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Major comments - "2.1 Wetland hypothesis"

| do not find these arguments convincing. The arguments, as presented, are incon-
clusive at best. The region where we would expect the largest wetland emissions is
Northern Europe, however in this region the inversions consistently point to a reduced
seasonal cycle compared to WETCHIMP. The EU-28 seasonal cycle in WETCHIMP
is 10 Tg/yr which is roughly the same as the top-down seasonal cycle in their inver-
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sions. But, again, their inversion pointed to a decrease in the seasonal cycle in North-
ern Europe where the bulk of the wetland emissions should be. So why do we think this
is due to wetlands? Because other sources are assumed to be atemporal? The authors
acknowledge that other sources could have seasonal cycles (e.g., manure emissions
are temperature dependent, enteric fermentation could have a seasonal cycle due to
variations in the herd size, etc).

Although the WETCHIMP model ensemble estimates large CH4 emissions for North-
ern Europe (1.9 (0.8-3.5) Tg CH4 yr-1 (mean, minimum, maximum); excluding Nor-
way), this data set estimates significant wetland emissions also for western Europe
(1.6 (0.4-3.1) Tg CH4 yr—1), eastern Europe (0.3 (0.03-0.9) Tg CH4 yr-1) and south-
ern Europe (0.6 (0.01-1.1) Tg CH4 yr-1). Excluding Northern Europe, the sum of the
WETCHIMP CH4 emissions for western, eastern, and southern Europe is 2.5 (0.4-5.1)
Tg CH4 yr-1, corresponding to 12.5% (2.2%-25.6%) of the total reported anthropogenic
CH4 emissions for EU-28, which highlights the potential significant contribution of wet-
land emissions also for western / eastern / southern Europe.

While the inversions of TM5-4DVAR, TM5-CTE, TM3-STILT yield indeed a smaller sea-
sonal cycle for Northern Europe compared to the mean of the WETCHIMP models (but
similar amplitude for TM5-CTE), they derive significant seasonal cycles also for western
/ eastern / southern Europe, broadly consistent with the range of seasonal variations
of the WETCHIMP ensemble. Our interpretation of this result is that indeed the spa-
tial distribution of wetland emissions of the WETCHIMP ensemble (within Europe) is
not fully consistent with the inversion results, but we consider the considerable derived
seasonal variation for western / eastern / southern Europe as indication that wetlands
could contribute significantly also in these sub-regions.

This interpretation is indeed based on the assumption that anthropogenic CH4 emis-
sions have only very small seasonal variations. To our knowledge, only very few studies
investigating the seasonal variations of the anthropogenic emissions are available (and
have been discussed in the discussion paper). Clearly further studies on this topic will
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be required.

We will emphasize more clearly in the revised paper the caveats of the hypothesis of
significant wetland emissions.

There is little-to-no discussion of the background used for the region (see next com-
ment), could errors in the background be driving this?

The global models assimilate also global observations from the NOAA ESRL global
cooperative air sampling network. The model simulations outside Europe have been
further analyzed for TM5-4DVAR, showing in general very good agreement with ob-
servations at global background stations (similar as shown in previous papers, see
Bergamaschi et al. [2013], Figure S4). Therefore, it seems unlikely, that errors in the
background are driving the derived seasonal variations of European CH4 emissions.

There is no mention of the methane sink, is the OH correct? If OH were too low then
you may have an artificially low seasonal cycle in the global simulations (which would,
again, impact the background concentrations).

The global models apply OH fields that were calibrated against methyl chloroform mea-
surements [Patra et al, 2011; Bergamaschi et al., 2010; Houweling et al., 2014]. Since
the global models assimilate global observations, potential deficiencies of the global
OH fields are likely to be largely compensated by (artificial) increments of the global
fluxes. As mentioned above, e.g. TM5-4DVAR reproduces the measurements at global
background stations very well (the performance of other global model at global sites
were not further investigated in this study). The impact of different global OH fields on
derived European CH4 emissions has been investigated by Bergamaschi et al. [2010],
which showed only a very small impact.

It's unclear to this reviewer why the authors did not just perform an inversion with atem-
poral emissions and compare the posterior seasonality to the prior seasonality. This
would show how much of this derived seasonality comes from the data instead of the
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prior. It would allow them to say which regions have significant seasonal cycles. The
authors could have achieved much of this by looking at the seasonal cycles in their
case with homogenous prior emissions.

Also the inversion results from inversion S3 (which was performed without using de-
tailed bottom-up inventories as ’'a priori’), show significant seasonal cycles in derived
emissions. This confirms that the derived seasonal cycle is driven by the observations,
and not by the a priori emissions. This was not mentioned in the discussion paper but
will be included in the revised paper.

Major comments - "2.2 Poor description of methods makes it difficult to gain any
insight”
The description of the various inversion systems is poor. There is a single paragraph

in the main text describing the inversions. There is no mathematical description of the
inversions. This is quite surprising since, at it's core, this is an inversion paper.

The inverse modelling system are described in the supplementary material (SM), sec-
tion 1 "Atmospheric models" (summarizing the main elements of each system). Fur-
thermore, all seven inverse models are described comprehensively in separate specific
papers (see references in the SM). For most models used in this study only smaller up-
dates were applied (compared to previously published applications). Therefore, we
had chosen to put the model descriptions in the SM (and would prefer to keep this in
the SM also in the revised version). However, we will somewhat extend the general
description of the models in the main paper (section 3.2 "Atmospheric models") in the
revised version.

At the bare minimum, the author’s should state the assumptions for their inversions
(e.g., Gaussian errors?).

Most inverse modelling systems applied in this study use Gaussian probability density
functions for the uncertainties of the emissions (in case of TM5-4DVAR a ’semi log-
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normal’ pdf is used; see SM section 1.1). We will add the applied pdfs in the model
description for those models where this information is missing in the discussion paper.

There is additional text in the supplement ( 1 paragraph per model) but it is difficult to
synthesize the models. Some of the models are regional but it's not clear where the
boundary conditions are coming from.

It is clearly stated in section 3.2 ("Atmospheric models"; page 5, lines 23-25) where the
boundary conditions are coming from: "The regional models use boundary conditions
from inversions of the global models (STILT from TM3, COMET from TM5, CHIMERE
from LMDZ, or estimate the boundary conditions in the inversions (NAME), using
baseline observations at Mace Head as 'a priori’ estimates." Furthermore, the bound-
ary conditions are described also in the SM for all regional models (STILT, NAME,
CHIMERE, COMET).

Some of the models are estimating the covariance matrices from the data, some are
not.

We assume that the reviewer refers here to the observation covariance matrix. The
uncertainties of the observations (diagonal elements of the covariance matrices) in-
clude both the measurement error and the model error. Most models use the "working
standard repeatability” (see section 2 of main paper) as observation error. However the
estimates of the model errors are very different in the different inverse modelling sys-
tems (and generally based on simplified assumptions). For most models the assumed
uncertainties of the observations is described in SM section 1 - for those models where
this information has been missing (CHIMERE, COMET), it will be added.

It is extremely difficult for the reader to understand why these inversions are performing
differently. For example, it seems that the boundary conditions are coming from global
models in the case of some regional models, how independent are these different
inversion systems (especially the global/regional ones)? Are we comparing apples to
apples?
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The global models providing the boundary conditions for the regional models are gener-
ally largely independent from the regional models (apart from the fact that the different
models may have some features in common, e.g. use of same or similar meteo data
sets).

How much of the differences are due to assumptions vs transport vs something else?
It's extremely difficult to understand the differences without clearly laying out the key
differences between the models.

Given the very high complexity of the different inverse modelling systems, it is indeed
very difficult to understand where the differences in the derived emissions are coming
from. But this is actually not the goal of this study (and would require further spe-
cific modelling experiments). The objective of this study is to use the model ensemble
to provide more realistic overall uncertainty estimates (from the range of the inverse
models) and to evaluate the model performance by validation against independent ob-
servations.

| would point the authors to the Henne et al. (2016) paper as an example of a paper
that does a good job of explicitly highlighting the differences between their inversion
systems and allows the readers to actually gain insight from the ensemble of inver-
sions. Table 2 from Henne et al. (2016) is a particularly good example of how one can
demonstrate the major differences between inversion frameworks.

The fundamental difference between the study of Henne et al. (2016) and our study
is that Henne et al. use one single inverse modelling system, varying various input
parameters / settings of this system as compiled in their Table 2. In contrast, our
study uses very different inverse modelling systems, which makes it inherently more
difficult to highlight the differences between the systems (which are largely independent
systems and which differ in many aspects). Important parameters (model resolution,
meteorology, a priori emission inventories, applied station sets are compiled in Tables
1, 2, and 3. We will include also the applied baselines for the regional models in Table
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3.

Also, the phrase “no a priori” is, almost certainly, using incorrect terminology. The pos-
terior probability is proportional to the product of the likelihood and the prior probability:
Posterior probability / Likelihood x Prior probability. Using a homogenous distribution
of emissions is still including a prior, it just isn’t based on a bottom-up inventory. To
actually use “no a priori” would be “Maximum Likelihood Estimation” where one simply
finds the parameters that maximize the likelihood term

In section 3.1 we have described S3 as: "Inversion S3 was performed without using
detailed bottom-up inventories as ’a priori’, in order to analyse the constraints of ob-
served atmospheric CH4 on emissions independent of ’a priori’ information (using a
homogeneous distribution of emissions over land and over the ocean, respectively, as
starting point for the inversions in a similar manner as in Bergamaschi et al. [2015])."
The short notion "no a priori" has been only used in Table 2. We will add a footnote in
this table to refer the reader to the above description in section 3.1

Major comments - "2.3 Novel’ Bias method"

This “novel” bias method is, essentially, what an inversion already does. . . They are
just plotting the model-data mismatch averaged over different parts of the atmosphere.
This is hardly a “novel approach”. (mathematical derivation not repeated here) From
this, it's quite easy to see how cobs—cmod = Acobs — Acmod. So, as | stated above,
all the authors have done is plot the model-data mismatch (cobs — cmod) averaged
over two parts of the atmosphere. It does not strike this reviewer as particularly “novel”.

We do not agree with the statement of the reviewer that our approach to estimate the
bias in the derived emissions is "essentially, what an inversion already does", since
we look at independent observations that were not used in the inversion - which is a
common method to validate inverse models (see e.g. Michalak et al., [2016]). Com-
monly, however, such analyses are performed to diagnose qualitatively, if the inverse
models have biases. The novel aspect of our method is that we use the baseline in
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order to extract the signal which comes from the European emissions. Integrating the
enhancement of the model simulations compared to the background over the entire
boundary layer or the entire column of the lower troposphere (and comparison with
the corresponding observed CH4 enhancement) provides a measure of the total CH4
emitted by European emission. The ratio of the simulated vs. observed integrated en-
hancements provides a first order estimate of the relative bias in the model emissions.

As explained in section 4.2, the validation against independent aircraft profiles is very
important, since the inverse models assimilate only surface observation. Therefore,
potential errors in the vertical mixing of the models can introduce significant biases in
the derived emission.

There are novel approaches that attempt to account for systematic errors in inver-
sions in a rigorous manner. Weak-Constraint 4D-Var (Tremolet, 2006) and Hierarchical
Bayesian inference (see Ganesan et al., 2014 and references therein) are two good
examples of this.

We agree that the "Hierarchical Bayesian inference" is an interesting approach to pro-
vide more realistic uncertainty estimates for individual models (i.e. estimates within
the individual inverse modelling systems, corresponding to the error bars in our Figure
3). Nevertheless, validation against independent observations will remain indispens-
able as independent evaluation of the inverse models. Also the mentioned "Weak-
Constraint 4D-Var" is certainly a very interesting technique - but to our knowledge so
far only applied in some cases for data assimilations, but not in inverse modelling sys-
tems.
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