Surface emission and atmospheric trend of N₂O isotopocules in the chemical transport model

Global mean atmospheric N_2O isotopic values and estimated global total emissions in model are shown in Figure S1. The emissions of four N_2O isotopocules (${}^{14}N^{16}O$, ${}^{14}N^{16}O$, ${}^{15}N^{14}N^{16}O$, and ${}^{14}N^{18}O$) were estimated by a method used in Ishijima et al. (2015), but the photolytic fractionation was not tuned in this study. Thus estimated surface emissions were

5 used to simulate atmospheric N₂O isotopocules, which were used for stratospheric analysis of this study. The isotopocule ratios of N₂O emitted from surface sources in model were temporally constant ($\partial^{45}N^{bulk} = -8.4 \%$, $\partial^{48}O = 32.4 \%$, SP = 14.0 ‰). Although the model was optimized against relatively old measurement data mainly for 1990s, simulated atmospheric values in recent years at the surface were very reasonable (Table S1), considering necessary order of precision for analysis of the large vertical profiles in the stratosphere in this study.

10

Supplementary Tables and Figures

Table S1. Annual mean mixing ratio, $\delta^{45}N^{bulk}$, $\delta^{48}O$, and SP of atmospheric N₂O for 2010 observed and simulated at Hateruma station.

Method	N ₂ O mixing ratio	$\delta^{15} \mathrm{N}^{\mathrm{bulk}}$	δ^{18} O	SP	Reference	
	$(nmol mol^{-1})$	(‰)	(‰)	(‰)		
Observation	323.3	6.6	44.2	18.3	This study (top-down by the ACTM)	
Model	324.0	6.3	44.5	18.7	Toyoda et al. (2013)	

5 Table S2: Sampling location, date, altitude range, and tropopause height of previous observations and this study plotted in Figs. 2, 3, and 5.

Location	Latitude/ Longitude	Sampling Date	Altitude (km)	Number of samples	Tropopause height (km)	Reference
Sanriku Balloon	39 °N/142	4 June 1990	16.1–34.7	9	13.6	Toyoda et al. (2004)
Certer, Japan	°E	3 September	14.9-29.5	11	15.8	Yoshida and Toyoda
(SBC)		1998				(2000); Toyoda et al. (2004)
		31 May 1999	14.7-34.5	11	12.1	Toyoda et al. (2001)
		28 August 2000	15.0-31.3	10	15.0	Toyoda et al. (2004)
			14.9-33.8	11	13.8	Toyoda et al. (2004)
Kiruna, Sweden	68 °N/20 °E	22 February	10.2-25.6	10	10.2	Toyoda et al. (2004)
(ESR)		1997				
Syowa station,	69 °S/40 °E	3 January 1998	10.4–29.8	9	9.0	Toyoda et al. (2004)
Antarctica						
(SYO)						
Hyderabad,	18 °N/79 °E	26 March 1987	17–26	5	NA	Kaiser et al. (2006)
India (HDB)	29 Apr 1999		10–28	10	NA	Röckmann et al. (2001)
Eastern	0 °N/105-	4–8 February	20–29	4	$17.0 - 18.2^{a}$	This work
equatorial	115 °W	2012				
Pacific (EQP)						
Biak, Indonesia	1 °S/136 °E	22–28 February	17.2–27.4	6	$17.4 - 19.3^{a}$	This work
(BIK)		2015				

^aCold point tropopause. NA: not available

Figure S1: Global monthly mean mixing ratio (a), $\delta^{45}N^{bulk}$ (b), $\delta^{48}O$ (c), and SP (d) of atmospheric N₂O, and global total monthly and annual N₂O emissions (e) in model.

Figure S2: Trajectories of the balloons launched from Hakuho-maru in the eastern equatorial Pacific (a, b) and LAPAN observatory at Biak island, Indonesia (c, d). Panels (a) and (c) show horizontal trajectories; panels (b) and (d) show time-altitude trajectories. Sampling positions are shown by solid circles.

Figure S3: Vertical profiles of parameters derived from N₂O decomposition rates used in the ACTM. (a), $\alpha^{(15N^{bulk})}$ for photolysis; (b), share of photolysis in the total N₂O sink. Note that absolute value of photolysis rate constant is smaller in the lower stratosphere and polar stratosphere.