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Anonymous Referee #1

This manuscript describes electron microscopy of particles sampled from the polar
stratosphere. It posits the existence of a new class of particles there, small refractory
particles with high carbon content. If correct, these measurements are important for
understanding aerosols in the polar stratosphere. For reasons given below, the data
are quite implausible, but neither is there anything definitely wrong. I have comments in
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three areas: technique, plausibility, and minor comments. If this is published, it should
be more in the tone of “we have some observations we don’t trust and definitely don’t
understand, but they are the only observations we have”.

1) Technique.

a) The samples are from 2000, and the analyses appear recent. Does this mean the
samples were stored in plastic boxes at room temperature for roughly 15 years before
analysis? It might not be a problem, or there could possibly be artifacts from odd
things like chemical interactions with vapors from the plastic box. Please comment in
the manuscript.

The samples were collected in 2000, analysis started late in 2013. We found the sam-
ples after storage in a desiccator and found them worth to be analyzed since data on
stratospheric particles are sparse. As we also investigated blank samples, which were
packed in the same sampling device (MACS), and stored in the same way as the real
samples, we can exclude contamination from vapors of the plastic box or other possible
artifacts related to storage. This issue is accordingly addressed in the last paragraph
of chapter 2.1 in the paper: “The stratospheric particle samples (deposited on TEM
grids) taken within the polar vortex, were packed into single plastic boxes and stored
in a desiccator prior to analysis, starting in 2014. Based on the investigation of blank
samples, contamination of the samples during the time of storage (e.g. by vapours
from the plastic boxes) can be excluded. Furthermore, a change in particle morphol-
ogy and nanostructure is not expected, since the particles found are either amorphous
or show very little ordering. This conclusion is based on the fact that graphitization
of carbonaceous material is an irreversible process (Diessel et al., 1978; Itaya, 1981;
Pesquera and Velasco, 1988). Anyhow, it should be kept in mind that other parameters
(chemical composition, mixing state) may be changed to a variable extent by aging.”

b) Are there any control samples? The manuscript mentions filter blanks, which are
different than controls. Confidence in the results would be higher if samples from a
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known environment (for example, in the troposphere) gave the known results.

Unfortunately there are no control samples available. This is something we are aware
of, and changed in recent campaigns, but can’t change for past actions. The filter
blanks the reviewer mentions proceeded the same actions as the real samples, e.g.
equipping to the MACS, taking part in the sampling procedure without being exposed
to ambient air, disassembly, storage, handling for measurements and measuring the
samples themselves.

c) Can you define “refractory” more quantitatively? If a particle doesn’t evaporate under
the electron beam in vacuum, what does that mean in terms of carbonaceous material?
Something with just a moderately high molecular weight, or does “refractory” mean it
is practically a carbonate rock? Where would typical secondary organic material fall?

We do know many carbonaceous materials, e.g. soot, spores, fragments of plants,. . .
which are stable under the high vacuum conditions in SEM and under the electron
beam and which are thus identified to be refractory. But based on both the size and
morphology of the particles, we can exclude all those particle species to be the same
as the particles found in the current study. Furthermore, we do know that highly volatile
material evaporates under both conditions in SEM mentioned. But unfortunately it
is difficult to quantify the real nature of the carbonaceous particles. Regarding the
definition of “refractory” we added a sentence to chapter 2.2: “. Similar to Ebert et al.,
2016, we have classified all particles that are stable (no visible morphological change)
under the high vacuum conditions and electron beam excitation in the SEM and TEM as
refractory.” Based on our long-lasting experience with tropospheric particles we know,
that secondary organic materials (except soot) easily evaporates under the electron
beam and does, thus, not show any “refractory” behavior. In addition, it would be
questionable where the minor amounts of the elements Fe/Cr/Ni/Si found in the current
study should come from in case of condensation (?) of secondary organic material.

2) Plausibility.

C3

a) I don’t understand the lack of sulfur in the particles. In Figure 7, for most particles
sulfur is below the detection limit of about 0.1%. The polar stratosphere vortex is a
region of condensation of H2SO4 that had evaporated and photolyzed in the upper
stratosphere (Mills, 2005 and references therein). At the concentrations modeled by
Mills et al., it would take perhaps a week for enough H2SO4 to condense on a 100
nm particle to produce more sulfur than observed. This is a rough calculation, and the
calculations by Mills span quite a range. Still, it underscores the difficulty of explaining
why sulfur is below detection limit on most of the particles. Any particle that spent a
significant amount of time in the polar stratosphere should have some sulfate, and sub-
100 nm particles with high surface-to-volume ratios should have measurable amounts
of condensing material.

We agree. As counting statistics might bear large errors based on impaction of several
liquid H2SO4-droplets on the same spot, fast evaporation of small particles as well
as fast evaporation in the vacuum chamber in the electron microscope leading to an
underestimation of volatile particles, we decided to remove (the old) figure 3 from the
manuscript. Furthermore, also very thin layers of volatile material on some of the re-
fractory particles may have vaporized under the high vacuum conditions in the electron
microscope. As each sample was at least equipped to the microscope for three times
(first scan, measurement by SEM, measurement by TEM), this effect is likely to occur
and may explain the low amount of S in (the new) figure 6. Anyhow, we are aware of
the fact, that many more of the externally mixed carbonaceous particles should show
some sulfur coating and thus discuss this issue in the text: “Most of the refractory
carbonaceous particles are not included in or coated by sulfate. This is surprising, as
the particles were sampled in air having low abundance of N2O and therefore long
residence times in the stratosphere (Table 1). Therefore, one would expect that all
refractory particles occurring in the polar stratosphere are covered by sulfuric or nitric
acid. The low abundance of refractory particles internally mixed with sulfates contra-
dicts expectations based on the models by Mills et al. (2005) as well as the findings of
Sheridan et al. (1994) and Murphy et al. (2013) which suggest that most or all strato-
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spheric refractory particles should be embedded in or coated with sulfuric acid. The
results of our study can partly be explained by the evaporation of the sulfate compo-
nent in the electron beam prior to its identification. The mixing state of the refractory
carbonaceous particles may also be caused by splattering of volatile material of previ-
ously internally mixed refractory/volatile material. However, the reason for most of the
refractory carbonaceous particles to be externally mixed remains open.”

b) I also don’t understand the lack of any difference in composition between the inside
and outside of the vortex (abstract and Figure 9). Curtius et al. (2005) found some big
differences in refractory fraction between the inside and outside of the vortex. Yet in this
manuscript there is no difference in composition. Nor is there any obvious correlation
between the potential vorticity (PV) of samples with the volatile fraction (Table 1 and
Figure 3). The samples listed with the highest volatile fraction (G and H) are inside the
vortex, in apparent contradiction to Curtius et al.

The comparison of our data deduced from SEM-measurements are probably difficult
to compare to COPAS-data from Curtius et al. (2005). The Aerosol preheater oper-
ated with COPAS forces volatile aerosol compounds to evaporate within 1 -2 seconds
while exposed to temperatures of ∼250◦C – that this technique works to evaporate
H2SO4 of stratospheric sizes to sizes below the COPAS detection limit was demon-
strated to perform well (cf. Weigel et al. 2009). This kind of “flash”-evaporation by using
thermo-denuders may force any solvent within a H2SO4 particle to get stuck together
(including also insoluble incorporations) due to the surface tension of the evaporating
H2SO4. The identical instrument as used by Curtius et al 2005 was also deployed for
the refining study Weigel et al. 2014. Thus a comparison of results seem to be most
appropriate between these studies only.

The impactor sample technique and offline analysis, in contrast, may imply a very dif-
ferent process of separating volatile (mostly liquid) substances from incorporations of
the stratospheric aerosol. The mostly liquid stratospheric particle literally smashes on
the impaction plate such that liquid compounds with solvents as well as solid incorpora-
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tions are dispersed over a certain impact area on the substrate. Thus, the contributions
of H2SO4 solvents may remain included in the H2SO4 matrix while all insoluble incor-
poration of the initial stratospheric aerosol particle are present as kind of debris field
on the substrate surface to be analyzed.

In essence, the contribution (by number) of solvents to the “flash”-evaporized residual
(COPAS technique) is not quantifiable and may vary from measurements in- and out-
side of the polar vortex. Such differences may be detectable when measured with 1Hz
resolution (COPAS). Such differences (by number) of refractory aerosol, however, may
not be resolved by aerosol samples in- and outside the polar vortex (due to e.g. sam-
pling times over minutes) which was, furthermore, not the intention to investigate with
this study, but instead, to investigate potential differences in the chemical composition
and/or physical nature of particles sampled in- or outside the polar vortex.

As explained in 2a) we removed figure 3 from the manuscript.

c) Neither rocket exhaust nor extraterrestrial material are very consistent with the data.
Kerosene rockets should produce soot, which was not observed. It is also doubtful
that there are enough particulate emissions from non-solid-fuel rocket exhaust in the
upper stratosphere to account for the observed particles. Note that the authors mea-
sured more carbonaceous material than meteor smoke. The authors could compare
the estimated particulate emissions from rockets to the extraterrestrial flux to see if it is
plausible that there is more carbonaceous material from rockets than meteoric smoke
in the polar stratosphere. I tried a quick estimate and I don’t think there is enough
exhaust compared to meteor smoke, but I didn’t spend much time tracking down refer-
ences. Considering extraterrestrial material, there is too little Mg, Si, and Fe compared
to carbon. For example, the carbon to silicon atomic ratio in micrometeorites collected
in the stratosphere is about 1.3 to 2.4, (Shramm et al., 1989) but in these data it is
over 30 (Figure 9). Even “carbonaceous” meteorites have more Mg, Si, and Fe than
observed in these particles. In addition, the carbon in a meteoroid that got hot would
oxidize to CO2 and not produce particles. Submicron meteoroids don’t get all that hot.
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So the particles would have to come from a cloud of submicron, organic particles in
space around the Earth. I’m not a space scientist, but it seems that if such a cloud
existed it would be known from effects on the near-Earth space environment.

Regarding rocket exhaust we have changed the last sentences to: “As the refractory
carbonaceous particles observed by us are not soot, their origin from rocket exhaust
is unlikely. However, as carbonaceous rocket exhaust particles were not investigated
previously by electron microscopy this source cannot be excluded.” Based on the in-
teractive comment posted by Alexander D. James, we added a new paragraph to the
“extraterrestrial material” section: “The chemical composition of extraterrestrial mate-
rial may be strongly fractionated by frictional heating during atmospheric entry (e.g.,
Carrillo-Sánchez et al., 2016; Gómez- Martin et al., 2017). The processes taking place
during atmospheric entry include ablation by sputtering and thermal evaporation as
well as fragmentation. Meteorite ablation particles usually occur as iron, glass or sili-
cate spheres (e.g., Blanchard et al., 1980; Murrell et al., 1980). Submicrometer refrac-
tory carbonaceous particles resulting from meteoric ablation and fragmentation have -
to the best of our knowledge - not been described in previous literature. However, it
is conceivable that such particles originate from carbonaceous material contained in
meteorites or interplanetary dust particles. The observed non-chondritic ratios of the
minor elements Fe, Cr, Ni are not a strong argument against such an origin, as the
volatility of these elements depends on the minerals in which they are contained. Most
of extraterrestrial Fe occurs as metal, silicate or oxide, most of Ni as metal (Papike,
1998). Cr may occur as oxide, sulphide or nitride as well as a minor component in
metal and silicates (Bunch and Olsen, 1975). Depending on the relative abundance
of the different mineral phases, substantial fractionation during evaporation can be ex-
pected (see also Floss et al., 1996). In summary, meteoric ablation and fragmentation
particles are a possible source of the particles encountered in the present study.”

3) Minor comments.

a) The units are incorrect on the extraterrestrial mass flux (line 25 page 11).
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The unit was corrected to 5-270 tons per day.

b) The discussion of sources only includes primary sources. What about secondary
organics? Depending on the answer to my question about refractory organics, I would
suggest that the authors consider secondary organic material more seriously, either
formed in the troposphere or stratosphere.

We agree that secondary organic material, either formed in the troposphere or strato-
sphere, can serve as a source for carbonaceous particles in the stratosphere. As men-
tioned in 1c) the secondary material we know from our experience with tropospheric
samples is highly volatile under high vacuum conditions and evaporates rapidly when
measured by EDX. If the same processes and/or precursor gases make up secondary
organic material in the stratosphere, then we expect the probability of the particles
to originate from SOA to be low. As we cannot totally deny this possibility, we have
changed p. 10 l. 19 based on Reviewer 2 to “Mixed carbon-sulfur particles were ob-
served by Nguyen et al. (2008) (diameter ≤ 1 µm) at 10 km altitude between 50◦N and
30◦S. These particles were assumed to have formed from condensed organic matter.
The differences between these particles and those found in the current study might
result from differences in sampling altitudes and regions. Therefore we cannot totally
exclude the particles to be different, taking into account that the particles might have
evolved from condensed organic matter. However, we do not know if secondary organic
particles become refractory as a result of atmospheric processes.”

c) Can the authors estimate a mass mixing ratio for these particles, even to an order of
magnitude?

Based on the impactor flow, we can roughly estimate a mass mixing ratio of the parti-
cles. Again, we have to emphasize that the errors of this estimate are large. The mass
mixing ratio of the refractory carbonaceous particles varies between 0.65 (sample B)
and 2.3 (mg air)-1 (sample D) with a median for all samples of 1.1 (mg air)-1. We in-
cluded one additional paragraph in the introductory part of chapter 3: “Given the size of
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the refractory particles and the performance of the impactor, all similar particles in the
sampled air were likely delivered to the impactor and collected there. Since the amount
of air drawn through the impactor is known, the atmospheric abundance of these par-
ticles can be estimated from the number of particles in the impactor sample. That
number was estimated from electron micrographs sampling the impaction spot and the
size if the impaction spot. The ambient number mixing ratio of the refractory carbona-
ceous particles varies between 0.65 (mg air)-1 and 2.3 (mg air)-1, with a median for
all samples of 1.1 (mg air)-1 (Table 1). When compared with CPC measurements in
Table 1, the carbonaceous particles comprised a few percent of the total number of
particles in the air.” Furthermore we discuss the mass flux at the end of section 4.1:
“In summary, the sole occurrence of refractory carbonaceous particles and sulfates in
stratospheric samples was reported in previous literature but seems to be uncommon.
The median number mixing ratio (1.1 mg air-1) of carbonaceous particles is smaller by
an order of magnitude than the abundance of non-volatile particles reported by, e.g.,
Weigel et al. (2014) for measurements in the winter stratospheric polar vortex in 2003,
2010 and 2011. The method described by Weigel et al. involves exposure of particles
to a temperature >250 ◦C and determination (with a CPC) of the number of particles
that did not evaporate to sizes below the detection limit of the CPC. They concluded
that up to 80% of the particles present were non-volatile by this criterion. Following our
definition only a few percent of the SOLVE particles are non-volatile in the electron mi-
croscope. This discrepancy may be caused by the different definitions of a non-volatile
particle.”

d) Comparisons to other data could benefit from more attention to the size ranges and
definition of “refractory.” For example, CN measurements consider a particle with 8 nm
worth of nonvolatile material as refractory, these data would not. Both the Murphy et
al. and Renard et al. data are only for larger particles than the ∼100 nm particles
described in this manuscript. The Zolensky et al. (1989) paper is about particles that
are so much bigger it is just confusing to mention them.
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We agree that the particles detected by Murphy et al. regard basically size ranges
≥200 nm, up to several micrometers and those described by Renard et al. (2008)
up to 350 nm. In more recent papers (Murphy et al., 2013) the authors were able to
detect particles from 120 nm. Therefore the size ranges by the authors mentioned were
added in the introduction, as well as in the discussion. Anyhow, an overlap of the size
ranges of particles exist for sizes between ∼120 – 800 nm and therefore we find the
comparison of data by the mentioned authors meaningful. As the introduction is about
general sources of particles in the stratosphere, we decided to leave the paragraph
regarding rocket exhaust from Zolensky et al. (1989). In the paragraph regarding rocket
exhaust as a potential source for stratospheric particles, the comparison to Zolensky et
al. is used in the manner of showing, that rocket exhaust primarily emits characteristic
Al2O3 spheres, which were not found in this study. There we do not compare them to
carbonaceous particles but give a general statement on typical emissions by rockets.
Therefore we also intended to leave the citation where it is.

e) The data could benefit from plotting the samples against a tracer or depth into the
vortex instead of just “inside” and “outside”, or color-coding them on existing plots. I
believe that N2O was measured during SOLVE.

We agree. For clarity, we added the N2O-values in Table 1.

Curtius et al., Observations of meteoric material and implications for aerosol nucleation
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