
1 
 

Intercomparison of NOx emission inventories over East 

Asia 

Jieying Ding
1,2

, Kazuyuki Miyazaki
3,4

, Ronald Johannes van der A
1,5

, Bas Mijling
1
, 

Jun-ichi Kurokawa
6
, SeogYeon Cho

7
, Greet Janssens-Maenhout

8
, Qiang Zhang

9
, Fei 

Liu
1
, Pieternel Felicitas Levelt

1,2 5 
1
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands 

2
Delft University of Technology, Delft, the Netherlands 

3
Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan 

4
Jet Propulsion Laboratory-California Institute of Technology, Pasadena, USA

  

5
Nanjing University of Information Sciences and Technology, Nanjing, China  10 

6
Asia Center for Air Pollution Research, Niigata, 950-2144, Japan 

7 
Department of Environmental Engineering, Inha University, Inchon, South Korea 

8
Directorate for Energy, Transport and Climate, Joint Research Centre, Ispra, Italy 

9
Department of Earth System Science, Tsinghua University, Beijing, 100084, China 

 15 
 

 

Correspondence to: Jieying Ding (jieying.ding@knmi.nl) 

 

Abstract. We compare 9 emission inventories of nitrogen oxides including four satellite-derived NOx 20 

inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission 

inventory in ASia), MEIC (Multi-resolution Emission Inventory for China), CAPSS (Clean Air Policy 

Support System) and EDGAR (Emissions Database for Global Atmospheric Research). Two of the 

satellite-derived inventories are estimated by using the DECSO (Daily Emission derived Constrained 

by Satellite Observations) algorithm, which is based on an extended Kalman filter applied to 25 

observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which 

is based on an ensemble Kalman Filter applied to observations of multiple species using either the 

chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial 

distribution of the inventories are compared on a national and regional scale. A distinction is also made 

between urban and rural areas. The intercomparison of all inventories shows good agreement in total 30 

NOx emissions over Mainland China, especially for trends, with an average bias of about 20% for 

yearly emissions. All the inventories show the typical emission reduction of 10% during the Chinese 

New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due 

to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and 

uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of 35 

the differences show: the importance of using observations from multiple instruments and a high 

spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate 

emission factors and activity information are required. The advantage of the satellite derived approach 

is that the emissions are soon available after observation, while the strength of the bottom-up 

inventories is that they include detailed information of emissions for each source category.  40 
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1. Introduction  

Emission sources are one of the crucial drivers for a chemical transport model (CTM). Accurate spatial 

and temporal emission distributions of air pollutants are important for air quality simulations and 

forecasts (Ma and van Aardenne, 2004; Eder et al., 2009; Zhang et al., 2012; Struzewska et al., 2016). 

Up to date emission information is also needed to help policy makers for efficient regulations to control 5 

air pollution. In general, two approaches are used to develop emission inventories. One approach is 

based on statistics combining local information such as emission activity rates and factors of different 

source categories (Streets et al., 2003). Here we refer to the inventories using this approach as bottom-

up inventories. This method results in detailed information on the type, source sector, fuel and 

technology.  The country-specific emissions are distributed in space with the location of the emissions 10 

using representative proxy data. Advances on temporal distribution are still needed to obtain 

representative maps that go beyond monthly resolution. However, large uncertainties are often 

introduced due to the uncertainties on all the input parameters in the calculation (Jaegle et al., 2005; 

Castellanos et al., 2014; Zheng et al., 2014; Li et al., 2016; Saikawa et al., 2016; Li et al., 2017). It is 

also time consuming to collect all required information. Another approach to construct emission 15 

inventories is inverse modelling using satellite observations to constrain emissions by reducing the 

discrepancy between the modelled and observed concentrations and taking model and observation 

errors into account (Müller and Stavrakou, 2005; Konovalov et al., 2006; Sofiev et al., 2009; Miyazaki 

et al., 2012; Mijling et al., 2013; Streets et al., 2013; Stavrakou et al., 2016). In this study, the 

emissions derived with this approach are referred to as satellite-derived emissions. Since observations 20 

from satellite instruments like the Global Ozone Monitoring Experiment-2 (GOME-2) and the Ozone 

Monitoring Instrument (OMI) achieve near global coverage in a single day, we expect that emissions 

derived from these satellite observations are well constrained on a daily and global basis. A limitation 

of satellite-derived emission inventories is the difficulty to distinguish emissions from different source 

categories.  25 

Nitrogen oxides (NOx=NO2+NO) play an important role in the formation of tropospheric ozone and 

secondary nitrate aerosols and in climate change (Jacob et al., 1996; Shindell et al., 2009). The 

emissions of air pollutants increased rapidly during the last two decades in East Asia due to the rapid 

economic development. Satellite observations as evidence show a strong increasing trend of NO2 

column concentrations since 1995 in China (Irie et al., 2005; Richter et al., 2005; van der A et al., 30 

2006). Akimoto and Narita (1994) built the first regional NOx emission inventory for Asia on a 

resolution of 1°×1°. Van Aardenne et al. (1999) estimated NOx emissions from 1990 to 2020 based on 

an energy consumption scenario to illustrate the situation of the rapid increase of NOx emissions in 

Asia. The early-stage emission inventories including the Asian region had large inaccuracies because 

of the insufficient information on emission factors in this region, which were often based on 35 

information obtained from studies conducted in European or North American countries (Ma and van 

Aardenne, 2004). Several follow-up studies have been carried out to derive improved emission 

inventories for this region. Streets et al. (2003) constructed a comprehensive regional emission 

inventory with more species in support of the TRACE-P (Transport and Chemical Evolution over the 

Pacific) mission for Asia in 2000. However, Wang et al. (2004) concluded that the NOx emissions of 40 
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the TRACE-P inventory are largely underestimated, especially for China, compared to the emissions 

constrained by measurements from ground stations and aircrafts. Zhang et al. (2009) developed an 

updated Asian inventory for the INTEX-B (Intercontinental Chemical Transport Experiment-Phase B) 

mission in 2006, which was based on the TRACE-P inventory but with refined temporal and spatial 

resolution. In 2007, a long-term Asian inventory REAS (Regional Emission inventory in ASia) was 5 

developed by Ohara et al. (2007) to analyse the trend of emissions. Kurokawa et al. (2013) updated the 

REAS inventory to a higher spatial and temporal resolution. Lee et al. (2011) built the first version of 

the South Korean national emission inventory CAPSS (Clean Air Policy Support System) using more 

detailed local information for emission activities and factors. Tsinghua University developed the 

Chinese inventory MEIC (Multi-resolution Emission Inventory for China) based on earlier work of 10 

Zhang et al. (2009) (http://www.meicmodel.org). Recently, (Li et al., 2017) constructed the new Asian 

inventory MIX by combining different regional and national inventories including REAS version 2.1, 

CAPSS, and MEIC. Zhao et al. (2011) concluded based on Monte Carlo simulations that the 

uncertainties of bottom-up emissions of NOx are about -13% to 37% in China. The major uncertainties 

are due to oversimplified source classifications and roughly estimated emission factors. The main 15 

anthropogenic emissions of NOx in China are from transport and coal-fired power plants (Liu et al., 

2015; Saikawa et al., 2016; Li et al., 2017). Because of the rapid implementation of new technologies 

and air quality control regulations for power plants and vehicles in China, their emission factors and 

activities are also changing with time, which makes the bottom-up emission estimates more uncertain 

(Zheng et al., 2014; Liu et al., 2015).  20 

Satellite observations of atmospheric species can be used to closely monitor changes in emissions, such 

as the trend, seasonality, and diurnal cycles of emissions (Streets et al., 2013). For example, with 

satellites it was observed that NOx emissions in China started to decrease after 2011 (Gu et al., 2013; 

de Foy et al., 2016; Krotkov et al., 2016; van der A et al., 2017) as a result of the national regulations 

for denitrification equipment at power plants. Mijling and van der A (2012) for the first time derived 25 

high resolution (0.25° × 0.25°) emissions over East Asia from satellites using an advanced inverse 

method called DECSO (Daily Emission estimates Constrained by Satellite Observations) based on an 

extended Kalman Filter. Ding et al. (2015) demonstrated that this approach is able to detect the 

monthly change of NOx emissions due to air quality regulations on a city level. Miyazaki et al. (2012) 

derived the first global NOx emission estimates using an inversion technique based on an ensemble 30 

Kalman Filter and improved this method to constrain NOx emissions by using satellite observations of 

multiple species (Miyazaki and Eskes, 2013; Miyazaki et al., 2017). This method is referred to as 

EnKF in this paper.  

All emission inventories, both bottom-up and satellite-derived, are facing the same challenge of 

validation since it is difficult to directly measure emissions on the ground on such large scales. A 35 

common way to validate emission inventories is using them in a chemical transport model to simulate 

NO2 column concentrations and compare these with in-situ or satellite observations. In this way, 

however, the validations are highly related to the model performance, which may result in inconsistent 

conclusions (Zhao et al., 2011).  

http://www.meicmodel.org/
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In this study, we compare the satellite-derived inventories from DECSO and EnKF with a 

comprehensive collection of regional bottom-up inventories for East Asia: REAS v2.1 and an interim 

version of 2.2, MEIC, CAPSS and EDGAR v4.3.1 (Emissions Database for Global Atmospheric 

Research). The global HTAP v2 is not used because in our domain it is identical to MIX, which 

includes REAS, MEIC, and CAPSS. To evaluate the effect of the satellite instrument, we compare two 5 

emission data sets from DECSO applied to GOME-2 and OMI observations. To examine the effect of 

the forecast model performance in the inversion, we compare two emission datasets from EnKF using 

different CTMs. The intercomparison of 9 emission inventories is presented for the time period 2000-

2015 for East Asia on a 0.25° × 0.25° resolution. Figure 1 shows the emission maps in 2008 of all 

inventories used in this study, including an average of emissions from all these inventories over the 10 

selected domain (102-132°E, 18-50°N). The description of all emission inventories used in this study 

will be presented in section 2. Section 3 shows the difference of the spatial and temporal distribution 

among the 9 inventories. The uncertainties of the inventories are discussed in section 4.  

2. Emission inventories 

2.1 Bottom-up inventories 15 

2.1.1 EDGAR 

The Emissions Database for Global Atmospheric Research (EDGAR) (Janssens-Maenhout et al., 2013) 

is a global bottom-up emission inventory using consistent methodology allowing straightforward 

implementation of scenario assumptions. Emission calculations of the latest version, v4.3.1, are based 

on information of international energy balances of IEA (Energy Statistics of OECD and Non-OECD 20 

Countries, 2014) and agricultural statistics of FAO and other national or regional statistical 

information. EDGAR classifies emissions into 12 source sectors: energy, combustion in manufacturing 

industry, industrial processes and product use, oil production and refining, fossil fuel fires, road 

transport, non-road ground transport, aviation, shipping, agricultural waste burning, residential and 

others. It provides global gridded maps of sector specific and historical emission data from 1970 to 25 

2010 (monthly for 2010) with a high spatial resolution of 0.1° × 0.1°. A detailed description of 

EDGAR v4.3.1 can be found in Crippa et al. (2016). In this study, we use the yearly emissions of NOx 

from 2000 to 2010 integrated to a resolution of 0.25° × 0.25° on our study domain.  

2.1.2 REAS 

The Regional Emission inventory in ASia (REAS) v2.1 (Kurokawa et al., 2013) provides NOx emission 30 

from 2000 to 2008 at a 0.25° × 0.25° horizontal resolution. REAS v2.1 is based on the previous version 

REAS v1.1 with updates of activity data and parameters as well as an improvement of temporal and 

spatial resolution. It enlarges the domain by adding Central Asia and the Asian part of Russia.  REAS 

v1.1 was developed by Ohara et al. (2007) based on the methods described in Streets et al. (2003), 

which provided  historical and future projected emissions from 1980 to 2020 on  a 0.5° × 0.5° 35 

resolution for East, Southeast and South Asia . REAS contains calculated NOx emissions for the source 

sector of energy, industry, transport, domestic, agricultural activities and soil. We use NOx emission 

data of REAS v2.1 and an interim version of 2.2 (hereafter REAS v2.2 for convenience) of 2005 to 
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2010 to expand the time series of the current REAS inventory. REAS v2.1 includes shipping, aviation 

emissions that are taken from EDGAR v4.2. In REAS v2.2, soil emissions and all emissions over 

central and Russian Asia are not included.  

2.1.3 MEIC 

Tsinghua university in Beijing has developed the Multi-resolution Emission Inventory for China 5 

(MEIC) model to generate an anthropogenic emission inventory for Mainland China with a spatial 

resolution of 0.25°. NOx emissions are presented in four sectors: energy, industry, transport and 

residential. The China coal-fired Power plant Emission Database (CPED) is used for the power plant 

sector. CPED includes the latest detailed information of emission factors, activity, locations, etc., and 

takes emission regulations into account as well (Liu et al., 2015). In the transportation sector, vehicle 10 

population and emission factors at county level are combined with a digital road map, vehicle and road 

type to derive high resolution on-road transportation emissions (Zheng et al., 2014). More detailed 

information of MEIC is described in He (2012) and (Li et al., 2017). We use monthly NOx emissions of 

MEIC v1.2 from 2007 to 2012.  

2.1.4 CAPSS 15 

The Clean Air Policy Support System (CAPSS) is a Korean Emissions Inventory System, which 

provides annual air pollutant emissions with a spatial resolution of 1 km in South Korea as described 

by Lee et al. (2011). CAPSS derived point source emissions from both real-time air pollutant emission 

measurements and statistics based on emission factors and activity data. The emission source sectors 

are classified into 12 sectors, which are the same as for EDGAR. The latitude and longitude are given 20 

for each point source to indicate their location. Area emissions are downscaled by using city-province 

level activity data including a spatial allocation index database. On-road mobile emissions are 

calculated by using VKT (vehicles kilometres travelled) and spatially allocated by using traffic volume 

information for each road. In this study, we use CAPSS NOx emissions from 2001 to 2013 and re-grid 

the data to a resolution of 0.25° × 0.25°.  25 

2.1.5 MIX 

MIX is a mosaic Asian anthropogenic emission inventory developed by the Model Inter-Comparison 

Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) 

projects (Li et al., 2017). Five emission inventories of different regions are combined in MIX by 

normalizing source categories, species, and spatial and temporal resolution of each inventory and 30 

provides data in a consistent format. The five inventories are REAS v2.1, MEIC v1.0, PK- NH3 (a high 

resolution NH3 emission inventory developed by Peking University), ANL-India (an Indian emission 

inventory developed by Argonne National Laboratory) and CAPSS. The spatial resolution of MIX is 

0.25° × 0.25°. We use NOx emissions from MIX in 2008 to represent both MEIC and CAPSS for the 

spatial comparison in this study.  35 
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2.2 Satellite-derived inventories 

2.2.1 DECSO  

Daily Emission estimates Constrained by Satellite Observations (DECSO) is an inverse modelling 

method to update daily emissions of NOx based on an extend Kalman Filter (Mijling et al., 2013). NOx 

emissions are constrained by combining simulated NO2 column concentrations of a regional CTM with 5 

satellite observations. The essential part in the inverse calculation is deriving the sensitivity of the NO2 

column concentrations on NOx emissions. A simplified isobaric surface 2-D trajectory analysis is used 

to take into account the transport of NO2 from the source for a fast sensitivity calculation. In the 

Kalman filter, the emissions are assumed to follow a persistent model, which expresses that emissions 

of tomorrow will be equal to emissions of today. The Eulerian regional off-line CTM CHIMERE 10 

v2013 (Menut et al., 2013) is used to obtain simulated NO2 concentrations based on a priori emissions. 

Note that emissions derived with DECSO become independent from the a prior emissions after a spin-

up time of about 3 months. CHIMERE is implemented on a 0.25° × 0.25° horizontal resolution of the 

region for East Asia (102-120 E, 18-50N) driven by the European Centre for Medium-Range Weather 

(ECWMF) operational forecast. The model is set up with 8 vertical layers from the surface to 500 hPa. 15 

The CHIMERE simulated columns are extended from 500 hPa to the tropopause with a climatological 

partial column (2003-2008 average) simulated by the global CTM TM5 for comparison with satellite 

observed tropospheric columns. The updates of emissions are related to the difference in NO2 between 

the CTM simulation and satellite observations. A detailed description of DECSO can be found in 

Mijling et al. (2013), while the latest improvements are described in Ding et al. (2015, 2017). NOx 20 

emissions detected with DECSO are regarded as total surface emissions. Note that the algorithm is not 

able to capture the emission with temporary changes less than one day.  

DECSO v5 has been applied to observations from OMI (Ozone Monitoring Instrument) and GOME-2 

(Global Ozone Monitoring Experiment-2). OMI is a Dutch-Finnish instrument aboard NASA’s EOS-

Aura satellite (Levelt et al., 2006). The pixel size is 24 × 13 km
2
 at nadir and increases to about 150 × 25 

28 km
2
 at the edge of the swath. The overpass time of OMI at the equator is about 13:30 local time. We 

use the tropospheric NO2 column data of the Dutch OMI NO2 retrieval (DOMINO) algorithm version 2 

(Boersma et al., 2011). GOME-2 is aboard the sun-synchronous satellite MetOp-A with a local 

overpass time of around 9:30. The pixel size of the observation was 80 × 40 km
2
 until 15 July 2013. 

Afterwards, the scan width of the orbit is halved and the pixel size is changed to 40 × 40 km
2
. 30 

Tropospheric NO2 columns of GOME-2 are also retrieved with the algorithm DOMINO v2.   

Observations are selected with a surface albedo lower than 20% and a cloud radiance fraction lower 

than 70%. The observations with clouds below 800 hPa are excluded. For OMI data, the pixels affected 

by the so-called row anomaly (KNMI, 2012) and the four pixels at each side of the swath are filtered 

out as well. The filter criteria are based on the analyses of Ding et al. (2015, 2017) to reduce the 35 

amount of low quality retrievals. The monthly DECSO v5 data set used in this study is based on OMI 

satellite observations for the period of 2007 to 2015 (DECSO-OMI) and based on GOME-2 satellite 

observations for the period of 2008 to 2015 (DECSO-GOME2a). The data is available on 

www.globemission.eu. 

http://www.globemission.eu/
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2.2.2 Ensemble Kalman Filter (EnKF)  

Miyazaki et al. (2012) developed a data assimilation system to estimate global NOx emissions based on 

an ensemble Kalman filter technique, which combines satellite observations with a global CTM. In this 

paper, we refer to this method as EnKF. In this approach, surface NOx emissions are included in the 

state vector together with other variables such as lightning NOx sources and NO2 concentrations. The 5 

dependence of NO2 concentrations on NOx emissions (including complicated chemistry and transport) 

is taken into account, by using a background error covariance estimated from ensemble CTM forecasts. 

Miyazaki and Eskes (2013) demonstrated improved NOx emission estimates by assimilating multiple 

species (including O3 from TES and MLS, HNO3 from MLS, CO from MOPITT). In this approach, the 

assimilation of non-NO2 measurements (e.g., O3 and CO) influences largely the concentration and 10 

chemical lifetime of NOx and thus the surface NOx emission estimates. Miyazaki et al. (2017) updated 

the EnKF system to combine NO2 retrievals from OMI, GOME2 and SCIAMACHY together with the 

non-NO2 measurements to optimize the diurnal emission variability. SCIAMACHY (aboard 

ENVISAT) (Bovensmann et al., 1999) operated from 2002 till 2012 with a local overpass time of 10:00 

AM and global coverage every 6 days. The tropospheric NO2 columns are retrieved with DOMINO v2 15 

(Boersma et al., 2004). Observations with a cloud radiance reflectance lower than 50% were used. Two 

emission datasets are derived using this approach with two different global CTMs: CHASER (Sudo et 

al., 2002) and MIROC-Chem (Watanabe et al., 2011) (referred to as EnKF-CHASER and EnKF-

MIROC respectively) for 2005 to 2015.  

CHASER is coupled with an atmospheric general circulation model, CCSR/NIES/FRCGC AGCM 20 

v5.7b on a horizontal resolution of 2.8° (T42) and 32 vertical levels on the sigma vertical coordinate 

system from the surface to 4 hPa (Miyazaki and Eskes, 2013). The AGCM fields were nudged toward 

NCEP/DOE-II reanalysis (Kanamitsu et al., 2002). The MIROC-Chem model (Watanabe et al., 2011) 

was developed based on CHASER, with many updates on the tropospheric chemistry and including 

stratospheric chemistry. MIROC-Chem is coupled to the atmospheric general circulation model 25 

MIROC-AGCM v4, on 2.8° (T42) horizontal resolution and it uses the hybrid terrain-following 

pressure vertical coordinate system with 32 vertical levels from the surface to 4.4 hPa (Miyazaki et al., 

2017). The MIROC-AGCM fields were nudged towards the 6 hourly ERA-Interim (Dee et al., 2011) 

reanalysis.  

In both calculations, the a priori NOx emissions are obtained from EDGAR v4.2 for anthropogenic 30 

emissions, GFED v3.2 (van der Werf et al., 2010) for biomass burning emissions and GEIA (Yienger 

and Levy, 1995) for soil emissions. For the comparison, the monthly emissions on 2.8° resolution from 

EnKF-CHASER and EnKF-MIROC are  redistributed to a horizontal resolution of 0.25° × 0.25° based 

on emission distributions of the a priori inventory MIX. Note that the shipping emissions near the coast 

areas are added to land since they are not included in MIX. This could lead to overestimation of 35 

emissions over land near busy shipping lanes.  
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3. Intercomparison of NOx emissions 

3.1 Temporal evaluation  

3.1.1 Time series analysis 

Figure 2 shows the comparison of all emission inventories as a function of time over Mainland China 

(in this paper limited to the study domain shown in Figure 1) for the period 2000-2015. The time series 5 

of the annual total emissions show a large variation among the inventories. The bottom-up inventories 

use similar approaches, but the statistical data and assumptions on the penetration and specification of 

the present technologies used for their calculations are different and this explains the diversity among 

the bottom-up inventories. The differences among the satellite-derived emission inventories are caused 

by different inversion techniques, satellite observations and CTMs. The emissions derived by DECSO 10 

with OMI observations show a large discrepancy with the other inventories. Over Mainland China (Fig. 

2), all inventories follow a similar trend but with large biases. The NOx emissions dramatically increase 

since 2000 and start to decrease around 2011. All satellite-derived inventories show a decrease in 2015 

of at least 20% compared to 2014. The average annual total emissions of 2008 (the only year included 

in all inventories) are about 5 ± 1 Tg N yr
-1

 for Mainland China. REAS v2.1 presents the highest value 15 

of 7.3 Tg N yr
-1

, while DECSO-OMI shows the lowest value of 4.3 Tg N yr
-1

. The standard deviation 

of the emissions is about 20%. For comparison, Li et al. (2017) reported typical uncertainties of 31 to 

37 % for bottom-up inventories over China. 

Figure 3 shows the comparison of the temporal variation relative to the emissions in 2008. REAS v2.1, 

v2.2 and EDGAR v4.3.1 show a continuous increase from 2000 to 2010 with an annual increase rate of 20 

about 8% on average. NOx emissions of China in 2010 are almost doubled compared to emissions in 

2000. The change rates derived with two EnKF emissions are lower than for REAS and EDGAR 

between 2005 and 2010. MEIC and satellite-derived emissions show a slow change of NOx emissions 

from 2007 to 2009 and a large increase in 2010 until 2011, which is consistent with satellite 

observations (Gu et al., 2013; de Foy et al., 2016; Krotkov et al., 2016), whereas REAS and EDGAR 25 

reveal a continuous increase during 2007 to 2010. The increase rate in 2011 of DECSO-OMI is about 

10% higher than of the other inventories. From 2012-2015, the satellite-derived emissions show a 

decrease of total NOx emissions over China by about 30%. Nevertheless, the peak year is different 

between the satellite-based approaches. The DECSO inventories show a decrease starting in 2012, 

while the EnKF inventories reach their peak in 2011.  30 

Over a small domain, the discrepancies among the inventories are larger. As an example, Figure 4 

shows the comparison of the emission time series from eight inventories in South Korea. We see 

differences by a factor of up to 2 between the inventories in 2008 (the highest one is REAS v2.2 and 

the lowest one is CAPSS). The bottom-up inventories EDGAR and REAS show higher emissions than 

the satellite-derived emissions. The satellite-derived inventories are generally in closer agreement to 35 

the South-Korean CAPSS than to the other bottom-up inventories. These results highlight the large 

differences in the emission trends over a small region like South Korea, even derived with a similar 

approach. 



9 
 

The satellite-based approaches can be used to make near-real time datasets and to extend the emission 

record over a longer period until 2015. Figure 5 (left) displays the peak year of the averaged NOx 

emissions from the four satellite-derived inventories. Beijing and Shanghai reach their peak years as 

early as 2010 and 2008 respectively. Most of the developed provinces reach maximum emissions in 

2011 or 2012. In some less developed provinces, emissions were still growing until 2014. To analyse 5 

the correlation of the time series of the four satellite-derived inventories for each province, we calculate 

the temporal correlation coefficient (R) from each combination of the four emission datasets. Figure 5 

(right) shows the minimum correlation coefficient of all combinations. The satellite-derived emission 

inventories are in good agreement for most of the provinces, with a correlation coefficient higher than 

0.6. The provinces with smaller areas often have lower R-values. This means that the uncertainties of 10 

NOx emissions can be notably high on a small area or provincial level.  

3.1.2 Monthly variability 

We calculate the mean monthly emissions of each inventory for its own available time period and 

normalize them to get the general monthly variability. Figure 6 shows the monthly variability of total 

NOx emissions for 7 inventories over Mainland China. MEIC, REAS v2.1 and DECSO-GOME2a show 15 

a relatively weak variability while the other four inventories show a distinct summer peak. The EnKF 

inventories show a sharp peak in June. REAS v2.1 and DECSO-OMI reveal a peak in July. The 

summertime peak is probably introduced by enhanced biogenic (e.g., from soils) emissions. The 

summertime enhancement is considered to be better detected by the OMI afternoon measurements than 

the GOME2 morning measurements (Boersma et al., 2009), because they are generally maximized in 20 

the afternoon. The different representation of the summertime peak between the satellite-derived 

inventories will be discussed in Section 4.4. It is notable that all inventories show that NOx emissions 

are about 10% lower in February than in the surrounding months, which is due to the Chinese New 

Year (Ding et al., 2015). All inventories also show a peak in December when heating and electricity 

consumption is usually high in China.  25 

To study the temporal correlation of monthly different inventories, we use monthly emissions over 

Mainland China of the common period (2008 to 2010, i.e. 36 months) for DECSO, EnKF, MEIC, and 

REAS v2.2. Table 1 shows the correlation coefficient of monthly total emissions from different 

inventories over Mainland China from 2008 to 2010. The two DECSO inventories show a relative good 

correlation with MEIC and REAS. The correlation coefficient between the two DECSO inventories is 30 

only 0.75 as a result of the different seasonality (see Figure 6). This implies that the observed 

seasonality can be highly affected by the choice of satellite observations, reflecting differences in the 

local overpass time and pixel size. The two EnKF inventories based on the same observations but using 

different forecast models show a strong correlation. However, for most cases on a provincial or a small 

regional level, no significant correlation of monthly variability from different approaches can be found 35 

(not shown). Due to the coarse resolution of the EnKF emission estimates (i.e. 2.8°), the seasonality 

can be strongly mixed up between urban and rural areas within a coarse model grid. The uncertainty in 

temporal variability of NOx emissions becomes larger with decreasing spatial scale of emissions, 

especially where surface types are inhomogeneous.  
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3.2 Spatial distribution 

In this section, we choose the year 2008 to compare the bias and spatial distribution, since it is the only 

year that is contained by all inventories. Because DECSO inventories have a grid that is half a grid cell 

shifted compared to the other inventories, the comparison per grid cell could theoretically result in up 

to 40% discrepancy in correlation coefficients due to re-gridding. The calculated discrepancy decreases 5 

to less than 10% on the resolution of one degree or more. For a fair comparison, we check the 

correspondence in spatial distribution on a provincial level. We calculate the correlation coefficient (R) 

of each two inventories on a regional or provincial level (in total 33 regions including 29 Chinese 

provinces, South Korea, North Korea, and parts of Vietnam (43%) and Mongolia (53%), as shown by 

Figure 1. Note that our domain covers only a part of the provinces Heilongjiang (74%), Inner Mongolia 10 

(83%), Sichuan (51%) and Yunnan (36%). The comparison result is summarized in Table 2. We use 

the MIX inventory for 2008 to represent both MEIC and CAPSS depending on the region of interest, 

since MIX covers the whole domain. All correlation coefficients are above 0.8, which means that the 

spatial distribution on a regional or provincial level have a good agreement among all inventories. The 

emission correlations are higher when the emissions are derived with similar methods. Both DECSO 15 

inventories have the best correlation with the EnKF inventories, with R-values around 0.95. EnKF-

CHASER and EnKF-MIROC show a similar spatial distribution. For the two EnKF inventories, the 

original 2.8-degree resolution data was subsequently re-gridded to a finer resolution using the same 

fine-scale distribution. Both REAS inventories have very high correlations (R values are 0.98 and 0.99) 

with MIX since the same provincial activity data of China are used for calculating emissions in MIX 20 

and in REAS v2.1 (Kurokawa et al., 2013). The correlation between EDGAR v4.3.1 and other bottom-

up emission inventories is relatively low (R<0.85). EDGAR v4.3.1 uses the emission information from 

IEA (2014) statistics (before the Coal statistics revision of China) and CARMA v3.1 for distribution 

while MIX and REAS are based on national statistics, which may lead to the discrepancy. 

Both the bottom-up and satellite-derived inventories show large biases but their spatial distributions are 25 

similar on a provincial scale. To further examine the spatial distribution and biases, we combine the 

emissions in bins of one-degree latitude and compare the longitudinal total emissions over land in the 

study domain. Figure 7 shows that all inventories have similar patterns over latitude but with large 

biases. The standard deviation averaged over the latitudes (20N-50N) between all the inventories is 

27%. For areas, north of 40 N°, the satellite-derived emission inventories are lower than the bottom-up 30 

inventories. The relative standard deviation is also large (from 40% to 80%) at high latitudes.  

Note that the satellite-derived emissions are total surface emissions including anthropogenic, biogenic, 

and shipping emissions. MEIC and REAS v2.2 include only anthropogenic emissions. REAS v2.1 

includes all emissions except for lightning by adding the aviation and international shipping emissions 

from EDGAR v4.2. These differences make the comparison inconsistent. To conduct consistent 35 

comparisons, we divide the domain into urban and rural areas based on land-use information and 

compare the emissions over each area. We use the land-use information at a resolution of 300 m from 

the GlobCover Land Cover (GCLC version 2.3) database, which is updated for the year 2009. We 

assume that an urban grid cell has more than 5% coverage of urban land. In GCLC, urban areas are 
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defined as artificial surface and associated areas. If the grid cell is 100% covered by vegetation 

(including agricultural land, grass land, shrubs, forest) or barren land, it is regarded as a rural grid cell. 

We note that the anthropogenic emissions can still be the dominant source over the rural grid cells 

because urban areas (for example highway, small factories etc.) can be smaller than the resolution of 

the GCLC data (300 m). Figure 8 shows the distribution of the urban and rural grid cells. The urban 5 

grid cells account for 4.5% of the total land area while the rural grid cells cover about 41%. 

Figure 9 shows that the meridional distributions of emissions from all inventories over urban grid cells 

are in good agreement. Even though the urban grid cells are only about 4.5% of total land cover, they 

contribute to about 50% of the total emissions over the whole domain. The range of the total urban 

emissions is between about 2.0 (REAS v2.2) to 3.4 (MIX) Gg N year
-1

. The standard deviation of the 10 

total urban emissions is about 19% of the ensemble mean. The urban emissions from DECSO-OMI is 

apparently lower than others above 40 N°. The urban emissions over the areas above 40 N° contribute 

to only 6% to the total urban emissions over the whole domain in DECSO-OMI; the other inventories 

show larger contributions (about 10-15%).  

Figure 10 shows that the emissions of all inventories over rural grid cells have wide spread along 15 

latitudes. The emissions over rural areas contribute to about 8% of the total emissions (254 - 900 Gg N 

year
-1

) on average with a relative standard deviation of about 44% to the total emissions over the 

domain. EDGAR v4.3.1 emissions, which include biogenic (biofuel and biomass) emissions, are even 

lower than MIX and REAS v2.2 that include only anthropogenic emissions. The relative differences in 

emissions over rural areas are much larger than over urban areas, especially for the bottom-up 20 

inventories. These results suggest that large uncertainties over rural areas exist in the current bottom-up 

inventories. The mean differences are usually smaller for the satellite-derived inventories.  

The seasonal cycle of the urban grid cells is quite similar to the one shown in Figure 6 for all of 

mainland China. However, the seasonal cycle for the rural grid cells have a much stronger summer 

maximum for the inventories that include biogenic emissions. Table 3 and 4 show the temporal 25 

correlation of monthly emissions among different inventories over urban and rural areas, respectively. 

The correlation coefficients are similar between the total emissions over land (Table 1) and over urban 

areas (Table 3). The two DECSO inventories have a high correlation over rural areas with REAS v2.1. 

A possible reason is that REAS v2.1 is the only bottom-up inventory in the comparison, which includes 

biogenic emissions. The EnKF datasets have low correlations with all bottom-up inventories probably 30 

due to its coarse horizontal resolution (see Section 3.1.2).  

 

4. Discussion 

4.1 Temporal analyses 

Our intercomparison shows differences of about 10% in the time series over of the regional total 35 

emissions over Mainland China. The peak year of the Chinese country-total emissions was 2011 in the 

EnKF and MEIC inventories, which is consistent with the results of Liu et al. (2016). Irie et al. (2016) 

showed that NO2 column concentrations derived from OMI observations started to decrease in 2011 in 
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China. However, DECSO shows the peak year in 2012, which is consistent with the start of strict air 

quality regulations (van der A et al., 2017). Over South Korea, the local CAPSS inventory shows 

unchanging emissions until 2010 and increasing emissions since. REAS and EDGAR inventories show 

a strong decrease from 2005 to 2010 with large differences in the decrease rate.  For bottom-up 

inventories, it is difficult to assume the correct timing of penetration of a given new technology. For 5 

instance, EDGAR assumes an immediate implementation of a new policy, e.g. low-NOx burner, and so 

does not represent the real time of penetration of the new technology. All the satellite based inventories 

show a decrease in 2015. This is different for concentrations derived from OMI measurements, which 

show a decrease from 2005 to 2013 and a slight increase in 2015 (Irie et al., 2016). Mijling et al. (2013) 

calculated that the NO2 transported from outside the country contributes to about 7% of the average 10 

NO2 columns over South Korea. Thus the trend of NO2 column concentrations cannot always be used 

as an indication for the local emission because of influences of atmospheric transport. Miyazaki et al. 

(2017) indicated that an accurate emission trend requires an emission-concentration relationship that 

explicitly accounts for tropospheric chemistry and transport, which is included in advanced data 

assimilation techniques. This can cause significant differences between the bottom-up and satellite-15 

derived emissions.  

Three satellite-derived inventories (EnKF-CHASER, EnKF-MIROC and DECSO-OMI) and REAS 

v2.1 show a strong summer peak, which can be attributed to biogenic emissions in summer, such as 

enhanced soil emissions and emissions from biomass burning. REAS v2.1 includes biogenic emissions 

while the other bottom-up inventories shown in Figure 6 include only anthropogenic emissions. Zhao 20 

and Wang (2009) concluded that soil emissions are enhanced in summer and contribute to at least 14% 

of the total emissions in July in China. Soil emissions have a positive exponential relationship with soil 

temperature (Schindlbacher et al., 2004), and can be enhanced after precipitation over vegetation 

(Zörner et al., 2016), which could explain the seasonality in satellite-derived emissions in most parts of 

China. Also, emissions by biomass burning and crop burning are maximized in summer in China (Li et 25 

al., 2016; Zhang et al., 2016). Stavrakou et al. (2016) pointed out that the current biomass burning 

inventories are underestimating emissions by crop burning in northeast China. This can lead to 

significant differences in the emission seasonality between the bottom-up and satellite-derived 

emissions. The OMI satellite instrument with an overpass time in the afternoon will observe more NO2 

from biomass burning than the GOME-2 instrument with its morning overpass time, because of 30 

stronger biomass burning activities and high soil emissions in the afternoon (Boersma et al., 2008). 

This can explain why only the satellite-derived emission inventories based on OMI show a clear 

summer peak. The seasonality shown by DECSO-OMI and EnKF datasets are slightly different. One 

possible reason is the uncertainty in the NOx chemical lifetime in the CTM. For instance, in summer, a 

too short lifetime can result in overestimation of emissions by the inversion method (Stavrakou et al., 35 

2013). In addition, the EnKF data assimilation has frequent updates (every 120 minutes), which may 

lead to overcorrection in the estimated emissions due to the persistent underestimation of NOx 

concentrations by the CTM.  

4.2 Spatial analyses  

 40 
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All the inventories are in good agreement on the spatial distribution on a provincial level but with large 

biases. The differences in total annual emissions can increase to 100% for small spatial scales, which is 

in line with recent studies on regional emission inventories. For example, Saikawa et al. (2016) 

compared five bottom-up inventories on a provincial and national scale in China and concluded that 

more improvements are needed for provincial emissions. All satellite-derived emissions are lower than 5 

that of bottom-up inventories at high latitudes (above 40 N°). This is probably due to negative bias of 

satellite observations at higher latitudes in East Asia (Ding et al., 2017; Lorente et al., 2017). Another 

reason can be the overestimation of NOx lifetime in the CTM for high latitudes (Stavrakou et al., 2013), 

which could cause underestimation of the estimated emissions. 

4.3 Differences in the bottom-up emissions 10 

The differences in emission activity and emission factors of each emission sector can lead to large 

discrepancies in the bottom-up emission inventories. Saikawa et al. (2016) and Li et al. (2017) analysed 

that large discrepancies in bottom-up emission estimates over China are mainly related to different 

statistical data and emission factors for the energy and transport sectors. All three inventories use 

different provincial statistics. The emission factors of power plants are lower in MEIC as compared to 15 

EDGAR and REAS. More power plants are included in MEIC, which uses the high-resolution database 

CPED for China. REAS uses two other global databases, CARMA (Carbon Monitor for Action) and 

WEPP (World Electric Power Plants), while EDGAR uses downscaled IEA (International Energy 

Agency) statistics and CARMA v3.1 for the distribution. For the transport sector, each inventory has its 

own sub-categories to calculate the total emissions. MEIC includes only on-road vehicle emissions, 20 

while EDGAR and REAS give off-road emissions including emissions from ships and aircrafts. For 

vehicle emissions, MEIC uses the information from local statistics, but large uncertainties still exist in 

vehicle emission factors and activities. The selected vehicle emissions factors do not include spatial 

variability and the emissions activities are based on surveys conducted in only a few cities (Zheng et al., 

2014). More details about the difference in bottom-up inventories can be found in Li et al. (2017). For 25 

South Korea, the NOx emissions from CAPSS, using local data of emission factors and activities based 

on local measurements, are much lower than from other bottom-up inventories. 

4.4 Differences in the satellite-derived emissions 

The differences in the satellite-derived emissions are introduced by differences in inversion techniques, 

chemical transport models, and observations. For instance, errors in the simulated NO2 columns are 30 

largely influenced by the representation of lightning NOx sources, especially in summer, and thus affect 

the quality of surface NOx emissions estimates (Lin, 2012). In the EnKF analyses, lightning NOx 

sources are simultaneously optimized using satellite measurements (Miyazaki et al., 2014), which can 

improve the surface emission estimation. In the DECSO algorithm, the NO2 concentrations above 500 

hPa were obtained from climatological data, and the lightning emissions are identified as surface 35 

emissions. The error in NOx lifetime due to uncertainties in meteorological input and chemical 

processes also strongly affect the satellite-derived emission estimates (Lin et al., 2012; Stavrakou et al., 

2013), which are differently represented in each model.  
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The emissions derived with DECSO using OMI are much lower than those from other satellite-derived 

inventories. The monthly variability is largely affected by changing the satellite observations in 

DECSO, which is attributed to the differences in the satellite overpass time (see section 4.1) and 

uncertainty in modelled diurnal variations. NO2 columns observed by GOME2 are on average 20% 

higher than by OMI in the winter period (October to March) while up to 40% in the summer period 5 

(April to September) in 2014,  reflecting stronger daytime photochemical sinks from oxidation by OH 

in summer (Boersma et al., 2009). Although the OMI and GOME-2 retrievals were produced using the 

same retrieval algorithm (Boersma et al., 2011), Wang et al. (2016) concluded that GOME2-A/B has a 

larger bias (about 30%) than OMI satellite observations in Wuxi in China from 2011 to 2014. In 

addition, GOME-2 observes larger NO2 columns from the transport sector due to the morning rush 10 

hour (Wang et al., 2016), whereas OMI has better capability to detect emissions from biomass burning 

that usually at their maximum in the afternoon (Boersma et al., 2008; Miyazaki et al., 2017). To obtain 

better NOx emission estimates from the satellite-based approach, it is useful to combine observations 

from multiple instruments obtained at different overpass time, as implemented in the EnKF inversions. 

Miyazaki et al. (2017) demonstrated that the application of a correction scheme for diurnal emission 15 

variability using multiple measurements (OMI, GOME-2, SCIAMACHY) is an important development 

in the emission estimates. Different from the DECSO algorithm, the EnKF emissions are obtained by 

assimilating multiple species, which provide constraints on various aspects of the tropospheric 

chemistry system to improve the NOx emission estimates (Miyazaki and Eskes, 2013; Miyazaki et al., 

2017). When comparing two NOx emissions of EnKF-MIROC derived by assimilating multiple species 20 

and NO2 only, the average bias is about 5% for the annual total emissions over East Asia. This 

confirms that the emissions are strongly constrained by NO2 observations but are also modified by non-

NO2 observations through their influences on the vertical profile and chemical lifetime of NOx. 

EnKF-CHASER and EnKF-MIROC use the same data assimilation framework but different CTMs. 

Our comparisons reveal that the estimated emissions are largely sensitive to the forecast model. The 25 

bias between the two EnKF datasets is about 15% for the annual total emissions over the domain. The 

estimated emissions are generally higher in EnKF-CHASER than in EnKF-MIROC, which could be 

attributed to the larger amount of OH and thus shorter NOx chemical lifetime in EnKF-CHASER.  

DECSO inventories show better temporal correlation with other inventories, especially over rural areas. 

Our analyses suggest that the estimated emissions are strongly influenced by the choice of model 30 

resolution (0.25 in DECSO vs. 2.8 in EnKF). Insufficient model resolution could cause artificial 

dilution and errors in simulating non-linear chemical feedback of O3-HOx-NOx chemical system. Valin 

et al. (2011) also discussed that a sufficient horizontal resolution of model to accurately simulate the 

non-linear effect is related to the size of the emission source (4km for small source to 48km for a big 

city). High-resolution inversion is considered to be essential to improve the emission estimates at 35 

small-scales and to derive better temporal changes over different types of areas.  

5. Conclusions and recommendations  

To investigate the uncertainties in NOx emission estimates over East Asia, we compared nine NOx 

emission inventories from satellite-derived and bottom-up approaches over East Asia. The bottom-up 
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inventories are obtained from a global inventory (EDGAR v4.3.1), regional inventories over Asia 

(REAS v2.1 and an interim version of 2.2), and national inventories of China (MEIC) and South Korea 

(CAPSS). The four satellite-derived inventories were derived with different versions of DECSO and 

EnKF. DECSO-OMI and DECSO-GOME2a are based on an extended Kalman filter using observations 

from OMI and GOME-2 respectively. EnKF-CHASER and EnKF-MIROC are based on an ensemble 5 

Kalman filter applied to multiple-NO2 and multiple-species measurements using two different CTMs. 

The intercomparison of all inventories shows good agreement in NOx emissions over Mainland China 

with an average bias of about 20% for yearly emissions. All the inventories reveal common variability 

such as a typical emission reduction of 10% during the Chinese New Year and a sharp peak in 

December. All the inventories show good agreement in spatial distribution on a provincial level 10 

(R>0.8). However, biases in NOx emissions and uncertainties in temporal (both yearly and monthly) 

variability become quickly higher when the spatial scale decreases. The emissions over urban areas in 

East Asia and show better agreement in the temporal and spatial variability between the different 

inventories than over rural areas. The coarse-resolution EnKF inventories show low temporal 

correlation with other inventories over rural areas, because they are unable to distinguish between 15 

urban and rural sources at small-scale. All the satellite-derived inventories except for DECSO-

GOME2a show a summer peak over Mainland China. The summer peak could be related to enhanced 

emissions from soils and biomass burning in summer, for which OMI better captures the enhanced 

concentrations than GOME-2 due to their different overpass time. All the satellite-derived inventories, 

in particular DECSO-OMI, are lower than bottom-up inventories at higher latitudes (at above 40 N°).  20 

Based on our findings from the intercomparison of NOx emission inventories, we come to the 

following recommendations for the development of NOx emission inventories in the future: 

1. To better capture the temporal variability of emissions from the satellite-derived approach, 

observations from multiple instruments are important. In addition, a high spatial resolution 

model is necessary to distinguish between different emission sources and to better derive the 25 

emissions on a small spatial scale.  

2. Different bottom-up inventories use different definition of emission sector categories and with 

different assumption about the shares of the different technologies and high uncertainties in 

NOx emission factors and activities. Better measurements of emissions factors and more 

detailed statistics on the activities not only per fuel but also per (combustion) technology are 30 

required. 

3. To take into account the advantages of bottom-up and satellite-derived approaches and to 

update near-real time emissions, sector information from the bottom-up approach can be 

combined with the satellite-derived inventories. For instance, information on temporal 

changes of emissions from satellite-based calculations can be used for the temporal evolution 35 

of the bottom-up inventories. 

The satellite-derived approach can be further improved following the development of satellite 

instruments, like TROPOMI on Sentinel 5p and later the GEMS sensor on the geostationary GEO-

KOMPSAT-2B. With higher spatial resolution of observations, more accurate emission over different 

land use categories can be obtained. GEMS will provide observations with high temporal and spatial 40 
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resolution, which enables the improvement of diurnal cycles for emission estimates. 
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Figure 1.  NOx emissions over East Asia of all inventories in this study and their average in 2008. The 

averaged emissions over land are the mean of all emission inventories. Over the ocean the emissions are the 

average of DECSO-OMI, DECSO-GOME2, REAS v2.2 and EDGAR v4.3.1. 5 
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Figure 2. Annual NOx emissions from eight emission inventories over Mainland China in the selected 

domain (Figure 1). 
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Figure 3. Normalized annual NOx emissions from eight emission inventories over Mainland China in the 

selected domain (see Figure 1). The time series are normalized to their value in 2008. 
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Figure 4. Annual NOx emissions from eight inventories over South Korea. 
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Figure 5. The peak year (left figure) of the average annual NOx emissions from the four satellite-

derived inventories (DECSO-OMI, DECSO-GOME2a, EnKF-CHASER and EnKF-MIROC) for various 5 

provinces and regions. The right map image shows the minimum temporal correlation coefficient of 

all combinations of the four emission datasets. 
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Figure 6. Monthly variability in NOx emissions over Mainland China in the selected domain (see Fig 1). 
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Figure 7. Latitudinal distribution of longitudinal total NOx emissions over land.  The emissions are summed 

over a one degree longitudinal band above land. 
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Figure 8. The distribution of urban grid cells (red) and rural grid cells (blue).  Urban grid cells have an 

urban area (as defined in the GCLC data base) larger than 5% of the grid cell.  Rural grid cells are 100% 

covered by vegetation (including agricultural land, grass land, shrubs, forest) or barren land. 5 
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Figure 9. Latitudinal distribution of longitudinal total NOx emissions over urban areas (the red cells in Fig 

8). 
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Figure 10. Same as Fig. 9, but for rural grid cells (the blue cells in Figure 8).  
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Table 1 Temporal correlation coefficient of the 36 monthly NOx emissions over Mainland China from 2008 

to 2010. The bold rectangle indicates the relation between bottom-up and satellite-based inventories. 

 

  REAS v2.2 MEIC EnKF-MIROC 

EnKF-

CHASER DECSO-GOME2a 

DECSO-OMI 0.72 0.6 0.52 0.45 0.75 

DECSO-

GOME2a 0.78 0.74 0.46 0.28 1 

EnKF-CHASER 0.43 0.43 0.65 1 - 

EnKF-MIROC 0.46 0.43 1 - - 

MEIC 0.91 1 - - - 

 

 5 
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Table 2. Spatial correlation coefficients of annual NOx emissions in 2008 over land on a provincial level in 

China and other regions outside China. (The total number of provinces and regions is 33, which includes 

including 29 Chinese provinces, South Korea, North Korea, and parts of Mongolia (83%) and Vietnam 

(43%), see figure 1. The study domain only covers part of the provinces Heilongjiang (74%), Inner 

Mongolia (83%) and Yunnan (36%)). The bold rectangle indicates the relation between bottom-up and 5 

satellite-based inventories. 

  

  

EDGAR 

v4.3.1 

REAS 

v2.1 

REAS 

v2.2 MEIC 

EnKF-

MIROC 

EnKF-

CHASER 

DECSO-

GOME2a 

DECSO-OMI 0.84 0.90 0.91 0.92 0.96 0.95 0.98 

DECSO-

GOME2a 0.85 0.92 0.94 0.95 0.96 0.96 1 

EnKF-

CHASER 0.88 0.92 0.93 0.95 1 1 - 

EnKF-MIROC 0.88 0.94 0.95 0.95 1 - - 

MEIC 0.89 0.99 0.98 1 - - - 

REAS v2.2 0.90 0.99 1 - - - - 

REAS v2.1 0.88 1 - - - - - 

EDGAR v4.3.1 1 - - - - - - 
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Table 3 Temporal correlation coefficient of the 12 monthly total NOx emissions over urban areas in the 

common year 2008. The bold rectangle indicates the relation between bottom-up and satellite-based 

inventories. 

 

REAS 

v2.1 

REAS 

v2.2 
MIX EnKF-MIROC 

EnKF-

CHASER 
DECSO-GOME2a 

DECSO-

OMI 
0.73 0.61 0.34 0.5 0.22 0.69 

DECSO-

GOME2a 
0.53 0.67 0.48 0.72 -0.04 - 

EnKF-

CHASER 
0.28 0.21 0.47 0.21 - - 

EnKF-

MIROC 
0.11 0.24 0.25 - - - 

MIX 0.72 0.83 - - - - 

REAS v2.2 0.93 - - - - - 
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Table 4 Same as Table 3, but for rural areas in 2008.  

 

REAS 

v2.1 

REAS 

v2.2 
MIX EnKF-MIROC 

EnKF-

CHASER 
DECSO-GOME2a 

DECSO-

OMI 
0.88 0.17 -0.31 0.75 0.64 0.69 

DECSO-

GOME2a 
0.88 0.33 -0.21 0.12 0.20 - 

EnKF-

CHASER 
0.46 -0.02 -0.12 0.75 - - 

EnKF-

MIROC 
0.47 0.20 0.04 - - - 

MIX -0.13 0.80 - - - - 

REAS v2.2 0.43 - - - - - 
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