
Review of “Potential Influences of Neglecting Aerosol Effects on the NCEP GFS 

Precipitation Forecast” by Jiang et al. submitted for a publication in ACP 

 

This study evaluated the potential impact of neglecting ACI on the operational 

rainfall forecast using ground-based and satellite observations, and NCEP GFS 

simulations. The main conclusion is that the ACI, which is not accounted by the 

forecast model, may contribute to the overestimation of light rain and 

underestimation of heavier rain. Since the forecast is the worst in China, the 

authors choose a place in China to conduct more insightful investigation using a 

suite of variables from gauge-based observations of precipitation, visibility, water 

vapor, convective available potential energy (CAPE), and satellite datasets. This 

is the first study to look at the potential contribution of ACI to forecast problems. 

The idea is new and interesting. In addition, the analysis is comprehensive. The 

paper is well-written and I enjoyed reading it. It is definitely worth publishing 

such a high-quality paper for ACP. My comments are minor generally since they 

would not impact the conclusions of the paper. 

 

Thank you very much for your constructive comments and suggestions. Our 

point-by-point replies are given below and the corresponding revisions are shown in 

the revised manuscript.  

 

Major comments: 

1. About using cloud mixing ratio at 850 hpa for indicating different large-scale 

conditions, first, cloud water mixing ratio at such a low level would be close to zero 

except for boundary layer clouds (even it is not, it would not be representative of any 

clouds with a cloud base above 850 hpa. So, it could be problematic to use this 

quantify at 850 hpa. A better quantity for indicating different large-scale conditions is 

LWP, which can be easily obtained for both observations and model, and is typically 

used in much literature study. 

 

Response:  

The reason why we used the cloud mixing ratio at 850 hPa is that we focused on 

humidity conditions at low levels in the atmosphere. This particular level was chosen 

in consultation with staff at the weather stations in China. We have also used relative 

humidity (RH) at 850 hPa to denote large-scale humidity conditions.  

We agree that LWP is a better indicator of large-scale moisture conditions, but 

the GFS model does not output LWP. So we calculated LWP following Yoo et al. 

(2012): 



LWP = q ∗ρ ∗ ∆z , 

where q represents the cloud mixing ratio, ρ represents the density of air, and ∆z 

is the geopotential height thickness. Only the most recent data are archived by NOAA 

(https://nomads.ncdc.noaa.gov/data/gfs4/). The earliest available data starts on 1 

August 2015. We have downloaded one month of data and calculated the LWP.  

New equitable threat and bias scores (ETS and BIAS, respectively) for the three 

countries were calculated under different LWP and RH scenarios. For a fixed range of 

LWP or RH, we further differentiate environmental conditions by choosing the top 

and bottom one-third of aerosol optical depth (AOD) values. The results are presented 

in the new Fig. 6. In Figs. 6a and 6b, ETS increase as the LWP or RH increases. This 

is because large-scale precipitation is diagnosed from cloud mixing ratios. ETS are 

smaller under polluted conditions than under clean conditions, especially when LWP 

or RH is high. In Figs. 6c and 6d, BIAS decrease for the polluted scenario compared 

with the clean scenario. The decreases in ETS and BIAS under polluted conditions 

suggest that AOD influences the model rainfall forecast. 

 

Fig. 6. Equitable threat scores (a, b) and bias (BIAS) scores (c, d) as a function of 

precipitation amount for fixed ranges of liquid water path (LWP; a, c) and relative 

humidity (RH; b, d) under clean and polluted conditions. The LWP is divided into two 

https://nomads.ncdc.noaa.gov/data/gfs4/


categories: 10–70 g m
-2 

(light blue) and 70–150 g m
-2

 (dark blue). Data are from 

August 2015 in the U.S, China, and Australia. The RH is divided into two categories: 

50–70%
 
(light green) and 70–100% (dark green). Data are from year 2015. For a 

given LWP or RH condition, the top and bottom one-third of AOD values are defined 

as polluted and clean subsets of data, respectively. The solid lines represent the clean 

scenario and the dotted lines represent the polluted scenario. The horizontal red lines 

in (c) and (d) represent perfect scores. 

 

The following text changes were made: 

Lines 184 to 187: The relative humidity (RH) at 850 hPa and the liquid water path 

(LWP) calculated following Yoo et al. (2012) are used, corresponding to the 

precipitation record in the three countries at a 0.5
o
x0.5

o
 latitude-longitude resolution. 

 

Lines 283 to 284: Under limited ranges of LWP or RH, the top and bottom one-third 

of AOD values denote polluted and clean subsets of data. 

 

Lines 366 to 375: The ETS and BIAS are used to examine the model performance 

under clean and polluted conditions for different AOD bins with fixed LWP (Figs. 6a 

and 6c) or RH (Figs. 6b and 6d) in the three countries. For a particular LWP or RH 

condition, the top and bottom one-third of AOD values are defined as polluted and 

clean subsets of data. In Figs. 6a and 6b, ETS increases as the LWP or RH increases. 

This is because large-scale precipitation is diagnosed from cloud mixing ratios. The 

ETS are smaller for the polluted scenario than for the clean scenario, especially under 

high LWP or high RH conditions. In Figs. 6c and 6d, the BIAS decreases under 

polluted conditions compared with the BIAS under clean conditions. The decreases in 

ETS and BIAS under polluted conditions suggest that AOD influences the model 

rainfall forecast. 

 

Lines 508 to 509: Equitable threat scores and BIAS scores decrease for polluted 

conditions. 

 

2. Page 23 and Figure 13, the decrease of cloud top temperature does not necessarily 

mean the convective invigoration as suggested by Rosenfeld et al. 2008 and then the 

precipitation enhancement. This is illustrated in Fan et al. 2013 (PNAS). If the CTT 

analyzed is for convective core only (i.e., excluding stratiform/anvil areas), this 

analysis may be ok. Otherwise, you cannot use the increase of CTT as a proxy of 

convective invigoration. 

 

Response:  

The cloud-top temperature (CTT) obtained from CloudSat data are used to study 

the impact of aerosols on the cloud development of different cloud types. Based on 

the definition of deep mixed-phase clouds with warm bases shown in Table 1 

(cloud-base temperature > 15
o
C), the CTT analyzed is mainly associated with the 



convective core although the stratiform/anvil areas cannot be totally ignored. Both the 

aerosol thermodynamic effect (i.e., convective invigoration) illustrated by Rosenfeld 

et al. (2008) and the microphysical effect (mainly the role of more but smaller 

longer-lasting ice particles) emphasized by Fan et al. (2013) contribute to the decrease 

in CTT. The point of analyzing CTT as a function of AOD for different cloud types 

here is not to figure out which role is more dominant, but to find out whether the CTT 

decreased or increased and whether the cloud is more suitable for precipitation or not.   

 

Table 1. Definitions of warm- and cold-base mixed-phase clouds and liquid clouds.  

 Cloud-base temperature 

(
o
C) 

Cloud-top temperature 

(
o
C) 

Deep mixed-phase clouds with warm bases > 15 < -4 

Shallow mixed-phase clouds with cold 

bases 
0–15 

< -4 

Liquid clouds > 0 > 0 

 

3. Discuss the data uncertainty and the implication to your results, such as satellite 

retrieved AOD, the proxy of aerosols with visibility, and the rain gauge rain data. 

Particularly rain gauge data, it cannot measure light rain with smaller rain rate such as 

less than 0.25 mm/h, which might contribute to the model overestimation of the light 

rain. Also, rain gauges might miss heavy rain spots and usually underestimate very 

heavy rain rate. 

 

Response:  

   The following discussion on data uncertainties have been added to the revised 

manuscript: 

Lines 224 to 229: Errors in satellite retrievals of AOD such as cloud contamination 

(Kaufman et al., 2005; Zhang et al., 2005) introduce uncertainties in the aerosol-cloud 

relationship (Gryspeerdt et al., 2014a, b). We use MODIS Level 3 AOD with AOD > 

0.6 excluded and not the higher resolution Level 2 product to reduce the possibility of 

cloud contamination (Niu and Li, 2012) in AOD retrievals. 

   

Lines 195 to 205: Visibility has been used as proxy for aerosol loading in China in 

several studies (Rosenfeld et al., 2007; Yang et al., 2013; Yang & Li, 2014). The main 

advantage is the long measurement record under all sky conditions. However, there 

are some limitations, e.g., the uncertainty due to humans making the observations and 

the influence of aerosol hygroscopic growth. To remove the humidity influence on 

visibility, visibility was corrected for RH (Charlson, 1969; Appel et al., 1985) using 

the formula adopted by Rosenfeld et al. (2007) when RH falls between 40% and 99%: 

           
    

    
=              (    𝑅𝐻),                   (1) 



where 𝑅𝐻  is in percent, and               are the originally uncorrected and 

corrected visibilities, respectively. Only non-rainy data were used. 

 

Lines 256 to 261: Rain gauge data are usually used as reference data in weather 

forecast and model evaluations because they come from direct physical records 

(Tapiador et al., 2012). The most commonly-used rain detector is the tipping bucket. 

Once the bucket is filled (0.1 mm), the bucket is emptied and produces a signal. This 

process repeats until precipitation stops. Light rain less than 0.1 mm cannot be 

measured. Therefore, the definition of light rain is 0.1–9.9 mm d
-1

.  

 

4. Discuss the sampling size or sampling strategy differences between model and 

simulations for your analysis and the implications to your results. The observations 

and model data could differ in time frequency, spatial resolution, and many other 

things. 

 

Response: 

A new 2.3.1 section entitled “Spatial and Temporal Matching of Model and 

Observation Data” has been added.  

 

Lines 234 to 251: CPC-unified gauge-based daily precipitation data at a 0.5
o 

x 0.5
o
 

latitude-longitude resolution in the three countries for the year 2015 are used. GFS 

model grid 004 data at the same latitude-longitude resolution (0.5
o 

x 0.5
o
) are also 

used. Forecast precipitation for a one-day accumulation generated at three-hourly 

intervals (e.g., at 03, 06, 09, 12, 15, 18, 21, 24 UTC), starting from the control time of 

00 UTC, are used to match the corresponding gauge-based observations. The 

MERRA-2 aerosol analysis is not coupled with GFS simulations. Daily MERRA-2 

AOD is at a resolution of 0.625
o
 x 0.5

o
 and is interpolated to the CPC and GFS 

precipitation resolution using a linear interpolation method. The spatial and temporal 

resolutions of the matched data sets are 0.5° x 0.5° and are generated for each day. 

There are ~3 686 000 grid points in total.  

For the long-term analysis focused on Fujian, China, the NWP model reforecast 

precipitation amount accumulated over the period of 12 hours to 36 hours out from 

the 00 UTC run at six-hourly intervals and at a 1
o 
x 1

o
 latitude-longitude resolution for 

the years 1985 to 2010 are used to calculate the modeled daily precipitation amount in 

each grid box. They are interpolated to match the long-term ground-based 

precipitation observations recorded at each of the 67 stations in the study region of 

Fujian, China (Fig. 1). There are 9495 days in total with matched data. 

 

5. MERRA aerosol data are not coupled with GFS simulations. Discuss this caveat in 



the model analysis. 

 

Response: 

    This statement has been added.  

Lines 239 to 240: The MERRA-2 aerosol analysis is not coupled with GFS 

simulations.  

 

Specific comments: 

 

1.Ln 75-79, ARI can increase precipitation at the download of the polluted places as 

shown in many studies (such as Carrió et al., 2010, Atmos. Res., 96, 560–574; Fan et 

al. 2015, GRL, 42) 

 

Response:  

This statement has been added.  

Lines 78 to 79: The suppressed convection by ARI may also lead to rainfall 

enhancement downwind of polluted places (Carrió et al., 2010; Fan et al., 2015). 

 

2. Ln 95-95, I am not clear about “ARI are only considered offline and are not 

coupled with the dynamic system”, is the temperature change by ARI considered in 

physics? You mentioned that aerosols are considered in the radiation scheme, which 

means ARI should impact radiation and temperature, and then impact dynamics. Why 

do you say it is not coupled with the dynamic system? 

 

Response:  

A seasonal climatological tropospheric aerosol background with a large 

horizontal resolution is used for both longwave and shortwave radiation. There is a 

current effort underway to change this to a monthly background. The temperature 

change caused by aerosols is not coupled to each forecast interval. Therefore, it is not 

coupled with the dynamic system.  

 

3. Ln 144-145, what are the major aerosol components that are chosen for both 

longwave and shortwave radiative transfer calculations? It is not enough to say “one 

or two components”. 

 

Response:  

There are five species considered in the radiative transfer calculation, namely, 

dust, sea salt, sulfates, organic carbon, and black carbon, which are similar to those in 

the GOCART model. A generalized map of various aerosol components was 



constructed, and then in each grid, one or two major components (based on 

climatology) were chosen to compute radiative properties in each of the radiation 

spectral bands.  

 

Lines 129 to 130: as the sentence was revised as follows: “One or two major 

components in each grid (based on climatology) were chosen for both longwave and 

shortwave radiative transfer calculations.”  

 

4. Ln 183-184, what is the time frequency of the sounding data? If it is standard 00/12 

UTC, it might not be useful. 

 

Response:  

It is the standard 00/12 UTC set of soundings and the only available sounding 

data we have to use. 

 

5. Ln189-192, this sentence does not seem to be important unless you are specific 

about what new data types are included and how important they are to your analysis. 

 

Response:  

The sentence has been deleted. Also, we have also followed another reviewer’s 

suggestion to shorten the description of the MERRA-2.  

 

6. Ln229-230, 850 hPa is pretty close to the surface. Cloud mixing ratio would not 

exist except for boundary clouds. Do you mean total condensate mixing ratio? 

 

Response:  

We have used LWP and RH for better representing large-scale conditions. Please 

see the response to Major Comment 1 for more details. 

 

7. Ln372-374, this is probably only true for summer time when convective clouds are 

dominant. 

 

Response:  

It is true that the heavy rain enhancement is mostly seen in summer when 

convective clouds are dominant. In the specific analysis of the correlation coefficients 

of visibility and rain amount (Table 3) and rain frequency (Table 4) in Fujian Province, 

China, the aerosol effect on heavy rain enhancement is significant in summertime.   

 

8. Ln 382, contradicting with a previous statement saying that AOD>0.6 is excluded 



from the analysis. 

 

Response:  

Two AOD datasets are used in the study. One dataset is the MERRA-2 Aerosol 

Reanalysis, which is used in the three-country analysis and where AOD > 0.6 are not 

excluded. The other dataset is the MODIS Level 3 AOD product, which is used in the 

Fujian analysis. Satellite-retrieved AOD > 0.6 are excluded in that analysis to reduce 

the possibility of cloud contamination in the AOD retrievals. 

 

9. Page 19 and Figure 6: First, the text and Figure should be clarified about the 

threshold. The unit is a rain rate in text but it is a rain amount in Figure. Second, do 

you mean for (a) and (b), you only analyzed the data below 5 mm/hr while for (c) and 

(d), the data analyzed with a rate less than 20 mm/hr? Third, the ranges of low, middle, 

high, and very high AOD and those of low, middle, and high cloud mixing ratios 

should be given. Also, needs justification why only the results in U.S. are shown. 

Lastly, I do not understand why cloud mixing ratio is used. As mentioned above, 

cloud mixing ratio at 850 hpa does not mean much. A better quantity for indicating 

different conditions is LWP, which can be easily obtained from both observations and 

model. 

 

Response:  

Figure 6 have been revised. First, the units stated in the text and in the figure are 

now the same. Second, a threshold is used in the contingency table when calculating 

ETS and BIAS. The definition of hits or misses is based on the forecast rain amount 

above a certain threshold. In the new Figure 6, more thresholds are used. Third, the 

cloud mixing ratio at 850 hPa is replaced by LWP and RH in the new Figure 6. For 

certain LWP or RH conditions, the top and bottom one-third of AOD values are 

defined as polluted and clean subsets of data. Also, results for three countries are now 

shown.  

 

10. Figure 12: Need to explain why cloud effective radius increases as AOD increases 

for LWP < 50. 

 

Response:  

Figure 12: Clouds with LWP < 50 m
-2

 are not thick. The MODIS sensor may 

have larger uncertainties when dealing with thin clouds. Also, when LWP < 50 m
-2

, 

the ambient saturation may not exceed the critical saturation, so cloud droplets are not 

yet activated. The cloud effective radius may then increase as AOD increases. Stratus 

clouds may be more influenced by environmental thermodynamic or other factors.  



 

11. Page 23 and Figure 13, the decrease of cloud top temperature does not necessarily 

mean the convective invigoration as suggested by Rosenfeld et al. 2018 and then the 

precipitation enhancement. This is illustrated in Fan et al. 2013 (PNAS). If the CTT 

analyzed is for convective core only (i.e., excluding stratiform/anvil areas), this 

analysis may be ok. Otherwise, you cannot use the increase of CTT as a proxy of 

convective invigoration. In addition, does the AOD used here are pre-convection 

value? 

 

Response:  

The cloud-top temperature (CTT) obtained from CloudSat data are used to study 

the impact of aerosols on the cloud development of different cloud types. Based on 

the definition of deep mixed-phase clouds with warm bases shown in Table 1 

(cloud-base temperature > 15
o
C), the CTT analyzed is mainly associated with the 

convective core although the stratiform/anvil areas cannot be totally ignored. Both the 

aerosol thermodynamic effect (i.e., convective invigoration) illustrated by Rosenfeld 

et al. (2008) and the microphysical effect (mainly the role of more but smaller 

longer-lasting ice particles) emphasized by Fan et al. (2013) contribute to the decrease 

in CTT. The point of analyzing CTT as a function of AOD for different cloud types 

here is not to figure out which role is more dominant, but to find out whether the CTT 

decreased or increased and whether the cloud is more suitable for precipitation or not.   

 

Table 1. Definitions of warm- and cold-base mixed-phase clouds and liquid clouds.  

 Cloud-base temperature 

(
o
C) 

Cloud-top temperature 

(
o
C) 

Deep mixed-phase clouds with warm bases > 15 < -4 

Shallow mixed-phase clouds with cold bases 0–15 < -4 

Liquid clouds > 0 > 0 

 

AOD data used here are daily means so it is difficult to say if this data is 

pre-convective or not.  

 

12. Line 495-497, I think this effect may only be true for summer and under the 

conditions that ARE is not dominant. 

 

Response:  

Lines 472 to 473: It is true that heavy rain enhancement occurs mainly in the 

summer and under the condition that ARE is not dominant. In the analysis of Fig. 14, 

lines 479 to 481: “… modeled precipitation amounts are significantly less than 

observed precipitation amounts over the region in summer when deep convective 

clouds and heavy to very heavy rain tends to occur.”  



Comments on the manuscript titled “Potential Influences of Neglecting Aerosol 

Effects on the NCEP GFS Precipitation Forecast” by Jiang et al. 

This study evaluated the National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS) forecast bias in different precipitation (light rain, moderate rain, 

heavy rain and very heavy rain) by comparing the ground-based observations in three 

countries. Then the correlations between GFS precipitation forecast errors and the aerosol 

loading are investigated extensively to examine the potential impact of neglecting 

aerosol-cloud-interaction (ACI) on the operational rainfall forecast. The main result is 

that the GFS overestimates light rain, and underestimates moderate rain, heavy rain, and 

very heavy rain, which is partly due to the neglecting ACI process in GFS. The study fits 

within the scope of the journal, and the information and arguments are generally clear 

enough to be followed. Although the current study does not fully established the causal 

relationship between the ACI and the bias of precipitation forecast of GFS due partially 

to a lack of sufficient information, it should still be commended for confronting a 

highly-challenging task to make this first attempt to evaluate the numerical weather 

prediction forecast errors in terms of the potential effects of aerosols. Therefore, I’d 

recommend accepting this manuscript if the following comments are properly addressed. 

Thank you very much for your constructive comments and suggestions. Our 

point-by-point replies are given below and the corresponding revisions are shown in the 

revised manuscript. 

Major Comments: 

1. As shown in figure 3, the magnitude of underestimation in light rain and 

overestimation in heavy rain by GFS are all similar over three counties, but the aerosol 

loading in China is significantly higher than in other two countries. If the aerosol is one 

of the major factors causing the bias in the GFS precipitation simulation, why there is no 

obvious difference in the magnitudes of the bias among the three countries? 

Response:  

First, the intention of Figure 3 is to show that the GFS model overestimates light 

rain and underestimates heavier rain. Second, of course, these model biases are caused by 

many factors, including initial dynamic settings and weather regimes. But it is beyond the 

scope of this paper to explore all possible causes. Comparing the model performance 

globally according to aerosol loading only is not sufficient because the model 

performance may differ for different regions. Our focus is on identifying any potential 

contribution of neglecting aerosol effects to the biases. The relationship between model 

performance and AOD was thus further investigated. This is also why we compared 

results from three countries. In each country, the standard deviation of the daily 

precipitation difference as a function of aerosol optical depth is presented in Fig. 5. Each 



point represents a grid box. The significant positive correlation between standard 

deviation and AOD illustrates that neglecting aerosol effects may contribute to the model 

forecast bias. Third, the non-linear impact of aerosols on precipitation may also differ 

according to meteorological conditions, aerosol components, and the interactions 

between thermal and dynamic conditions. This is why we then focused on one specific 

region, Fujian Province, and did a long-term statistical evaluation of rainfall forecasts to 

mitigate these fluctuations in the model forecast accuracy.  

2. For the study of the aerosol invigoration effect on the warm and cold based mixed 

clouds, please clarify the cloud top temperature is for convective core area or for whole 

convective clouds (including anvil areas). As those studies by Rosenfeld et al. [2008] and 

Fan et al. [2013], only the decrease of cloud top temperature for convective core with 

increasing of aerosol loading can be attributed to the aerosol invigoration effect. 

Response:  

The cloud-top temperature (CTT) obtained from CloudSat data are used to study the 

impact of aerosols on the cloud development of different cloud types. Based on the 

definition of deep mixed-phase clouds with warm bases shown in Table 1 (cloud-base 

temperature > 15
o
C), the CTT analyzed is mainly associated with the convective core 

although the stratiform/anvil areas cannot be totally ignored. Both the aerosol 

thermodynamic effect (i.e., convective invigoration) illustrated by Rosenfeld et al. (2008) 

and the microphysical effect (mainly the role of more but smaller longer-lasting ice 

particles) emphasized by Fan et al. (2013) contribute to the decrease in CTT. The point of 

analyzing CTT as a function of AOD for different cloud types here is not to figure out 

which role is more dominant, but to find out whether the CTT decreased or increased and 

whether the cloud is more suitable for precipitation or not.   

 

Table 1. Definitions of warm- and cold-base mixed-phase clouds and liquid clouds.  

 Cloud-base 

temperature 

(
o
C) 

Cloud-top temperature 

(
o
C) 

Deep mixed-phase clouds with warm 

bases 
> 15 

< -4 

Shallow mixed-phase clouds with cold 

bases 
0–15 

< -4 

Liquid clouds > 0 > 0 

 

3. Some of descriptions are too detailed and may not be necessary. 

Response:  



We have modified the descriptions accordingly. A brief description of the model 

setting, which is relevant to this study, has been given. Also, detailed descriptions of the 

MERRA-2 analysis in section 2.2.1 have been shortened. 

Minor Comments: 

1. Line 95: The description of “ARI are only considered offline and are not coupled with 

the dynamic system” is confused. 

Response:  

A seasonal climatological tropospheric aerosol background with a large horizontal 

resolution is used for both longwave and shortwave radiation. There is a current effort 

underway to change this to a monthly background. The temperature change caused by 

aerosols is not coupled to each forecast interval. Therefore, it is not coupled with the 

dynamic system. 

2. Part 2.1: Since this study only used the simulation results and the details of GFS has 

been widely described, thus I’d suggest cutting the description in section 2.1 and paying 

more attention to the potential error of GFS precipitation forecast. 

Response:  

Lines 121 to 144: We have modified the descriptions accordingly. A brief 

description of the model setting, which is relevant to this study, has been given.  

3. Section 2.2.1: Such a detailed description on MERRRA-2 aerosol reanalysis is not 

necessary. What is the spatial resolution? Same with the CPC data? 

Response:  

Lines 157 to 167: This part of the manuscript has been shortened. The spatial 

resolution of the MERRA-2 reanalysis is 0.625° x 0.5° and that of CPC data is 0.5° x 0.5°. 

The data matching strategy is described in the newly-added section 2.3.1.  

4. Line 251-255: Please give the observed time of the sounding data. 

Response:  

It is twice a day (at 00 UTC and 12 UTC). This information has been added to line 

207. 

5. Section 3.1.1: From figure 2, the systematic bias is found in three counties, such as the 

overestimations are found in north, west of China, and underestimations are found in east 

China. Could you explain this? 



Response:  

The GFS model tends to overestimate light rain and underestimate heavier rain. In 

the northern and western parts of China, it seldom rains and when it rains, it is mainly 

light rain. So the GFS model tends to overestimate precipitation in these parts of China. 

In eastern China, it rains more and deep convective precipitation is common. So the GFS 

model tends to underestimate rain in this region. 

6. Line 340: Clarify the meaning of Z. 

Response:  

Line 325: The Z-score is the number of standard deviations from the mean value of 

the reference population. When 95% of the values fall within two standard deviations 

from the mean, a normal probability distribution is defined (according to the 68-95-99.7 

rule). The p value is set as 0.05 in this study, therefore, the mean difference is not 

significant at a two-sigma level when Z < 2. 

7. Line 385: in figure 6, please clarify the definition of the low, middle and high cloud 

mixing ratio, and the definition of the low, middle, high and very high AOD conditions. 

And why the thresholds of 5 and 20 are selected. 

Response:  

Figure 6 has been redrawn. We adopted the suggestion from another anonymous 

reviewer to replace the cloud mixing ratio at 850 hPa with LWP and RH to better show 

the different large-scale humidity conditions. The ETS and BIAS in the new Figure 6 are 

calculated for certain LWP or RH conditions and the top and bottom one-third of AOD 

values are defined as polluted and clean subsets of data. A threshold is used in the 

contingency table when calculating ETS and BIAS. The definition of hits or misses is 

based on the forecast rain amount above a certain threshold. In the new Figure 6, more 

commonly used precipitation amount thresholds have been used (i.e., 0.01, 0.25, 0.50, 

0.75 inches). 



 Fig. 6. Equitable threat scores (a, b) and bias (BIAS) scores (c, d) as a function of 

precipitation amount for fixed ranges of liquid water path (LWP; a, c) and relative 

humidity (RH; b, d) under clean and polluted conditions. The LWP is divided into two 

categories: 10–70 g m
-2 

(light blue) and 70–150 g m
-2

 (dark blue). Data are from August 

2015 in the U.S, China, and Australia. The RH is divided into two categories: 50–70%
 

(light green) and 70–100% (dark green). Data are from year 2015. For a given LWP or 

RH condition, the top and bottom one-third of AOD values are defined as polluted and 

clean subsets of data, respectively. The solid lines represent the clean scenario and the 

dotted lines represent the polluted scenario. The horizontal red lines in (c) and (d) 

represent perfect scores. 

 

8. Line 394-396: how to draw the conclusion of “the underestimation for heavy rainfall 

increases as AOD increases for low and middle cloud mixing ratio conditions” from 

figure 6d. 

Response:  

This sentence has been deleted. 



9. Line 457: Although the long-term data are used, the seasonal variations in aerosol 

loading, cloud properties and meteorological parameters may result in the nominal 

relationship as shown in figure 12.  

Response:  

Line 434: Seasonal variations in aerosol loading, cloud properties, and 

meteorological parameters may influence aerosol-cloud-precipitation interactions. This is 

why we examine the impact of aerosols on clouds and precipitation for certain cloud 

types and ranges of LWP values. In Figure 12, the cloud effective radius as a function of 

AOD under different LWP conditions for liquid clouds is shown. The randomly-mixed 

samples are rearranged according to AOD. The figure shows some perturbations caused 

by changes in AOD. 

10. Line 479-485 and figure 13: Is the relationship statistical significant? Please give P 

values in figure 13. 

Response:  

We have included P values in the new Figure 13. 



 

Fig. 13. Cloud-top temperature as a function of aerosol optical depth for (a) liquid, 

warm-base mixed-phase, and cold-base mixed-phase clouds in all seasons, and (b) liquid 

and warm-base mixed-phase clouds in summer in Fujian Province, China. Diamonds 

represent liquid clouds, squares represent warm-base mixed-phase clouds, and triangles 

represent cold-base mixed-phase clouds. Right-hand ordinates are for warm-base and 

cold-base mixed-phase clouds. Data are from 2006–2010. 

 

11. Line 485: It is either significant or not significant, based on the confidence level the 
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Abstract 23 

Aerosol-cloud interactions (ACI) have been widely recognized as a factor affecting 24 

precipitation. However, they have not been considered in the operational National 25 

Centers for Environmental Predictions Global Forecast System model. We evaluated 26 

the potential impact of neglecting ACI on the operational rainfall forecast using 27 

ground-based and satellite observations, and model reanalysis. The Climate Prediction 28 

Center unified gauge-based precipitation analysis and the Modern-Era Retrospective 29 

analysis for Research and Applications Version 2 aerosol reanalysis were used to 30 

evaluate the forecast in three countries for the year 2015. The overestimation of light 31 

rain (47.84%) and underestimation of heavier rain (31.83%, 52.94%, and 65.74% for 32 

moderate rain, heavy rain, and very heavy rain, respectively) from the model are 33 

qualitatively consistent with the potential errors arising from not accounting for ACI, 34 

although other factors cannot be totally ruled out. The standard deviation of the 35 

forecast bias was significantly correlated with aerosol optical depth in Australia, the 36 

U.S., and China. To gain further insight, we chose the province of Fujian in China to 37 

pursue a more insightful investigation using a suite of variables from gauge-based 38 

observations of precipitation, visibility, water vapor, convective available potential 39 

energy (CAPE), and satellite datasets. Similar forecast biases were found: 40 

over-forecasted light rain and under-forecasted heavy rain. Long-term analyses 41 

revealed an increasing trend of heavy rain in summer, and a decreasing trend of light 42 

rain in other seasons, accompanied by a decreasing trend in visibility, no trend in 43 

water vapor, and a slight increasing trend in summertime CAPE. More aerosols 44 
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decreased cloud effective radii for cases where the liquid water path was greater than 45 

100 g m
-2

. All findings are consistent with the effects of ACI, i.e., where aerosols 46 

inhibit the development of shallow liquid clouds and invigorate warm-base 47 

mixed-phase clouds (especially in summertime), which in turn affects precipitation. 48 

While we cannot establish rigorous causal relations based on the analyses presented in 49 

this study, the significant rainfall forecast bias seen in operational weather forecast 50 

model simulations warrants consideration in future model improvements.  51 
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1. Introduction  52 

Aerosols affect precipitation by acting as cloud condensation nuclei (CCN) and 53 

ice nuclei (IN), which can influence cloud microphysics (Twomey et al., 1984) and 54 

cloud lifetime (Albrecht, 1989). By absorbing and scattering radiation in the 55 

atmosphere, aerosols can alter the thermal and dynamic conditions of the atmosphere.  56 

The two types of effects are broadly referred to as aerosol-cloud interactions (ACI) 57 

and aerosol-radiation interactions (ARI) (Intergovernmental Panel on Climate Change, 58 

2013). Both can influence precipitation (Rosenfeld et al., 2008) and many other 59 

meteorological variables to the extent that they may account for the considerable 60 

changes in climate experienced in Asia over the past half century (Li et al., 2016).  61 

The impact of aerosols on precipitation via cloud microphysics occurs through 62 

warm-rain and cold-rain processes, as reviewed by Tao et al. (2012). In the warm-rain 63 

process, the competition for water vapor leads to a greater number of cloud drops with 64 

smaller sizes as the aerosol loading increases. This decreases the collision efficiency 65 

because of the low fall speed and low droplet-collecting efficiency. Rain formation is 66 

thus slowed down. Also, a heavier aerosol loading narrows the cloud drop-size 67 

spectrum, lowering the coalescence and collision efficiencies. The delay in 68 

precipitation formation from the warm-rain process enhances condensation and 69 

freezing, and ultimately, leads to the release of extra latent heat above the 0
o
C 70 

isotherm (Andreae et al., 2004; Rosenfeld et al., 2008), favoring mixed-phase and 71 

cold rainfall processes. ARI also affect precipitation. First, solar radiation absorbed by 72 

aerosols may warm up a cloud droplet enough to evaporate it (Ackerman et al., 2000). 73 
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Second, heating of an aerosol layer due to absorption and cooling of the surface 74 

because of the reduction in radiation reaching the ground stabilizes the lower 75 

boundary-layer atmosphere and suppresses the formation and development of low 76 

clouds whose occurrence decreases with increasing aerosol loading (Li et al., 2011). 77 

The suppressed convection by ARI may also lead to rainfall enhancement downwind 78 

of polluted places (Carrió et al., 2010; Fan et al., 2015). The combination of ARI and 79 

ACI leads to a non-monotonic response of rainfall to aerosols: increasing first and 80 

then decreasing (Jiang et al., 2016) because the ACI and ARI are most significant for 81 

low and high aerosol loadings, respectively (Rosenfeld et al., 2008; Koren et al., 2008; 82 

Fan et al., 2016). 83 

Most findings concerning the aerosol suppression of clouds and precipitation are 84 

associated with stratocumulus clouds, cumulus clouds, and shallow convection 85 

(Albrecht, 1989; Rosenfeld, 2000; Jiang et al., 2006; Xue & Feingold, 2006; Khain et 86 

al., 2008), whereas those of enhanced rainfall are associated with deep convective 87 

clouds (Koren et al., 2005; Lin et al., 2006; Bell et al., 2008; Rosenfeld et al., 2008). 88 

Li et al. (2011) used 10 years of ground-based observations to examine the long-term 89 

impact of aerosols on precipitation and found rainfall enhancement in mixed-phase 90 

warm-base clouds and suppression in liquid clouds. Van den Heever et al. (2011) 91 

underlined the importance of cloud type in dealing with the impact of aerosols on 92 

precipitation.  93 

Forecasting rainfall is most challenging and important in numerical weather 94 

prediction (NWP). In the current Global Forecast System (GFS) model, aerosols are 95 
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only considered in the radiation scheme on a climatological scale. ARI are only 96 

considered offline and are not coupled with the dynamic system. ACI have not yet 97 

been accounted for. To improve the forecast accuracy, a suite of new physical schemes 98 

are being implemented in the National Centers for Environmental Prediction 99 

(NCEP)’s Next-Generation Global Prediction System. The goal of modifying the 100 

current forecast model is to improve physical parameterizations in such a way that 101 

allows for efficient, accurate, and more complete representations of physical 102 

processes and their interactions including at least some of the aforementioned aerosol 103 

mechanisms.  104 

As a first step, the goal of the present study is to evaluate current operational 105 

GFS forecast results (before any ACI are introduced) to see if any systematic 106 

precipitation biases bear resemblance to aerosol perturbations. A gross evaluation of 107 

the GFS model forecast results in three countries (China, the U.S., and Australia) were 108 

chosen because they cover all hemispheres and represent different atmospheric and 109 

environmental conditions. Moreover, there are the U.S. Department of Energy’s 110 

Atmospheric Radiation Measurement (ARM) observations in all three countries that 111 

will be used in follow-on studies to gain a deeper insight into causal relationships and 112 

the impact of different parameterization schemes. Descriptions of the operational GFS 113 

model, datasets, and the evaluation strategy and statistical method used are presented 114 

in section 2. Results of the evaluation and possible explanations are given in section 3. 115 

A summary of the research and discussion are given in Section 4.  116 

 117 
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2. Model, Datasets, and Methodology 118 

 119 

2.1 Description of the NCEP GFS Model 120 

The NCEP GFS model is a global spectral forecast model (spherical harmonic 121 

basis functions) that has been described and evaluated over the years (e.g., Kanamitsu, 122 

1989; Yang et al., 2006; Sela, 2009; Yoo et al., 2012, 2013). Shortwave and longwave 123 

radiation are parameterized using the Rapid Radiative Transfer Models (RRTMG) 124 

RRTMG_SW (v3.8) and RRTMG_LW (updated based on AER’s version 4.8), 125 

respectively, developed at AER Inc. (http://www.emc.ncep.noaa.gov/GFS/doc.php). A 126 

monthly climatology of aerosols composed of five primary species similar to those in 127 

the Goddard Chemistry Aerosol Radiation and Transport model (GOCART; Chin et 128 

al., 2002) was used. One or two major components in each grid (based on climatology) 129 

were chosen for both longwave and shortwave radiative transfer calculations. In the 130 

planetary boundary layer (PBL), a hybrid eddy-diffusivity mass flux PBL 131 

parameterization (Han et al., 2016) was incorporated to replace the previous PBL 132 

scheme (Troen & Mahrt, 1986; Hong & Pan, 1996). A modified version (Han & Pan, 133 

2011) of the Simplified Arakawa-Schubert scheme (Arakawa & Schubert, 1974; Grell, 134 

1993; Pan & Wu, 1995) is used for deep convection in the GFS model. The new 135 

shallow convection scheme (Han & Pan, 2011) uses a bulk mass-flux 136 

parameterization, which is similar to the deep convection scheme, but with a 137 

cloud-top limit of 700 hPa and different specifications on entrainment, detrainment, 138 

and mass flux at the cloud base. A prognostic cloud water scheme (Sundqvist et al., 139 

http://www.emc.ncep.noaa.gov/GFS/doc.php
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1989; Zhao & Carr, 1997; Moorthi et al., 2001) was added in May 2001. Grid-scale 140 

precipitation is the sink of cloud condensate and is diagnostically calculated from 141 

cloud condensate. It is parameterized following Zhao & Carr (1997) for ice (snow), 142 

evaporation of rain and snow, and the melting of snow, and following Sundvist et al. 143 

(1989) for liquid water (rain) (GCWM Branch, EMC, 2003).  144 

 145 

2.2 Descriptions of Datasets Used 146 

Datasets used include Modern-Era Retrospective analysis for Research and 147 

Applications Version 2 (MERRA-2) aerosol optical depth (AOD) data, Climate 148 

Prediction Center (CPC) unified gauge-based precipitation data, and the NCEP GFS 149 

precipitation forecast data for the year 2015 in three countries: China, the U.S., and 150 

Australia. Other datasets used include long-term NCEP Global Ensemble Forecast 151 

System (GEFS) precipitation forecast data, ground-based observations of precipitation 152 

and visibility, water vapor and convective available potential energy (CAPE) 153 

sounding datasets, and satellite-retrieved aerosol and cloud properties for a small 154 

region of Fujian Province in China chosen for more detailed study. 155 

2.2.1 NASA MERRA-2 Aerosol Reanalysis 156 

The MERRA-2 aerosol reanalysis (Randles et al., 2016) is an upgrade of the 157 

off-line aerosol reanalysis called MERRAero (da Silva et al., 2011; Rienecker et al., 158 

2011; Jiang et al., 2016). The aerosol module in MERRAero is based on the 159 

GOCART model (Chin et al., 2002). The AOD observing system sensors extend from 160 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Neural Net Retrieval 161 
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(NNR) in MERRAero to a combination of the Advanced Very-High-Resolution 162 

Radiometer NNR, Aerosol Robotic Network, the Multi-angle Imaging 163 

SpectroRadiometer, the MODIS/Terra NNR, and the MODIS/Aqua NNR in the 164 

MERRA-2 aerosol reanalysis. More details about the MERRA-2 aerosol reanalysis 165 

can be found in Randles et al. (2016). Hourly total aerosol extinction AOD data at 550 166 

nm at a resolution of 0.625° x 0.5° for the year 2015 are used in this study.  167 

2.2.2 CPC Unified Gauge-based Analysis of Global Daily Precipitation 168 

A unified suite of precipitation analysis products that ingest a gauge-based 169 

analysis of global daily precipitation over land were assembled at NOAA’s CPC 170 

(https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-glob171 

al-daily-precipitation). Over 17,000 station reports were first collected from multiple 172 

sources. Quality control was performed through comparisons with other sources of 173 

data, e.g., from radar, satellite, numerical models, independent nearby stations, and 174 

historical precipitation records. Post-quality control corrected reports are interpolated 175 

to create the analyzed fields. Orographic effects are considered in this step (Xie et al., 176 

2007). Finally, the daily analysis is constructed and released at a 0.5
o 
x 0.5

o
 resolution 177 

(https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-glob178 

al-daily-precipitation). Daily precipitation data for the year 2015 are used in this 179 

study.  180 

2.2.3 NCEP GFS/GEFS Forecast Datasets 181 

NWP model forecast data used are three-hourly rainfall forecasts from the NCEP 182 

GFS model initialized at 00 coordinated universal time (UTC) and accumulated for 24 183 

https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
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hours in the three countries chosen for study. The relative humidity (RH) at 850 hPa 184 

and the liquid water path (LWP) calculated following Yoo et al. (2012) are used, 185 

corresponding to the precipitation record in the three countries at a 0.5
o
x0.5

o
 186 

latitude-longitude resolution. For the part of the study focused on Fujian Province, 187 

China, the long-term NWP model reforecast precipitation amount accumulated over 188 

the period of 12 hours to 36 hours out from 00 UTC at a 1
o
x1

o
 latitude-longitude 189 

resolution for the years 1985 to 2010 are used.   190 

2.2.4 Long-term Ground-based Observations in Fujian Province, China 191 

Ground meteorological data acquired in Fujian Province from 1980 to 2009 are 192 

used in this study. Figure 1 shows the locations of the 67 meteorological stations 193 

measuring precipitation. Sixteen of these stations also collect visibility data four times 194 

a day. Daily mean data are used here. Visibility has been used as proxy for aerosol 195 

loading in China in several studies (Rosenfeld et al., 2007; Yang et al., 2013; Yang & 196 

Li, 2014). The main advantage is the long measurement record under all sky 197 

conditions. However, there are some limitations, e.g., the uncertainty due to humans 198 

making the observations and the influence of aerosol hygroscopic growth. To remove 199 

the humidity influence on visibility, visibility was corrected for RH (Charlson, 1969; 200 

Appel et al., 1985) using the formula adopted by Rosenfeld et al. (2007) when RH 201 

falls between 40% and 99%: 202 

           
 𝑜  

  𝑜 
              (    𝑅𝐻),                   (1) 203 

where 𝑅𝐻  is in percent, and  𝑜         𝑜  are the originally uncorrected and 204 

corrected visibilities, respectively. Only non-rainy data were used.  205 
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To analyze water vapor and atmospheric stability effects on precipitation, data 206 

collected twice a day (at 00 UTC and 12 UTC) from three atmospheric sounding 207 

stations (Xiamen, 24.48
o
N, 118.08

o
E; Shaowu, 27.33°N, 117.46°E; Fuzhou, 26.08

o
N, 208 

119.28
o
E) are used to calculate trends in precipitable water vapor and CAPE. Daily 209 

precipitable water and CAPE values are the mean of the two measurements made per 210 

day.  211 

2.2.5 Satellite Datasets of Aerosol and Cloud Properties in Fujian Province, 212 

China 213 

CloudSat data from 2006–2010 amassed over Fujian Province (22.5
o
N-28.5

o
N, 214 

114.5
o
E-120.5

o
E) are used to extract cloud-top and cloud-base height information. 215 

CloudSat retrievals of cloud-top and base heights are converted to temperatures using 216 

temperature profiles from the European Center for Medium-range Weather 217 

Forecasting Auxiliary product. The converted cloud-top and cloud-base temperatures 218 

are used for cloud type classification. The classification of different cloud types is 219 

summarized in Table 1 and introduced in sub-section 2.3.2. Only single-layer clouds 220 

detected by the CloudSat are chosen here.  221 

Aqua/MODIS retrievals of cloud droplet size and LWP for liquid clouds (clouds 222 

with cloud-top temperatures (CTT) greater than 273 K) collected over Fujian 223 

Province from 2003–2012 are used.  Errors in satellite retrievals of AOD such as 224 

cloud contamination (Kaufman et al., 2005; Zhang et al., 2005) introduce 225 

uncertainties in the aerosol-cloud relationship (Gryspeerdt et al., 2014a, b). We use 226 

MODIS Level 3 AOD with AOD > 0.6 excluded and not the higher resolution Level 2 227 
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product to reduce the possibility of cloud contamination (Niu and Li, 2012) in AOD 228 

retrievals. 229 

 230 

2.3 Methodology 231 

 232 

2.3.1 Spatial and Temporal Matching of Model and Observation Data 233 

CPC-unified gauge-based daily precipitation data at a 0.5
o 

x 0.5
o
 234 

latitude-longitude resolution in the three countries for the year 2015 are used. GFS 235 

model grid 004 data at the same latitude-longitude resolution (0.5
o 

x 0.5
o
) are also 236 

used. Forecast precipitation for a one-day accumulation generated at three-hourly 237 

intervals (e.g., at 03, 06, 09, 12, 15, 18, 21, 24 UTC), starting from the control time of 238 

00 UTC, are used to match the corresponding gauge-based observations. The 239 

MERRA-2 aerosol analysis is not coupled with GFS simulations. Daily MERRA-2 240 

AOD is at a resolution of 0.625
o
 x 0.5

o
 and is interpolated to the CPC and GFS 241 

precipitation resolution using a linear interpolation method. The spatial and temporal 242 

resolutions of the matched data sets are 0.5° x 0.5° and are generated for each day. 243 

There are ~3 686 000 grid points in total.  244 

For the long-term analysis focused on Fujian, China, the NWP model reforecast 245 

precipitation amount accumulated over the period of 12 hours to 36 hours out from 246 

the 00 UTC run at six-hourly intervals and at a 1
o 
x 1

o
 latitude-longitude resolution for 247 

the years 1985 to 2010 are used to calculate the modeled daily precipitation amount in 248 

each grid box. They are interpolated to match the long-term ground-based 249 
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precipitation observations recorded at each of the 67 stations in the study region of 250 

Fujian, China (Fig. 1). There are 9495 days in total with matched data. 251 

2.3.2 Rainfall Level Classification and Cloud Type Classification 252 

Based on the definitions of the China Meteorological Administration, 253 

precipitation data are classified into four groups according to the daily rain amount: 254 

light rain (0.1–9.9 mm d
-1

), moderate rain (10–24.9 mm d
-1

), heavy rain (25–49.9 mm 255 

d
-1

), and very heavy rain (≥ 50 mm d
-1

). Rain gauge data are usually used as reference 256 

data in weather forecast and model evaluations because they come from direct 257 

physical records (Tapiador et al., 2012). The most commonly-used rain detector is the 258 

tipping bucket. Once the bucket is filled (0.1 mm), the bucket is emptied and produces 259 

a signal. This process repeats until precipitation stops. Light rain less than 0.1 mm 260 

cannot be measured. Therefore, the definition of light rain is 0.1–9.9 mm d
-1

. 261 

Table 1 summarizes the cloud types considered in the Fujian Province analysis. 262 

Deep mixed-phase clouds are defined as clouds with cloud-base temperatures (CBT) > 263 

15
o
C and CTT < -4

o
C, shallow mixed-phase clouds are defined as clouds with CBT 264 

ranging from 0
o
C to 15

o
C and CTT < -4

o
C, and pure liquid clouds are defined as 265 

clouds with CBT > 0
o
C and CTT > 0

o
C (Li et al., 2011; Niu & Li, 2012). 266 

2.3.3 Evaluation Methods 267 

Quantitative precipitation forecast scores developed by NCEP are used in the 268 

evaluation. Table 2 is a contingency table based on documents from the World 269 

Climate Research Programme 270 

(http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts271 

http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts
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). The most commonly-used statistical scores are the equitable threat score (ETS), 272 

which is also called the Gilbert skill score, and the bias score (BIAS). The ETS is 273 

given by 274 

𝐸𝑇𝑆  
𝐻−𝐻 𝑎𝑛𝑑𝑜𝑚

𝐻+𝑚+𝑓−𝐻 𝑎𝑛𝑑𝑜𝑚
,                        (2) 275 

where H represents hits, f represents false alarms, and m represents misses. 𝐻 𝑎𝑛𝑑𝑜𝑚 276 

is given by  277 

𝐻 𝑎𝑛𝑑𝑜𝑚  
(𝐻+𝑚)∗(𝐻+𝑓)

𝑇𝑂𝑇𝐴𝐿
.                       (3) 278 

Its values range from -1/3 to 1 and a perfect score is 1. The BIAS is expressed as 279 

     𝐵𝐼𝐴𝑆  
𝐻+𝑓

𝐻+𝑚
.                              (4) 280 

Its values range from 0 to infinity. A perfect score is 1. A BIAS < 1 indicates 281 

under-forecasting and a BIAS > 1 indicates over-forecasting.  282 

Under limited ranges of LWP or RH, the top and bottom one-third of AOD 283 

values denote polluted and clean subsets of data. To obtain the forecast skill under a 284 

particular pollution condition, the ETS and the BIAS for clean and polluted conditions 285 

are calculated as  286 

     < 𝐸𝑇𝑆 > ,𝑗,𝑚 (𝐸𝑇𝑆) ,𝑗,𝑚,                    (5) 287 

     < 𝐵𝐼𝐴𝑆 > ,𝑗,𝑚 (𝐵𝐼𝐴𝑆) ,𝑗,𝑚,                   (6) 288 

for the index of precipitation threshold (i), RH or LWP (j), and clean or polluted 289 

scenario (m).  290 

2.3.4 Statistical Method 291 

The standard deviation of the precipitation bias between the GFS model and CPC 292 

gauge data is calculated as 293 
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    𝑆  √
∑(𝑥− )2

𝑛−1
 ,                          (7) 294 

where x is the forecast bias on a single day, n is equal to 364 days, and r is the mean 295 

forecast bias. Pearson's method is used to calculate the linear correlation coefficient of 296 

the relationship between the standard deviation of the forecast difference and AOD. A 297 

t-test is applied with the p value set to 0.05.    298 

The relative difference between the forecast precipitation and observations is 299 

calculated as  300 

𝛥𝑃  
         −    

    
     ,               (8) 301 

where 𝑃         refers to the forecast precipitation and 𝑃𝑂   refers to the 302 

precipitation from gauge-based observations.  303 

For the long-term analysis, trends in a particular parameter are defined as the 304 

relative change in the parameter (in %) over each successive decade (Lin & Zhao, 305 

2009). The Mann-Kendall method is used to test the significance of the trend. 306 

 307 

3. Results 308 

 309 

3.1 Evaluation of GFS Precipitation using the CPC Gauge-based Analysis 310 

 311 

3.1.1 Annual Mean Patterns 312 

The CPC gauge-based precipitation analysis from 2015 is used to evaluate the 313 

GFS precipitation forecast. Figure 2 shows the annual mean precipitation difference 314 

between the GFS model and the CPC analysis for three countries, i.e., China, the U.S., 315 
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and Australia, for the year 2015. Values above (below) zero represent the 316 

overestimation (underestimation) of precipitation. In China (Figure 2a), the GFS 317 

model overestimates the mean daily rainfall mostly in southwest China, especially in 318 

Sichuan, Yunnan, and Guizhou Provinces (by ~3 mm d
-1

), and in northwest China 319 

where rain events are scarcer. Rainfall is underestimated over the Yangtze River Delta 320 

region and the eastern coast of China. In the U.S. (Figure 2b), the GFS model 321 

overestimates precipitation by about 1–2 mm d
-1

 in most regions and underestimates 322 

precipitation along the coastline of the Gulf of Mexico (by ~1 mm d
-1

). In Australia 323 

(Figure 2c), the forecast performance is good. In northern Australia, the 324 

underestimation of precipitation is around 2 mm d
-1

. Z-scores were calculated to test 325 

the significance of the annual mean difference in the daily rainfall amount between 326 

the GFS model forecast and the CPC analysis. Z values range from -0.4803 to 0.8534 327 

over the grids in the three countries. Because the Z-score values are less than 2, this 328 

indicates that the mean difference is not significant at the two-sigma level. Therefore, 329 

the forecast performance of the GFS model with regard to the annual mean daily 330 

rainfall in the three countries is sound with reference to the gauge-based CPC rainfall 331 

analysis. 332 

3.1.2 Different Rainfall Intensities  333 

  Figure 3 shows the annual mean relative difference between forecast 334 

precipitation and observations for light rain (0.1–10 mm d
-1

) and heavier rain (> 10 335 

mm d
-1

). The GFS model overestimates light rain in most places (Figure 3a) and 336 

underestimates heavier rain (Figure 3b). This suggests that both the overestimation of 337 
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light rain and underestimation of moderate rain, heavy rain, and very heavy rain 338 

contribute to the forecast bias. Figure 4 shows the mean relative difference between 339 

forecast and observed daily precipitation amounts for different rain intensities in the 340 

three countries for the whole year (Fig. 4a) and for summer only (Fig. 4b). GFS 341 

forecasts overestimate light rain by 47.84% and underestimate moderate rain, heavy 342 

rain, and very heavy rain by 31.83%, 52.94%, and 65.74%, respectively (Fig. 4a). The 343 

underestimation of precipitation in summer is larger for moderate rain (32.93%), 344 

heavy rain (55.19%), and very heavy rain (66.93%, Fig. 4b). These model biases are 345 

caused by many factors that are beyond the scope of this paper to examine. Our focus 346 

is on any potential contribution of neglecting aerosol effects to the biases. The 347 

relationship between model performance and AOD is thus further investigated.  348 

3.1.3 Relationship between Model Performance and AOD 349 

In principle, the underestimation and overestimation at different rainfall levels 350 

(Figs. 3 and 4) may be linked to AOD conditions, as elaborated in the introduction of 351 

previous studies (c.f. the review of Tao et al., 2012). The standard deviation of the 352 

forecast bias at each grid point in the three countries is calculated to further examine 353 

the links between the model bias and AOD. Aerosols tend to polarize precipitation by 354 

suppressing light rain and enhancing heavy rain, and thus increase the standard 355 

deviation. The calculation of the standard deviation of the forecast difference is based 356 

on Eqn. (7). Figure 5 shows the relationship between the standard deviation and AOD 357 

in the three countries. Each point represents a grid box. The standard deviation and 358 

AOD has a significant positive correlation in the three countries with correlation 359 
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coefficients of 0.5602, 0.6522, and 0.5182 for Australia, the U.S., and China, 360 

respectively. This suggests that the degree of disparity of the forecast error is larger 361 

for grids with high aerosol loading. The slopes of the best-fit lines are 75.23 for 362 

relatively clean Australia (maximum AOD < 0.18), 48.4 for the polluted U.S. 363 

(maximum AOD < 0.20), and 8.554 for heavily polluted China (maximum AOD > 364 

0.60).   365 

The ETS and BIAS are used to examine the model performance under clean and 366 

polluted conditions for different AOD bins with fixed LWP (Figs. 6a and 6c) or RH 367 

(Figs. 6b and 6d) in the three countries. For a particular LWP or RH condition, the top 368 

and bottom one-third of AOD values are defined as polluted and clean subsets of data. 369 

In Figs. 6a and 6b, ETS increases as the LWP or RH increases. This is because 370 

large-scale precipitation is diagnosed from cloud mixing ratios. The ETS are smaller 371 

for the polluted scenario than for the clean scenario, especially under high LWP or 372 

high RH conditions. In Figs. 6c and 6d, the BIAS decreases under polluted conditions 373 

compared with the BIAS under clean conditions. The decreases in ETS and BIAS 374 

under polluted conditions suggest that AOD influences the model rainfall forecast. 375 

 376 

3.2 Potential Contribution of Aerosols to the Model Bias 377 

 378 

3.2.1 Long-term Forecast Bias and Trends in Observed Precipitation in Fujian 379 

Province, China 380 

The model performance differs under different conditions, e.g., initial and 381 
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dynamic settings, and weather regimes. A long-term statistical evaluation of rainfall 382 

forecasts for Fujian Province is made to mitigate these fluctuations in the model 383 

forecast accuracy. Model data from 1985 to 2010 are used to calculate the relative 384 

difference based on Eqn. (8). Figure 7 shows the mean relative difference between 385 

forecast and observed precipitation for different rain rates from the 67 stations in 386 

Fujian Province for all seasons and for summer only. Figure 7a shows that there is 387 

114.36% more precipitation forecast by the NCEP/GEFS model than observed for the 388 

light rain cases. For moderate rain, heavy rain, and very heavy rain cases, 29.20%, 389 

41.74%, and 59.30% less precipitation than observed, respectively, was forecast. The 390 

underestimation of moderate rain (46.88%), heavy rain (59.58%), and very heavy rain 391 

(70.16%) is even larger in summer (Fig. 7b).  392 

Seasonally-averaged trends (percent change per decade) in daily rain amount and 393 

frequency over Fujian Province from 1980 to 2009 are calculated. Only the results for 394 

rain amount are shown in Fig. 8 because the frequency results bear a close 395 

resemblance. Cross-hatched bars represent data at a confidence level greater than 95%. 396 

In spring, daily rain amounts decreased over time, ranging from -4.9% to -15.3% per 397 

decade for different rain rates. In summer, heavy and very heavy daily rain amounts 398 

increased significantly. For very heavy rain, the amount and frequencies increased at a 399 

rate of 21.8% and 24.5% (not shown), respectively. In autumn, light rain and 400 

moderate rain amounts decreased. In winter, the light rain amount decreased over time. 401 

Decreases in light rain amounts are -8.4% per decade. Overall, the increasing trends in 402 

summertime for heavy and very heavy rain are most significant. The decreasing 403 
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trends in light rain in other seasons are also significant. 404 

3.2.2 Examination of Potential Contributors 405 

Reasons for the difference between modeled and observed precipitation are 406 

examined in terms of aerosol effects, water vapor, and CAPE. Time series of visibility 407 

over the period of 1980–2009 are shown in Fig. 9. Visibility has declined steadily in 408 

all seasons but summer during which there was a short-lived increasing trend from 409 

1992–1997. The linear declining trends are statistically significant at the 95% 410 

confidence level. The greatest reduction is seen during the summer, especially after 411 

1997. Tables 3 and 4 summarize the correlation between visibility and precipitation 412 

amount and frequency, respectively. A positive (negative) correlation between 413 

visibility and precipitation means a negative (positive) correlation between aerosol 414 

concentration and precipitation. Values with an asterisk represent data at a confidence 415 

level greater than 95%. For light rain, the correlations between daily rain amount and 416 

visibility (Table 3) and between rain frequency and visibility (Table 4) are positive for 417 

all seasons. For heavy rain to very heavy rain, the correlations between visibility and 418 

daily rain amount (Table 3), as well as frequency (Table 4), are negative in summer.  419 

The water vapor amount and atmospheric stability are important factors related 420 

to precipitation. To analyze the potential contributions of these factors to the forecast 421 

bias, their effects on precipitation are examined. Data from three atmospheric 422 

sounding stations (Xiamen, 24.48
o
N, 118.08

o
E; Shaowu, 27.33°N, 117.46°E; Fuzhou, 423 

26.08
o
N, 119.28

o
E) collected from 1980–2009 are used to calculate trends in 424 

precipitable water vapor and CAPE. Figure 10 shows time series of annual mean 425 
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water vapor amount for different seasons. A slight increasing trend is seen in winter, 426 

while no discernible trend is seen in other seasons. This suggests that the water vapor 427 

amount characterizing the study region cannot explain seasonal variations in 428 

precipitation. Time series of mean CAPE for the different seasons are shown in Fig. 429 

11. There is an increasing trend in summertime CAPE during the period of 1980–2009, 430 

but the trends are not as strong in other seasons. The observed increase in rain amount 431 

in summer is in part likely due to an increase in convective precipitation events that 432 

arises from the increasing trend in CAPE.  433 

3.2.3 Impact of Aerosols on Clouds and Precipitation 434 

Aerosols can influence precipitation through warm- and cold-rain processes (Tao 435 

et al., 2012). Cloud droplet size, LWP for clouds with CTT greater than 273 K, and 436 

AOD at 550 nm retrieved from the Aqua/MODIS platform over Fujian Province 437 

during the period of 2003–2012 are used to examine the impact of aerosols on cloud 438 

effective radius (CER). Figure 12 shows CER as a function of AOD for liquid clouds 439 

with different LWPs. When the AOD is small (< 0.2), the CER increases with 440 

increasing LWP. For LWP > 100 g
 
m

-2
, the CER decreases with increasing AOD, 441 

which suggests that more aerosols decrease CERs. This result is in line with the two 442 

aerosol indirect effects (Twomey et al., 1984; Albrecht, 1989). A greater number of 443 

smaller droplets may reduce the precipitation efficiency and suppress or enhance 444 

precipitation, as reviewed by Tao et al. (2012).  445 

Several observational and model studies suggest that smaller cloud particles are 446 

more likely to ascend to above the freezing level, releasing latent heat and 447 
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invigorating deep convection (Rosenfeld et al., 2008; Li et al., 2011) while 448 

suppressing shallow convection. CTTs and CBTs, converted from CloudSat 449 

measurements of cloud top and base heights, in Fujian Province from 2006 to 2010 450 

are used to study the impact of aerosols on the cloud development of different clouds. 451 

Figure 13 shows CTT as a function of AOD for liquid and warm- and cold-base 452 

mixed-phase clouds. Definitions of the different cloud types are summarized in Table 453 

1, which is taken from Li et al. (2011). Left-hand ordinates are for liquid clouds, while 454 

right-hand ordinates are for warm-base and cold-base mixed-phase clouds. For all 455 

seasons (Fig. 13a), CTTs of warm-base mixed-phase clouds are lower than those of 456 

cold-base mixed-phase clouds. Warm-base mixed-phase CTTs decrease with 457 

increasing AOD, which indicates that cloud-top heights have increased. For cold-base 458 

mixed-phase clouds, variations in CTT with AOD are not obvious. For liquid clouds, 459 

CTTs increase slightly with AOD, which means that the development of liquid clouds 460 

is suppressed when AOD increases. The negative slope of the linear relationship 461 

between CTT and AOD for warm-base mixed-phase clouds and the positive slope of 462 

the linear relationship between CTT and AOD for liquid clouds are both stronger in 463 

summer (Fig. 13b). This suggests that aerosols inhibit the development of shallow 464 

liquid clouds and invigorate warm-base mixed-phase clouds, with little influence on 465 

cold-base mixed-phase clouds. These effects of aerosols on summertime cloud 466 

development are more obvious, likely because convective clouds occur more 467 

frequently during the summertime in Fujian Province.  468 

These results agree with those from a ground-based study using ARM Southern 469 
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Great Plains data (Li et al., 2011) and from tropical region studies using 470 

CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data (Niu 471 

& Li, 2012; Peng et al., 2016). The impact of aerosols on different types of clouds 472 

may lead to light rain suppression and heavier rain enhancement. If the GFS model 473 

neglects aerosol effects, overestimations of light rain and underestimations of heavy 474 

to very heavy rain may be forecast, especially in summer. For example, Fig. 14 shows 475 

time series of regionally-averaged daily modeled and observed precipitation in 2001. 476 

Modeled and observed precipitation amounts over the region agree well in spring and 477 

winter while modeled precipitation amounts are greater than observations for light 478 

rain in autumn. Note that modeled precipitation amounts are significantly less than 479 

observed precipitation amounts over the region in summer when deep convective 480 

clouds and heavy to very heavy rain tends to occur. Although there are many reasons 481 

for the difference between modeled and observed precipitation, these results suggest 482 

that to some extent, the neglect of aerosol effects may contribute to the model rainfall 483 

forecast bias. 484 

 485 

4. Summary and Discussion 486 

 487 

Aerosol-cloud interactions (ACI) have been recognized as playing a vital role in 488 

precipitation, but have not been considered in the National Centers for Environmental 489 

Prediction (NCEP) Global Forecast System (GFS) model yet. For more efficient and 490 

accurate forecasts, new physical schemes are being incorporated into the NCEP’s 491 
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Next-Generation Global Prediction System. As a benchmark evaluation of model 492 

results that exclude aerosol effects, the operational precipitation forecast (before any 493 

ACI are included) is evaluated using multiple datasets with the goal of determining if 494 

there is any link between the model forecast bias and aerosol loading. Multiple 495 

datasets are used, including ground-based precipitation and visibility datasets, 496 

Aqua/Moderate Resolution Imaging Spectroradiometer products, CloudSat retrievals 497 

of cloud-base and cloud-top heights, Modern-Era Retrospective analysis for Research 498 

and Applications Version 2 model simulations of aerosol optical depth (AOD), and 499 

GFS forecast datasets. 500 

Operational daily precipitation forecasts for the year 2015 in three countries, i.e., 501 

Australia, the U.S., and China, were evaluated. The model overestimates light rain, 502 

and underestimates moderate rain, heavy rain, and very heavy rain. The 503 

underestimation of precipitation in summer is even larger. This is consistent 504 

qualitatively with expected results because the model does not account for aerosol 505 

effects on precipitation, i.e., the inhibition of light rain and enhancement of heavy rain 506 

by aerosols. The standard deviations of forecast differences are generally positively 507 

correlated with increasing aerosol loadings in the three countries. Equitable threat 508 

scores and BIAS scores decrease for the polluted scenario.   509 

An analysis of long-term measurements from Fujian Province, China was done. 510 

Light rain overestimation, and moderate, heavy, and very heavy rain underestimations 511 

from the Global Ensemble Forecast System were also seen. The underestimation for 512 

stronger rainfall was larger in the summertime. Increasing trends for heavy and very 513 
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heavy rain in summer, and decreasing trends for light rainfall in other seasons were 514 

significant from 1980 to 2009. Long-term analyses show that neither water vapor nor 515 

convective available potential energy can explain these trends. Satellite datasets 516 

amassed in Fujian Province from 2006 to 2010 were used to shed more light on the 517 

impact of aerosols on cloud and precipitation. As implied by the Twomey effect, cloud 518 

effective radii decrease with increasing AOD, which likely suppresses light rain and 519 

enhances heavy rain. This may contribute to the model forecast bias to some extent. 520 

The underestimation of heavy rain in summer most likely occurs because deep 521 

convective clouds occur more frequently during the summertime in Fujian Province.  522 

How neglecting ACI in the operational forecast model impacts model biases remains 523 

an open question. This study is arguably the first attempt at evaluating numerical 524 

weather prediction forecast errors in terms of the potential effects of aerosols. A more 525 

rigorous and systematic evaluation to gain insights into the model is needed. Toward 526 

this goal, case-based investigations using rich instantaneous measurements are 527 

currently underway. 528 
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Data Availability 529 

Forecast data are from the NOAA NOMADS (https://nomads.ncdc.noaa.gov/) 530 

for GFS data (https://nomads.ncdc.noaa.gov/data/gfs4/) and the NOAA NCDC 531 

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-532 

forecast-system-gefs) for GEFS reforecast data. NASA MERRA-2 aerosol data are 533 

accessible from the NASA Global Modeling and Assimilation Office 534 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/). The CPC Unified 535 

Gauge-Based Analysis of Global Daily Precipitation dataset is available at 536 

https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-glob537 

al-daily-precipitation. ECMWF reanalysis data are accessible via 538 

http://apps.ecmwf.int/datasets/data/interim-full-daily/. MODIS data and CloudSat data 539 

are available at https://modis.gsfc.nasa.gov/data/ and 540 

http://www.cloudsat.cira.colostate.edu/, respectively. Ground-based observations of 541 

precipitation amount, visibility, precipitable water, and CAPE from Fujian Province 542 

can be requested from the Chinese Meteorological Administration’s National 543 

Meteorological Information Center (http://cdc.cmic.cn and http://data.cma.cn/).  544 

https://nomads.ncdc.noaa.gov/
https://nomads.ncdc.noaa.gov/data/gfs4/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation
http://apps.ecmwf.int/datasets/data/interim-full-daily/
https://modis.gsfc.nasa.gov/data/
http://www.cloudsat.cira.colostate.edu/
http://cdc.cmic.cn/
http://data.cma.cn/
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 744 

Table 1. Definitions of warm- and cold-base mixed-phase clouds and liquid clouds.  745 

 Cloud-base temperature 

(
o
C) 

Cloud-top temperature 

(
o
C) 

Deep mixed-phase clouds with warm bases > 15 < -4 

Shallow mixed-phase clouds with cold bases 0–15 < -4 

Liquid clouds > 0 > 0 

 746 

 747 

Table 2. Contingency table.  748 

Observed 

Forecast 

Observed yes Observed no 

Forecast yes Hits False alarms 

Forecast no Misses Correct negatives 

 749 

 750 

Table 3. Correlation coefficients from linear regressions of visibility and different rain 751 

amount types for all seasons.  752 

* Values with an asterisk represent data at a confidence level greater than 95%. 753 

 754 

Rain rate 

Season 
Light rain 

Moderate 

rain 
Heavy rain 

Very heavy 

rain 

Rain 

amount 

Spring 0.48* 0.51* 0.48* 0.17 0.40* 

Summer 0.08 -0.16 -0.28 -0.41* -0.38* 

Autumn 0.31 0.18 0.26 -0.22 0.11 

Winter 0.55* 0.26 0.26 0.27 0.29 
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Table 4. Correlation coefficients from linear regressions of visibility and different 755 

occurrence frequencies of rain amount type for all seasons. 756 

* Values with an asterisk represent data at a confidence level greater than 95%. 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

Rain rate 

Season 
Light rain 

Moderate 

rain 
Heavy rain 

Very heavy 

rain 

Rain 

amount 

Spring 0.61* 0.51* 0.38* 0.08 0.67* 

Summer 0.23 -0.13 -0.26 -0.44* -0.04 

Autumn 0.52* 0.18 0.25 -0.10 0.45* 

Winter 0.55* 0.22 0.20 -0.05 0.49* 
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 766 

Fig. 1. Locations of 67 stations measuring precipitation in Fujian Province. Plus 767 

symbols show the locations of the 16 stations where visibility measurements are also 768 

made. This figure was plotted using the equidistant cylindrical projection. 769 
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 770 

Fig. 2. Annual mean precipitation differences (in mm d
-1

) between the GFS model 771 

forecast and the CPC analysis in three countries: (a) China, (b) the contiguous U.S., 772 

and (c) Australia. Data are from the year 2015. This figure was plotted using the 773 

equidistant cylindrical projection. 774 
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 775 

Fig. 3. Annual mean relative difference (in mm d
-1

) between forecast and observed 776 

precipitation for (a) light rain (< 10 mm d
-1

) and (b) heavier rain (> 10 mm d
-1

). Data 777 

are from the year 2015. This figure was plotted using the equidistant cylindrical 778 

projection. 779 

  780 
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 781 
Fig. 4. Mean relative difference in precipitation between forecast and observed daily 782 

light (< 10 mm d
-1

), moderate (10–25 mm d
-1

), heavy (25–50 mm d
-1

), and very heavy 783 

(> 50 mm d
-1

) rain amounts for (a) all seasons and (b) summer only. Data are from the 784 

year 2015 and from the three countries considered in the study. 785 

  786 
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 787 

Fig. 5. Standard deviations of the daily precipitation difference as a function of 788 

aerosol optical depth for (a) Australia (green points), (b) the United States (blue 789 

points), (c) China (red points), and (d) all three countries. Data are from the year 2015. 790 

The slopes (a) and y-intercepts (b) of the best-fit lines through the data in (a) to (c) are 791 

given, as well as the correlation coefficients (r). 792 

  793 
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 794 

 795 

 796 

 797 

Fig. 6. Equitable threat scores (a, b) and bias (BIAS) scores (c, d) as a function of 798 

precipitation amount for fixed ranges of liquid water path (LWP; a, c) and relative 799 

humidity (RH; b, d) under clean and polluted conditions. The LWP is divided into two 800 

categories: 10–70 g m
-2 

(light blue) and 70–150 g m
-2

 (dark blue). Data are from 801 

August 2015 in the U.S, China, and Australia. The RH is divided into two categories: 802 

50–70%
 
(light green) and 70–100% (dark green). Data are from year 2015. For a 803 

given LWP or RH condition, the top and bottom one-third of AOD values are defined 804 

as polluted and clean subsets of data, respectively. The solid lines represent the clean 805 

scenario and the dotted lines represent the polluted scenario. The horizontal red lines 806 

in (c) and (d) represent perfect scores. 807 

 808 

  809 
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 810 

Fig. 7. Mean relative precipitation differences between forecast and observed daily 811 

light (< 10 mm d
-1

), moderate (10–25 mm d
-1

), heavy (25–50 mm d
-1

), and very heavy 812 

(> 50 mm d
-1

) rain amounts for (a) all seasons and (b) summer only in Fujian 813 

Province, China. Data are from 1985–2010. 814 

  815 
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 816 

 817 

Fig. 8. Trends (percent change per decade) in mean daily light rain (< 10 mm d
-1

), 818 

moderate rain (10–25 mm d
-1

), heavy rain (25–50 mm d
-1

), very heavy rain (> 50 mm 819 

d
-1

), and total rain amounts for (a) spring, (b) summer, (c) autumn, and (d) winter in 820 

Fujian Province, China. Data are from 1980–2009. Cross-hatched bars represent data 821 

at a confidence level greater than 95%.  822 
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 823 

Fig. 9. Annual mean visibilities in (a) spring, (b) summer, (c) autumn, and (d) winter 824 

in Fujian Province, China. Data are from 1980–2009. Least squares regression lines at 825 

the 95% confidence level are shown.    826 

  827 
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 828 

Fig. 10. Same as Fig. 9, except for precipitable water vapor.  829 

  830 
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 831 

 832 

Fig. 11. Same as Fig. 9, except for convective available potential energy (CAPE).  833 

  834 
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 835 

 836 

Fig. 12. Cloud effective radius as a function of aerosol optical depth for liquid clouds 837 

(clouds with top temperatures greater than 273 K) in Fujian Province, China. Blue 838 

triangles represent cases where the liquid water path (LWP) is less than 50 g
 
m

-2
, 839 

orange stars represent LWPs between 50 g
 
m

-2
 and 100 g

 
m

-2
, yellow circles represent 840 

LWPs between 100 g
 
m

-2
 and 150 g

 
m

-2
, and purple squares represent LWPs greater 841 

than 150 g
 
m

-2
. Error bars represent one standard error. Data are from 2003–2012. 842 
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 843 

Fig. 13. Cloud-top temperature as a function of aerosol optical depth for (a) liquid, 844 

warm-base mixed-phase, and cold-base mixed-phase clouds in all seasons, and (b) 845 

liquid and warm-base mixed-phase clouds in summer in Fujian Province, China. 846 

Diamonds represent liquid clouds, squares represent warm-base mixed-phase clouds, 847 

and triangles represent cold-base mixed-phase clouds. Right-hand ordinates are for 848 

warm-base and cold-base mixed-phase clouds. Data are from 2006–2010. 849 
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 850 
Fig. 14. Time series of regionally-averaged daily rainfall amount in Fujian Province, 851 

China in (a) spring, (b) summer, (c) autumn, and (d) winter. Dotted lines represent 852 

rainfall forecasts from the Global Ensemble Forecast System and solid lines represent 853 

rainfall measurements from gauge-based observations. Data are from 2001. 854 


