiles appear 

as a box, minimum and maximum values as whiskers. 

The differences in element ratios between samples collected inside and outside the vortex were tested with the generalized 25 

Wilcoxon test (Helsel, 2012) applying a significance-level of 5%. Furthermore, the differences in size, projected area diameter 

and element ratios between the various samples were tested with the Kruskal-Wallis rank sum test (uncensored data) and the 

generalized Wilcoxon test (censored data). In all individual tests, a significance level of 5 % was applied. 

The detection limits for EDX data were calculated from counting statistics (background counts plus three times standard 

deviation of background counts). 30 

All statistical calculations were performed with R (version 3.3.0; R Core Team, 2016) and using the contributed package 

NADA (version 1.5-6; Lee, 2013). 
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3 Results 

All collected particles are located within a characteristic impaction spot having a diameter of ~350 µm. As TEM bright field 

images show (Figure 1), volatile particles (initially deposited as droplets) cover a relatively larger area compared to refractory 

particles. They show high abundances of sulfur and oxygen. Sometimes, a minor nitrogen peak is also observed in the X-ray 

spectra. These particles are highly unstable under electron bombardment. They most likely consist of ammonium 5 

sulfate/hydrogen sulfate and formed from sulfuric/nitric acid. As the presence of sulfates in stratospheric samples is well 

known (e.g., Sheridan et al., 1994; Arnold et al., 1998; Murphy et al., 2007; Kremser et al., 2016), these particles are not 

investigated further. In addition to the sulfates, carbonaceous particles stable under electron bombardment are frequently 

observed either as individual particles or embedded in the sulfates (Figures 1 and 2). 

As the refractory carbonaceous particles in Figure 2a have no distinct shape and surface morphology, only one TEM image is 10 

shown. 

Given the size of the refractory particles and the performance of the impactor, all similar particles in the sampled air were 

likely delivered to the impactor and collected there. Since the amount of air drawn through the impactor is known, the 

atmospheric abundance of these particles can be estimated from the number of particles in the impactor sample. That number 

was estimated from electron micrographs sampling the impaction spot and the size if the impaction spot. The ambient number 15 

mixing ratio of the refractory carbonaceous particles varies between 0.65 (mg air)-1 and 2.3 (mg air)-1, with a median for all 

samples of 1.1 (mg air)-1 (Table 1). When compared with CPC measurements in Table 1, the carbonaceous particles comprised 

a few percent of the total number of particles in the air. 

 

TEM Analysis of the size distribution of the particles 20 

The size distribution of the refractory carbonaceous particles is indicated in Figure 3. Approximately 98 % of the particles 

have an equivalent projected area diameter (Dpa) below 500 nm (range 20 – 830 nm). The size of the particles slightly increases 

with time during the campaign, sample J shows the largest median particle sizes. 

 

SEM Analysis of the chemical composition of the refractory carbonaceous particles 25 

Besides C, the refractory carbonaceous particles always contain O and Si (Figures 2, 4 and 5), and in most cases also S. The 

element Si may at least partly be an artifact of the substrate. The S X-ray peak in EDX-spectra originates either from sulfates 

internally mixed with the carbonaceous particles or from stray radiation. Please note that the heights of the individual peaks in 

figure 2 are not proportional to the element concentrations, but give a rough estimate of the element abundance. The elements 

Cr, Fe, and Ni are often found as minor component (Figure 4). These three elements exclusively occur within the carbonaceous 30 

matrix, and are not abrasion products from ice particles hitting the aerosol inlet as the metallic particles described by Murphy 

et al. (2004) and Martinsson et al. (2014). Furthermore, none of the samples was collected during the existence of ice particles 

which could potentially remove material from the impactors’ inlet. During collection of samples A, B, E and G, polar 
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stratospheric cloud particles (PSC) containing oxides of nitrogen, NOy, were abundant. As we found the refractory 

carbonaceous particles in all samples independent of the occurrence of NOy, they are not artifacts from the removal of material 

from the inlet system. As the TEM substrates are made of a formvar foil predominantly consisting of C, O, and traces of Si, 

these three elements may – at least partly – be an artifact of the substrate. However, there are three points of evidence which 

clearly show that the refractory carbonaceous particles observed are not an artifact of the substrate: 5 

 

1) Much higher carbon X-ray count rates were obtained when measuring particles compared to the pure substrate.  

2) Graphene sheets within the particles were observed by high resolution TEM. In contrast, the substrate is always 

completely amorphous.  

3) The refractory carbonaceous particles only occur within the impaction spot. 10 

 

The refractory carbonaceous particles have a different morphology than the few carbonaceous particles found on blank 

samples. In addition, the carbonaceous particles encountered on blank samples are often much larger with a size of several 

µm. Please note that a different foil with much higher O and Si contents was used for sample K. Thus this sample was excluded 

from figures 4, 6 and 8. The TEM grids consist of Cu leading to strong Cu X-ray peaks in the spectra (Figure 2). Consequently, 15 

Cu is excluded from the further analysis and discussion. Mg is only present in a few particles. S is the major component of the 

volatile material surrounding the carbonaceous particles. Fe is found as minor element in the majority (~ 95 %), Cr in about 

87 % and Ni in about 49 % of refractory particles. 

 

The spatial distribution of minor elements within the carbonaceous particles was investigated by element distribution images 20 

in STEM (Figure 5) with a 256x256 pixel resolution as well as by measuring several points on the same particle. With both 

approaches it is possible to obtain highly resolved information on the spatial distribution of elements within a nanometer-scale 

particle. C is the most abundant element and is found in the whole particle. The elements O, Si, Cr and Fe only occur in some 

regions of the particles. The element Al is only detected in few particles. Due to the low number of X-ray counts, the 

distribution of Mg and Ni is difficult to assess. S seems to occur in the whole particle and is assumed to come from stray 25 

radiation of the surrounding sulfates. The heterogeneous element distribution was also observed in multiple point 

measurements (up to 20 points on one particle). 

 

Based on elemental composition, the refractory carbonaceous particles (number n = 330) were classified into four groups 

(Table 3). Only few particles consist of C, O, and Si only. Many particles contain additional Cr, Fe and Ni (n = 131) or Cr and 30 

Fe (n = 125). Particles only containing additional Fe are rare (n = 22). Please note that the element S was not used for particle 

classification, because this element is found in most spectra, either due to scattering from surrounding volatile particles or 

because the refractory carbonaceous particles are embedded in sulfates. 
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Element ratios relative to C (at% / at%) are shown in Figure 6 for all samples. The median O/C ratio varies between 0.052 and 

0.129. The median Si/C ratios vary between 0.003 and 0.012, but may be influenced by the substrate. For all other elements, 

the respective median ratios are generally very low (< 0.005). Sample K is not shown due to the different substrate used (with 

lower C and higher Si content). The differences between the various samples are for all element ratios statistically significant 

on the 5 % level. Most obvious, sample G has lower element/C ratios than the other samples. 5 

 

TEM analysis of the particle nanostructure 

The nanostructure was investigated by high resolution TEM. All particles are either completely amorphous (Figure 7 a, b) or 

show only very small regions (less than ten graphene sheets) with ordering (Figure 7 c, d). In the latter case, the graphene sheet 

separation distance was determined (Table 4). As these measurements are very time-consuming, only 23 particles from 5 10 

samples were investigated. The graphene sheet separation distance varies between 0.19 and 0.60 nm, the mean values of 

different grains between 0.25 and 0.47 nm. This range is slightly larger than typically observed for soot (Vander Wal et al., 

2010; Li et al., 2011; Liati et al., 2014; Weinbruch et al., 2016). 

 

All samples, with the exception of one (sample D), were collected inside the polar vortex. Element ratios of the samples inside 15 

and outside the vortex are compared in Figure 8. There are no statistically significant differences on the 5% level in element 

ratios and particle size (Figure 3) between these two cases. 

4. Discussion 

4.1 Occurrence of refractory carbonaceous particles in the stratosphere 

We find that all of the refractory particles are carbonaceous and typically contain minor amounts of Fe, Cr and Ni distributed 20 

within the particles. Most of the refractory carbonaceous particles are not included in or coated by sulfate. This is surprising, 

as the particles were sampled in air having low abundance of N2O and therefore long residence times in the stratosphere (Table 

1). Therefore, one would expect that all refractory particles occurring in the polar stratosphere are covered by sulfuric or nitric 

acid. The low abundance of refractory particles internally mixed with sulfates contradicts expectations based on the models by 

Mills et al. (2005) as well as the findings of Sheridan et al. (1994) and Murphy et al. (2013) which suggest that most or all 25 

stratospheric refractory particles should be embedded in or coated with sulfuric acid. The results of our study can partly be 

explained by the evaporation of the sulfate component in the electron beam prior to its identification. The mixing state of the 

refractory carbonaceous particles may also be caused by splattering of volatile material of previously internally mixed 

refractory/volatile material. However, the reason for most of the refractory carbonaceous particles to be externally mixed 

remains open.  30 

Refractory carbonaceous particles in the polar stratosphere were identified in several earlier studies (discussed below). 

Depending on the applied technique different terms were used for such particles. In the present contribution the following 
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nomenclature is used: All particles consisting predominantly of the element carbon are termed carbonaceous, i.e., only the 

chemical composition is used for classification. The term soot is used for agglomerates of primary particles (20 – 50 nm size) 

predominantly consisting of carbon which show a specific, onion-shell like nanostructure (Buseck et al., 2012). Black carbon 

(BC) is used for particles strongly absorbing light in a wide spectrum of the visible wavelength (Petzold et al., 2013) with at 

least 5 m2g-1 at a wavelength of 550 nm (Bond et al., 2013). 5 

Soot in the stratosphere was previously identified by scanning and transmission electron microscopy in accordance with the 

nomenclature outlined above (Pueschel et al., 1992 (diameter = 0.2 – 0.3 µm), 1997 (diameter ≤ 1 µm); Sheridan et al., 1994 

(diameter ~ 0.3 µm); Blake and Kato, 1995 (diameter ≤0.5 µm); Strawa et al., 1999 (diameter = 0.3 – 0.4 µm); Ebert et al., 

2016 (diameter ≤0.5 µm)). Carbonaceous particles (diameter ~0.1 µm) which might be soot although they were not 

unequivocally identified as such, due to the lack of high resolution images, were found by Chuan and Woods (1984). Testa et 10 

al. (1990) found seven poorly graphitized carbon particles in their samples and regarded them as artifacts of carbon films from 

the TEM grids. As they did not provide images of these particles, they cannot be compared to our findings. However, we can 

exclude that our particles are substrate contaminants, since such particles did not occur on the blank samples. In addition, the 

refractory carbonaceous particles were only observed within the impaction spot and not on the clean substrate. 

Carbonaceous particles partly containing heterogeneous metallic inclusions were found by Chen et al. (1998) (diameter = 0.1 15 

– 2 µm). Some of these particles were called soot without providing a more precise description. Thus, it is not clear if they are 

similar to particles we identified as soot. According to these authors, the “soot particles” most likely stem from aircraft exhaust, 

as the samples were – at least partly – collected in the exhaust of an aircraft in the lower stratosphere. 

Mixed carbon-sulfur particles were observed by Nguyen et al. (2008) (diameter ≤ 1 µm) at 10 km altitude between 50°N and 

30°S. These particles were assumed to have formed from condensed organic matter. The differences between these particles 20 

and those found in the current study might result from differences in sampling altitudes and regions. Therefore we cannot 

totally exclude the particles to be different, taking into account that the particles might have evolved from condensed organic 

matter. However, we do not know if secondary organic particles become refractory as a result of atmospheric processes. 

 

Stratospheric carbonaceous particles were also often detected by means of mass spectrometry (MS). For example, Murphy et 25 

al. (1998, 2013) identified carbonaceous particles, with a lower abundance in the stratosphere compared to the upper 

troposphere (Murphy et al., 2013; diameter = 0.3 – 0.8 μm; tropics and mid-latitudes). The same group (Murphy et al., 2007) 

reported the presence of a small fraction of carbonaceous particles (diameter ≤ 300 nm) within the stratosphere. As some of 

these particles contained potassium, they were assumed to originate from biomass burning. Particles from rocket and space 

shuttle exhaust (collected in the stratosphere) were investigated by Cziczo et al. (2002) with the same instrument. In solid fuel 30 

rocket exhaust (Athena rocket and space shuttle boosters) the most frequent observed signals stem from different aluminum 

oxide species (often with minor amounts of Fe). About 17% of the particles (Athena rocket) were classified as carbonaceous 

as compared to 1% from space shuttle exhaust. In principle, the carbonaceous particles found by MS could be similar to the 
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carbonaceous particles of the present study. Since MS does not yield images of the particle morphology or information on the 

nanostructure, no definite conclusion can be drawn. 

 

Stratospheric carbonaceous particles were also identified by optical measurements. For example, a single particle soot 

photometer (SP2) was applied by Baumgardner et al. (2004) (diameter = 0.15 – 1 µm) on board of an aircraft in order to 5 

identify ozone loss processes in the polar vortex. In total, 60% of the light absorbing particles incandesce at temperatures above 

3500 K and are, thus, interpreted as BC. According to Baumgardner et al. (2004) these particles originate from tropospheric 

sources rather than aircraft emissions. The same technique was applied by Schwarz et al. (2006) (diameter = 0.15 – 0.7 µm) 

to identify BC in midlatitudes from the boundary layer to the lower stratosphere. Only ≤1% of the particles was classified as 

BC and no potential source was specified.  10 

Local enhancements of carbonaceous material at altitudes around 25 km were also deduced from simultaneous measurements 

of a spectrometer on board a satellite as well as from radiance and particle counter data (Renard et al., 2008) (diameter = 0.35 

– 2 µm) obtained on a stratospheric balloon. This material was thought to be injected into the stratosphere by the pyro-

convective effect (i.e., fire-started or fire added convection). Some of the particles with submicron size were supposed to 

originate from vaporized interplanetary material (Renard et al., 2008). Due to the lack of information on morphology, chemistry 15 

and microstructure of the particles, a direct comparison of the carbonaceous material deduced from optical measurements with 

the particles encountered in the present study is not possible. 

 

In the present study, only carbonaceous particles and sulfates were observed similar to previous findings (Pueschel et al., 1992; 

Blake and Kato, 1995; Strawa et al., 1999; Nguyen et al., 2008). There are, however, several previous publications which 20 

describe the presence of a variety of other refractory particle groups in addition to carbonaceous particles. These additional 

particle groups include metallic particles (Chuan and Woods, 1984; Sheridan et al., 1994; Chen et al., 1998; Baumgardner et 

al., 2004; Ebert et al., 2016), meteoritic particles (Murphy et al., 1998, 2007, 2013; Renard et al., 2008, Ebert et al., 2016), 

silicates (Testa et al., 1990; Ebert et al., 2016), crustal-type particles (Sheridan et al., 1994; Chen et al., 1998), as well as Ca-

bearing particles (Della Corte et al., 2013; Ebert et al., 2016). 25 

In summary, the sole occurrence of refractory carbonaceous particles and sulfates in stratospheric samples was reported in 

previous literature but seems to be uncommon. The median number mixing ratio (1.1 mg air-1) of carbonaceous particles is 

smaller by an order of magnitude than the abundance of non-volatile particles reported by, e.g., Weigel et al. (2014) for 

measurements in the winter stratospheric polar vortex in 2003, 2010 and 2011. The method described by Weigel et al. involves 

exposure of particles to a temperature >250 °C and determination (with a CPC) of the number of particles that did not evaporate 30 

to sizes below the detection limit of the CPC. They concluded that up to 80% of the particles present were non-volatile by this 

criterion. Following our definition only a few percent of the SOLVE particles are non-volatile in the electron microscope. This 

discrepancy may be caused by the different definitions of a non-volatile particle. 
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4.2 Potential Sources 

The most likely sources of refractory carbonaceous particles found in the current study include aircraft emissions, 

extraterrestrial sources, rocket exhaust and explosive volcanic eruptions as these sources emit material directly into the 

stratosphere. In addition, biomass burning can be considered as a possible source, as it was shown by several authors that large 

fires have sufficient energy to inject particles into the lower stratosphere (Fromm et al., 2000, 2006, Siebert et al., 2000;, 5 

Fromm and Servranckx, 2003; Jost et al., 2004; Siddaway et al., 2011). Domestic wood burning, coal combustion, diesel 

engines and ship exhaust are not expected to significantly contribute to the stratospheric particle load. However, as these 

sources emit large amounts of carbonaceous material on a global scale (Bond et al., 2004, Gaffney and Marley, 2005, Corbett 

and Koehler, 2003; Lauer et al., 2007), they will be discussed shortly. For example Thornberry et al., 2010 show that tropical 

tropospheric particles contain high amounts of thermostable carbonaceous material, and it is possible that these particles 10 

become mixed within stratospheric air. Although the vertical exchange may be less effective than the direct injection processes, 

however, it is conceivable that fractions of carbonaceous aerosol material released in the troposphere is vertically transported 

into the stratosphere by processes such as tropical convection (and lifted further via the Brewer-Dobson circulation), 

cyclogeneses, warm conveyor belts, tropopause folds and/or isentropic transport.  

Most particle groups discussed in the following were collected close to their emission source. We are aware of the fact, that 15 

particles collected in the polar stratosphere may in principle change their properties during their atmospheric lifetime. 

However, ordering of carbonaceous material is an irreversible process leading always to a higher degree of ordering (Diessel 

et al., 1978; Itaya, 1981; Pesquera and Velasco, 1988). As most of the particles analyzed show no or only very little ordering, 

it is assumed that the particles did not change their nanostructure during their atmospheric lifetime. On the other hand, several 

electron microscopy studies describe soot particles in the stratosphere (Pueschel et al., 1992, 1997; Sheridan et al., 1994; 20 

Strawa et al., 1999; Ebert et al., 2016). Thus, it can be expected that soot particles - once injected into the stratosphere – do 

not change their typical nanostructure under stratospheric conditions. 

 

Aircraft exhaust 

High flying aircraft can contribute significantly to the stratospheric aerosol burden. Soot is described as the main particulate 25 

exhaust component (Twohy and Gandrud, 1998; Popovitcheva et al., 2000; Smekens et al., 2005; Vander Wal et al., 2010; 

Liati et al., 2014). The observed soot consisted of primary particles 10 - 50 nm in diameter which formed aggregates with 

diameters of up to approximately 450 nm (Twohy and Gandrud, 1998; Popovitcheva et al, 2000; Smekens et al., 2005; Liati 

et al., 2014). The nanostructure of the primary particles varied from an onion-shell structure with partial ordering 

(Popovitcheva et al., 2000; Vander Wal et al., 2010) to completely amorphous (Twohy and Gandrud, 1998). The mean 30 

graphene sheet separation distance of the partly ordered primary particles varied between 0.36 and 0.41 nm (Vander Wal et 

al., 2010; Liati et al., 2014). An atomic O/C ratio of 0.32 was reported by Vander Wal et al. (2010). The elements S, Na 

(sodium), N (nitrogen), Zn (zinc), Ba (barium), Cl (chlorine), K (potassium), Fe and Si were detected in minor concentrations 
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(Vander Wal et al., 2010; Mazaheri et al., 2013). In addition to soot agglomerates, single carbon spheres were found by 

Mazaheri et al. (2013) in aircraft exhaust. The particles have diameters between 5-100 nm with a median of 35.4 nm. Besides 

C, minor O, S, Cl, K, Fe and Si were detected by TEM-EDX and Proton Induced X-ray Emission (PIXE) analysis. Aircraft 

exhaust is excluded as source of the carbonaceous particles encountered in the present study, as we did not observe soot 

agglomerates. In addition, the chemistry and morphology (basically rounded shapes) of the single carbon particles described 5 

by Mazaheri et al. (2013) are different from our particles. 

 

Extraterrestrial particles 

With an input of 5-270 tons per day (Plane, 2012), extraterrestrial material is expected to be the major source of refractory 

stratospheric particles (Murphy et al., 1998; 2007). Carbonaceous material is observed in chondrites (dominant meteorite 10 

fraction) as well as in interplanetary dust particles (IDPs). 

In carbonaceous chondrites, a variety of different carbonaceous constituents is described in previous literature. For example, 

nanometer-sized carbon-rich flakes, spheres and tubes as well as hollow carbon-rich nanospheres were found (Garvie and 

Buseck, 2004; Garvie, 2006; Garvie et al., 2008). Most carbonaceous nanospheres are amorphous. Besides C, the only other 

elements detected are S, N and O. Carbonaceous material in carbonaceous chondrites was also investigated by Aoki and Akai 15 

(2008). Different morphologies like “ribbon-film–like carbonaceous material”, “spherical carbonaceous globules”, 

“concentric-sphere type carbon material”, and “featureless carbon material” were observed. They also describe the occurrence 

of minor amounts of Cl in many of these particles, an element never observed in our study. Neither morphology nor shape or 

chemical composition of the particles described above matches the refractory carbonaceous particles encountered in the present 

study. Carbon nanoparticles with diameters between 2-10 nm were observed in carbonaceous material isolated from the 20 

Allende carbonaceous chondrite (Harris et al., 2000). The particles had either a single outer wall or were surrounded by 

multiple walls. However, as the particles were mobile under the electron beam, no photographs are shown. A comparison to 

our particles is thus impossible. Since the authors did not find any other elements except C, most of our particles differ in 

chemical composition as they contain Fe, Cr, and/or Ni as minor elements. 

Carbonaceous material was also found in IDPs (Matrajt et al., 2012). Some of the material observed is similar in size, 25 

morphology and nanostructure to our particles. However, in Matrajt et al. (2012) minor elements were not investigated and 

this parameter cannot be compared. 

In summary, the carbonaceous components observed in chondrites differ in chemical composition from most of our particles. 

Carbonaceous material contained in IDPs cannot be excluded as source of the refractory particles encountered in the present 

study, as the minor element concentration of the former is not known. However, if we expect extraterrestrial material to be the 30 

major source of our particles, we would also expect to find Mg-rich silicates in our samples, which was not the case. 

Furthermore, the occurrence of Fe, Cr and Ni as minor elements in our refractory carbonaceous particles is regarded as hint 

for an anthropogenic origin. This interpretation is supported by the fact that the observed average atomic ratios of these three 
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elements (Cr/Fe = 0.249, Ni/Fe = 0.167, Cr/Ni = 1.145) are significantly higher than the cosmic element ratios (Cr/Fe = 0.015, 

Ni/Fe = 0.056, Cr/Ni = 0.278; Palme and Jones, 2005). 

The chemical composition of extraterrestrial material may be strongly fractionated by frictional heating during atmospheric 

entry (e.g., Carrillo-Sánchez et al., 2016; Gómez- Martin et al., 2017). The processes taking place during atmospheric entry 

include ablation by sputtering and thermal evaporation as well as fragmentation. Meteorite ablation particles usually occur as 5 

iron, glass or silicate spheres (e.g., Blanchard et al., 1980; Murrell et al., 1980). Submicrometer refractory carbonaceous 

particles resulting from meteoric ablation and fragmentation have - to the best of our knowledge - not been described in 

previous literature. However, it is conceivable that such particles originate from carbonaceous material contained in meteorites 

or interplanetary dust particles. The observed non-chondritic ratios of the minor elements Fe, Cr, Ni are not a strong argument 

against such an origin, as the volatility of these elements depends on the minerals in which they are contained. Most of 10 

extraterrestrial Fe occurs as metal, silicate or oxide, most of Ni as metal (Papike, 1998). Cr may occur as oxide, sulphide or 

nitride as well as a minor component in metal and silicates (Bunch and Olsen, 1975). Depending on the relative abundance of 

the different mineral phases, substantial fractionation during evaporation can be expected (see also Floss et al., 1996). In 

summary, meteoric ablation and fragmentation particles are a possible source of the particles encountered in the present study. 

 15 

Rocket Exhaust 

Rocket exhaust is also a possible source of stratospheric particles. However, literature on particles emitted by rockets is sparse 

(e.g. Zolensky et al., 1989), and there are – to the best of our knowledge – no studies available on carbonaceous particles by 

electron microscopy. According to Ross and Sheaffer (2014), five different propellant types which use a combination of 

different oxidizers and fuels are in use: O2/kerosene, O2/H2, NH4ClO4/Al, N2H4/N2O4 and N2O/solid hydrocarbons. Solid rocket 20 

motors (SRM) emit characteristic Al2O3 spheres (Strand et al., 1981; Zolensky et al., 1989; Cofer III et al., 1991) and can, 

thus, be excluded as source of the carbonaceous particles encountered in the present study. Hydrocarbon-fired rockets are 

powered by kerosene or syntin and can be expected to emit soot. For example, soot particles most likely emitted by a Russian 

Soyuz booster rocket were found in an aerosol cloud at 20 km (Newman et al., 2001). The soot particles contribute 

approximately 1/4 to the total particle number, the rest were volatile sulfate particles. The occurrence of carbonaceous material 25 

from rocket exhaust was also reported by Cziczo et al. (2002). In the exhaust of an Athena II rocket, the carbonaceous fraction 

of material was found to be 17% by number (Cziczo et al., 2002). As the refractory carbonaceous particles observed by us are 

not soot, their origin from rocket exhaust is unlikely. However, as carbonaceous rocket exhaust particles were not investigated 

previously by electron microscopy this source cannot be excluded. 

 30 

Volcanic emissions 

Volcanic eruptions are generally not considered to emit carbonaceous material. However, carbonaceous material was found in 

samples from the Kasatochi (Alaska, 2008), Sarychev (Russia, 2009) as well as Eyafjallajökull (Island, 2010) eruptions 

(Martinsson et al., 2009; Schmale et al.; 2010; Andersson et al., 2013). The carbonaceous material most probably originates 
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from air entrained into the volcanic cloud. The carbonaceous mass fraction in plumes from two volcanoes in Ecuador and 

Columbia was found to vary between 19-38% (measured by MS; Carn et al., 2011). Sulfur-carbonaceous mixed particles 

occurred predominantly in the size range below 0.9 µm. In 1999, the year before the campaign, there were four volcanic 

eruptions with a VEI ≥ 4 (Volcanic Explosivity Index): Soufrière Hills (West Indies) in January, Shiveluch (Russia) in August 

as well as Guagua Pichincha (Ecuador) and Tungurahua (Ecuador) in October (NOAA, 2017). Still, volcanism seems an 5 

unlikely source for our samples, as volcanic eruptions will emit large amounts of silicate particles, which we did not observe. 

 

Biomass burning 

A further source of carbonaceous particles in the stratosphere is biomass burning (BB). Particles originating from BB can be 

lifted to the stratosphere by either the tropical upper tropospheric upwelling or the pyroconvective effect (Fromm et al., 2000; 10 

Jost et al., 2004). Three different types of carbonaceous BB particles were described in previous literature (e.g., Pósfai et al., 

2003; 2004; Kis et al., 2006; Li and Shao, 2009): organic particles with inorganic inclusions, tar ball particles and soot. Organic 

particles (no specific morphology) contain C and minor O, and are stable under the electron beam. They do not show the 

typical microstructure of soot (see below). The inorganic inclusions mostly consist of KCl and K2SO4. Tar balls have a typical 

spherical shape and mainly consist of C and O with minor K, S, Cl and Si contents. Soot consists of chain-like agglomerates 15 

of primary particles (10 – 100 nm) with a typical onion shell microstructure (graphene sheet separation distance between 0.133 

and 0.137 nm). As our particles do not show the characteristics of all types of carbonaceous BB particles described above, this 

source can be excluded. 

 

The most probable potential sources for carbonaceous particles were already discussed above. For these sources the transport 20 

mechanisms into the stratosphere are well known. There are further strong tropospheric sources for carbonaceous particles, 

which predominately emit particles at ground level. An effective transport to the stratosphere of these particles is unlikely. 

Still, they will be discussed briefly, as they are – on a global scale – major sources of carbonaceous material in the lower 

atmosphere. 

 25 

Wood burning 

Soot is a major component emitted by wood burning. Similar to biomass burning, soot from wood burning consists of 

agglomerates of spherical primary particles (20 – 80 nm diameter) with an onion-shell nanostructure (Kocbach et al., 2005; 

Torvela et al., 2014, Tumolva et al., 2010). Some primary particles are amorphous (Tumolva et al., 2010). The particles may 

have a surface coating which is volatile under electron bombardment (Torvela et al., 2014). Carbon is the major element of 30 

wood burning soot, O, Na, Si, S, Cl, K, and Ca occur as minor elements (Kocbach et al., 2005; Tumolva et al., 2010). In 

addition to soot, particulate organic matter (POM) was found in wood burning (Torvela et al., 2014). The POM particles, 

sometimes described as tar balls are 30 - 600 nm in diameter. Judged from the properties described above, both soot and POM 
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are different to the particles observed in our study. Thus, wood burning can be excluded as a source for the refractory 

carbonaceous stratospheric particles. 

 

Coal burning 

A variety of different carbonaceous particles was observed during coal burning. Most carbonaceous particles are soot particles, 5 

i.e., fractal-like agglomerates (0.1 – 1 µm size) consisting of 10 – 50 nm diameter primary particles. The primary particles 

show a characteristic onion-shell structure (Chen et al., 2004, 2005). Some of the soot agglomerates have inorganic inclusions 

or inorganic particles on their surface, containing Mg, Ca, Sr (strontium), Ba (barium) and Na (Chen et al., 2005). Char particles 

associated with ultrafine titanium oxide particles were also found (Chen et al., 2005). Sometimes ultrafine Ti, Al, Fe and Ca 

particles were embedded in large char particles. In addition, graphitic fiber structures that are either straight or curved were 10 

encountered. Two of the three types of carbonaceous particles described for coal combustion (soot agglomerates and graphitic 

fibers) are certainly different from our particles. As images of char particles were not provided by Chen et al. (2005) we cannot 

compare their results to the refractory carbonaceous particles of the present study. However, we regard coal combustion as an 

implausible source. 

 15 

Diesel engines 

Diesel engines are another important source of carbonaceous particles and above all soot particles. Again, soot agglomerates 

consist of spherical primary particles (5 – 50 nm diameter) with onion-shell nanostructure (e.g., Tumolva et al., 2010; Wentzel 

et al., 2010; Li et al. , 2011; Song, 2004; Weinbruch et al., 2016). The graphene sheet separation distance varies between 0.31 

– 0.48 nm; (Vander Wal et al., 2010; Li et al., 2011; Weinbruch et al., 2016), and the intensity O/C ratio between 0.049 – 0.079 20 

(Weinbruch et al., 2016). Compared to our particles, the chemical composition, morphology and primary particle size of diesel 

exhaust particles are significantly different. Thus, we can certainly exclude this source. 

 

Ship emissions 

Ship emissions also contain soot agglomerates (Popovicheva et al., 2012; Lieke et al., 2013). Their chemical composition is 25 

dominated by C and O, with small amounts (< 1 wt %) of additional elements; e.g. V, S, Cl, Ca and Si (Popovicheva et al., 

2012). Furthermore, spherical char particles with diameters of 0.2 – 1 µm are found to be characteristic for ship emissions 

(Popovicheva et al., 2012). The morphology of these particles shown in SEM photomicrographs is different to the particles 

found in our study. Lieke et al., 2013 found amorphous carbonaceous material filling cavities of larger soot aggregates. The 

characteristics described for ship exhaust particles are significantly different to the particles found in our study, leading to the 30 

conclusion that that ship exhaust can be excluded as the source. 
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5. Summary 

The major finding of the present study is that the refractory component consists of carbonaceous particles only, with a number 

mixing ratio of 1.1 (mg air)-1 (median for all samples). Most carbonaceous particles are not internally mixed with or coated by 

sulfates. The particles were sampled in air having low abundance of N2O and therefore long residence times in the stratosphere. 

Thus, one would expect them to be covered with condensed sulfuric acid resulting from the oxidation of COS (Wilson et al., 5 

2008). The reason for this discrepancy is not known. 

As major elements only C and O were detected. Most of the carbonaceous particles show small and variable amounts of Fe, 

Cr and Ni. These minor elements are distributed in the carbonaceous matrix, i.e., they do not occur as heterogeneous inclusions. 

Most carbonaceous particles are completely amorphous. 

The exact source of the refractory carbonaceous particles remains unclear and can only be confined by exclusion. Based on 10 

the investigated physical properties and chemical composition of the particles, aircraft exhaust, volcanic emissions and biomass 

burning can be certainly excluded as source. The same is true for the even more unlikely sources wood burning, coal burning, 

diesel engines and ship emissions. It is expected that exhaust of rockets powered by kerosene or other hydrocarbons emit soot, 

but due to the lack of available electron microscopy studies of these emissions, rocket exhaust cannot be excluded as a possible 

source of the refractory carbonaceous particles found. Carbonaceous material from IDPs and extraterrestrial particles, likely 15 

originating from meteoric ablation and fragmentation remain as the most probable source for the particles encountered in the 

current study. 
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Table 1: Sampling conditions 

Table 1: 

Sampling 

conditions date 

(y/m/d/no)  

sample 

In Vortex Out 

of Vortex  

characteristics  

of flight* / 

Nitrogen 

Containing 

PSCs sampled 

PV at Θ 

[PVU]  

altitude [km]  

pressure [hPa]  

potential  

temperature Θ 

[K] #  

CPC 

Aerosol 

Number 

Mixing 

Ratio, 

Number per 

milligram of 

air (mg air)-1 

N2O,  

Age of Air  

2000-01-20_07  A 

In Vortex 

PSC survey§/  

PSCs sampled 

26.2 19.7/ 57/ 433  Not 

available 

165 ppbv 

4.3 years 

2000-01-20_11  B 

In Vortex 

PSC survey§/  

PSCs sampled  

26.6 19.4/ 60/ 431  Not 

available 

171 ppbv 

4.2 years 

2000-01-23_18  C 

In Vortex 

vortex, sunrise / 

PSCs  sampled 

31.3 19.8/ 56/ 438  87 153 ppbv 

4.5 years 

2000-01-27_15  D 

Out of Vortex 

edge survey / 

No PSCs  

24.7 19.9/ 56/ 448  72 227 ppbv 

3.6 years 

2000-01-31_18  E 

In Vortex 

vortex survey/ 

PSCs sampled  

32.0 19.7/ 59/ 437  88 171 ppbv 

4.2 years 

2000-02-02_19  F 

In Vortex 

vortex survey/ 

PSC Unknown/ 

26.5 18.6/ 68/ 425  86 167 ppbv 

4.3 years 

2000-02-03_15  G 

In Vortex 

multiple level/ 

PSCs sampled/ 

18.2 17.4/ 83/ 400  65 209 ppbv 

3.7 years 

2000-02-26_12  H 

In Vortex 

vortex survey/ 

No PSCs  

30.3 19.1/ 62/ 430  87 143 ppbv 

4.6 years 

2000-02-26_14  I 

In Vortex 

vortex survey/ 

No PSC s 

30.4 17.3/ 64/ 431  90 137 ppbv 

4.7 years 

2000-03-05_19  J 

In Vortex 

vortex survey 

PSC unknown  

27.7 19.2/ 64/ 424  63 150 ppbv 

4.5 years 

2000-03-11_19  K 

In vortex 

vortex edge 

PSCs unknown  

29.6 18.7/ 66/ 430  89 136 ppbv 

4.7 years 
*according to Newman et al. (2002), #during sampling, § no particles out of PSCs were analyzed; PV= Potential Vorticity, 

PVU= Potential Vorticity Unit [10-6 K m2 kg-1 s-1] 
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Table 2: Overview over particle parameters investigated. 

Information Number of particles investigated Applied in Figure/Table Method 

Size, morphology, chemical 

composition 

529 Figure 3 TEM 

Mixing state, morphology 3316 --- 

Nanostructure 23 Table 4, Figure 7 

Distribution of elements within 

the particles 

4 Figure 5 STEM 

Size, morphology, chemical 

composition 

330 Figure 3, Figure 4, Figure 6, 

Figure 8 

SEM 

Sum of total particles 4202   
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Table 3: Absolute number of refractory particles as function of particle group. 

Particle group sample 
 

A B C D E F G H I J K 

C, O, Si 4 8 3 2 4 8 11 3 4 3 2 

 + Cr, Fe, Ni 15 6 15 10 14 9 3 12 14 21 12 

 + Cr, Fe 10 13 12 13 12 9 11 13 12 4 16 

 + Fe 1 3 0 5 0 4 5 2 0 2 0 
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Table 4: Graphene sheet separation distance 

Particle# Separation distance [nm] 

 mean value minimum - maximum n 

A-1 0.38  0.35 – 0.39 3 

B-1 0.35 0.23 – 0.45 10 

C-1 0.35 0.33 – 0.37 5 

C-2 0.39 0.35 – 0.45 4 

C-3 0.41 0.37 – 0.48 5 

C-4 0.37 0.32 – 0.42 4 

C-5 0.38 0.34 – 0.40 6 

C-6 0.39 0.33 – 0.47 5 

C-7 0.38 0.35 – 0.40 5 

G-1 0.42 0.34 – 0.51 14 

G-2 0.47 0.37 – 0.60 18 

G-3 0.42 0.38 – 0.49 15 

G-4 0.43 0.40 – 0.53 35 

G-5 0.43 0.36 – 0.51 20 

G-6 0.29 0.19 – 0.32 25 

G-7 0.43 0.38 – 0.51 20 

I-1 0.34 0.31 – 0.39 4 

I-2 0.27 0.24 – 0.29 4 

I-3 0.27 0.25 – 0.28 3 

I-4 0.25 0.23 – 0.26 3 

I-5 0.46 0.44 – 0.48 3 

I-6 0.30 0.28 – 0.33 4 

I-7 0.33 0.32 – 0.34 3 

#sample-particle 
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Figure 1: TEM bright field image of a typical sample (sample I; 17.3 km altitude), before (a) and after evaporation (b). Particles 

evaporating under electron bombardment are marked with blue circles. They consist of sulfates/hydrogen sulfates. Red circles 

indicate stable carbonaceous particles. Green circles show refractory carbonaceous particle internally mixed with volatile 

sulfates/hydrogen sulfates. 5 
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Figure 2: TEM bright field image (a) of a typical refractory carbonaceous particle from sample H (19.1 km altitude). The 

image is representative for all refractory carbonaceous particles. The morphology is not depending on chemical composition, 

size, morphology or nanostructure. Energy-dispersive X-ray spectra of (b) a typical refractory carbonaceous particle with Fe, 5 

Cr and Ni, (c) Fe and Cr, (d) Fe and (e) without any other minor constitute. The particle predominantly consists of C and O. 

Minor amounts of Si are always present and may partly be an artifact of the substrate. Cu is an artifact from the TEM grid. Kα 

and Kβ as well as Lα and Lβ denote different X-ray peaks emitted from the same element. 

  

d 
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Figure 3: Boxplot of particle size (equivalent projected area diameter Dpa). Lower and upper quartiles appear as a box, 

minimum and maximum values as whiskers. 
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Figure 4: Median chemical subcomposition (atom %, without C and O) of refractory carbonaceous particles determined by 

SEM-EDX (30 particles per sample). Sample K was excluded from the figure due to a different substrate with higher Si content. 

 5 

 

Figure 5: STEM image (upper left) and element distribution images of a refractory carbonaceous particle from sample C (19.8 

km altitude). 
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Figure 6: Censored boxplots of element ratios relative to C (atom %) determined by SEM-EDX (30 particles per sample). 

Sample K is not shown due to the different substrate used. Lower and upper quartiles appear as a box, minimum and maximum 

values as whiskers. Values below detection limit (horizontal line) are not shown. 
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Figure 7: High resolution TEM image of individual refractory carbonaceous particles from sample G (17.4 km altitude): (a, 

b) completely amorphous particles, (c, d) particles showing small regions with ordering. 

 5 
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Figure 8: Censored boxplots of element ratios (atom %) relative to C, separately for outside and inside the polar vortex. 

Sample K was excluded from the analysis due to the different substrate used. Lower and upper quartiles appear as a box, 

minimum and maximum values as whiskers. Values below detection limit (horizontal line) are not shown. 


