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Abstract 16 

The hygroscopicity parameter  has been intensively used in the investigation of 17 

the water uptake, cloud condensation nuclei (CCN) activity and chemical 18 

composition of atmospheric aerosol particles. A representative value of  is often 19 

assigned to individual species or sources. Such treatment may lead to confusion in 20 

closure studies of  derived from hygroscopic growth factor measurements (gf) and 21 

CCN activity measurements (CCN), and in studies of aerosols at the sub-10 nm size 22 

range. Here we show that for particles of the same dry composition,  may differ as a 23 

function of water content, solute concentration and particle size. The concentration- 24 

and size-dependence of  are demonstrated for representative inorganic and organic 25 

compounds, i.e., ammonium sulfate (AS), sodium chloride (NaCl) and sucrose. Our 26 

results illustrate that an absolute closure between gf and CCN should not be expected, 27 

and how the deviations observed in field and laboratory experiments can be 28 

quantitatively explained and reconciled. The difference between gf and CCN 29 

increases as particle size decreases reaching up to 40% and 30% for 10 nm AS and 30 

NaCl particles, respectively. Moreover, we show that the deviations of CCN vary from 31 

~10% for 30 nm and ~40% for 200 nm, indicating a strong dependence on the Köhler 32 

models and thermodynamic parameterizations used for instrument calibration (e.g., 33 

effective water vapor supersaturation in CCN counter). By taking these factors into 34 

account, we can largely explain apparent discrepancies between gf and CCN values 35 

reported in the scientific literature. Our results help to understand and interpret κ 36 

values determined at different water vapor ratios and at different size ranges 37 

(especially sub-10 nm). We highlight the importance of self-consistent 38 

thermodynamic parameterizations when using AS for calibration aerosol and taking it 39 

as a reference substance representing inorganics in closure study between chemical 40 

composition and hygroscopicity of aerosol particles.  41 
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1. Introduction 42 

Hygroscopicity and cloud condensation nuclei (CCN) activity represent the 43 

ability of aerosol particles to interact with water, which is essential for the 44 

understanding of aerosol climate effects (Andreae and Rosenfeld, 2008). These 45 

properties can be described by the Köhler theory (Köhler, 1936), which accounts for 46 

both Kelvin and solute effects. Water activity and surface tension are two key 47 

parameters in the Köhler equation, both of which are functions of the aerosol 48 

composition and solution concentration. The concentration dependence of water 49 

activity and surface tension has been determined for many compounds, e.g., 50 

ammonium sulfate (AS) and sodium chloride (NaCl) etc. (Tang and Munkelwitz, 51 

1994; Tang, 1996; Pruppacher and Klett, 1997). Yet we are in lack of such 52 

information for a large number of aerosol species and mixtures. 53 

To describe the relationship between particle dry diameter and CCN activity, 54 

Petters and Kreidenweis (2007) proposed a method using a single hygroscopicity 55 

parameter . The  parameter has several advantages: (1) representative values of  56 

may be assigned to a specific aerosol species or source; (2) values of  for mixtures 57 

may be determined from volume-weighted average  of individual components 58 

(Petters and Kreidenweis, 2007); and (3) the experimentally-determined  has already 59 

accounted for the impacts of aerosol size, composition and surfactants (Facchini et al., 60 

1999). This approach has been proved useful in describing and predicting the CCN 61 

activity of single components and aerosol mixtures (Farmer et al., 2015, and 62 

references therein), and the simplified parameterization of  have been implemented 63 

in cloud modeling studies (Spracklen et al., 2008; Reutter et al., 2009; Pringle et al., 64 

2010; Chang et al., 2015).  65 

The original purpose of introducing κ is to achieve a simple prediction of critical 66 

activation dry diameter and supersaturation for the CCN activation of aerosol 67 
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particles (Petters and Kreidenweis, 2007). Since representative  value is assigned to 68 

an aerosol species, it is legitimate to ask if the experimentally determined  can be 69 

used to estimate the aerosol composition. Such efforts have been encouraged by the 70 

finding of a simple near linear relationship between hygroscopicity parameter κ and 71 

the organic mass fraction (Petters and Kreidenweis, 2007; Gunthe et al., 2009), which 72 

has been confirmed by results from different locations and sources (Dusek et al., 2010; 73 

Cerully et al., 2011; Gunthe et al., 2011; Kawana et al., 2016; Vogel et al., 2016). In 74 

addition, the change of κ values was regarded as an indicator for the evolution of 75 

chemical composition or mixing state in the aging process of aerosol particles (Chang 76 

et al., 2010; Massoli et al., 2010; Wang et al., 2010; Alfarra et al., 2013; Lathem et al., 77 

2013; Mei et al., 2013a; Mei et al., 2013b; Zhao et al., 2015), and the size-dependent 78 

 values have also been used as an evidence of size-dependent chemical compositions 79 

(Su et al., 2010; Cerully et al., 2011; Rose et al., 2011; Lance et al., 2013).  80 

The Köhler equation describes not only the CCN activation under supersaturated 81 

conditions but also the hygroscopic growth under subsaturated conditions. 82 

Accordingly,  values can also be determined from hygroscopic growth data 83 

measured by hygroscopic tandem differential mobility analyzer (HTDMA). Hence 84 

closure studies have been performed to compare  values determined by hygroscopic 85 

growth factor measurements (gf) to those determined by CCN activity measurements 86 

(CCN). Instead of a closure, most laboratory (Carrico et al., 2008; Massoli et al., 2010; 87 

Dusek et al., 2011; Alfarra et al., 2013; Hansen et al., 2015; Dawson et al., 2016) and 88 

field measurements (Good et al., 2010; Irwin et al., 2010; Cerully et al., 2011; Wu et 89 

al., 2013; Bougiatioti et al., 2016; Kim et al., 2016) showed that CCN is usually larger 90 

than gf. Wex et al., (2009) demonstrated that the constant  value over different 91 

concentrations should be reconsidered due to the non-ideality effects in the solution 92 

droplet and surface tension variation. Especially in mixed particles, the organic 93 

coating or the presence slightly soluble substances can reduce the water transport 94 
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across the surface by acting as a physical barrier, which may lead to a discrepancy by 95 

a factor of 5–10 between CCN and gf for secondary organic aerosol (Petters et al., 96 

2009; Hansen et al., 2015; Mikhailov et al., 2015; Pajunoja et al., 2015). Hersey et al., 97 

(2013) found that the aerosol aging and biomass burning can lead to the discrepancies 98 

between CCN and gf values that may be related to mixing state. Conversely, higher 99 

gf compared to CCN was also observed, and the discrepancies were more attributed 100 

to the instrument technical differences (Irwin et al., 2011). Moreover, recent studies 101 

(Keskinen et al., 2013; Kim et al., 2016) tried to related the 102 

experimentally-determined  value to chemical composition during new particle 103 

formation and initial growth stage, based on the -composition relationship built for 104 

much larger particles (dry diameter larger than ~50 nm). Wang et al. (2015), however, 105 

reported much smaller κ values for the sub-10 nm aerosols than to the hundred 106 

nanometer particles with the same chemical composition. A question is hence raised, 107 

if and how accurate a single  value can be used to represent the whole Köhler curve 108 

for the whole dry size range. The answer to this question is especially critical and 109 

sensitive for the understanding of multiphase chemistry (Herrmann et al., 2015; 110 

Pöschl and Shiraiwa, 2015; Cheng et al., 2016) and for accurate climate modeling 111 

(Pajunoja et al., 2015). 112 

Another critical issue concerning the application of κ is that its exact value is 113 

subject to the selection of thermodynamic parameterizations in Köhler models (Rose 114 

et al., 2008; Mikhailov et al., 2013). This is because different thermodynamic 115 

parameterizations may lead to different Köhler curves (Cheng et al., 2015; see Fig. 1 116 

and references therein), resulting in different calibrations of effective water vapor 117 

supersaturation (Se) in CCN counter (CCNC) and column relative humidity (RH) in 118 

HTDMA and consequently different κ values.  119 

In this study, we address the question whether the same compound always has 120 

the same κ value; if not, what contributes to the difference. In the following, we first 121 
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present the theoretical basis and data retrieval methodology. Then we demonstrate the 122 

concentration and size dependence of κ for exemplary substances. Finally, we discuss 123 

the closure studies between gf and CCN, and emphasize the importance of the usage 124 

of a consistent Köhler model for both calibration with AS and the retrieval of AS  125 

value when taking it as a reference substance in the inorganic/organic mixing ratio 126 

analyses. 127 

2. Methodology 128 

2.1 κ-Köhler model 129 

    The Köhler theory describes the equilibrium saturation ratio (s) over a spherical 130 

aqueous droplet (Köhler, 1936): 131 

sol w
w

d

4
exp( )

v
s a

RTD gf




                      

(1) 132 

where aw is the water activity, sol
 
is the surface tension of solution droplet, vw is the 133 

partial molar volume of water, Dd is the particle dry diameter (mass equivalent 134 

diameter), gf is the growth factor of particle diameter relative to the dry particle 135 

diameter (gf = D/Dd), which is related with solute concentration by 136 

concentration-dependent solution density. R and T are the universal gas constant and 137 

absolute temperature, respectively. 138 

For AS and NaCl aerosols, we choose the original models used by Biskos et al. 139 

(2006a; 2006b), which agree well with the observation data from HTDMA experiments 140 

(Cheng et al., 2015). aw and σsol are expressed as a function of solute mass fraction xs, 141 

which are derived from the best fit to the literature measurement data (Tang and 142 

Munkelwitz, 1994; Tang, 1996; Pruppacher and Klett, 1997). The parameterizations 143 

are detailed in the Appendix. 144 
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    Petters and Kreidenweis (2007) proposed a hygroscopicity parameter κ for the 145 

parameterization of water activity:  146 

s

w w

1
 1

V

a V
 

                           

(2) 147 

where Vs and Vw are the volumes of the dry aerosol particle and water, respectively. 148 

For ideal solution, κ have a unique value for certain species while it may vary for 149 

non-ideal solution. 150 

    Substituting the expression of κ into Eq. (1), we have the κ-Köhler equation as: 151 

3

sol w

3

d

1 4
exp( )

(1 )

gf v
s

gf RTD gf








 
                 

(3) 152 

Due to the lack of thermodynamic data for the mixed or unknown system, 153 

surface tension of water (w) is used instead of sol and vw is simplified as Mw/ρw in 154 

the κ calculation (Petters and Kreidenweis, 2007; Su et al., 2010), where Mw and ρw 155 

are the molar mass and density of water, respectively.  156 

2.2 Determination of κ 157 

To elucidate the concentration and size dependence of κ, we use AS, NaCl and 158 

sucrose as exemplary substances. The 'real' s-gf relations for these substances at 159 

different sizes (i.e., Dd) are first calculated by Eq. (1) with well-documented 160 

thermodynamic data (i.e., aw and sol). We then retrieve the corresponding κ values 161 

for each s-gf-Dd pair with Eq. (4): 162 

3
3 w w

d w

1 4
 exp( ) 1  and  

gf A M
gf A

s D gf RT







     

          

(4) 163 

3. Results and discussion 164 

3.1 Concentration and size dependence of  165 

  166 
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In reality, the aerosol or cloud droplets are often not ideal solutions, especially at 167 

concentrated state, and the Zdanovskii-Stokes-Robinson (ZSR) volume additivity 168 

assumption would not hold anymore. To maintain the -Köhler equation (Eq.3), these 169 

non-ideality effects have to be compensated, which is reflected by a change in . That 170 

is why a single species does not correspond to a unique  value. In addition, since w 171 

is often used instead of sol, their difference also needs to be compensated through a 172 

change in  values. In a word, the  in practical application is subject to both the 173 

non-ideality effect and simple treatment of surface tensions. The nano-size effects 174 

(e.g., the Tolman effect) on the thermodynamic properties of aerosol particles may 175 

result in additional size dependence as well (Cheng et al., 2015). 176 

Concentration dependence. Figure 1 shows the  values as a function of solute 177 

concentration (expressed as gf or solute molality μs) for different aerosol particles 178 

with dry diameters of 10 nm, 50 nm and 100 nm, respectively. Here the change of gf 179 

reflects the change of solution concentration, i.e., larger gf corresponds to more dilute 180 

solution (see Eq. A5). Our theoretical calculations illustrate a strong concentration 181 

dependence of  values for AS, NaCl and sucrose. Similar findings in sub-saturation 182 

range (RH < 100%) have been shown by Mikhailov et al. (2009; 2013), as water 183 

activity dependent  for AS and levoglucosan. However, in some cases,  does not 184 

show strong concentration dependence, e.g., oxalic acid (Mikhailov et al., 2009) and a 185 

mixture system of AS and five dicarboxylic acids (Marcolli et al., 2004), which may 186 

infer ideal solution or result from the compensation of simplified surface tension and 187 

solution non-ideality. For AS and NaCl aerosols (Fig. 1a-b),  first decreases with 188 

increasing gf (decreasing μs). After reaching a minimum,  gradually increases and 189 

finally approaches a plateau. For example, the  values of 100 nm AS particles vary 190 

from 0.57 at the deliquescence point (RH~80%) to a minimum value of ~0.42, and 191 

retain ~0.48 at larger gf. The concentration dependence of NaCl shows a similar 192 

shape as AS with  values eventually approaching ~1.4 (Petters and Kreidenweis, 193 
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2007). However,  of sucrose aerosols has a different concentration dependence 194 

which shows a monotonic decrease down to ~0.08. Compared to the 100 nm aerosols, 195 

the 10 nm and 50 nm aerosols show similar concentration dependence but lower  196 

values. 197 

Size dependence. Beside the concentration dependence, Fig. 1 also shows a size 198 

dependence of . This feature can be more clearly seen in Fig. 2, where  values are 199 

plotted against the particle diameter. The same color-coding represents the same 200 

solution concentration, which helps to separate the size effect from the concentration 201 

effect. Given the same gf, the  values increase with increasing particle diameter and 202 

finally approaching a plateau, i.e., ~0.56 for AS (gf ~1.5), ~1.8 for NaCl (gf ~2.0) and 203 

~0.14 for sucrose (gf ~1.2), respectively. The size dependence of  is more prominent 204 

for AS aerosols, especially for smaller particles. For the same concentration (gf of ~ 205 

1.5), the  values of AS vary from 0.40 for 6 nm to 0.51 for 20 nm, and then slowly 206 

grow to 0.56 for 300 nm. 207 

3.2 Comparison of HTDMA and CCNC measurements 208 

3.2.1 Theoretical calculation 209 

According to Eq. (4),  can be derived experimentally from both hygroscopic 210 

growth and CCN activity measurements. Thus direct comparison of gf and CCN were 211 

often performed. The concentration and size dependence of , however, challenges 212 

the possibility of reaching a closure of  value determined from different RH or 213 

saturation conditions. 214 

On the basis of reliable thermodynamic models (see Appendix), we calculate the 215 

theoretical  values (AS, NaCl and sucrose) at RH=90% as for hygroscopic growth 216 

factor measurement and at empirical critical supersaturation (Scri) as for CCN activity 217 

measurement. Indeed, the retrieved  is a combined presence of both concentration 218 

and size dependence. As demonstrated in Fig. 3 (left panel), gf decrease with 219 
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increasing particle dry diameter while CCN shows a contrary trend. The gap between 220 

HTDMA and CCNC results narrows down with the increasing particle dry diameter 221 

which is also reflected in Fig. 1. Finally, both of the predicted  approach a value of 222 

~0.48 and ~1.4 for AS and NaCl particles, respectively, while no convergence is 223 

observed for sucrose at 200 nm. 224 

We also notice weaker size dependence toward the larger size range. To identify 225 

the size range with negligible size effects, we calculate the size dependence of  226 

values as shown in the right panel of Fig. 3. The size dependence is more prominent 227 

for smaller aerosols. For example, a relative variation (dlog/dlogDd) of ~0.24 is 228 

found for 10 nm AS aerosols while a dlog/dlogDd for 50 nm aerosols is only 0.04 229 

(CCN activity methods). This size effect should be specifically taking into account 230 

when study the properties of nanoparticles during new particle formation and initial 231 

growth. 232 

3.2.2 Revisit of literature data 233 

Figure 4 summarized the comparisons of  values from HTDMA and CCNC 234 

measurements of field and laboratory aerosols (~50-300 nm) in literatures. Different 235 

from our theoretical calculations (CCN < gf), the literature comparison generally 236 

shows larger CCN than gf. Though it was mostly attributed to potential measurement 237 

uncertainty (Good et al., 2010) and non-ideality of solution (Wex et al., 2009), we 238 

provide an alternative explanation that the selection of parameterization methods in 239 

the instrument calibration (specifically for CCN activation experiments) may 240 

contribute largely to such differences. 241 

    Rose et al. (2008) demonstrated the commonly used Köhler models and 242 

thermodynamic parameterizations for the calibration of the Se in CCNC. The results 243 

showed that the relative deviations of theoretical Se are as high as 25% and 12% for 244 

AS and NaCl particles, which is mainly caused by the different parameterizations for 245 

aw in dilute aqueous solutions of these two salts. Figure 5a-b shows the deviations of 246 
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activity parameterizations (AP) models for AS particles, such as Aerosol Inorganics 247 

Model (AIM)-based (referred as AP3) and Electrodynamic Balance method 248 

(EDB)-based (referred as AP1, roughly corresponding to the models used in this study, 249 

see details in the Appendix) aw parameterizations (Rose et al., 2008). For the range of 250 

solute molality up to 0.3 mol kg
−1

, the aw differences are on the order of ~10
−3

, 251 

resulting in the relative differences of retrieved Se vary between 8% and 18% in the 252 

size range of 20-200 nm (Figs. 5c and 5e), the size range where the CCNC calibration 253 

commonly performed (Rose et al., 2008). Accordingly, the estimated hygroscopicity  254 

is higher when applying AP3 model in CCN activity measurements compared to AP1 255 

model (AS ≈ 0.66 with AP3 and AS ≈ 0.48 with AP1 at 200 nm). As demonstrated in 256 

Figs. 3a and 6a, the deviations appear to be size dependence, varying from ~10% for 257 

30 nm to ~40% for 200 nm. Conversely, the influences of selecting different AP 258 

models will largely cancel out when performing RH calibration in HTDMA studies 259 

(Fig. 5d-e). In other words, the predicted  values are not sensitive to the selected 260 

thermodynamic parameterizations and Köhler models in hygroscopic growth 261 

measurements. 262 

    Although previous studies attributed the inconsistencies between gf and CCN to 263 

the non-ideality effects in the solution droplet and surface tension variation, etc. (Wex 264 

et al., 2009; Wu et al., 2013; Hong et al., 2014; Pajunoja et al., 2015; Zhao et al., 265 

2016), we find that the key factor to explain the differences is indeed the distinct 266 

Köhler models and thermodynamic parameterizations used in the CCNC calibration. 267 

AIM-based Köhler model (AP3) are recommended because it provides an accurate 268 

prediction of aw for highly dilute solution (Rose et al., 2008). However, our 269 

theoretical calculations indicate that the AP3 model could lead to a systematic 270 

overestimation of up to ~40% in predicting CCN than gf. In addition, for certain 271 

chemical compounds, their hygroscopic behavior in subsaturated and supersaturated 272 

conditions is innate distinct, with no apparent closure between gf and CCN. For 273 
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example, we find that the gf exceeding CCN by a factor of 1.5 for sucrose at particle 274 

size larger than 50 nm (Fig. 3e).  275 

Our results demonstrate that besides the measurement uncertainty, the 276 

discrepancies in previous hygroscopicity closure studies may be to a large extent 277 

reconciled by the systematic calibration differences and the inherent concentration 278 

dependence of  for specific compounds. Based on our calculations, the ratios of κCCN 279 

to κgf (κCCN/κgf) may vary from 1.1 to 1.4 due to systematic calibration differences 280 

(Fig. 6a) and from 0.7 to 1.4 due to the inherent concentration dependence for 281 

different chemical composition (Figs. 3a and 3e). Taking these effects into account, 282 

we find that the observed discrepancy between gf and CCN could be partially 283 

explained (shaded area in Fig. 6b). Therefore, we suggest that hygroscopicity studies 284 

should always report exactly which Köhler models and thermodynamic 285 

parameterizations to ensure the comparability of results. 286 

3.3 Application to atmospheric closure study between chemical 287 

composition and hygroscopicity of aerosol particles 288 

    In practice, with precise measurement techniques and reliable calibration 289 

procedure, we can accurately measure the particle gf at certain RH (HTDMA) and 290 

determine the Dd-Se relation (CCNC). Hence, the predicted κ value has already 291 

considered the impacts of aerosol size, composition and unknown thermodynamic 292 

properties, and it can well describe the hygroscopicity and CCN activity. Still, the 293 

following issues should be addressed when applying κ: 294 

    1. The simple near linear -composition relationship establishes the fundamental 295 

for estimating κ or mass fraction of organic or inorganic compounds (Dusek et al., 296 

2010; Mei et al., 2013a; Mei et al., 2013b; Wang et al., 2015; Kim et al., 2016; Vogel 297 

et al., 2016). In view of such application, the self-consistent approaches should be 298 

strictly followed to determine  value, especially for AS, which is the commonly 299 
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adopted calibration aerosol and the dominating inorganics of ambient aerosol 300 

particles. As previously demonstrated, the retrieval of Scri is very sensitive to the 301 

selection of Köhler models and thermodynamic parameterizations, resulting in 302 

the representative  for AS particles vary in a wide range (~0.4-0.8) in closure study 303 

(Petters and Kreidenweis, 2007; Rose et al., 2008; Mikhailov et al., 2009; Mikhailov 304 

et al., 2013; Wang et al., 2015). Therefore, the chosen  value should always be 305 

correspondingly associated with the calibration method. Otherwise, the inconsistent 306 

thermodynamic data will introduce additional uncertainty in retrieving  value, which 307 

may in turn lead to the unreliable estimation of organics/inorganics fractions or 308 

hygroscopicity  for unknown chemical component. For instance, the bias in the 309 

estimation of organic mass fraction is within 10% when choosing the identical 310 

thermodynamic data to calibrate nano-CCNC and determine  value for 2.5 nm AS 311 

particles, as shown in Fig.9 of Wang et al. (2015). This uncertainty can reach a level 312 

of 50% in case of inconsistent parameters are used.  313 

    2. Size-resolved aerosol hygroscopicity and its link to chemical composition 314 

were also investigated in many closure studies (Dusek et al., 2010; Bezantakos et al., 315 

2013; Wu et al., 2013; Liu et al., 2014; Zhang et al., 2014). However, only one  316 

value is commonly used to describe hygroscopicity of the typical inorganics, i.e., ~0.6 317 

for AS and ~0.7 for NH4NO3 in the entire investigated size range. According to our 318 

simulation, this hypothesis may not hold for smaller aerosols due to the significant 319 

size dependence of κ at that size range (Fig. 3). Experimentally determined  value is 320 

found to be 0.43 for 10 nm AS particles, which is approximately 11% lower than that 321 

for particles larger than 100 nm. This gap becomes more obvious for sub-10 nm 322 

aerosol particles, and the relative deviation is up to ~45%. These findings suggest 323 

when performing hygroscopicity closure studies, special attention should be paid to 324 

size-resolved  values used in the calculation to obtain accurate results, especially for 325 

aerosol particles in nano-size range. In addition, there exist large discrepancies 326 
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between observations and model predictions of the hygroscopic growth of salt 327 

nanoparticles when ignoring particle size effects in Köhler models (Biskos et al., 328 

2006b; Cheng et al., 2015). This prompts the precise thermodynamic data for 329 

nanoparticles needs to be investigated more systematically. 330 

4. Conclusion  331 

In this study, we present the differences in particle hygroscopicity behavior 332 

(represented as κ) in subsaturated and supersaturated conditions. The 333 

proof-of-principle demonstration is performed with AS, NaCl and sucrose particles. 334 

Our results indicate that the theoretical κ value shows relatively strong concentration 335 

and size dependence, suggesting its value for individual chemical substance should be 336 

specifically assessed according to the concerned particle size and saturation regime, 337 

especially for sub-10 nm particles.    338 

We demonstrate that the observed  is a compromised product between its 339 

inherent concentration dependence (i.e., solution non-ideality & simplification of 340 

surface tension) and systematic calibration differences (i.e., different thermodynamic 341 

parameterizations in Köhler models). By taking these factors into account, we can 342 

largely explain the observed inconsistency of κ values derived from hygroscopic 343 

growth factor and CCN activity measurements in literatures. Our results highlight the 344 

importance of self-consistent thermodynamic data in the closure studies concerning 345 

particle hygroscopicity.  346 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-253, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



15 

 

Acknowledgement 347 

This study was supported by the Max Planck Society (MPG), National Science 348 

Foundation of China (NSFC, grant No. 41330635), the Minerva Programme and the 349 

European Commission under the projects BACCHUS (grant No. 603445).   350 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-253, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 27 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



16 

 

Appendix 351 

In this appendix, we present the parameterizations to retrieve Köhler curve of AS, 352 

NaCl and sucrose aerosol particles.  353 

1. AS and NaCl   354 

Water activity aw was derived from the single particle experiments by the 355 

Electrodynamic Balance (EDB) method (Tang and Munkelwitz, 1994; Tang, 1996), 356 

which can be expressed as polynomial fit functions of solute mass fraction xs: 357 

w 1 (100 )q

q s

q

a A x                          
(A1) 358 

The polynomial coefficients Aq for AS at 298 K are A1 = -2.715×10
-3

, A2 = 3.113×10
-5

, 359 

A3 = -2.336×10
-6

, and A4 = 1.412×10
-8

. The polynomial coefficients Aq for NaCl at 360 

298 K are A1 = -6.366×10
-3

, A2 = 8.624×10
-5

, A3 = -1.158×10
-5

, and A4 = 1.518×10
-7

. 361 

    For the surface tension (σsol) of aqueous AS and NaCl droplet, Pruppacher and 362 

Klett (1997) proposed the following parameterization: 363 

  
 

2

sol

2.34 10
0.072

1

s

s

x

x


 
 


for AS                  (A2) 364 

 

2

sol

2.9 10
0.072

1

s

s

x

x


 
 

  
for NaCl                 (A3)

   
365 

of which the validated range is xs < 0.78 for AS and xs < 0.45 for NaCl. 366 

Solution density ρsol is also a function of xs, which is parameterized based on the 367 

EDB measurements (Tang and Munkelwitz, 1994; Tang, 1996): 368 

sol w (100 )q

q s

q

d x   
                    

(A4) 369 

The polynomial coefficients dq for AS at 298 K are d1 = 5.92, d2 = -5.036×10
-3

 and d3 370 

= 1.024×10
-5

. The polynomial coefficients dq for NaCl at 298 K are d1 = 7.41, d2 = 371 

-3.741×10
-2

, d3 = -2.252×10
-3

, and d4 = -2.06×10
-5

. 372 
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Growth factor gf can be calculated as: 373 

1/3

sol

 ( )s

s

gf
x






                         

(A5) 374 

where ρs is the density of dry solute.  375 

To be consistent with previous work (Biskos et al., 2006a), the molar volume of pure 376 

water was used instead of the partial molar volume and shaper factor correction for dry 377 

equivalent spherical mobility diameter were performed based on the methods of Biskos et 378 

al. (2006a) for AS and DeCarlo et al. (2004) and Biskos et al. (2006b) for NaCl, 379 

respectively.  380 

We also compare the AP1 and AP3 models (section 3.2.2) by following the 381 

parameterizations described in Rose et al. (2008). Note that the difference between our 382 

present model and AP1 is the different selection of σsol parameterization. We adopt the 383 

parameterization proposed by Pruppacher and Klett (1997) due to the better 384 

agreement between calculations and observations for nanoparticles down to 6 nm 385 

(Cheng et al., 2015). 386 

2. Sucrose   387 

    For sucrose aerosols, water activity aw was calculate based on the model provided 388 

by Chen (1989): 389 

w 0.955

1

1 0.018 0.1136 s s

a
 


  

                  

(A6) 390 

where μs is the solute molality.  391 

Under the assumption of volume additivity (Mikhailov et al., 2004), ρsol can be 392 

calculated by: 393 

1

sol

w

1 s s

s

x x


 



 
  
                      

(A7)  394 

where ρw is the density of pure water.  395 

    Surface tension (σsol) parameters were adopted by the work of Matubayasi and 396 
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Nishiyama (2006), which measured the surface tension (σsol) of aqueous sucrose 397 

solation in the concentration range 0 to 0.5 mol kg
−1

 using drop volume method. 398 

Growth factor gf can be calculated with Eq. A5.  399 
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Figures 400 

 401 

Figure 1: Concentration dependence of the hygroscopicity parameter κ calculated for 402 

deliquesced aerosol particles of (a) ammonium sulfate (AS), (b) sodium chloride 403 

(NaCl) and (c) sucrose with dry diameters of 10 nm (red), 50 nm (blue) and 100 nm 404 

(green). Lower limit values of the particle diameter growth factors (gf) correspond to 405 

the deliquescence point of crystalline particles. Open circles and triangles indicate the 406 

values of κ and solute molality (or diameter gf) calculated at 90% RH and at the 407 

theoretical critical supersaturation of CCN activation (Scri), respectively. 408 

Thermodynamic parameterizations are described in the Appendix. 409 
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  410 

Figure 2: Size dependence of the hygroscopicity parameter κ calculated as a function 411 

of particle dry diameter (Dd, x axis) and growth factor (gf, color coding) for 412 

deliquesced (a) ammonium sulfate (AS), (b) sodium chloride (NaCl) and (c) sucrose 413 

aerosols. The pink lines represent the dependence of  on Dd for fixed gf values: (a) gf 414 

= 1.5 for AS, (b) gf = 2.0 for NaCl, and (c) gf = 1.2 for sucrose. 415 
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 416 

Figure 3: Left Panel: Size dependence of the hygroscopicity parameter κ calculated 417 

as a function of dry diameter (Dd, x axis) for different types of aerosol particles at a 418 

typical level of relative humidity applied in HTDMA measurements (RH = 90%, solid 419 

lines) and at the critical supersaturation of CCN activation (Scri, dashed and 420 

dash-dotted lines): (a) ammonium sulfate (AS), (c) sodium chloride (NaCl) and (e) 421 

sucrose. Right panel: The relative sensitivity of κ to changes in dry particle diameter 422 

(dlogκ/dlogDd). Solid lines and dash lines were determined with the parameterizations 423 

described in the Appendix. Pink dash-dotted lines are determined with the Aerosol 424 

Inorganics Model (AIM)-based parameterizations (Clegg et al., 1998). Gray dash 425 

lines are to guide the eye.  426 
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 427 

Figure 4: Comparison of reported κ values from field measurements (circles and 428 

solid lines) and laboratory experiments (squares) based on hygroscopic growth factor 429 

(x axis) and CCN activity measurements (y axis). The gray dashed line shows 1:1 430 

ratio. The size of symbols indicates the particle diameter. Note for the studies which 431 

did not provide the specific particle size (Carrico et al., 2008; Hersey et al., 2013; 432 

Zhao et al., 2016), we use 100 nm to present the results.  433 
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 434 

Figure 5: Left panel: (a-b) Dependence of water activity (aw) on solute concentration 435 

(molality µs) in aqueous ammonium sulfate (bulk solution). Pink triangles indicate the 436 

electrodynamic balance (EDB) measurement data (Clegg et al., 1995). Blue and green 437 

lines represent different parameterizations of aw as a function of µs based on EDB 438 

method (AP1) and on the Aerosol Inorganics Model (AP3). Right panel: (b) 439 

Comparison of results when applying different AP models in calibrating (c) the 440 

effective supersaturation (Se) in a CCNC instrument and (d) the effective relative 441 

humidity (RH) in a HTDMA instrument. (e) Ratio of calibration values (AP1 to AP3 442 

models) for HTDMA (e.g., RH at gf=1.7) and CCNC (Se). The corresponding 443 

concentration and saturation ranges for HTDMA and CCNC measurements are 444 

respectively marked as yellow and pink. 445 
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 446 

Figure 6: (a) Comparison of retrieved hygroscopicity κ using different Activity 447 

Parameterization (AP) model (Rose et al., 2008) for the calibration of HTDMA and 448 

CCNC. The dashed line shows the 1:1 ratio, and the solid lines correspond to 10% 449 

and 50% uncertainties. (b) The shaded area represents the region where the measured 450 

κ values might be located when considering systematic calibration differences 451 

(κCCN/κgf ~1.1-1.5) and inherent concentration dependence (κCCN/κgf ~0.7-1.4) of κ. 452 

The upper and lower bounds corresponding to the fit lines of κCCN=2.1·κgf and 453 

κCCN=0.7·κgf, respectively. Reported κ values from field measurements and laboratory 454 

experiments corresponding to Fig. 4.  455 
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