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Abstract. 

Exposure to wildland-fire smoke is associated with negative effects on human health. However, 

these effects are poorly quantified. Accurately attributing health endpoints to wildland-fire 

smoke requires determining the locations, concentrations, and durations of smoke events. Most 

current methods for assessing these smoke events (ground-based measurements, satellite 5 

observations, and chemical-transport modeling) are limited temporally, spatially, and/or by their 

level of accuracy. In this work, we explore using daily social-media posts regarding smoke, haze, 

and air quality from Facebook to assess population-level exposure for the summer of 2015 in the 

western US. We compare this de-identified, aggregated Facebook data to several other datasets 

that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol 10 

optical depth and Hazard Mapping System smoke plumes), daily (24-hour) average surface 

particulate-matter measurements, and model (WRF-Chem) simulated surface concentrations. 

After adding population-weighted spatial smoothing to the Facebook data, this dataset is well-

correlated (R2 generally above 0.5) with these other methods in smoke-impacted regions. The 

Facebook dataset is better correlated with surface measurements of PM2.5 at a majority of 15 

monitoring sites (163 of 293 sites) than the satellite observations and our model simulation are. 

We also present an example case for Washington state in 2015, where we combine this Facebook 

dataset with MODIS observations and WRF-Chem simulated PM2.5 in a regression model. We 

show that the addition of the Facebook data improves the regression modelôs ability to predict 

surface concentrations.  This high correlation of the Facebook data with surface monitors and our 20 

Washington state example suggests that this social-media-based proxy can be used to estimate 

smoke exposure in locations without direct ground-based particulate-matter measurements.  

 

1 Introducti on 

Exposure to poor air quality is associated with negative impacts on human health 25 

(Dockery et al., 1993; Pope, 2007). As such, the Environmental Protection Agency (EPA) has set 

air-quality standards to limit concentration levels of pollutants in the United States, which has 

led to reductions in anthropogenic emissions. However, particulate matter (PM) also has natural 

and transboundary sources, which are more difficult to control. A large natural source of PM in 

the western US is from landscape fires, which are comprised of wildfires and prescribed burning 30 

on natural lands and agricultural fires. Landscape fire smoke (LFS) drives much of the 
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interannual variability in total PM2.5 (PM with an aerodynamic diameter < 2.5 µm, Jaffe et al., 

2008).  The 2011 National Emission Inventory (NEI2011, epa.gov) attributes ~20 % of the 

primary PM2.5 emissions in the US to wildfires, 15 % to prescribed fires, and 1.5 % to 

agricultural fires (epa.gov). Lelieveld et al. (2015) used concentration-response functions derived 

from previous studies of total ambient PM (and smoking and household air pollution) to estimate 5 

that ~2500 premature mortalities are attributable to exposure to biomass-burning (a broad 

category that includes wildland, prescribed, and agricultural fires) PM2.5 per year in the US. 

However, the assumed toxicity and dose associated with LFS were assumed to be the same as all 

other PM sources. Thus, it is important to determine the health responses specific toLFS. 

Accurately attributing health outcomes to LFS requires a determination of the exposed 10 

population. Studies of health impacts often rely on (I) fixed-site monitors (e.g. Pope  et al., 

2009), (II) satellite products (e.g. Henderson et al., 2011; Rappold et al., 2011), ,  or 

(III) atmospheric model simulations (Alman et al., 2016; Fann et al., 2012; Johnston et al., 2012; 

Rappold et al., 2012),. Each of these methods has limitations as an exposure metric. For 

example, fixed site monitors are sparse in much of the western US, and satellite products do not 15 

on their own provide surface-level concentrations. Atmospheric model simulations may be 

biased by their emission inventories (Davis et al., 2015; Zhang et al., 2014), spatial resolution 

(Misenis and Zhang, 2010; Punger and West, 2013; Thompson et al., 2014; Thompson and Selin, 

2012), or input meteorological fields (Cuchiara et al., 2014; Srinivas et al., 2015; Ģabkar et al., 

2013). Thus, there is a growing effort to include multiple datasets (e.g. Henderson et al., 2011; 20 

Yao et al., 2013) and create blended products  that can exploit the strengths of each dataset 

(Brauer et al., 2015; van Donkelaar et al., 2015; Lassman et al., 2017; Reid et al., 2015; Yao and 

Henderson, 2013). However, these methods still only provide estimates of ambient concentration 

levels and not of actual exposure. Additionally, attributing health effects specifically to LFS  

exposure can be difficult as it requires separating the contribution of smoke from total PM2.5 (Liu 25 

et al., 2015).  

In this work, we propose the use of de-identified, aggregated Facebook data to determine 

population-level exposure for the summer of 2015, which was a particularly smoky year in the 

US (See Supplementary Figure 1 for number of fire and smoke days). While there can be many 

different sources of poor air quality, the highest PM2.5 concentrations measured during the study 30 

period were in regions and during time periods associated with wildfire smoke. We show that, 
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region-wide, this dataset is better correlated with surface measurements of PM2.5 than other 

traditional means of estimating exposure, suggesting that it has the potential to be used to 

estimate smoke exposure in locations without direct ground-based particulate-matter 

measurements. We also present a test case for Washington state, where we demonstrate that a 

regression model that includes our Facebook dataset is better able to predict surface PM2.5 than a 5 

regression model that only has model-simulated PM2.5 and satellite aerosol optical depth (AOD). 

We also compare our results to another measurement of internet behavior, Google Trends, as a 

proxy for air-quality exposure. 

The use of social media in risk and exposure assessment is a growing field. In the past 

decade, data mining of social media has provided a wealth of information to news outlets, 10 

marketing firms, and the social sciences (Burke and Kraut, 2016; Golder and Macy, 2011; 

Kosinski et al., 2013; Masedu et al., 2014; Youyou et al., 2015). Only recently have social media 

and internet behavior been used for research in both the natural sciences and public health.  

Social media and internet behavior have been proposed to track epidemics and earthquakes (e.g. 

Broniatowski et al., 2013; Crooks et al., 2013; Ginsberg et al., 2009),  fires (Abel et al., 2012; 15 

Bedo et al., 2015; De Longueville et al., 2009; Kent and Capello Jr, 2013), and poor air quality 

(Jiang et al., 2015; Mei et al., 2014; Tao et al., 2016), and to predict hospitalizations (Ram et al., 

2015). A paper by Sachdeva et al. (2016) also proposed the use of Twitter content and 

geographic information to estimate LFS concentrations. In this paper, we show how daily 

Facebook posting trends ñtrackò significant changes in air quality, such as is associated with 20 

dense smoke plumes from large wildfires. Furthermore, we show that Facebook posting trends 

could also improve estimates of PM2.5 exposure by serving as an extra constraint on more 

traditional methods for estimating exposure.     

 

2 Methods and Datasets 25 

2.1 Internet Behavior Datasets 

2.1.1 Aggregate Percent of Facebook Posters 

Our dataset is the percentage of distinct Facebook posters in each US city that used any 

of the following words: ñsmokeò, ñsmokyò, ñsmokeyò, ñhazeò, ñhazeyò, or ñair qualityò in a 

post, while attempting to filter out reference to cigarette smoking and other phrases not related to 30 

air quality (see Supplement). The search generates de-identified and aggregated counts of posters 



5 

 

each day, divided by the number of people who used Facebook in that city. This method counts 

each person at most once per day, avoiding bias from a single person posting multiple times 

about air quality that day. Re-shares of news articles and friendsô posts were also not included. 

No individualôs text was viewed by researchers. Our goal was to focus on wildfire smoke 

because wildfire smoke often leads to extreme air quality degradation over broad regions of the 5 

US in the summertime. However, because this list includes ñair qualityò and ñhazeò (and results 

were all aggregated), this search criterion can also highlight trends in Facebook posters 

discussing air quality degradation due to other emissions, such as fossil-fuel combustion, and 

may better encompass more of the ways that people discuss their experiences of changes in the 

air form smoke or other particulate matter. Geographic location at the city level is determined by 10 

IP address. Data were provided for 5 June through 27 October 2015. 

We analyzed this dataset of the de-identified, aggregated percent of Facebook posters that 

matched our search criteria at the city, town, or other municipality level (See Supplementary 

Figure 2a for location centroids, referred to as ñrawò throughout text). We translate the percent 

of Facebook posters data on to a standard latitude/longitude grid using an area-smoothing 15 

procedure with data weighted by the population of the municipality (See Supplementary Figure 2 

for example). The spatial interpolation allows us to estimate the magnitude of the response 

between the specific locations (centroids) and to compare to other gridded datasets. Additionally, 

we chose to weight the results by population because some of these locations are in areas with 

small populations (and potentially few posters on Facebook), which can skew results. We 20 

generated a fixed 0.25° grid using an inverse distance weighting to a power of six with a scale 

distance (or search neighborhood, ds) of 20 km. The scale distance and power were set to sharply 

reduce the influence of more-distant observations and were chosen based on the grid resolution 

in order to maintain the regional variability from the Facebook posters. Our resulting gridded 

data are determined using the following formula:  25 
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Where the percent of Facebook posters (fi) at a grid location (i) is the sum of all of the products 

of the population (Pc) and the original percent of Facebook posters (fc) at each ñFacebook 

municipalityò (c), weighted by the inverse of the distance (d) between location (i) and the 

Facebook municipality (c).  

2.1.2 Google Trends 5 

 We also analyzed Google Trends data (google.com/trends/) as a proxy for exposure and 

to evaluate the keywords used in our search criteria. Our reason for including this analysis is 

twofold: (1) to compare the results of our percent of Facebook posters comparison to results 

using another internet behavior dataset and (2) to determine which keywords are most strongly 

correlated with PM2.5 (as our Facebook posters dataset is an aggregated result for all search 10 

terms). We searched for ñair qualityò, ñwildfireò, ñsmokeò, ñpollutionò, ñhazeò, ñsmogò, and 

ñozoneò for 1 May ï 31 October 2015 for every designated media area (DMA) in the western 

US. Google Trends results are determined from a random sample of searches with location 

determined by IP address and duplicates (when the same person searches for the same term 

multiple times) removed. Results for each search are aggregated and de-identified, but limited to 15 

popular terms, with low values appearing as zero (highest values are 100). Therefore, the 

popularity of a search term impacts the spatial resolution available of the aggregated results 

(country, DMA, or city). Because of the coarse resolution of the aggregated Google Trends data 

(DMA-level), we chose to compare only to surface measurements and not the other gridded 

datasets. In order to determine the temporal correlation between the Google Trends and surface 20 

measurements, we identified the DMA in which each measurement site is located.  

2.2 Surface Measurements  

We determined the temporal correlation of these datasets to several other datasets that are 

commonly used for estimating exposure to LFS on a daily timescale. We use 24-hour average 

concentrations of total PM2.5 mass from EPA Air Quality System (AQS, data from epa.gov/aqs), 25 

which includes monitor data from different agencies, and Interagency Monitoring of Protected 

Visual Environments (IMPROVE, data from views.cira.colostate.edu/fed/) sites. At IMPROVE 

network sites, surface measurements of atmospheric composition are taken over a 24-hour period 

every third day (Malm et al., 1994). Depending on the measurement method at the site, 24-hr 

average concentrations are provided daily, every third day, or every sixth day at EPA-AQS sites. 30 

To maximize our data availability, we are using measurements from Federal Reference Method 
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and Federal Equivalent Method (FRM/FEM, 88101) sites and from non-FRM/FEM (88502) sites 

(both are also used by the EPA for AQI summaries).  

We determined the temporal correlations between the daily surface measurement and the 

internet behavior datasets at every site. However, in the Results and Discussion section, we only 

show example time series for four of these locations. These four locations are shown because 5 

they were all impacted by wildfire smoke during the study period, but the response in the percent 

of Facebook posters varied among the sites likely due to differences in surface concentrations, 

distance to fire, population, and cloud cover (discussed in Results and Discussion).    

2.3 Satellite Products 

2.3.1 Hazard Mapping System (HMS) Smoke Product 10 

We also use the Hazard Mapping System (HMS) fire and smoke analysis product, which 

is produced routinely by the National Oceanic and Atmospheric Administrationôs (NOAA) 

National Environmental Satellite and Data Information Service (NESDIS) for the purpose of 

identifying fires and smoke emissions (satepsanone.nesdis.noaa.gov). The HMS smoke product 

uses observations from both geostationary and polar-orbiting satellites. Polygons determined 15 

from satellite visible image analysis are currently categorized as light, moderate and heavy 

smoke and have assigned numerical values to estimate surface smoke concentrations (5, 16, 27 

µg m-3). This product is only available for daylight hours and each polygon is considered valid 

for a specific time period. We created a gridded surface from all the polygons valid for each day 

with the surface-concentration values suggested at the same 0.25° grid resolution as our gridded 20 

percent of Facebook posters in order to calculate the temporal correlation between the two 

datasets for each grid. In grids where there is more than one polygon valid for a day, we take the 

maximum value in each grid location during that day. Data files were available for every day 

during our analysis period except 20 August 2015, although sub-daily smoke plume analysis 

periods could also be missing. For determining the correlation with surface measurements, we 25 

matched the site location to the corresponding grid box.  

2.3.2 MODerate resolution Imaging Spectroradiometer (MODIS) AOD 

For AOD from satellites, we use the Collection 6, MODerate resolution Imaging 

Spectroradiometer (MODIS) Level 2 10-km aerosol optical depth (AOD) products from the 

Terra and Aqua platforms. Terra has a morning overpass (~10:30 AM LT) and Aqua has an 30 

afternoon overpass (~1:30 PM LT). With a swath width of 2,330 km, the instruments provide 
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almost daily coverage of the globe in cloud-free conditions. The MODIS algorithm can have 

difficulty distinguishing thick smoke from cloud (van Donkelaar et al., 2011), causing some 

instances of heavy smoke to be erroneously filtered out (although Collection 6 has made 

improvements to the algorithm to minimize this misclassification, see Levy et al., 2013). We 

average the MODIS AOD observations from both instruments on the same 0.25° grid and use all 5 

quality levels for better coverage. We additionally use the MODIS cloud fraction (CF) products 

(ñCloud_Fraction_Landò and ñCloud_Fraction_Ocean,ò) in order to determine the presence of 

clouds and to determine if cloudiness impacts Facebook postings on smoke. We calculate the 

temporal calculations between MODIS AOD and the Facebook posters dataset and the surface 

observations for the full dataset and excluding cloudy days.  10 

2.4 Weather Research and Forecasting model with Chemistry (WRF-Chem) PM2.5  

Several models and model frameworks are also routinely used to estimate smoke 

exposure. Here, we use a chemical transport model, the Weather Research and Forecasting 

model with Chemistry (WRF-Chem). The simulation was completed for 5 June ï 1 October 

2015. We use Global Forecast System (GFS) meteorology, biogenic emissions from the Model 15 

of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 2006), National 

Emission Inventory 2011 (NEI) anthropogenic emissions, FINN biomass-burning emissions 

(Wiedinmyer et al., 2011), MOZCART aerosol species and chemistry, and (MOZART) chemical 

boundaries (Emmons et al., 2010). Horizontal resolution is 15 km and there are 27 vertical 

levels. Concentrations are output for each model hour, which we then average to provide daily 20 

24-hour average surface concentrations in order to compare to the percent of Facebook posters 

dataset and surface measurements.   

2.5 Regression Model 

We also present a test case to evaluate the feasibility and usefulness of including this 

percent of Facebook posters dataset in a statistical model. We compare two geographically 25 

weighted regression (GWR) models that use MODIS AOD and WRF-Chem PM2.5 with and 

without the Facebook posters dataset.  GWR has previously been used in a several different 

studies to predict surface air quality (Hu et al., 2013; Lassman et al., 2017; Song et al., 2014; 

You et al., 2016). For our test case, we focus on Washington state because of the extensive 

network of surface PM2.5 measurements available for validating results. In our regression model, 30 

we determine the dependent variable (surface PM2.5 at each measurement site) from a linear 
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combination of these different predictor variables (MODIS AOD, WRF-Chem PM2.5, and 

gridded percent of Facebook posters). A separate set of regression coefficients is determined at 

each surface monitor location, which are then interpolated across the domain. We use the leave 

one out cross validation (LOOCV) method to test our models, in which the regression 

coefficients determined at a single monitor are removed from the interpolation scheme, and then 5 

the resulting PM2.5 predicted by the regression model is compared to the observed PM2.5 

concentrations. We calculate the temporal correlation, slope, and mean absolute error (MAE) for 

the two regression models.  

 

3 Results and Discussion 10 

3.1 Comparison of Percent of Facebook Posters to Conventional Metrics 

An example of the data used in this study is given in Figure 1 for 29 June 2015, which 

shows a dense smoke plume from wildfires in Canada causing degraded air quality over the 

Midwestern US and smoke from local fires in the Northwest over Washington, Oregon, and 

Idaho. The impact of this smoke plume is evident in the HMS smoke product, the anomalously 15 

high surface PM2.5 concentrations, the elevated MODIS AOD values, and in the WRF-Chem 

PM2.5. The spatial pattern in the percent of Facebook posters is somewhat consistent with regions 

of degraded surface air quality, suggesting some people were aware of the degraded air quality. 

The extent of the ñFacebook plumeò does not extend as far east or as far south as the smoke 

plume observed by the satellite products (MODIS AOD and HMS smoke product), and hotspots 20 

in the percent of Facebook posters are centered around the eastern Montana/Canada border. To 

note, the surface measurements also do not show a strong increase in surface concentrations as 

far south (Missouri and Arkansas), suggesting that the plume observed by the satellites might 

have been lofted above the surface. Additionally, while the HMS smoke product suggests only 

light smoke over northeastern Montana and MODIS AOD  is only moderately higher than the 25 

surrounding region, surface PM2.5 concentrations are elevated, which agrees with the spatial 

pattern in Facebook posters. In cases where the plume is lofted or smoke is concentrated at the 

surface, this new dataset might be more representative of surface air-quality changes than these 

satellite products.  

In Figure 2, we also show example time series of percent of Facebook posters and other 30 

datasets (surface PM2.5 measurements, MODIS AOD, MODIS CF, HMS smoke product) used in 
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this study for four different locations in the western US: Fort Collins, CO; Pinehurst, ID; 

Bellingham, WA; and Great Falls, MT. All four of these locations were impacted by wildfire 

smoke during the study period, but the response in the percent of Facebook posters varied among 

the sites likely due to differences in surface concentrations, distance to fire, population, and 

cloud cover. From these time series, we see the main two fire event periods that impacted large 5 

areas of the US during the summer of 2015: (1) the Canadian wildfires in late June through early 

July and (2) the wildfires in the northwestern US (mainly Washington and Idaho) in August. The 

magnitude of impact on these different metrics for estimating air quality varies by location and 

event. For  Pinehurst, ID, where the population was ~1600 in 2015, population-weighting the 

Facebook posters time series improves the correlation with the 24-hour average surface 10 

measurements (R2= 0.55 for gridded and R2= 0.00 for raw). In more populated regions, such as 

Fort Collins, CO (pop. ~161,000), Bellingham, WA (pop. ~85,000), and Great Falls, MT (pop. 

~60,000); population-weighting the Facebook posters has little impact on the time series and 

resulting correlation with the surface measurements (as shown in Supplement Figure 3). Further 

discussion of these time series is presented throughout this result section. 15 

In order to assess how well changes in the fraction of people posting about smoke and air 

quality in Facebook posts represent actual changes in surface air quality, we compare time series 

of the percentage of Facebook posts matching our criteria to time series of PM2.5 measured at all 

of the different surface sites across the summer of 2015, such as shown in the example time 

series of Figure 2. The coefficients of determination for all surface PM2.5-measurement sites with 20 

the gridded, population-weighted Facebook posts are shown in Figure 3a, which suggests that the 

best agreement between the two datasets is in regions that experienced heavy smoke and/or 

anomalously high PM2.5 concentrations during the summer, which is to be expected based on our 

search criteria. For example, the Mt. Hood IMPROVE site in Oregon (Figure 3) had 39 

measurement days (June 5-September 30) and had 14 days when the HMS smoke product 25 

suggested smoke over the location. This site provides the best R2 between the percent of 

Facebook posters and measured surface PM2.5 with a value of 0.97.  

We also compare agreement of the percent of Facebook posters against simulated 

concentrations from a chemical transport model simulation (WRF-Chem, Figure 3b), which 

again shows the highest correlation in the Northwest US, which was impacted by wildfire smoke 30 

for many days in the summer of 2015. We would expect this as our Facebook posters search 
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criteria is aimed at smoke and poor air quality and would likely only show changes in postings in 

regions where air quality was noticeably degraded.  

Agreement between MODIS AOD and Facebook posting trends are shown in Figure 3c, 

which also shows the best agreement in the northwestern US. Because thick smoke can 

occasionally be classified as cloud in the MODIS algorithm (van Donkelaar et al., 2011), we 5 

filter out MODIS AOD observations where the cloud fraction was > 75 %. The impact of this 

filtering is shown in the time series of Figure 2. The criterion reduced our number of useable 

observations but improved correlations at most sites (Supplementary Figure 4). Comparisons 

between Facebook posters and MODIS AOD are similar spatially to WRF-Chem PM2.5 and 

surface measurements, but coefficients for MODIS AOD and Facebook posts are generally 10 

worse. However, this satellite product is derived for the full atmospheric column and is not 

necessarily directly relatable to surface concentrations. Smoke plumes (and transported pollution 

from other sources) can be lofted above the surface and may not impact surface-level exposure 

where astute Facebook posters would take notice.  

Finally, we also show R2 values between the HMS smoke product estimated values and 15 

the Facebook posters in Figure 3d. Again, we see similar trends, where the best agreement occurs 

in regions which experienced numerous smoke days. The correlation values are not as high as for 

MODIS AOD or WRF-Chem PM2.5. The HMS smoke product only provides estimates for 

smoke, which is the primary focus of our search criteria although it also includes phrases related 

to general air quality degradation. Additionally, as with MODIS AOD, the HMS smoke product 20 

may not be representative of actual surface-level exposure. Finally, the HMS smoke product only 

provides categorical estimates of ñheavy,ò ñmoderate,ò or ñlightò smoke and likely cannot 

represent subtle changes in exposure concentration levels as compared to MODIS AOD.  

3.2 Evaluation of All Metrics Compared to Surface Measurements  

While we have shown that our new dataset often correlates well with more-traditional 25 

datasets that have been used to estimate smoke and or PM2.5 concentrations/exposure, we also 

investigate whether the percent of Facebook posters can be used to improve estimates when 

combined with these other datasets. In Figure 4, we compare how good of a predictor each 

dataset is at estimating PM2.5. We show the coefficients of determination for Facebook posters 

(4a, similar to 3a but for days where CF < 0.75), MODIS AOD (with CF < 0.75, Figure 4b), the 30 

HMS smoke product (Figure 4c), and WRF-Chem PM2.5 (Figure 4d) with the surface monitors. 
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From Figure 4, we can evaluate which dataset best correlates with surface measurements in 

different regions of the western US.  

We summarize these initial findings in Figure 4e, which shows the dataset that was best 

correlated with the surface measurement at each site (and the R2 had to be greater than 0.5). This 

figure shows that our Facebook posters dataset is better correlated with actual surface 5 

measurements at most sites in our domain for the given time period (5 June ï 30 September 

2015) compared to other datasets that are typically used to estimate exposure. We do find that 

MODIS AOD and WRF-Chem PM2.5 are better predictors in regions with low populations, such 

as North Dakota, eastern Montana, and eastern Washington. Additionally, WRF-Chem PM2.5 and 

MODIS AOD are better predictors over much of the eastern US (not shown, R2 values all less 10 

than 0.5), which is dominated by anthropogenic emissions during the time period, as these 

ñnormalò day-to-day changes in anthropogenic pollution may be less likely to be picked up by 

our Facebook posting search criteria. To note, we did not optimize the configuration of our 

WRF-Chem simulation to match surface observations. Changing emissions, meteorology, 

parameterization choices, grid resolution or time steps may have improved surface-concentration 15 

estimates, but the optimal configuration would likely differ by region and time period. However, 

our results shown in Figure 4 suggest that Facebook posting could be used to help estimate 

exposure in conjunction with these other datasets. 

 However, if the aggregate percent of Facebook posters are used to estimate exposure, 

there may be a few limitations; because, while trends in Facebook posting seem to represent well 20 

the variability in surface air quality over our study period at many sites, there is not a simple 

relationship between posting and PM2.5. For one, there did not appear to be a threshold PM2.5 

concentration at which it was guaranteed that people would start posting, region-wide or at an 

individual city (e.g. there were cases with high smoke but little posting such as the July event in 

Fort Collins, CO). There are several potential reasons for this. (1) As noted, on cloudy days, 25 

people may not be able to distinguish poor air quality, especially if it is from long-range 

transport where residents are not aware of a nearby fire. (2) There could be a point of saturation 

or response fatigue wherein people who have experienced multiple days of smoke may find it 

less interesting to post about it, or they could have a cognitive bias that causes them to think that 

air quality has improved in comparison to air quality previously experienced. To test this, we 30 

looked also at the time series of the ratio of % of Facebook posters to surface concentrations, and 
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this ratio does appear to decrease over time during periods of smoke events lasting several days. 

A decrease throughout the season is only evident at a few sites, although this is difficult to 

compare because the major smoke event at most sites occurred in late August and early 

September with few-to-no smoke events occurring afterwards. (3) We noted that occasionally 

regions with a high Facebook-posting percent was centered over areas where the population had 5 

experienced poor air quality on preceding days rather than the current regions of poor air quality. 

This time shift could suggest that there could sometimes be a lag in either individualsô awareness 

or in the time it takes to spread information among community-level social networks. 

Additionally, there could also be persistence in Facebook posts, where air quality might improve 

in a location but people are still posting about it. Conversely, awareness of events could spread 10 

through social network more quickly than an air quality event (such as a smoke plume) is 

transported such that individuals are discussing an event before it impacts them. Quantitatively, 

this is difficult to assess as it may be more event related than season-specific. We did compare 

+/- 1-day lag correlations between Facebook posts and surface measurements for all sites that 

had daily measurements (as opposed to every third day). Using the same day provided the best 15 

correlation at ~90 % of sites. Slightly better correlations were found using the previous dayôs 

measurement at several sites in Utah, and using the following day produced better estimates at 

several sites in Washington and Oregon, where there were broad regions and extended periods of 

degraded air quality due to local fires.  

3.3 Cloudy Day Modification  20 

We included the CF criterion for the above analysis for all datasets. We found that 

filtering out days with high CF improved agreement of Facebook posts and MODIS AOD 

(Figure 2 and Supplementary Figure 5). This led us to also hypothesize that people may have 

difficulty distinguishing poor air quality on cloudy days, especially farther downwind of a 

source. To test this, we also sampled the Facebook posts and surface measurement time series at 25 

each site with filtering using the MODIS cloud fraction. Compared to correlations between 

surface measurements and Facebook posts for the full time period, using only the days with CF < 

0.75 improved correlations most noticeably at sites that were generally more than 500 km 

downwind of fires (such as in Colorado, Wyoming, and Utah, Supplementary Figure 5) but had 

less impact at sites closer to the 2015 wildfires (Oregon, western Montana, Washington, and 30 

Idaho, see Supplementary Figure 1a for fire locations). Cloudiness possibly impacting awareness 



14 

 

on Facebook is seen in the time series for Fort Collins, Colorado in Figure 2a, where, although 

concentrations were greater during the July event than the August event, the response in 

Facebook posts was much less. Bellingham, WA was also impacted by smoke during the same 

period in July, and although lower surface concentrations were measured, the response in 

Facebook posts was greater. We noted however, that during the July event, the MODIS product 5 

reported a cloud cover of 100 % over Fort Collins. For the full time period, filtering out days 

with a CF > 0.75, improved the R2 between Facebook posts and surface measurements in Fort 

Collins from 0.33 to 0.54. Alternatively, in Great Falls, MT, which had many nearby fires, 

filtering only changed the R2 from 0.77 to 0.79, even though roughly the same number of days 

met the 0.75 criteria for exclusion. 10 

3.4 Google Trends comparison with Surface Measurements 

We also compared Google trends data to surface measurements of PM2.5. Our results are 

shown in Figure 5 for each search term. As with the Facebook posters, correlations are best in 

the northwestern US, specifically, Washington, Montana, and Oregon, states that were heavily 

impacted by smoke in 2015. Although we are comparing to total PM2.5, the best correlations 15 

were found for not only ñair qualityò, but also ñwildfireò and ñsmokeò, which, as with the 

Facebook posters, we might expect since wildfire smoke was the source of the most variability in 

surface PM2.5 during this time period. The search terms that are more related to urban pollution 

(ñpollutionò, ñsmogò, ñhazeò and ñozoneò) have much lower correlations, and sites that do have 

R2>0.1 are generally in urban areas or far downwind of smoke. ñOzoneò in particular was not 20 

well-correlated with PM2.5 measurements (all R2 < 0.22), which should be expected since ozone 

concentrations and PM2.5 concentrations are not always well-correlated (e.g. Reisen et al., 2011).   

3.5 Google Trends search term comparison 

We also used the Google Trends data to analyze our Facebook search term criteria 

because we were not able to do this within the Facebook posters dataset. We chose several words 25 

that might be associated with ñair qualityò and determined the correlations between each word 

for each DMA as shown in Figure 8. As with the actual concentrations of PM2.5, we find that ñair 

qualityò is, in general, more associated with ñsmokeò and ñwildfireò than words more commonly 

associated with urban sources like ñsmogò, ñhazeò, ñpollutionò, and ñozoneò. In Sachdeva et al. 

(2016), the authors found that distance from the fires impacted the content of postings about the 30 

fire, and we also note some differences in our correlation maps based on distance. For example, 
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closer to the fires (WA, OR, ID, MT), ñair qualityò is more associated with ñsmokeò, while 

farther away (CO, NV, UT, WY), ñair qualityò is more associated with ñwildfireò. At these sites, 

ñair qualityò is also better correlated with ñwildfireò than ñsmokeò, which may suggest that 

people are aware of the impact of the wildfires on air quality, but not able to see smoke. 

However, Google Trends are scaled by popularity in each region and data on only very popular 5 

terms are available. This could lead to a discrepancy in that the same amount of people may be 

searching for these terms in different regions, but the relative popularity may be very different 

compared to other search terms, especially if there are other physical sources of ñsmokeò or ñair 

qualityò in a region. ñOzoneò, ñsmogò, and ñpollutionò (terms that may be more associated with 

urban air pollution), are not well-correlated with ñair qualityò, ñsmokeò, or ñwildfiresò over our 10 

study period; however, ñhazeò is moderately correlated in WA, OR, and CO (Figure 6).  

3.6 Geographically Weighted Regression Test Case for W ashington state 

 As a first case test to evaluate the usefulness of this Facebook posters dataset in a 

statistical model, we compared two geographically weighted regression model estimates using 

MODIS AOD and WRF-Chem PM2.5 with and without the Facebook posters. From Figure 4, we 15 

see that WRF-Chem PM2.5, MODIS AOD, and this Facebook posters dataset are all correlated 

with surface PM2.5 in Washington state, and the best correlated variable varies between surface 

sites. Therefore, a regression model could allow us to leverage the strengths from each dataset to 

create an improved estimate.  

In Figure 7, we show the results for our regression models with and without the Facebook 20 

posts. We see that including the Facebook posts in the regression model leads to improved R2 

values at many of the sites in Washington (only one site shows a decrease, Figure 7e). 

Additionally, for the full dataset (of all sites and all days), there is an improved R2 (0.66 

compared to 0.58), slope (0.60 compared to 0.52), and a smaller error. While, these 

improvements may be small; we find this is in part because the Facebook posts explains much of 25 

the same variability as WRF-Chem PM2.5 (and better explains variability in the urban region 

around Seattle, WA). We also did not account for cloudy days in our regression analysis. 

Including information on cloud cover could potentially improve our regression model, which 

will be investigated further in ongoing work on this analysis.  

 30 

4 Conclusions 
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In this paper, we introduced a novel concept of using de-identified, aggregated counts of 

Facebook posts mentioning smoke, haze, or air quality to determine exposure by comparing to 

traditional datasets and in a regression model. We also looked at Google Trends data for the 

same time period and compared it to surface observations. The Facebook posts were useful in 

regions meeting two conditions: (1) the region was impacted by LFS, and (2) there was a large-5 

enough population posting to Facebook. The Google Trends data were also best correlated in 

regions impacted by smoke, however, it is aggregated at a much coarser resolution (DMA-level), 

therefore the impact of population density is unclear. For regions that meet these two criteria, the 

Facebook posts agreed well with more-traditional datasets routinely used for estimating smoke 

concentrations. In fact, the dataset was often a better predictor of surface PM2.5 than several of 10 

these other methods and/or datasets (MODIS AOD, HMS smoke product, WRF-Chem PM2.5). 

Therefore, this Faceboook posters dataset could be useful in determining spatial extent of 

exposure between surface monitors.  

In further investigating regions and time periods of poor agreement, we noted that the 

cloud cover negatively impacted our correlations, suggesting that some environmental factors 15 

might impact peopleôs awareness. We also found that in some regions, correlation improved 

when comparing to the previous or following day, possibly suggesting some influence of social 

media on awareness. Some of the disagreement could also be due to our search criteria, which 

could be further refined to reduce the number of false negatives (not recognizing a post is about 

air quality) and false positives (including posts that are not about air quality) that likely occur 20 

with colloquial conversations. Other studies, which have relied on Twitter messages, have been 

able to optimize this process by examining subsets of individual posts (ñTweetsò) to test for false 

positives. However, again, because this dataset does not provide information on individual posts, 

this is difficult to do solely within this dataset, but we do plan to test different search criteria in 

the future to aid in optimizing our dataset.    25 

Even with some of these limitations, we demonstrated that this percent of Facebook 

posters dataset has strong potential to be used to estimate exposure to poor air quality. Sachdeva 

et al. (2016)  has shown similar results with Twitter data, but only for a single fire in California. 

We believe that Facebook posts could provide some specific advantages over Twitter. Facebook 

is the most widely used social-media site in the US, with 70 % of its participants active daily 30 

(Duggan et al., 2015), compared to 36 % for Twitter. Additionally, only 1 % of Twitter posts are 
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geo-referenced (Thom et al., 2013), and Google Trends relies on a subset of searches for a large 

region. In Sachdeva et al. (2016), the actual analysis only included 1297 tweets from a 45-day 

period covering a region of 40,000 km2 in California and Nevada, and their statistical model was 

built from 705 tweets for a 37-day period covering a 7,500 km2 area. With a broader user-base, 

Facebook posts could potentially provide better spatial resolution over a broader region. 5 

Therefore, this dataset of de-identified, aggregated counts of posts, could be very useful for 

estimating population-level exposure. While we showed that Google Trends data were also 

moderately well-correlated with surface PM2.5 in the Northwest, results were only available for 

DMAs, of which there are only 210 in the US, leading to significantly less spatial information in 

the Google Trends data than with our percent of Facebook posters (which has results for >20,000 10 

cities in the US). In 2015, there was a broad region of smoke over much of the US; therefore, 

correlations with Google Trends may be much higher than if we compared to years with only 

localized smoke events. Finally, we presented a first test case using the percent of Facebook 

posters in a statistical model to predict surface concentrations in Washington state for June ï 

September 2015, showing improvements in slope and R2 values and a reduced error in predicted 15 

PM2.5. We plan to extend this work in order to provide improved estimates of smoke exposure 

for the whole western US for the 2015 summer, which will then be used to quantify the health 

responses associated with exposure to wildfire smoke. Improving the understanding of these 

specific health effects can potentially aid the public and decision-makers on when and how to 

take measures to reduce exposure. While social media will not be able to completely replace 20 

traditional methods of estimating exposure, social media datasets could currently improve 

estimates without the costly investment of additional surface monitors. Using social media 

datasets as a proxy for exposure, also lends itself to analysis of peopleôs response and 

understanding of smoke exposure (Sachdeva et al., 2016), which cannot be measured by 

traditional exposure methods.  25 

  

5 Data Availability  

The 24-hour average concentrations of total PM2.5 mass are available from the EPA Air Quality 

System at epa.gov/aqs, and the IMPROVE PM2.5 data are also available at 

views.cira.colostate.edu/fed/. The Collection 6, MODIS Level 2 10-km AOD products from the 30 

Terra and Aqua platforms are available at ladsweb.nascom.nasa.gov. The HMS fire and smoke 
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analysis product is available through satepsanone.nesdis.noaa.gov. Google trends data are 

available at google.com/trends. Our WRF-Chem model output (daily, 24-hour average surface 

concentrations) is available at http://hdl.handle.net/10217/177042. The Facebook posts data 

retrieval was conducted internally at Facebook by a Facebook data scientist. To preserve the 

privacy of Facebook users and in accordance with the data use agreement, we are unable to 5 

provide the Facebook posters data. However, we do provide daily maps of the raw and gridded 

aggregate percent of Facebook posters at http://hdl.handle.net/10217/177043.  
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Figure 1. Example of datasets for 29 June 2015. a.) Population-weighted (Equation 1) percent of 

Facebook posters meeting criterion (white signifies regions with weighted population < 10), b.) 

24-hr average surface PM2.5 concentrations from surface measurement sites, c.) gridded HMS 

smoke product, d.) gridded, unfiltered MODIS-Aqua and MODIS-Terra AOD (white signifies no 5 

valid observation), and e.) WRF-Chem simulated 24-hr average surface PM2.5 concentrations.  
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Figure 2. Time series of measured surface PM2.5 concentrations (red),  gridded and population-

weighted percent of Facebook posters (green), MODIS AOD (purple), and days with HMS-

denoted light (light gray) and moderate/thick (dark gray) smoke at (a) Fort Collins, CO; (b) 

Pinehurst, ID; (c) Bellingham, WA; and (d) Great Falls, MT for 5 June ï 27 October 2015.  R2 5 

values for each dataset with the surface measurement are given along with the number of days 

available for the calculation noted in parentheses.  
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Figure 3. R2 values for % Facebook posters and a.) IMPROVE and EPA-AQS surface 

measurements of PM2.5 (for sites with > 35 days of measurements), b.) WRF-Chem PM2.5, c.) 

MODIS AOD when cloud fraction was below 0.75 and d.) HMS smoke product for the period of 

5 June ï 30 September 2015.    5 
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Figure 4. R2 values for surface measurements of PM2.5 with a.) percent of Facebook posters 

(CF<0.75), b.) MODIS AOD (CF<0.75), c.) HMS smoke, and d.) WRF-Chem simulated PM2.5, 

for the period of 5 June ï 30 September 2015. e.) Product (HMS Smoke, WRF-Chem PM2.5, 

MODIS AOD, or Facebook posters) that has the highest R2 compared to surface measurements 5 

for the time period of 5 June ï 30 September 2015 (sites are shown only if the resulting R2 > 

0.5). Number of sites in western US (domain shown) where product has highest R2 (and R2 > 

0.5) is given in parentheses. 

 


