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Abstract. The work here complements the overview analysis of the modelling systems participating in the third 12 
phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance 13 
for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America.  14 

The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a 15 
diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In 16 
addition to evaluating the ‘base case’ simulation in which all model components are configured in their 17 
standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied 18 
by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry 19 
deposition.  20 

To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) 21 
of the base case and of the sensitivity runs are analysed in conjunction with time-scale considerations and 22 
error modelling using the available error fields of temperature, wind speed, and NOx concentration.  23 

The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main 24 
scope of this study), allowing the detection of the time scale and the fields that the two models are most 25 
sensitive to. The representation of planetary boundary layers (PBL) dynamics is pivotal to both models. In 26 
particular: i) The fluctuations slower than ∼1.5 days account for 70-85% of the mean square  error of the full 27 
(undecomposed) ozone time series; ii) A recursive, systematic error with daily periodicity is detected, 28 
responsible for 10-20% of the quadratic total error; iii) Errors in representing the timing of the daily transition 29 
between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the 30 
standard deviation of the network-average ozone observations in summer in both Europe and North America); 31 
iv) The CMAQ ozone error has a weak/negligible dependence on the errors in NO2, while the error in NO2 32 
significantly impacts the ozone error produced by Chimere; v) The response of the models to variations of 33 
anthropogenic emissions and boundary conditions show a pronounced spatial heterogeneity, while the 34 
seasonal variability of the response is found to be less marked. Only during the winter season the zeroing of 35 
boundary values for North America produces a spatially uniform deterioration of the model accuracy across 36 
the majority of the continent.  37 

1. INTRODUCTION 38 

The vast majority of the research and applications related to the evaluation of geophysical models make use of 39 
aggregate statistical metrics to quantify, in some averaged sense, the properties of the residuals obtained from 40 
juxtaposing observations and modelled output (typically time series of the variable of interest). This practice is 41 
rooted in linear regression analysis and the assumption of normally distributed residuals and has been proven 42 
to be reliable when dealing with simple, deterministic and low-order models. Led by the rapid pace of 43 
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improved understanding of the underlying physics, the paradigm is however changed nowadays in that models 44 
have grown in complexity and nonlinear interactions and require more powerful and direct diagnostic 45 
methods (Wagener and Gupta, 2005; Gupta, et al., 2008; Dennis et al., 2010; Solazzo and Galmarini, 2016). 46 

Evaluation of geophysical models is typically carried out under the theoretical umbrella proposed by Murphy in 47 
the early 1990s for assessing the dimensions of goodness of a forecast: consistency (‘the correspondence 48 
between forecasters' judgments and their forecasts’), quality (‘the correspondence between the forecasts and 49 
the matching observations’), and value (‘the incremental benefits realised by decision makers through the use 50 
of the forecasts’) (Murphy, 1993). Since 2010, the Air Quality Model Evaluation International Initiative 51 
(AQMEII, Rao et al., 2011) has focused on the quality dimension – the one most relevant to science, according 52 
to Weijs et al. (2010) – of air quality model hindcast products, aiming at building an evalution strategy that is 53 
informative for  modellers as well as to users.  54 

Our claim is that the value of a model’s result depends strictly on the quality of the model that, in turn, 55 
depends on sound evaluation. The scientific problem of assessing the quality of a modelling system for air 56 
quality is tackled by Dennis et al. (2010) who distinguish four complementary approaches to support model 57 
evaluation: operational, probabilistic, dynamic and diagnostic, which are also the four founding pillars of 58 
AQMEII. Several studies performed under AQMEII have focused on the operational and probabilistic evaluation 59 
(Solazzo et al., 2012a,b; Solazzo et al., 2013; Im et al., 2015a,b; Appel et al., 2012; Vautard et al., 2012) and 60 
more recently efforts have been expanded to the diagnostic aspect (Hogrefe et al., 2014; Solazzo and 61 
Galmarini, 2016; Kioutsioukis et al., 2016; Solazzo et al., 2017). 62 

Operational metrics usually employed in air quality evalution (cfr. Simon et al., 2012 for a review) have several 63 
limitations as summarised by Tian et al. (2016): interdependence (they are related to each other and are 64 
redundant in the type of information they provide), underdetermination (they do not describe unique error 65 
features), and incompleteness (how many of these metrics are required to fully characterise the error?). 66 
Furthermore, they do not help to determine the quality problem set above in terms of diagnostic power.  67 
Gauging (average) model performance through model-to-observation distance leaves open several questions 68 
such as a) How much information is contained in the error? In other words, what remains wrong with our 69 
underlying hypothesis and modelling practice? b) Is the model providing the correct response for the correct 70 
reason? c) What is the degree of complexity of the system models can actually match? These questions have a 71 
straightforward, very practical impact on the use of models, the return they provide (the value) and their 72 
credibility. Answers to these questions are also relevant to the wide-spread practice of bias correction which is 73 
aimed at adjusting the model value to the observed value, rather than correcting the causes of the bias which 74 
might stem from systematic, cumulative errors.    75 

The main aims of this study are to move towards tools devised to enable diagnostic interpretation of model 76 
errors, following the approach of Gupta et al. (2008 and 2009), Solazzo and Galmarini (2016),  and Kioutsioukis 77 
et al. (2016) and to advance the evaluation strategy outlined in the course of the three phases of AQMEII. In 78 
particular, the work presented here is meant to complement the overview analysis of the modelling systems 79 
participating in AQMEII3 (summarised by Solazzo et al., 2017) by concentrating on the performance for surface 80 
ozone modelled by two modelling systems: Chimere for Europe (EU) and CMAQ for North America (NA). This 81 
study attempts to:  82 

• Identify the time scales (or frequencies) of the error of modelled ozone;  83 
• Attribute each type of error to processes by utilizing modelling runs with modified fluxes at the 84 

boundaries (anthropogenic emissions and deposition at the surface, and boundary conditions at the 85 
bounding planes of the domain) and breaking down the mean square error (MSE) into bias, variance 86 
and covariance. This analysis allows us to diagnose the quality of error and to determine if it is caused 87 
by external conditions or due to missing or biased parameterisations or process representations;  88 
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• Investigate the periodicity of the ozone error which can be symptomatic of recursive (either casual or 89 
systematic) model deficiencies;  90 

• Determine the role of the error of precursor or meteorological fields in explaining the ozone error. 91 
The significance (or the non-significance) of a correlation between the ozone error and that of one of 92 
the explanatory variables can help to understand the impact (or lack of impact) of the latter on the 93 
ozone error as well as the time-scale of the process(es) causing the error. 94 

Among the several models participating in AQMEII3, CMAQ and Chimere have been selected as the analysis 95 
proposed in this study requires additional simulations beyond those performed by all AQMEII3 groups, which 96 
implied additional dedicated resources that were not available to all groups. This of course opens an important 97 
issue connected with the relevance of models in decision making, the adequacy of their contribution, and 98 
consequently the fact that far more resources would be required by the present complexity and state of 99 
development of modelling systems to guarantee that deeper evaluation strategies are put in place. Although 100 
only these two modelling systems are analyzed here, they represent two well-established systems that have 101 
been systematically developed over many years, are in use by a large number of research groups around the 102 
world and also have participated in the various phases of AQMEII. 103 

The data used, model features and error decomposition methodology are summarised in section 2. Results of 104 
the aggregate time series and error decomposition analyses are presented in section 3 and results of the 105 
diagnostic error investigation through wavelet, autocorrelation, and multiple regression analysis are presented 106 
in section 4. Discussion, conclusions and final remarks are drawn in Sections 5 and 6. 107 

2. METHODS 108 

2.1 DATA AND MODELS 109 
Unless otherwise specified, analyses are carried out and results are presented for the rural receptors of three 110 
sub-regions over each continental area as shown in Figure 1. The three sub-regions have been selected based 111 
on similarity analysis of the observed ozone fluctuations slower than ∼1.5 days. The regions where the slow 112 
fluctuations showed similar characteristics were selected through unsupervised hierarchical clustering (details 113 
in Solazzo and Galmarini, 2015). Due to the similarity of the observations within these regions which implies 114 
that they experience common physical and chemical characteristics, spatial averaging within these sub-regions 115 
was carried out. 116 

The stations used for the analysis are part of the European (European Monitoring and Evaluation Programme: 117 
EMEP; http://www.emep.int/; European Air Quality Database AirBase; 118 
http://acm.eionet.europa.eu/databases/airbase/) and North American (USEPA Air Quality System AQS: 119 
http://www.epa.gov/ttn/airs/airsaqs/; Analysis Facility operated by Environment Canada: 120 
http://www.ec.gc.ca/natchem/) monitoring networks. Full details are given in Solazzo et al. (2017) and 121 
references therein.   122 

Following the approach used in previous AQMEII investigations, modelled hourly concentrations in the lowest 123 
model layer (∼20m for both models) and corresponding observational data are paired in time and space to 124 
provide a verification data sample {݉݀௧ ,  ௧; t=1,…,8760; r=1,…,nrecs} of nrecs (number of monitoring 125ݏܾ
stations) record of matched modelled and observational data, where the rth-pair modt0 and obst0 is evaluated 126 
at receptor r at a given time t0. Further, while the observations are reported at the hour at the end (for 127 
Europe) or at the beginning (for NA) of the hourly averaging window, the model values available in this study 128 
are provided instantaneously. Therefore, the model concentrations were assumed to be linear between the 129 
instantaneous on-the-hour reporting times; the integration (average) between those times was used to 130 
construct hour starting (or ending) values in order to more directly compare to the averaging used in the 131 
observations. This is of particular relevance when estimating the error due to timing of the diurnal cycle 132 
discussed in section 4.3.  133 
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For the analyses conducted in this study, the spatial average of the observed and modelled ozone time series 134 
has been carried out prior to any time aggregation, i.e. the spatial average is created by averaging the hourly 135 
values over all rural stations in each region. Missing values in the time series, prior of the spatial averaging, 136 
have not been imputed. The analysis is restricted to stations with a data completeness percentage above 75% 137 
and located below 1000m above sea level. Time series with more than 335 consecutive missing records (14 138 
days) have been also discarded. The number of rural receptors nrecs for ozone is 38, 184, and 40 for EU1, EU2, 139 
and EU3 and 73, 43, and 28 for NA1, NA2, and NA3, respectively. The EU continental domain used for analyses 140 
extends between -30 degree and 60 degree latitude, and between 25 degree and 70 degree longitude, 141 
whereas the NA continental domain extends between -130 degree and -40 degree latitude, and between 23.5 142 
degree and 69 degree longitude. 143 

The configuration of the CMAQ and Chimere modelling systems for AQMEII3 is extensively discussed in 144 
Solazzo, et al. (2017) with respect to resolution, parameterisations, and inputs of emissions, meteorology, land 145 
use, and boundary conditions. For completeness a short summary is provided hereafter.  146 

The CMAQ model (Byun and Shere, 2006) is configured with a horizontal grid spacing of 12 km and 35 vertical 147 
layers (up to 50 hPa) and uses the widely applied CB05-TUCL chemical mechanism (Carbon Bond mechanism, 148 
Whitten et al., 2010) for the representation of gas phase chemistry. Emissions from natural sources are 149 
calculated inline by the Biogenic Emissions Inventory System (BEIS) model. The meteorology is calculated by 150 
the Weather Research and Forecast (WRF) model (Skamarock et al., 2008) with nudging of temperature, wind 151 
and humidity above the planetary boundary layer (PBL) height. In CMAQ, dry deposition is used as a flux 152 
boundary condition for the vertical diffusion equation. A review of CMAQ dry deposition model as well as 153 
other approaches is provided in Pleim and Ran (2011). 154 

Chimere (Menut et al., 2013) is configured with a grid of 0.25 degree (corresponding, approximately, to 25 km 155 
x 18 km over France), 9 vertical layers (up to 500 hPa) and uses the Melchior2 chemical mechanism (Lattuati, 156 
1997) for the representation of gas phase chemistry. Natural emissions are calculated using the MEGAN model 157 
(Guenther 2012). The hourly meteorological fields are retrieved from the Integrated Forecast System (IFS) 158 
operated by the European Centre for Medium-Range Weather Forecast (ECMWF). In Chimere the dry 159 
deposition process is described through a resistance analogy (Wesely, 1989). For each model species, three 160 
resistances are estimated: the aerodynamical resistance, the resistance to diffusivity near the ground and the 161 
surface resistance. For particles, the settling velocity is added. More information is included in Menut et al. 162 
(2013). 163 

Both models are widely used worldwide in a range of applications such as scenario analysis, forecasting, 164 
ensemble modelling, and model inter-comparison studies.   165 

2.2 SENSITIVITY RUNS WITH CMAQ AND CHIMERE  166 
The Chimere and CMAQ models have been used to perform a series of sensitivity simulations aimed at a better 167 
understanding of the causes of differences between the base model simulations and observed data. In 168 
particular, the following set of sensitivity runs was performed: 169 

• one annual run with zeroed anthropogenic emissions to provide an indication of the amount of 170 
regional ozone due to boundary conditions and biogenic emissions (referred to as ‘zero Emi’);  171 

• one annual run with a constant value of ozone (zero for NA and 35 ppb for EU) at the lateral 172 
boundaries of the model domain to provide an indication of amount of ozone formed due to 173 
anthropogenic and biogenic emissions within the domain (in addition to the constant value for EU) 174 
(referred to as ‘zero BC’ and ‘const BC’). All species other than ozone had boundary condition values 175 
of zero for both NA and EU in these sensitivity simulations; 176 

• one annual run where the anthropogenic emissions are reduced by 20%. In addition, the boundary 177 
conditions for this run were prepared from a C-IFS simulation (detail in Galmarini et al., 2017 and 178 
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references therein) in which global anthropogenic emissions were also reduced by 20% (referred to as 179 
a ‘20% red’);  180 

• one run with ozone dry deposition velocity set to zero, available for the months of January and July 181 
(referred to as ‘zero Dep’).  182 

The analyses presented are not meant to inter-compare the two modelling systems, as the CMAQ and Chimere 183 
models are applied to non-comparable contexts (different emissions, meteorology, and observational data). 184 
The response of each model to the changes in emissions, boundary conditions and deposition needs to be 185 
interpreted independently.  186 

2.3 ERROR DIAGNOSTIC METRIC 187 
To aid diagnostic interpretation, the mean square (or quadratic) error MSE (MSE = E[mod-obs]2) is 188 
decomposed according to 189 

ܧܵܯ = 	 ൫݉݀ − ൯ଶݏܾ + ߪ) − )ଶߪ + (1ߪߪ2 − (ݎ = ଶݏܾܽ݅ + ݎܽݒ +  Eq 1 ݎܽݒܿ
  

where σm and σo are the modelled and observed standard deviation, var and covar are the variance and 190 
covariance operators, r is the linear correlation coefficient, and bias is the time averaged offset between the 191 
mean modelled and observed ozone concentration. The decomposition in Eq.1 (and several variations of it), 192 
derived e.g. by Theil (1961), has been extensively discussed in Potempski and Galmarini (2009),  Solazzo and 193 
Galmarini, (2016), Gupta et al. (2009).  The first two moments (mean and variance) relate to the systematic 194 
error (unconditional bias) and variability (variance), respectively. All other differences between the statistical 195 
properties of modelled and observed chemical species (e.g. the timing of the peaks and autocorrelation 196 
features) are quantified by the correlation coefficient, i.e. in the covariance term (Gupta et al., 2009).  197 

The MSE is a quadratic, parametric metric widely applied in many contexts and occurs because the model does 198 
not account for information that could produce a more accurate estimate. Put in an information theory 199 
context, the MSE provides a measure of the information about the observation that is missing from a Gaussian 200 
model centred at a deterministic prediction (Nearing et al., 2015). Ideally, the deviation of a perfect model 201 
from the observation should be zero or simply white noise (uncorrelated, zero mean, constant variance). 202 
Various flavours of MSE decomposition have been exploited in several geophysical contexts (Enthekabi, et al., 203 
2010; Murphy, 1988; Wilks, 2011; Wilmott, 1981; Gupta, et al., 2009), all stemming from the consideration 204 
that the bias, the variance, and the covariance characterise different (although not complementary and not 205 
exhaustive) properties of the error – accuracy, precision, and correspondence, respectively.  206 

The relative contribution of each of the MSE components to the overall MSE is summarised by the Theil’s 207 
coefficients (Theil, 1961): 208 

Fb = bias2/MSE 
Fv= var/MSE 

Fc = covar/MSE 
Eq 2 

The overall MSE suffers from the limitations of the aggregate metrics discussed in the introductory section, 209 
lacking independence and explanatory power (Tian et al., 2016). When decomposed (e.g according to Eq 1), 210 
however, the underdetermination issue is reduced and the MSE coefficients (Eq 2) do offer diagnostic aid in 211 
interpreting the modelling error (Gupta et al., 2009). 212 

3. SENSITIVITY ANALYSIS TO EMISSIONS AND BOUNDARY CONDITIONS PERTURBATIONS 213 

3.1. AGGREGATED TIME SERIES OF OZONE  214 
Figure 2 and Figure 3 show monthly and diurnal curves for the base and sensitivity simulations over the three 215 
sub-regions in each continent. Results show that the monthly averaged curves of the zeroed emission runs 216 
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peak in April in NA and in July in EU (May to July in EU1 are approximately the same), indicating the periods 217 
when the impact of background concentration (boundary conditions) and biogenic emissions on regional 218 
ozone is largest: springtime in NA and summer in EU. The monthly curves of ‘zero BC’ and ‘zero Emi’ for NA are 219 
anti-correlated between the months of April to July-August (‘zero Emi’ curve decreasing and ‘zero BC’ curve 220 
raising) and during autumn (‘zero Emi’ curve rising and ‘zero BC’ curve decreasing), framing the interplay 221 
among these two factors in terms of total ozone loading: boundary conditions dominating in autumn-winter 222 
and biogenic plus anthropogenic emissions are more important during spring-summer. The springtime peak for 223 
the zero emissions case over NA is consistent with the springtime peak in northern hemispheric background 224 
ozone (Penkett and Brice, 1986; Logan, 1999) and the predominant westerly and north-westerly inflow into 225 
the NA domain. The background ozone springtime peak is thought to be caused by a combination of more 226 
frequent tropospheric/stratospheric exchange   and in-situ photochemical production during that season (Atlas 227 
et al., 2003). 228 
 229 

The daily averaged profiles of mean ozone for NA show that the observed peak (occurring between 16-18 LT in 230 
NA1 and NA2 and ∼1 hour earlier in NA3) is preceded by the peak in the base run by ∼1hour in NA2 and by ∼2-231 
3 hours in NA1, while the timing of the observed minimum (occurring at 8-9 am LT) is captured by the base run 232 
in NA2 and NA3 while it is preceded by the base run by ∼1 hour in NA1. The modelled morning transition to 233 
convective conditions is in phase with the observations except for NA1 where the modelled transition occurs 234 
one hour earlier than the observed one. The modelled afternoon transition in NA1 precedes the observed 235 
transition by 3-4 hours, possibly due to errors in the partitioning between sensible and latent surface heat flux 236 
that causes a faster-than-observed collapse of the PBL. One possible reason,  as discussed in Appel et al. 237 
(2016), could reside in the stomatal conductance function and the heat capacity for vegetation in WRF and the 238 
ACM2 vertical mixing scheme in both WRF and CMAQ (relative to the version of WRF and CMAQ used in the 239 
current study). Recent updates to these processes in CMAQ lead to a change in the modelled diurnal cycle of 240 
ozone as well as other pollutants and meteorological variables. In particular, the updates lead to a delay in the 241 
evening collapse of the modelled PBL (Appel et al., 2016).  242 

The shape of the ‘zero BC’ curve is similar in amplitude to that of the base run, suggesting that the effect of the 243 
regional/background ozone represented through boundary conditions in a limited area model is mainly to shift 244 
the mean concentration upwards while it has no major effect on the frequency modulation. By contrast, the 245 
absence of anthropogenic emissions has a major effect of the amplitude of the signal as well as its magnitude 246 
(‘zero Emi’ curve). As discussed in the next section, these considerations translate into the bias and/or variance 247 
type of error due to the boundary conditions and emissions.  248 

As for EU (Figure 3), the observed daily profiles in EU1 and EU2 are closely matched by the Chimere model 249 
between 11 LT and 23 LT (underestimated outside these hours), while in EU3 the daily peak (observed at 19-20 250 
LT) is consistently occurring earlier in the model and its magnitude is overestimated. The morning transition 251 
occurs earlier in the model than the observations and follows a significant model under-prediction of 252 
nighttime and early morning ozone, due to difficulties in reproducing stable or near-stable conditions 253 
(Bessegnet et al., 2016). In EU3, the model displays the poorest performance, with significant underestimation 254 
between midnight and 9 LT (5-7 ppb) and over-estimation in daylight conditions (7-9 ppb).  255 

As opposed to the CMAQ case for NA, the shape of the ‘zero Emi’ curve of Chimere closely follows the shape 256 
that of the base case (even when considering only the stations classified as ‘urban’, Figure S2) Due to the long 257 
time average (one year), the daily profiles displayed in Figure 2 and Figure 3 do not provide information about 258 
the exact timing of the minima and maxima for each season throughout the year. Figure S3 and Figure S4 259 
report the seasonal average diurnal profiles for the model predictions and the observations (network average 260 
over all stations) and show that the timing of the ozone diurnal cycle varies seasonally. 261 

3.2. ERROR DECOMPOSITION 262 
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The plots in Figure 4 (NA) and Figure 5 (EU) show the MSE decomposition according to Eq. 1 for the summer 263 
months of June, July, and August for the base case simulation as well as the sensitivity simulations, 264 
distinguishing between daylight (from to 5am to 9pm LT) and night-time hours (the remaining hours, from 265 
10pm to 4am LT). These plots are meant to aid the understanding of the relative impacts of potential errors in 266 
lateral boundary conditions, anthropogenic emissions, and the representation of ozone dry deposition on the 267 
total model error by comparing the magnitude and type of model error from these simulations against the 268 
model error for the base case.   269 

The plots In Figure 6 And Figure 7 are complementary to Figures 4-5 and show the error decomposition for 270 
both the summer and winter season in more detail, including the error coefficients Fb, Fv, Fc of Eq 2 (left 271 
vertical axis), the total MSE (right vertical axis), the sign of the bias and variance error (+/- for model over and 272 
under prediction), and the values of the correlation coefficient. Furthermore, the maps in Figure 8 and Figure 9 273 
show the root MSE (RMSE) at the receptors for the ‘base’ case as well as ΔRMSE, i.e. the percentage change of 274 
RMSE of the sensitivity runs with respect to the ‘base’ case simulation:  275 

ΔRMSE= 100*(RMSEs – RMSEbase)/RMSEbase, where the subscript s indicates the zeroed emission or the zeroed 276 
(constant) boundary condition simulations (ΔRMSE is measured as percentage). 277 

The CMAQ results for NA are presented in Figure 4, Figure 6, and Figure 8 and can be summarised as follows: 278 

• The MSE of the base case (MSEbase) during summer daylight is mainly due to bias (∼35% in NA1 and 279 
∼75% in NA2 and NA3) and the remaining portion is due to covariance error. The fact that there is no 280 
variance error shows that the model is able to replicate the observed 3-month averaged variability. 281 
Possible reasons for the positive model bias (model overestimation) have been discussed in Solazzo et 282 
al. (2017) and includes overestimation of emissions precursors (Travis et al., 2016) and absence of 283 
correct parameterizations of forested areas on surface ozone (Makar et al., 2017); 284 

• The effect of zeroing the emissions of anthropogenic pollutants on the summer MSE is a rise by a 285 
factor ∼2 to 4 (daylight) and by a factor ∼6 to 7 during night-time in NA1 and NA2 with respect to 286 
MSEbase, while during night-time in NA3 the MSE stays approximately the same, indicating that the 287 
emissions have little role in determining the total error in this sub-region during summer night. 288 
Furthermore: 289 
- All the error components deteriorate in the simulations with zero anthropogenic emissions 290 

except for the bias in NA3. This is particularly true for the variance, signifying the fundamental 291 
role of emissions in shaping the diurnal variation of ozone. Indeed, this suggests that the absence 292 
of a variance error in the base case (see above) is due to the correct interplay between the 293 
temporal/spatial distribution of the emissions, potentially coupled with the variability due to the 294 
meteorology ;  295 

- The covariance share of the error also increases (although only slightly in NA2) for the zero 296 
emissions case, indicating that the emissions play a role in determining the timing of the 297 
modelled diurnal ozone signal, this increase is more pronounced during night-time. 298 

• The zeroing of the input of ozone from the lateral boundaries has either no effect or only a limited 299 
effect (e.g. daylight summer in NA2, Figure 4) on the variance and covariance shares of the error, 300 
while it has a profound impact on the bias portion. This impact is approximately equal during daylight 301 
and night-time, as expected from the discussion of the daily cycle shown in Figure 2.  302 

• The removal of ozone dry deposition from the model simulations (results based on July only) has the 303 
most profound impact, increasing by one order of magnitude the MSE of the base case which is 304 
approximately double the combined effect of the emissions and boundary conditions perturbation. 305 
This sensitivity gives a gross indication of the relative strength of this process vs external conditions 306 
during summer, while the ‘zero BC’ case has a larger effect than the ‘zero deposition’ case in January 307 
(not shown). Similar to the ‘zero BC’ case, the exclusion of ozone dry deposition from the model 308 
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simulations acts as an additive term to the diurnal curve in NA1, leaving almost unaltered the shape 309 
and timing of the signal, while it impacts the variance and covariance error in the other two sub-310 
regions. The little impact the removal of dry deposition has on the covariance error (timing of the 311 
ozone signal) together with the outweighing offsetting bias might suggest that the correct estimate of 312 
the deposition magnitude is more beneficial than, e.g., the time dependence of surface resistance. 313 
The role of the variance is however unclear and deserves further analyses.   314 

• The instances where the ‘20% red’ bias error is lower than the error of the base case occur when the 315 
mean ozone concentrations were overestimated in the base case (e.g. daylight for all sub-regions and 316 
NA2 and NA3 over night-time summer) as illustrated in Figure 6a,b. 317 

• The maps show that there are stations where the error is reduced with zero anthropogenic emissions 318 
(e.g. a reduction of 20-30% in the south coast of the US and in the far North-east during summer, 319 
Figure 8d). This suggests the presence of other compensating model errors in both the base and 320 
sensitivity simulations that lead to better agreement with observations when prescribing an 321 
unrealistic emission scenario. The sources of these compensating errors need to be investigated in 322 
future work. 323 

• The ‘zero BC’ run has profound negative effects over the whole continental area of NA during winter 324 
(Figure 8e), while the effects are smaller during summer (Figure 8f) especially over the southern coast 325 
due to the relatively higher importance of photochemical formation of ozone during summer. 326 

• The error characteristics of the daily maximum 8-hour rolling mean (DM8h, Figure 6e) resemble those 327 
of the daylight base case (Figure 6a, left column), but reduced in magnitude during winter , with 328 
almost null variance error and the same sign of the bias as the base case. The NA1, NA2, and NA3 329 
standard deviations of the summer DM8h is of 7.6, 5.2, and 8.1 ppb and of 7.6, 6.5, and 7 ppb for the 330 
model and the observations, respectively. The model variability is therefore in line with the observed 331 
variability. The error of the DM8h for the sensitivity runs is reported in Figure S5.   332 

• On a network-wide average, removing anthropogenic emissions causes a RMSE increase of 25% 333 
during summer and of 0% (10% at 75th percentile) during winter while a zeroing out of input from the 334 
lateral boundaries causes a RMSE increase of 30% during summer and of 180% during winter (median 335 
values, Figure 8). 336 

The allocation of the error of the Chimere model for EU varies greatly by sub-region (Figure 5, Figure 7, and 337 
Figure 9): 338 

• The summer daylight RMSEbase ranges between ∼20 ppb2 (EU1, ∼60% covariance and ∼20% bias) and 339 
∼85 ppb2 (EU3, 95% covariance).  In EU3, the night-time bias of ∼75% outweighs the covariance as 340 
seen in Figure 7a.  341 

• Removing the anthropogenic emissions had almost no effect on the covariance share of the MSE (if 342 
not a slight reduction with respect to the base case in EU2 and EU3, and also during night-time), 343 
indicating that the error in the timing of the signal is not influenced by the emissions but rather by 344 
other processes.  Moreover, the variance portion is left almost unchanged (1 ppb increase in EU1 and 345 
EU2), in contrast with the CMAQ results for NA. This would indicate that the variability of ozone 346 
concentration is hardly influenced by anthropogenic emissions in Chimere. The bias is the error 347 
component most sensitive to emissions reductions, especially in EU2 and less so in EU3. This is in line 348 
with the discussion of the daily profiles of Figure 2b (which showed similar shapes of for the ‘zero 349 
Emi’ and of the ‘Base’ profiles) and contrasts with the NA case where the ‘zero Emi’ daily profiles are 350 
flatter than the base case.   351 

• The effect of imposing a constant ozone boundary condition value of 35 ppb (and of zero for all other 352 
species) has a net small effect on the variance of the ozone error, but significantly reduces the 353 
covariance share of the error in favour of the bias  (Figure 5 and FIGURE 7d). The total MSE is similar 354 
to that of removing the anthropogenic emissions as far as the total MSE and the bias of EU2 are 355 
concerned. It outweighs the latter for the total MSE, bias and variance in EU3 and covariance and 356 
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night-time bias component in EU1. We can infer that the variability of the boundary conditions have a 357 
significant role in determining the timing of the ozone signal in EU1 (close to the western boundary of 358 
the domain) as the correlation coefficient degrades form 0.89 (base case) to 0.66 (‘const BC’) (Figure 359 
5 and Figure 7a and c). The bias staying the same in EU1 daylight summer depends on the magnitude 360 
of the constant value (35 ppb were chosen here) that is in close agreement with that of the base case 361 
while the small variance error (∼2ppb) vanishing with respect to the base case might be explainable 362 
with numerical compensation. 363 

• During summer in EU2 and EU3 changing the ozone boundary condition only influences the bias with 364 
marginal impacts on variance and covariance, while in winter (Figure 7c) there is also a significant 365 
reduction of the correlation coefficient, meaning that the boundary conditions modulate the timing of 366 
the signal. This also implies that the variability of the boundary conditions themselves become more 367 
important in winter. 368 

• EU3 deserves special consideration as the RMSEzeroEmi is approximately the same as the RMSEbase, 369 
which mostly consists of covariance error during daylight and bias error during night-time (Figure 5e). 370 
Due to the local topography, EU3 is typically characterised by stagnant conditions that are difficult to 371 
model. For example, 50% of the observed wind speed is below 1.65 ms-1, while Chimere predicts 1.95 372 
ms-1.  The largest impact on the total MSE is seen in the ‘const BC’ run and arises in the bias portion, 373 
pointing to the importance of properly characterising background (regional) concentrations.  374 

• With respect to the base case, the DM8h (Figure 7e) shows a reduced share of the covariance error 375 
with respect to the mean ozone (Figure 7a) at the expense of an increase in variance error; the timing 376 
error is now shifted towards seasonal time scales. The variability of the DM8h is governed by synoptic 377 
processes which are likely responsible for the variability error of the DM8h. The EU1, EU2, and EU3 378 
standard deviations of the summer DM8h is of 3, 6.2, and 8.6 ppb and of 6, 11, and 10.2 ppb for the 379 
model and the observations, respectively. The model therefore underestimate the observed 380 
variability (as indicated by the ‘minus’ sign in the variance share of the error in Figure 7e) by up to 381 
50% in EU1. A range of processes could be responsible for the lack of variability in Chimere, from 382 
emission to chemistry to transport. The error of the DM8h for the sensitivity runs is reported in Figure 383 
S6.  384 

• On a network-wide average, removing anthropogenic emission causes an RMSE increase of 21% 385 
during summer and of 12% during winter (median values, Figure 9c,d). 386 

• The effect of setting the dry deposition velocity of ozone to zero (July only, Figure 5), increases not 387 
only the bias error but also causes large increases of the variance and covariance shares of the error. 388 
Thus in Chimere the deposition acts not only as a shifting term on the modelled concentration but it 389 
also influences the variability and timing of ozone more profoundly than for the CMAQ case examined 390 
earlier. 391 

4. TIME-SCALE ERROR ANALYSIS AND DIAGNOSTIC  392 

The focus of this section is ΔO3, the time series of the deviation between the base case and observations. The 393 
nature of ΔO3 is examined for time-frequency patterns using wavelet analysis and for error persistence using 394 
autocorrelation functions (ACF). The causes of ΔO3 are also tentatively investigated as dependencies on other 395 
fields using multiple regression analysis combined with bootstrapping to sample the relative importance of the 396 
regression variables.  397 

4.1. SPECTRAL CONSIDERATIONS 398 
The coefficients of the ACF (Appendix 1) can be interpreted as the Fourier transform of the power spectral 399 
density. Frequency analysis of a signal is often performed by constructing the periodogram (or spectrogram, 400 
see e.g. Chatfield, 2004). This approach has proven useful when dealing with harmonic processes 401 
superimposed on a baseline signal (Mudelsee, 2014) but, at the same time, periodograms often contain high 402 
noise. Therefore, examining a signal at specific frequencies can be instructive, for instance by resorting to 403 
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wavelet transform which has the further advantage of enabling a 3-dimensional time-frequency-power 404 
visualisation. Compared to a power spectrum showing the strength of variations of the signal as function of 405 
frequencies, wavelet transformation also allows the allocation of information in the physical time dimension 406 
other than phase space. Here, wavelet analysis of the periodogram of seasonal ΔO3 is performed using the 407 
Morlet wavelet transform (Torrence and Compo, 1997).  408 

From inspecting Figure 10 (NA) it emerges that the highest values of spectral energies for ΔO3 for the three 409 
sub-regions (corresponding to the 99th percentile of the spectrum) are observed for periods spanning the 410 
whole year (i.e. the intensity keeps the same high value during the whole year and is associated to a 411 
periodicity higher than ∼300 days). These high values of the energy spectrum are likely associated with the 412 
slow variability of the non-zero bias throughout the investigated period that acts as a slow envelop modulation 413 
of the error at shorter time scales. Such a process is more evident in NA1 and NA2 and its magnitude is one 414 
order of magnitude (or more) higher of the 90th percentile value.  415 

NA3 and to a lesser extent NA2 show a high spectral power of the error for periodicities of 1-2 months and 416 
lasting from January to May with a weaker wake extending up to the end of the year, potentially pointing to 417 
errors in the characterisation of larger-scale background concentrations associated with boundary conditions. 418 
NA3 also exhibits a high spectral power for errors associated with a periodicity of ∼20 days during January-419 
February and June-July and ~ 15 days during October and December.  This may point to errors in representing 420 
the effects of changing weather regimes on simulated ozone concentrations.  421 

Except for the long-term variations of the model error with periodicities greater than 2 months discussed 422 
above, NA1 is the only sub-region that shows only weak power associated with model errors of shorter 423 
periodicities from June to December. This suggests that fluctuations caused by variations in large scale 424 
background and changing weather patterns are better captured in this region compared to the other two sub-425 
regions. 426 

The energy associated with the daily error is again higher and more pronounced in NA3 than in the other sub-427 
regions where it is most pronounced during summer (NA1) or between March to October (NA2). While during 428 
winter and autumn the daily error is likely driven by difficulties in reproducing stable PBL dynamics, during 429 
spring and summer it is also influenced by the chemical production and destruction of ozone, a process 430 
entailing NOx chemistry, radiation, biogenic emission estimates and chemical transformation, and thus difficult 431 
to disentangle from boundary layer dynamics. Wavelet plots of the ozone error for periods between 12 hours 432 
and 6 days are reported in Figure S7 and Figure S8, allowing to better identify the periods (and/or the 433 
periodicity) affecting the error of the fast fluctuations, e.g the daily error in NA3 (all year) and the high energy 434 
spot towards the end of April in NA2 with a periodicity of ∼6 days and above, that could be associated to an 435 
ozone episode, but analysis of episodes is beyond the scope of this investigation.   436 

For the EU (Figure 11) a notable feature is the very high daily error energy in EU3 that is present throughout 437 
the year and most pronounced in summer. Such high energy suggests persistent problems in representing 438 
processes having a periodicity of one day. Further, EU3 shows an area of high energy associated with a period 439 
of one to two months and extending from February, peaking in April and May, and ending in September 440 
(mostly model underestimation, Figure 11c), while the error of the winter months in EU3 receives high energy 441 
from slower processes, acting on time scales of ∼6 months and beyond. Considering that the EU3 region is 442 
surrounded by high mountains, tropopause folding (e.g. Bonasoni et al., 2000; Makar et al., 2010) together 443 
with the lack of modelling mechanisms for the tropopause/stratosphere exchange, could offer an explanation 444 
of the high energy of the error at long time scales (also considering that the higher level modelled by Chimere 445 
is well below the tropopause and that vertical fluxes are those prescribed by the C-IFS model). Errors in the 446 
biogenic emissions also remain a plausible cause of ozone error during spring and summer months.  447 
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The similarity of the wavelet spectra for NA3 (Figure 10c) and EU1 (Figure 11a) (both regions are located on 448 
the Western edge of their domain) at the beginning of the year for periods of 1 to 2 months might be 449 
indicative of the periodicity of the bias induced by the boundary conditions. Compared to CMAQ, the error of 450 
the Chimere model is more concentrated during spring and early summer, with a periodicity of 10-20 days.  451 

Having identified some relevant time-scales for the ΔO3 error, in the next sections methods are proposed for 452 
its detection and quantification.  453 

4.2. TEMPORAL CHARACTERISTICS OF THE ERROR OF OZONE   454 
In a recent study, Otero et al. (2016) analyzed which synoptic and local variables best characterise the 455 
influence of large scale circulation on daily maximum ozone over Europe. The authors found the majority of 456 
the variance during spring over the entire EU continent is accounted for in the 24 hour lag autocorrelation  457 
while during summer the maximum temperature is the principal explanatory variable over continental EU. 458 
Other influential variables were found to be the relative humidity, the solar radiation and the geopotential 459 
height. Camalier et al. (2007) and Lemaire et al. (2016) found that the near-surface temperature and the 460 
incoming short-wave radiation were the two most influential drivers of ozone uncertainties.  461 

The ACF and PACF (partial autocorrelation function) of ΔO3 (see Appendix 1 for a definition of both functions) 462 
reveals a strong periodicity for periods that are multiples of 24 hours (Figure 12a And Figure 13a) (note that 463 
the first derivative of ΔO3 is used in this analysis to achieve stationarity). The structure of the error is such that 464 
it repeats itself with daily regularity, indicating either a systematic error in the model physics or a missing 465 
process at the daily scale, possibly related to radiation and/or PBL-related variables. While the presence of a 466 
daily periodic forcing due to the deterministic nature of day/night differences superimposed on the baseline 467 
ozone is expected, the periodicity maintained in the error structure is not and deserves further analysis.   468 

The PACF plots confirm that the error is not simply due to propagation and memory from previous hours, but 469 
arises at 24h intervals and hence stems from daily processes. On average, for NA corr(ΔO3(h), ΔO3(h+1)) (i.e. 470 
the correlation between ΔO3(h) and ΔO3(h+1)) is ∼0.45, while the corr(ΔO3(h), ΔO3(h+24))∼0.68, for any given 471 
hour h. Similarly for EU, corr(ΔO3(h) and ΔO3(h+1)) ranges between 0.31 (EU2) and 0.54 (EU3), while 472 
corr(ΔO3(h),ΔO3(h+24)) ∼0.70 for all sub-regions. Thus, the ozone error with a 24h periodicity has a longer 473 
memory than the error with a one hour periodicity. Since the 24h periodicity of the error is present in the 474 
entire annual time series, the periodic error is not associated with particular conditions (e.g. stability), but is 475 
rather embedded into the model at a more fundamental level. Moreover, similar periodicity is observed for: 476 

• The ACF analysis repeated for the ‘zero Emi’ scenario (Fig S9) 477 
• the ACF of ΔWS and ΔTemp for both models (Fig S10),  478 
• The ACF of primary species (PM10 for EU and CO for NA) (Fig. S11); 479 
• The ACF of ozone error for the ‘zero Emi’ scenario at three stations where isoprene emissions are low 480 

(Figure S12). These stations have been selected by looking at the locations where isoprene emissions 481 
accumulated over the months of June, July, and August as provided by the two models analysed here.  482 

In all cases, the error has a marked daily structure, strengthening the notion that a daily process affecting 483 
several model modules is not properly parameterised. The error due to chemical transformation at daily scale 484 
is screened out by the daily periodicity of the ACF of the primary species, while the daily periodicity of the 485 
zeroed emission scenario allows reinforcing the claim that the PBL dynamics is the most probable cause of the 486 
error.   487 

Since the individual daily processes directly or indirectly affecting the PBL dynamics cannot be untangled, here 488 
‘PBL error’ is meant to encompass errors in the representation of the variables affecting boundary layer 489 
dynamics (i.e. radiation, surface description, surface energy balance, heat exchange processes, development 490 
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or suppression of convection, shear generated turbulence, and entrainment and detrainment processes at the 491 
boundary layer top for heat and any other scalar) and their non-linear interdependencies. 492 

By removing the diurnal fluctuations (i.e. by screening out the frequencies between 12 hours and up to ∼1.5 493 
days by means of the Kolmogorov-Zurbenko (kz) filter, as described in Hogrefe et al., 2000) from the modelled 494 
and observed time series, the daily structure of the ACF disappears (Figure 12b and Figure 13b), replaced by a 495 
slow decay and negative (EU1, EU2 and partially NA1, NA2) or fluctuating (NA3, EU3) correlation values. The 496 
PACF plots in Figure 12b and Figure 13b suggest that some significant correlation persists up to ∼40 hours, 497 
likely due to leakage from the removed diurnal component. As extensively discussed in several earlier works, 498 
the kz filter does not allow for a clear separation among components and thus some leakage is expected, (see 499 
e.g. Galmarini et al, 2013; Solazzo et al. 2017). The amount of overlapping variance between the isolated 500 
diurnal fluctuations and the remainder of the time series is of ∼4-9%.    501 

The relative strength of the MSE for the undecomposed ozone time series and for the ozone time series with 502 
the diurnal fluctuations removed and with only the diurnal fluctuations is reported in Table 1. With the 503 
exception of NA1 and EU3, the base line error (denoted with ‘noDU’) accounts for ∼70 to 85% of the total 504 
error, while the diurnal fluctuations (denoted with ‘DU’) are responsible for 10 to 23% of the total error (and 505 
even less during nighttime). The ‘DU’ error outweighs the ‘noDU’ error (67% to 26%) only in EU3, where the 506 
daily PBL issue has been pointed out in the previous section. 507 

4.3 COVARIANCE ERROR: PHASE SHIFT OF THE DIURNAL CYCLE 508 
This section explores the nature of the covariance error which occurs, among other reasons, when the two 509 
signals being compared are not in phase. The first and second moments of the error distribution are invariant 510 
with respect to a phase shift between the two signals (Murphy, 1995), i.e. the mean of the signal as well as the 511 
amplitude of the oscillations with respect to the mean value are not affected by a phase shift which therefore 512 
does not have an impact on the bias and variance components of the error. The correlation coefficient, on the 513 
other hand, is impacted by a lagged signal, producing a net increase of the covariance error.  514 

The analysis of the phase lag between the daily component of the modelled and observed cycles is reported in 515 
Figure 14 (NA) and Figure 15 (EU), winter and summer are analysed separately.  516 

To perform this analysis, the modelled and observed ozone time series are first filtered to isolate the diurnal 517 
component using a kz filter. Then, the cross-covariance between the two time series is calculated. The time at 518 
which the maximum covariance value occurs is taken as the phase shift between the two signals. The method 519 
has an error of ±0.5 hours.    520 

In NA, the modelled diurnal peak occurs 1-2 hours earlier than the observed diurnal peak at many stations, and 521 
up to 3-4 hours earlier at some Canadian stations. By taking into consideration the 0.5 hour error of the 522 
estimate, the receptors at the western border (approximately corresponding to NA3) are least affected by this 523 
timing error (especially in summer Figure 14b), and therefore the covariance share of the error shown in 524 
Figure 4  is not due to daily phase shift in this region but probably due to the shifting of longer (or shorter) 525 
time periods induced for example by errors in transport (wind speed and/or direction). Figures S7 in the 526 
Supplementary report the same analysis repeated for the ‘zero Emi’ and ‘Zero BC’ runs. 527 

In the EU (Figure 15), no phase shift (or a phase shift compatible with the 0.5 hour estimation error) is 528 
observed in Romania, Germany and the UK during winter, while a significant phase shift (the modelled peak 529 
occurs up to 6 hours early) is observed in the North of Italy and Austria, with France and Spain oscillating 530 
between positive 3 (model delay up to 5 hours in the south of Madrid) and negative 5 and 6 hour phase shifts, 531 
with the net effect of a spatially aggregated daily cycle that is in phase with the observations (Figure 3b). 532 
During summer the phase shift is larger and extends also to the countries where the phase shift was null 533 
during winter. Moreover, some country-wise grouping can be detected, as for example at the border between 534 
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Belgium and France, Spain and France, Finland to Sweden, possibly due to the different measurement 535 
techniques and protocols among EU countruies (e.g. Solazzo and Galmarini, 2015). Figures S8 in the 536 
Supplementary report the same analysis repeated for the ‘zero Emi’ and ‘Const BC’ runs. The difference 537 
between the time shift of the base case and the zeroed emission scenario reveals the effects of the timing of 538 
the anthropogenic emissions on the covariance error. The effect is null over EU (median value of the difference 539 
of zero) and is very limited in NA (median value of zero during summer and of -1 during winter). 540 

While errors in emission profiles obviously can be one cause of the phase shift and thus the covariance error of 541 
the modelled ozone signal, the representation of boundary layer processes clearly can be a factor as well.  As 542 
discussed in e.g. Herwehe et al. (2011), the parameterisation of  vertical mixing during transitional periods of 543 
the day can cause a time shift in the modelled ozone concentrations due to its effects on the near-surface  544 
concentrations of NOx and ozone, which in turn affect the chemical regime and balance between ozone 545 
formation and removal. 546 

To quantify the importance of the covariance error caused by a phase shift relative to other sources of error, 547 
Figure 16 shows the curves of normalised MSE as the observed ozone time series is shifted with respect to 548 
itself between -10 and 10 hours. The MSE curve equals zero for a zero-hour lag and is symmetric with respect 549 
to the sign of the lag. Since this analysis compares the observed signal to itself (with varying degrees of time 550 
lags), the MSE fraction of bias and variance is zero while all of the MSE is due to the covariance.     551 

The curves in Figure 16 shows that a phase lag in the diurnal cycle of ±6 hour causes a MSE error in the diurnal 552 
component of magnitude ∼var(obs) (in both EU and NA), where var(obs) is the variance of the measured 553 
diurnal cycle (top panel). The effect on the full (undecomposed) time series is that a phase lag of ±4 (EU) and 554 
±5-6 (NA)  hour in the diurnal cycle causes a MSE error of magnitude ∼var(obs), where in this case the variance 555 
is that of the undecomposed time series of ozone (lower panel). 556 

Therefore, a modelled ozone peak that occurs 4 to 5 hours too early (a feature that is detected at some EU3 557 
and Canadian stations) corresponds to a covariance error of 9.0 ppb (i.e. the standard deviation of the 558 
network-average ozone observations in summer in both EU and NA). This result also helps explain the large 559 
covariance error in EU3, which can be at least partially attributed to the large phase shift of the daily cycle.  560 

4.4 EXPLAINING THE ERROR OF OZONE 561 
In this section a simple linear regression model for the error of ozone ΔO3 is applied with the goal of detecting 562 
the causes of model errors on the daily and longer term scales identified in the previous section. Although a 563 
linear model is overly simplistic and other methods are available (e.g kernel smoothers), we employed the 564 
simpler approach since i) it is not the aim of this study to build a statistically accurate model for the model 565 
error , and ii) by pursuing simple reasoning we hope to identify the time scale of the error and the most likely 566 
fields causing it at that time scale. More advanced techniques are likely to overcomplicate the results and their 567 
interpretations but could be pursued in future studies.  568 

The available regressors (explanatory variables) are the errors of the variables for which measurements have 569 
been collected within AQMEII, i.e. NO (EU only), NO2, Temp, and WS: 570 

ΔO3 = β1ΔNO+β2ΔNO2+β3ΔTemp+β4ΔWS+k Eq 3

 571 

where βi are the coefficients of the multiple linear regression, and the intercept k is the portion of the ozone 572 
error not explainable by any of the regressors. A bootstrap analysis (Mudelsee, 2014; Groemping, 2006) is used 573 
to calculate the relative importance of each error field in explaining the variance of ΔO3 (Figure 17 and Figure 574 
18) with an uncertainty of ∼5%.  The analysis is restricted to stations of ozone, NOx, WS and Temp that are 575 
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located within a maximum horizontal distance of 1000 m and maximum vertical displacement of 250m, to 576 
avoid error due to spatial heterogeneity. The number of stations is of 61 in EU and of 45 in NA. 577 

The errors of temperature and wind speed explain about a third of the  daylight winter ozone error of CMAQ, 578 
while ∼20% of the ozone error variability during daylight summer ozone is associated with the error in 579 
temperature and, to a lesser extent, wind speed (Figure 17). In contrast, in Chimere the NO and NO2 error over 580 
EU during winter is correlated with the error of ozone, especially during night-time. (Figure 18). Overall, there 581 
is no instance where the variance explained by the available variables (quantified through the coefficient of 582 
determination R2) exceeds 0.45 (corresponding to a linear correlation coefficient of ∼0.67). The ACF of the 583 
residuals of the regression show that there is an overwhelming daily memory of the error that can only 584 
partially be attributed to errors of the available regressor variables, pointing to the need to include additional 585 
variables in future applications of this regression analysis. 586 

A straightforward limitation of Eq 3 is that it assumes that successive values of the error terms are independent 587 
while in practice this is not the case. Table 2 reports the correlation coefficient of the diurnal fluctuations of 588 
the residuals, obtained by filtering out fluctuations faster than ∼1.5 days from the measured and observed 589 
time series (for the analysis of Table 2 the co-location restriction on the rural receptors is removed to allow 590 
spatial considerations, the only constraint is on the of the vertical displacement among stations to be less than 591 
250m). Several significant collinearities can be detected (e.g between ΔWS and ΔTemp; ΔNO2 and ΔTemp, 592 
especially in winter).  593 

In addition to the collinearity issue, there are other endogenous variables that are not part of the regression 594 
analysis but whose error contributes to total ΔO3, as revealed by the ACF and PACF of the first-order 595 
differentiated residuals of the regression, reported in the last panels of each plot. Such missing variables are 596 
likely to correlate with both the dependent (ΔO3) and the explanatory variables. For instance, errors in the 597 
cloud cover and/or radiation scheme, land use masking, etc. are shared by the chemical species (ozone and its 598 
precursors) as well as by the meteorological fields. The ACF and PACF suggest that the common, omitted error 599 
of the fit propagates with daily recurrence and is not explained by the available variables, stressing the findings 600 
of the previous section and again pointing to PBL-related errors. 601 

However, since we are not in a position to estimate the errors associated with PBL variables (radiation, 602 
temperature, turbulence) an alternate approach is to filter out the diurnal process from the modelled and 603 
observed time series and repeat the analysis based on Eq 3 (Figure S11 and Figure S12). The correlation 604 
coefficients of the residuals with the diurnal component filtered-out. The collinearity has been largely 605 
removed, especially for NA, while for EU some strong correlation persists (ΔNO2 and  ΔNO, and between ΔWS 606 
and ΔTemp in winter): 607 

The R2 of the regression for the ‘no-DU’ case drops drastically in NA, while keeping approximately the same 608 
values in EU (but in EU3 R2 does not exceed 0.10, not shown) as shown in Figures S16 and S17. Moreover, this 609 
analysis and its comparison to the results presented in earlier sections lead to the following conclusions: 610 

• A strong daily error component is common to all variables investigated here.  611 
• This error manifests itself in the correlation coefficient, thus is due to a variance/covariance type of 612 

error (otherwise, if it was a bias-type error, the R2 would have been similar between the analysis of 613 
the signal with and without the diurnal component); 614 

• By inspecting the ‘no-DU’ case, at least in NA (Fig S16), the bias error discussed in section 3 cannot be 615 
explained simply in terms of the fields NO2, Temp, and WS. Hence, the bias of the CMAQ model over 616 
the NA continent appears to be associated with processes with longer time scales (i.e. longer than 617 
daily), such as boundary conditions (inducing mostly bias error, as discussed in section 3), deposition, 618 
and/or transport (potential systematic errors in wind direction, for example, would likely produce a 619 
bias-type error); 620 
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•        621 
• The impact of ΔNO2 and ΔNO in EU (all sub-regions, mostly daylight) and of ΔWS in EU1 (and partially 622 

EU2) on the error of ozone (not shown) is similar with and without the diurnal fluctuations, indicating 623 
cross-correlation of these error fields for periods longer than one day. 624 

5 DISCUSSIONS 625 
The application of several diagnostic techniques in conjunction with sensitivity scenarios has allowed analysing 626 
in depth the time scale properties of the ozone error of CMAQ and Chimere, two widely applied modelling 627 
systems. The main results, as stemming from various aspects of the investigation, are that the largest share of 628 
MSE (∼70-85%) is associated with fluctuations longer than the daily scale, and mostly due to offsetting error in 629 
NA and due to covariance error in EU, while the remaining MSE is due to processes with daily variation. The 630 
causes of the long term error need to be sought in the fields that produce (mainly) a bias type of error such as 631 
emissions, boundary conditions, and deposition for NA, while the time shift of the slow fluctuations in EU is 632 
possibly due to timing error of the synoptic drivers or other synoptic processes.  633 
 634 
By excluding other plausible causes, and assuming that observational data are ‘correct’ (not affected by 635 
systematic errors), we can conclude based on multiple indicators that the dynamics of the boundary layer 636 
(which in turn depend on the representation of radiation, surface characteristics, surface energy balance, heat 637 
exchange processes, development or suppression of convection, shear generated turbulence, and entrainment 638 
and detrainment processes at the boundary layer top for heat and any other scalars) is responsible for the 639 
recursive daily error. The most revealing indicator is the analysis of the ACF and PACF of the time series of 640 
ozone residuals that shows a daily periodicity: the 24-hour errors are highly associated throughout the year, 641 
i.e. the error repeats itself with daily regularity. This could be caused by multiple processes occurring on a daily 642 
time scale, such as chemical transformations, the timing of the emissions, and PBL dynamics. However, 643 
analyses of the error periodicity of primary species (to exclude the role of chemical transformations) and of the 644 
scenario with zeroed anthropogenic emissions (to exclude the role of emissions) have shown the same error 645 
structure, pointing to PBL processes as the main cause of daily error.  646 
 647 
Due to the spatial aggregation of these analyses and the non-linearity of the models’ components, it is possible 648 
that the periodicity of the error could be due to a combination of multiple processes at specific sites. However, 649 
the absence of a spatial or emission dependence and the persistence of the daily periodicity indicate that the 650 
main cause of the daily error stems from PBL dynamics. Furthermore, the analogies of the time shift of the 651 
diurnal component of the base and zeroed emission cases suggest that the timing error (pure covariance error) 652 
is not caused by anthropogenic emissions (with the possible exception of winter in NA where some small 653 
differences are present).     654 
 655 

6. CONCLUSIONS 656 

This study is part of the goal of AQMEII to promote innovative insights into the evaluation of regional air 657 
quality models. This study is primarily meant to introduce evaluation methods that are innovative and that 658 
move towards diagnosing the causes of model error. It focuses on the diagnostic of the error produced by 659 
CMAQ and Chimere applied to calculate hourly surface ozone mixing ratios over North America and Europe.   660 

We argue that the current, widespread practice (although with several exceptions) of using time-aggregate 661 
metrics to merely quantify the average distance (in a metric space) between models and observations has 662 
clear limitations and does not help target the causes of model error. We therefore propose to move towards 663 
the qualification of the error components (bias, variance, covariance) and to assess each of them with relevant 664 
diagnostic methods. At the core of the diagnostic methods we have devised over the years within AQMEII is 665 
the quality of the information that can be extracted from model and measurements to aid understanding of 666 



16 

the causes of model error, thus providing more useful information to model developers and users than can be 667 
gained from more aggregate metric. Applying such approaches on a routine basis would help boost the 668 
confidence in using models prediction for various applications. At the current stage, the methods we propose 669 
help identify the time scale of the error and its periodicity. The step to link the error to specific processes can 670 
only be reached by integrating the analysis with sensitivity model runs. For instance, we can infer that the 671 
timing error of the diurnal component is (at least partially) associated to the dynamics of the PBL, but further 672 
analyses are necessary to isolate the components of the PBL responsible for that error.   673 

While remarking that the analyses carried out are not meant to compare the two models but are rather meant 674 
to show how the two models, applied to different areas and using different emissions, respond to changes, the 675 
main conclusions of this study are: 676 

- While the zeroing/modification of input of ozone from the lateral boundaries causes a shift of the 677 
ozone diurnal cycle in both CMAQ and Chimere, the response of the two models to a modification of 678 
anthropogenic emission and deposition fluxes is very different. For CMAQ, the effect of removing 679 
anthropogenic emissions causes a shift and a flattening of the diurnal curve (bias and variance error), 680 
while for Chimere the effect is restricted to a shift. In contrast, setting the ozone dry deposition 681 
velocity to zero causes a shift (bias error) for CMAQ, while a profound change of the error structure 682 
occurs for Chimere with significant impacts not only on the bias but also the variance and covariance 683 
terms.       684 

- The response of the models to variations in anthropogenic emissions and boundary conditions show a 685 
pronounced spatial heterogeneity, while the seasonal variability of this response is found to be less 686 
marked. Only during the winter season the zeroing of boundary values for North America produces a 687 
spatially uniform deterioration of the model accuracy across the majority of the continent. 688 

- Fluctuations slower than ∼1.5 days account for 70-85% of the total ozone quadratic error. The 689 
partition of this error into bias, variance and covariance depends on season and region. In general, 690 
the CMAQ model suffers mostly from bias error (model overestimation during summer and 691 
underestimation during winter), while the Chimere model is rather ‘centred’ (i.e. almost unbiased) 692 
but suffers high covariance error (associated with the timing of the signal, thus likely to synoptic 693 
drivers) 694 

- A recursive, systematic error with daily periodicity is detected in both models, responsible for 10-20% 695 
of the quadratic total error, possibly associated with the dynamics of the PBL;  696 

- The modelled ozone daily peak accurately reproduces the observed one, although with significant 697 
exceptions in France, Italy and Austria for Chimere and with the exceptions of Canada and some areas 698 
in the eastern US for CMAQ. Assuming the accurateness of the observational data in these regions, 699 
the modelled peak is anticipated by up to 6 hours, causing a covariance error as large as 9 ppb. The 700 
analysis suggests that the timing of the anthropogenic emissions is not responsible for the phasing 701 
error of the ozone peaks, but rather indicates that it might be caused by the dynamics of the PBL 702 
(although the role of biogenic emissions and chemistry cannot be ruled out);  703 

- The ozone error in CMAQ has a weak/negligible dependence on the error of NO2 and wind speed, 704 
while the error of NO2 impacts significantly the ozone error produced by Chimere. On time scales 705 
longer than 1.5 days, the Chimere ozone error is significantly associated with the error of wind speed 706 
and temperature. 707 

Although having exploited several evaluation frameworks over the past ten years within AQMEII (operational, 708 
diagnostic, and probabilistic) the goal of clearly associating errors to processes has not yet been achieved. As 709 
already suggested in the conclusions of the collective analysis of the AQMEII3 suite of model runs summarised 710 
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by Solazzo et al. (2017), future model evaluation activities would benefit from incorporating sensitivity 711 
simulations and process specific analyses that help to disentangle the non-linearity of the many model 712 
variables, possibly by focusing on smaller modelling communities. The ‘theory of evaluation’ being put forward 713 
by the hydrology modelling community (Nearing et al., 2016 and references therein) may provide a template 714 
for the air quality community to further advance their model evaluation approaches. 715 

 716 
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APPENDIX 1 743 
The autocorrelation function (ACF) is derived by the autocovariance (ACV) and expresses the correlation of a 744 
time series with its lagged version (e.g. Chatfield, 2004): 745 ܸܥܣ(݇) = (ݐ)ሼሾܺܧ − μሿሾܺ(ݐ + ݇) − μሿሽ = ,(ݐ)ሾܺݒܥ ݐ)ܺ + ݇)]; 746 ACF(k)=ACV(k)/ACV(0)	747 

At any lag k, the autocovariance coefficients ck are given by: 748 

ܿ = 1ܰ (ݔ௧ − ௧ାݔ)(ݔ − ேି(ݔ
௧ୀଵ  

And, as usual, the autocorrelation coefficients are given by normalizing ck with c0. 749 

The partial autocorrelation function (PACF) measures the excess of correlation between two elements of X(t) 750 
lagged by s elements not accounted for by the autocorrelation of the intermediate s-1 elements. In other 751 
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words, the ACF of X(t) and X(t+s) includes all the linear dependence between the intermediate s-1	lags. The 752 
PACF allows to investigate the direct effect of lag t on the lag t+s. 753 

The advantage of using ACF and PACF is that are function of the lag k only  (and not of the specific time t). This 754 
condition holds only if X(t) is stationary (i.e. its mean and variance do not change over time). Several tests are 755 
available to check X(t) for stationarity (e.g. Chatfield, 2004). Differencing the time series is typically a way to 756 
achieve stationarity.  757 
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TABLES 922 

TABLE 1. MSE (ppb2) of the full, undecomposed ozone time series (FT) and relative fraction of MSE of the time series derived by filtering 923 
out the diurnal fluctuations (noDU) and of the time series derived by keeping only the diurnal fluctuations (DU). The diurnal signal has 924 
been isolated by applying a filter kz(13,5). The relative fraction of noDU and of DU  not adding up to 100% is because the filter allows some 925 
leakage to the nearest frequencies (see Hogrefe et al. (2000) and Solazzo and Galmarini (2016) for details). a) NA; b)EU 926 

a) 927 
NA1 NA2 NA3 Continent 

CMAQ MSE- Summer 
FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU 

28.65 40% 41% 49.12 70% 23% 79.35 84% 13% 28.25 56% 29% 
CAMQ MSE- Winter 

86.08 94% 5% 19.27 75% 21% 61.67 74% 21% 22.38 85% 9% 
 928 

b) 929 
EU1 EU2 EU3 Continent 

CHIMERE MSE- Summer
FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU 

20.91 85% 10% 46.19 78% 15% 125.86 26% 67% 26.95 76% 18% 
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CHIMERE MSE- Winter
20.87 85% 12% 19.95 85% 10% 39.91 38% 59% 11.34 73% 16% 

 930 

TABLE 2. Linear correlation coefficient between the diurnal residuals of the regressors of Eq 3. The residuals are calculated by removing 931 
from the measured and modelled time series fluctuations faster the ∼1.5 days. All the correlation values are significant up to 1% 932 
significance threshold. a) NA; b) EU. For each set of variables, the regression analysis inlcudes the rural stations within a differential 933 
altitude of maximum 250m.  934 

a) 935 

 936 

b) 937 

 938 

 939 

TABLE 3. Linear correlation coefficient between the residuals of the regressors of Eq 3, when the diurnal fluctuations are filtered out. The 940 
residuals are calculated by removing from the measured and modelled time series fluctuations faster the ∼1.5 days. All the correlation 941 
values are significant up to 1% significance threshold. a) NA; b) EU. For each set of variables, the regression analysis inlcudes the rural 942 
stations within a differential altitude of maximum 250m. 943 

a) 944 

 945 

b) 946 

NA1 NA2 NA3 NA1 NA2 NA3 NA1 NA2 NA3

ΔNO2 1 1 1 -0.6 -0.23 -0.65 -0.19 0.46 -0.26

ΔTemp -0.6 -0.23 -0.65 1 1 1 0.62 0.53 0.7

ΔWS -0.19 0.46 -0.26 0.62 0.53 0.7 1 1 1

ΔNO2 1 1 1 -0.63 -0.57 -0.56 -0.55 -0.05 -0.19

ΔTemp -0.63 -0.57 -0.56 1 1 1 -0.63 0.47 0.35

ΔWS -0.55 -0.05 -0.19 0.49 0.47 0.35 1 1 1

SUMMER

WINTER

Correlation among diurnal component of residuals
ΔNO2 ΔTemp ΔWS

EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3

ΔNO 1 1 1 0.05 0.68 0.48 -0.08 -0.05 -0.27 -0.07 0.11 -0.02

ΔNO2 0.05 0.68 0.48 1 1 1 0.57 0.18 -0.27 0.51 0.38 0.26

ΔTemp -0.08 -0.05 -0.27 0.57 0.18 -0.27 1 1 1 0.81 0.63 0.21

ΔWS -0.07 0.11 -0.02 0.51 0.38 0.26 0.81 0.63 0.21 1 1 1

ΔNO 1 1 1 0.31 0.6 0.73 0.02 -0.52 -0.62 0.03 0.12 0.06

ΔNO2 0.31 0.6 0.73 1 1 1 -0.13 -0.7 -0.7 -0.01 0.09 0.11

ΔTemp 0.02 -0.52 -0.62 -0.13 -0.7 -0.7 1 1 1 0.48 0.02 -0.01

ΔWS 0.03 0.12 0.06 -0.01 0.09 0.11 0.48 0.02 -0.01 1 1 1

SUMMER

WINTER

Correlation among diurnal component of residuals
ΔNO ΔNO2 ΔTemp ΔWS

NA1 NA2 NA3 NA1 NA2 NA3 NA1 NA2 NA3

ΔNO2 1 1 1 -0.2 -0.02 -0.26 -0.06 -0.05 -0.19

ΔTemp -0.2 -0.02 -0.26 1 1 1 0.28 0.09 0.42

ΔWS -0.06 -0.05 -0.19 0.28 0.09 0.42 1 1 1

ΔNO2 1 1 1 -0.12 -0.42 -0.03 -0.02 -0.16 -0.11

ΔTemp -0.12 -0.42 -0.03 1 1 1 0.54 0.34 0.13

ΔWS -0.02 -0.16 -0.11 0.54 0.34 0.13 1 1 1

SUMMER

WINTER

Correlation among residuals (diurnal fluctuations removed)
ΔNO2 ΔTemp ΔWS
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 947 

FIGURES CAPTIONS 948 

Figure 1 Continental domains and sub-regions used for analysis. The networks of ozone receptors are also 949 
shown. 950 

Figure 2. Average monthly (right column of panels) and diurnal curves (left column of panels) constructed from 951 
January – December 2010 time series of hourly ozone observations and model simulations for three North 952 
American sub-regions 953 

Figure 3. Average monthly (right column of panels) and diurnal curves (left column of panels) constructed from 954 
January – December 2010 time series of hourly ozone observations and model simulations for three European 955 
sub-regions. 956 

Figure 4 MSE decomposition for June – August hourly ozone into bias2, variance and covariance for the three 957 
NA sub-regions. Results are presented separately for daylight hours (left) and night-time hours (right). 958 

Figure 5 MSE decomposition for June – August hourly ozone into bias2, variance and covariance for the three 959 
EU sub-regions (the zero_Dep data refers to the month of July only). Results are presented separately for 960 
daylight hours (left) and nighttime hours (right) 961 

Figure 6 CMAQ MSE breakdown for summer and winter for the base case and sensitivity simulations over NA. 962 
The error coeffcients Fb,Fv,Fc are reported on the left axis, the total MSE (ppb2) on the right axis (red triangles). 963 
The ‘+’ and ’-‘ signs within the bias and variance portions of the errors indicate model over- or under-964 
prediction of mean concentration or variance, respectively. The values in the covariance portion indicate the 965 
correlation coeffcient between modelled and observed time series. a) hourly time series of ozone (base case); 966 
b) hourly time series of ‘20% reduction’ scenario; c) hourly time series of ‘zero boundary conditions’ scenario; 967 
d) hourly time series of the ‘zeroed anthropogenic emissions’ scenario; e) base case rolling average daily 968 
maximum 8-hour ozone time series. For the analysis of hourly time series in panels a) – d), results are provided 969 
separately for daytime and nighttime.   970 

Figure 7. Chimere MSE breakdown for summer and winter for the base case and sensitivity simulations over 971 
EU. The error coeffcients Fb,Fv,Fc are reported on the left axis, the total MSE (ppb2) on the right axis (red 972 
triangles). The ‘+’ and ’-‘ signs within the bias and variance portions of the errors indicate model over- or 973 
under-prediction of mean concentration or variance, respectively. The values in the covariance portion 974 
indicate the correlation coeffcient between modelled and observed time series. a) hourly time series of ozone 975 
(base case); b) hourly time series of ‘20% reduction’ scenario; c) hourly time series of ‘constant boundary 976 
conditions’ scenario; d) hourly time series of the ‘zeroed anthropogenic emissions’ scenario; e) base case 977 
rolling average daily maximum 8-hour ozone time series. For the analysis of hourly time series in panels a) – d), 978 
results are provided separately for daytime and nighttime.   979 

EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3

ΔNO 1 1 1 0.22 0.71 0.69 0.12 -0.23 -0.03 0.06 -0.23 -0.08

ΔNO2 0.22 0.71 0.69 1 1 1 -0.27 -0.41 -0.11 -0.54 -0.43 -0.01

ΔTemp 0.12 -0.23 -0.03 -0.27 -0.41 -0.11 1 1 1 0.44 0.22 0.36

ΔWS 0.06 -0.23 -0.08 -0.54 -0.43 -0.01 0.44 0.22 0.36 1 1 1

ΔNO 1 1 1 0.21 0.64 0.46 -0.22 -0.19 -0.02 -0.15 -0.14 -0.01

ΔNO2 0.21 0.64 0.46 1 1 1 -0.09 -0.38 -0.35 -0.07 -0.2 -0.08

ΔTemp -0.22 -0.19 -0.02 -0.09 -0.38 -0.35 1 1 1 0.37 -0.1 0.38

ΔWS -0.15 -0.14 -0.01 -0.07 -0.2 -0.08 0.37 -0.1 0.38 1 1 1

SUMMER

WINTER

Correlation among residuals (diurnal fluctuations removed)
ΔNO ΔNO2 ΔTemp ΔWS
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Figure 8. Top row:  Spatial maps of RMSE (in ppb) for the base case. Middle row: Percentage RMSE changes for 980 
the zeroed emissions case with respect to the base case. Lower row: Percentage RMSE changes for the zeroed 981 
boundary condition case with respect to the base case. Left column: Winter months (DJF); Right column: 982 
summer months (JJA).   983 

Figure 9 Top row:  Spatial maps of RMSE (in ppb) for the base case. Middle row: Percentage RMSE changes for 984 
the zeroed emissions case with respect to the base case. Lower row: Percentage RMSE changes for the 985 
constant boundary condition case with respect to the base case.. Left column: Winter months (DJF); Right 986 
column: summer months (JJA). 987 

Figure 10. Annual time series of differences between CMAQ and observed O3 (ΔO3, top panel) and Morlet 988 
wavelet analysis of the periodogram of ΔO3 (lower panel) for the three NA subdomains. Black contours lines 989 
identify the 95% confidence interval. The period (in days) is reported in the vertical axis, while the quantiles of 990 
the power spectral density are measured in ppb2. (the scale reports the quantiles of the power spectrum). 991 

Figure 11. Same as in FIGURE 10 for Chimere over the three EU subdomains 992 

Figure 12. CMAQ model: autocorrelation (ACF) and partial autocorrelation (PACF) function for a) the 993 
differenced time series of residuals of ozone (mod-obs) and b) the differenced time series of residual of ozone 994 
obtained by filtering out the diurnal fluctuations from the modelled and observed time series. The 995 
differentiation is necessary to remove non-stationarity and thus to make the ACF and PACF values depending 996 
on lag only. 997 

Figure 13. Chimere model: autocorrelation (ACF) and partial autocorrelation (PACF) function for a) the 998 
differenced time series of residuals of ozone (mod-obs) and b) the differenced time series of residual of ozone 999 
obtained by filtering out the diurnal fluctuations from the modelled and observed time series. The 1000 
differentiation is necessary to remove non-stationarity and thus to make the ACF and PACF values depending 1001 
on lag only. 1002 

Figure 14. Phase shift of the diurnal cycle (in hours). A positive phase shift indicates that the model peak is 1003 
‘late’, while a negative phase shift indicates that the modelled peak precedes the observed peak. This analysis 1004 
includes urban and suburban stations in addition to rural stations. 1005 

Figure 15. As in Figure 14 for EU.  1006 

Figure 16. Normalised MSE produced by lagging the observed diurnal cycle with respect to itself. The MSE due 1007 
to such a shift is entirely due to covariance error. The plots are presented for EU2 (left) and NA2 (right) for the 1008 
months of JJA. The top panel shows the impact of the phase shift on the DU component, and the lower panels 1009 
show results for the undecomposed time series (FT). For EU2, a shift of ±3 hours causes an MSE of ∼0.5 times 1010 
the variance of the observations. 1011 

Figure 17. Percentage of variance explained by the regressors (the total R2 for the regression is reported in the 1012 
title of each panel). The relative importance of each variable is assessed by using a bootstrap resampling. The 1013 
plots at the bottom show the ACF and PACF of the yearly time series of residual of the fit, i.e. the portion of 1014 
the ozone time series that was not captured by the linear regressions on the available variables. The analysis 1015 
encompasses 47 co-located stations (the NA stations for ozone, NO2, WS, and Temp that fall in a radius of 1016 
1000 m and vertical displacement less than 250m).  1017 

Figure 18. Same as Figure 17 for EU. The analysis encompasses 61 co-located stations (the EU stations for 1018 
ozone, NO, NO2, WS, and Temp that fall in a radius of 1000 m and vertical displacement less than 250m). 1019 

  1020 
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FIGGUREE 11.. As iin Figgure 10 ffor CChimeere oover the threee EUU subbdommains. 
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FIGURE S17. Same as for FIGURE S166 EU. The analysis encompasses 61 coolocated stations (the EU stations for 1224 
ozone, NO, NO2, WS, and Temp that fall in a radius of 1000 m and vertical displacement less than 250m). 1225 

 1226 

 1227 


