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Abstract. The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa
is a major source of dust and biomass burning aerosols and so this represents an important research gap in understanding the
impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles
in the Conformal Cubic Atmospheric Model (CCAM) with ground-based observations across Africa, and additionally
provide an analysis of aerosol optical depth at 550 nm (AODssu,) and Angstrdm exponent data from thirty-four Aerosol
Robotic Network (AERONET) sites.

Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the
seasonal cycle and magnitude of AODssgny, across the continent and the transport of these emissions to regions outside of the
continent. Western African sites had the largest AODss,,, values, on average, with the timing and magnitude of AODssonm
maxima dominated by desert dust. The impact of dust on aerosol loading is also apparent at northern African sites, with peak
AODss0,, occurring later than the western sites. The seasonal variation in the location of the intertropical convergence zone
and associated northward shift in dust transport may be responsible for the shift in timing of maximum AODss,, between
the western and northern African sites. Southern African sites have the lowest AODss,,, values on average, and peak during
the biomass burning period. The outflow of these aerosol particles was observed at Ascension Island and Reunion Island
AERONET stations.

In general, CCAM captures well the seasonality of the AERONET data across the continent. The magnitude of modeled and
observed multi-year monthly average AODssg,, overlap within + 1 standard deviation of each other for at least 7 months at
all sites except Reunion Island. The timing of peak AODss,, in southern Africa in the model occurs one month prior to the

observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern
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African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula)
are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas
needs to be updated with local information. The CCAM simulated AODssg,,, for the global domain is within the spread of
previously published results from CMIPS and AeroCom experiments for black carbon, organic carbon and sulfate aerosols.
The model’s performance provides confidence for using the model to estimate large-scale regional impacts of African
aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the

Mediterranean may be overestimated.

1 Introduction

Africa contains the largest single sources of biomass burning emissions and dust globally (Crutzen and Andreae, 1990;
van der Werf et al., 2010; Schiitz et al., 1981; Prospero et al., 2002). Dust aerosols, along with carbonaceous aerosols
produced from biomass burning, are known to impact climate through direct scattering and absorption of radiation, and
indirectly through their effects on cloud formation and properties. Black carbon is estimated to be second only to CO; in
contributing to warming globally (Bond et al., 2013). Currently, the largest uncertainty in climate models is the impact of
aerosols on the radiative balance of the Earth (Boucher et al., 2013).

Mineral dust emitted into the atmosphere primarily originates in topographic depressions (Prospero et al., 2002),
consistent with the acceleration of winds in between mountains and plateaus (Evan et al., 2016). Meteorology plays a key
role in the seasonality of dust emissions and transport in Africa. Latitudinal changes in the large-scale circulation, including
the intertropical convergence zone (ITCZ) and the African monsoon, shift the location of maximum dust activity and
transport of dust northward (~5°N to ~20°N) from winter through summer (Jankowiak and Tanre, 1992; Moulin et al., 1997,
Prospero et al., 2002; Schepanski et al., 2009; Leon et al., 2009). The movement of the ITCZ also determines the seasonality
of precipitation, and so determines the onset and severity of dry season biomass burning in Africa. Most fires in Africa are
set by humans during the dry season for agricultural practices, when there is a near absence of convection and lightning (e.g.,
Swap et al., 2003; Archibald, 2016). Maximum biomass burning activity thus shifts from June—September in southern
Africa, to December—February in sub-Sahelian northern Africa (Haywood et al., 2008; Duncan et al., 2003; Cooke et al.,
1996). The magnitude of emissions in a given biomass burning season is largely determined by the amount of rainfall
preceding burning (which is affected by climate variability such as the El Nifio Southern Oscillation), as this affects the
amount of vegetation that grows and can be burned (Swap et al., 2003; Anyamba et al., 2003; van der Werf et al., 2004).
Biomass burning emissions in southern Africa contribute greatly to the region’s aerosol burden and in many places dominate
the seasonal cycle of the aerosol column in the region (Tesfaye et al., 2011; Queface et al., 2011; Sivakumar et al., 2010; Eck
et al., 2003), which in turn can have a significant impact on the regional climate (Abel et al., 2005; Winkler et al., 2008;

Tummon et al., 2010). Although these two sources dominate total column aerosol in Africa, fine anthropogenic aerosols are
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also observed, including at sites in the Sahara desert and off the coast of northern Africa (Rodriguez et al., 2011; Guirado et
al., 2014).

In addition to the local and regional impacts of African dust and biomass burning aerosols near emission sources, the
aerosol particles can also be transported long distances to impact other regions. Saharan dust is exported over the Atlantic
Ocean, cooling the tropical North Atlantic and influencing Atlantic climate variability (Evan et al., 2011; Doherty and Evan,
2014). Climate change may reduce future dust emissions, thus leading to a positive warming feedback over the North
Atlantic (Evan et al., 2016). Saharan dust significantly enhances nutrient transport to regions like the Amazon rainforest,
which may also feedback on climate (e.g., Bristow et al., 2010; Yu et al., 2015). Over southern Africa, massive aerosol
plumes during peak biomass burning are exported in a so-called “river of smoke” off the southeastern coast of southern
Africa to the Indian Ocean, as well as over the southwestern coast over Angola out to the Atlantic Ocean (Garstang et al.,
1996; Tyson et al., 1996a; Tyson et al., 1996b; Swap et al., 2003). This latter exit pathway aligns with the stratocumulus
cloud deck that forms off of the southwestern coast and has motivated the NASA ORACLES aircraft campaign
(https://espo.nasa.gov/oracles). The simulation of this cloud deck with the AeroCom intercomparison of global models was
found to differ significantly between models, and to be the area of highest uncertainty in modeling aerosol radiative forcing
(Stier et al., 2013). An assessment of the first AeroCom showed that the largest model diversities were from dust and
carbonaceous aerosols (Kinne et al., 2006), the dominant aerosol constituents over Africa. Additionally, this AeroCom
experiment highlighted an overestimation of dust at northern African sites in winter (Kinne et al., 2006). An accurate
representation of African aerosols is critical in climate models to understand the regional and global radiative forcing and
climate impacts of dust and biomass burning aerosols, at present and under future climate change, and is currently a major
challenge.

This study performs the first evaluation of the representation of African aerosols in the Conformal Cubic Atmospheric
Model (CCAM) (McGregor, 2005). The CCAM aerosol parameterizations are based on the CSIRO Mk3.6 climate model
used in the CMIP5 intercomparison to estimate radiative forcing for the Intergovernmental Panel on Climate Change ARS,
and CCAM will be included as part of a coupled earth system model, the Variable Resolution Earth System Model
(VRESM), towards the South African Council of Scientific and Industrial Research (CSIR) submission to the sixth Coupled
Model Intercomparison Project (CMIP6). We evaluate CCAM using the CMIP5 emissions inventory against long-term
aerosol optical depth (AOD) observations across Africa and outflow regions off the coast from the Aerosol Robotic Network
(AERONET) (Holben et al., 1998; Dubovik et al., 2002). A particular emphasis is placed on capturing the long-term
seasonal variability at sites heavily impacted by dust and biomass burning aerosol particles. CCAM simulates four
prognostic aerosol species (organic carbon (OC), black carbon (BC), sulfate, and dust) and non-prognostic sea salt aerosols,
and their individual contributions to total AOD. Detailed case studies at six sites across Africa are used to examine the
modeled source distribution of AOD and to understand the model processes, determining how well CCAM represents the
observational data. The evaluation of aerosols in CCAM against observations has implications for its estimates of radiative

forcing.



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-250, 2017 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 11 May 2017 and Physics

(© Author(s) 2017. CC-BY 3.0 License.

Discussions

20

25

30

2 Methods
2.1 CCAM model description

CCAM is a global atmospheric model, and was used at a quasi-uniform global resolution of 50 km in the horizontal and
with 27 levels in the vertical. The simulations applied in this study form part of the CSIR’s contribution to the Coordinated
Regional Downscaling Experiment (CORDEX) of the World Climate Research Programme (WCRP). Horizontal wind and
temperature upwards of 900 hPa and the surface pressure in CCAM were nudged towards the ERA-Interim reanalysis data
(Dee et al., 2011). This nudging was applied every 6 hours at a length scale of ~2250 km using the digital filter of Thatcher
and McGregor (2009). The sea-surface temperature and sea-ice from ERA-Interim were used; these values were interpolated
to the CCAM grid with the differences in the land-sea mask taken into account. For this study, 6-hourly model output was
regridded to 0.5° x 0.5° resolution over the African continent (40°N to 40°S, 20°W to 60°E) from 1999 to 2012, when most
AERONET observations are available for comparison. Prognostic soil variables like temperature and moisture, in addition to
aerosol fields, were spun-up running the simulation for a year prior to the start of the experiment.

The aerosol parameterization in CCAM has been documented in detail elsewhere (Rotstayn et al., 2007; Rotstayn et al.,
2010; Rotstayn et al., 2011; Rotstayn et al., 2012). In summary, the aerosol scheme is a bulk / mass scheme (i.e. single
moment) to represent the sulfur cycle, carbonaceous aerosols, dust, and diagnosed or non-prognostic sea-salt. The
atmospheric model determines the transport of the prognostic aerosols, including turbulent mixing in the boundary layer and
transport due to convection. Wet scavenging processes are included, with appropriate links to warm rain and frozen
precipitation processes in the cloud microphysics parameterizations and the convection scheme (Rotstayn et al., 2007). The
model also accounts for both direct and indirect aerosol effects, representing an important feedback into the atmospheric
simulation.

The model has three prognostic variables to represent the sulfur cycle: Dimethylsufide (DMS), SO, and sulfate. There
are prescribed oxidant fields for OH, NO;, H,O, and Os, to account for sulfur chemistry, with the amount of SO, dissolved
into cloud water described by Henry’s Law. Prognostic aerosol species for hydrophobic and hydrophilic forms of organic
carbon (OC) and black carbon (BC) to represent carbonaceous aerosols. Hydrophobic OC and BC are non-hygroscopic,
while hydrophilic species’ hygroscopic growth is based on Kohler theory. The size distribution of the sulfate, OC and BC
aerosol particles is represented by a mode radius with a geometric standard deviation. Dust is represented by four size bins
with radii of 0.1-1, 1-2, 2-3 and 3-6 um, with the parameterization of aeolian dust emissions closely based on Ginoux et al.
(2001) and Ginoux et al. (2004) (see also Rotstayn et al., 2011). Specifically, dust emissions are described by the
expression,

B = Csspu%Om(uIOm —ur) (if, uiom > uy) 1)

where F, is the flux (ug s’ m-?), C is a dimensional factor set to 0.5 ug s> m™ , Ss,, is a fraction for each dust size bin
following Ginoux et al. (2001), u;p,, is the horizontal wind speed (m s') and u, (m s™) is the threshold velocity, which

accounts for soil moisture and the particle size. If u,, is not greater than u,, then F,, = 0. For this study, the dimensional

4
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factor C was set to be smaller than that used by Ginoux et al. (2001), which has the effect of reducing the dust emissions for

the same wind speed and soil moisture. The film droplet and jet droplet modes of sea-salt are diagnosed from 10m wind

speed, rather than calculated using prognostic equations. Simulated sea-salt aerosol particles have two size bins.

Emissions of OC, BC and SO, from anthropogenic and biomass burning sources are from the CMIP5 recommended

5 historical emissions datasets through the year 2000 (Lamarque et al., 2010) and extend through 2012 using emissions from

the RCP8.5 low mitigation scenario (Moss et al., 2010; Riahi et al., 2007). Aerosol emissions across the RCP scenarios for

the short time period studied here (i.e. 2005-2012) are similar (van Vuuren et al., 2011). Within CCAM, of the SO,

emissions from fossil fuel and smelting, 3% are emitted as sulfate directly (Rotstayn and Lohmann, 2002); a similar fraction

is assumed in other global models to represent rapid in-plume transformation of SO, to sulfate (Liu et al., 2005; Chin et al.,

10 2000; Koch et al., 1999). Additional minor sources of model sulfate aerosol are volcanic SO, emissions and biogenic DMS

emissions, which can be oxidized to sulfate (Rotstayn and Lohmann, 2002).

Within CMIPS5, emissions from anthropogenic and biomass burning sources vary decadally, and during the 2005-2012

period forced by RCP8.5 vary every 5 years. Biomass burning emissions also have a monthly varying annual cycle, while

anthropogenic emissions remain constant annually. Thus, changes in modeled aerosol loading using the CMIP5 emissions on

15 temporal scales smaller than monthly for OC, BC and sulfate, and inter-annual variability within a given decade, are not due

to changes in sources, but instead changes in transportation and deposition sinks resulting from meteorological variability.

An earlier study over southern Africa during the biomass burning season found a chemical transport model was able to

reproduce day-to-day variability in AOD using time-invariant emissions, suggesting meteorological variability is more

important on this timescale than emissions (Myhre et al., 2003).

20 Hydrophobic and hydrophilic forms of BC and OC are transported separately in CCAM. The model assumes fossil fuel

emissions are 50% hydrophilic, and biomass and biofuel burning are 100% hydrophilic. Conversion from hydrophobic to

hydrophilic follows Cooke et al. (1999) with an e-folding lifetime of 1.15 days. Secondary organic acrosol (SOA) formation

is not treated in the model. All prognostic aerosol species are removed via wet and dry deposition, while dust is additionally

removed through gravitational settling (Rotstayn and Lohmann, 2002; Lohmann et al., 1999; Ginoux et al., 2001).

25 2.2 AERONET observational data

The global network of AERONET stations measure aerosol optical properties at a range of wavelengths (340 nm to

1020 nm) using a ground-based Cimel sun-photometer (Holben et al., 1998; Dubovik et al., 2002). For this work, the

measured AOD at 440 nm (AODyyoum), and the Angstrom exponent of extinction for 440 nm to 870 nm (Olexia40/870)) from

AERONET were used. AOD is the column-integrated attenuation of radiation due to aerosols from the surface to the top of

30 the atmosphere (Eg. 2), where 7; is the AOD at wavelength 4, z is the height (integrated from ground-level to the top of the

atmosphere (TOA)), and o, is the aerosol extinction coefficient.

= %60, (4, 2)dz )

z=0
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The Angstrém exponent of extinction is the negative slope of the natural log of AOD with wavelength. The AOD40nm
was adjusted to 550 nm using the O.x40/370) for comparison to modeled AOD following Eq. 3, where T4 is AOD at 440nm
measured by AERONET, and 1559 is AOD at 550nm:

3)

A climatology of AODssonm and Olexya40/870) Observations from 34 sites Africa and the Middle East outside of heavily

_ 550\ ~*ext(440/870)
Tsso = Tag0 \ 350

urbanized areas with at least 1 full year of level 2.0 data (cloud-screened, and manually inspected for quality assurance;
Smirnov et al., 2000) (see Fig. 1 and Table 1) is developed. Sites that are heavily influenced by natural sources of aerosol
particles were selected. In southern Africa sites to characterize model performance in regions dominated by biomass burning
aerosol, and in northern and western Africa and the Middle East to characterize the model representation of Saharan and
Sahelian dust sources and outflow were prioritized. This includes sites in the Mediterranean and Europe influenced by North
African dust outflow (Basart et al., 2009; Toledano et al., 2007a; Toledano et al., 2007b; Querol et al., 2009; Pace et al.,
2006). This prioritization was because Africa has the largest emissions of dust in the world and the largest single source of
biomass burning aerosols (Crutzen and Andreae, 1990; Schiitz et al., 1981). Biomass burning is a major source of aerosol
particles for the continent, contributing an estimated 86% of total BC and OC emitted in Africa, a higher percentage than
other regions worldwide (Bond et al., 2004).

For the comparison with model outputs, sites with multiple years of complete data for most of the annual cycle (see
Sect. 2.3 and Fig. 3a and 3b) were selected. Where multiple sites were proximal to each other and showed similar features,
the site with the longest data record was selected to be representative (see bolded site names in Fig. 1). This results in
twenty-three sites used in the comparison with model outputs. Daily average values, calculated for days with at least 3

measurements, were downloaded from the AERONET website (http://aeronet.gsfc.nasa.gov) and used in this analysis.

2.3 Model-observation comparisons

Monthly-average time series and multi-year monthly mean climatology of AODssg,, were calculated for each site for
observed and modeled data. The 550 nm wavelength is representative of the model AOD output. The AERONET monthly
average AODsso,, was then calculated from the daily averages using a 70% data completeness rule where if more than 30%
of the daily values were missing, a monthly average could not be calculated for that time period. A multi-year mean seasonal
cycle was also calculated from daily averages for each month for all available years of data at each site, following the same
data coverage exclusions. This is to ensure the observed monthly averages were representative of the entire month to provide
a relevant comparison for modeled output, as it is difficult for climate models to represent specific days individually (e.g.,
Magi et al., 2009), and as CCAM used CMIP5 emissions that do not vary daily.

For these comparisons, the temporal collocation of the observed and simulated AOD was considered, and were aligned
as possible (Schutgens et al., 2016). In addition, the impact of the two datasets having different temporal sampling was

assessed on the averaging periods of concern (e.g. monthly means). CCAM 6-hourly output was averaged for monthly and
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multi-year means only between 06:00 and 18:00 UTC, as the AERONET sun-photometer measurements were only made
during daytime (similar to other AERONET-model comparison studies; e.g., Tegen et al., 2013). Model monthly means
were, however, insensitive to the choice of daylight cut-off (see Fig. 2), which gives confidence that the instantaneous 6-
hourly values from CCAM can represent the full daytime hours sampled by AERONET, whose daily means are calculated
from a minimum of 3 time points during sunlight hours. Multi-year CCAM seasonal cycles were calculated at each site from
1) only the months with valid observational data, and 2) all model years (1999-2012). As many of the observational sites do
not have continuous data, nor are the sampling times across sites overlapping or the same, the two calculations of modeled
multi-year seasonal cycles were compared to test whether the entire model time period (1999-2012) for each month could be
used to evaluate modeled spatial patterns against all available sites.

Modeled and observed AODssg,, at each site were compared on a monthly timescale using a variety of metrics to
quantify how well the model captures seasonal and interannual variability, and overall magnitude. To this end, Pearson’s
correlation coefficient between the model and observations (r; the square root of the variance in the observations explained
by the model), Normalized Mean Bias (NMB; Eq. 4) of the model as a percentage of the observed values, and the Mean
Absolute Error (MAE; Eq 5.) of the model in units of AODss,,, were calculated. The NMB is calculated as follows, where N

is number of points, M are modeled vales and O are observed values:

NMB = 3N, #20x100% 4)
L

The MAE, where N is number of points, M are modeled vales and O are observed values, is:

MAE = <3N, |M; - 0] )

3 Climatology of AERONET AOD over Africa: seasonal variability and its drivers

Figures 3a and 3b show a compilation of multi-year monthly mean observed AODssg,y, and Fig. 4a and 4b olexyas0-870)
values for the 34 study sites, ordered by region from north to south. The symbols are the multi-year mean values, and the
whiskers represent 1 standard deviation. The number of years of data used per month is shown at the top of the plot area.
The Angstrém exponent is an empirical representation that can give information on particle size, with values varying
between approximately 0 for coarse dust particles to 2 for submicron particles (Leon et al., 2009; Hamonou et al., 1999). The
Angstrom exponent values presented here are based on aerosol extinction. In Fig. 4a and 4b, values of Olexi(440-870) below 0.4
are indicative of aerosols dominated by coarse mineral dust (shaded gray area), while higher values show a contribution from
fine, submicron aerosols, indicative of biomass burning or anthropogenic sources (Holben et al., 2001; Ogunjobi et al., 2008;
Rajot et al., 2008).

Table 1 displays the multi-year daily average AODssonm and Oexyas0-370), Which were calculated using all available data

points per site. In addition, the maximum and minimum multi-year monthly average value per site is displayed together with
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the month when that value was measured. The amount of data is not equal at all sites, nor were the sampling periods at all
sites overlapping, and thus detailed comparisons of the sites are not possible. Instead, the focus will be on overall regional

trends, including timing of peaks and minima.

3.1 Northern Africa and Middle East

The mean AODssg,, values in the northern African sites (blue in Fig. 1 and Fig. 3a) range from 0.06-0.49, with
maximum values ranging 0.15-0.69, and minimum values ranging 0.015-0.36. The 0x440-870) Values average 0.49-1.04,
with maximum values ranging 0.73—1.59 and minimum values ranging 0.17-0.96. The spread of 0.cx4s0-370) Values suggests a
mixture of fine and coarse aerosols at these sites.

The impact of dust on the aerosol loading is observed at these sites. Ras El Ain, Ouarzazate, La Laguna, Dahkla, Solar
Village, Mezaira, Hamim, and Tamanrasset INM have multi-year monthly average o.xy440-870) below the 0.4 “dust” threshold,
and all other sites pass this threshold within the standard deviation from the multi-year mean except for El Arenosillo. This
may be due to the influence of local industrial pollution sources there (Toledano et al., 2007a; Toledano et al., 2009).The
maximum AODssom Occurs across most sites during June—August, and coincides with a decrease in Oeya40-870)- This is later
than the AODssonm peak at the western African sites (Sect. 3.2). This delay and corresponding change in 0lexy440-870) SUggest
that transported dust from the Sahara leads to the higher observed AODssg,y. Thus, the seasonal variation in the location of
the ITCZ and associated northward shift in dust transport may be responsible for the shift in timing of maximum AODssp,
between the western and northern African sites. AODsso,m at most of the Middle Eastern sites (Eilat, Sede Boker, IASBS,
KAUST, and Solar Village) peaks earlier, in March through May, indicative of different seasonality of the local dust sources
in the Arabian peninsula (Basart et al., 2009).

The greatest seasonal differences in Oex440-870) Occur at Hamim, where in addition to high local dust emissions in spring
and summer, regional circulation transports dust from deserts in Iraq and Southern Iran during summer and a mixture of fine
pollution aerosols from the Persian Gulf throughout the year (Eck et al., 2008; Basart et al., 2009). The Izana site has a
different seasonal pattern in Ocxy440-870) than its neighboring two sites, La Laguna and Santa Cruz, on the same island. It is,
however, the highest elevation site in our study at 2391 m, 1800-2300 m higher than La Laguna and Santa Cruz (see Table
1). Local topography, meteorology, or transport patterns affecting the sinks and sources reaching Izana may lead to a

different aerosol size distribution.

3.2 Western Africa

The highest AODssonm across all sites is observed in western Africa (denoted in red in Fig. 1 and Fig. 3b). The overall
mean AODssoy, ranges 0.44—0.67. AODssony values peak at 0.62—1.10, and minimum AODssg,, values range 0.26—0.38. The
minimum AODsso,m values seen here are similar to the maximum AODsso,m values seen in northern and southern Africa.

The western African sites also have 10w Olex440-870) values across most months (0.29-0.66) with maximum values ranging
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0.52-0.96, and minimum values ranging 0.092—0.33. The maximum multi-year monthly average 0yy440-370) value occurs in
December across all western Africa sites, while the minimum values vary in timing.

In general, as AODssom values increase, Oexgs40-870) Values decrease to low values, which would suggest that the
variation in the AODjss¢y,, is dominated by the variation in coarse dust aerosol. A similar relationship was found previously
for Banizoumbou (Holben et al., 2001; Ogunjobi et al., 2008; Rajot et al., 2008). This relationship is prominent at Agoufou,
Banizoumbou, Zinder Airport, Maine Soroa, and Ougadougou. In addition, this relationship is seen in January—June in
Djougou, while in October—December the increase in AODssny at this site corresponds to an increase in Oex40-s70)- In Ilorin,
which is south of the other sites, the AODsso, peaks in January—March, while the oy440-870) 1S at @ minimum value in
March—May.

The timing of peak monthly-mean AODssg,,, varies between February—March for the Banizoumbou, Ouagadougou,
Djougou, and Ilorin sites, and May—June for the Agoufou, Dakar, Zinder Airport, and DMN Maine Soroa sites,
approximately following a south to north gradient. The latitudinal movement of dust transport northward from winter (i.e.
February—March) to summer (i.e. May—June), thus appears to dictate the seasonal cycle in AOD at these sites, consistent
with a previous regional dust model-AERONET comparison at Dakar, Agoufou, and Banizoumbou (Tegen et al., 2013).

Ilorin and Djougou, the most southerly sites in this region, have slightly higher 0449.370 values on average (0.66 + 0.36
and 0.52 + 0.34, respectively), especially during late fall to early winter (peaking at ~0.9 in December). This coincides with
the sub-Sahelian Northern Africa biomass burning season (December—February) (e.g., Roberts et al., 2009; Giglio et al.,
2006). The highest AODssq,y, during December—February out of the western African sites is also observed at Ilorin and
Djougou (up to a peak of 1.10 in February at Ilorin), which are closer to the primary area of biomass burning during this time
(Liousse et al., 2010; Pinker et al., 2010). This suggests that biomass-burning aerosols could make up a larger fraction of
total AODssonn at Ilorin and Djougou than elsewhere during this time period.

Dakar has the smallest month-to-month variability in AODssg,,, ranging from 0.30-0.62. Leon et al. (2009) find that
Dakar is subject to transport of both dust and biomass burning aerosols, depending on the season, as well as poorly
constrained anthropogenic emissions from the city and other nearby urban centers; thus Dakar is influenced by a variety of
sources. The site’s greater distance from the natural aerosol sources and proximity to anthropogenic emissions that have

lower seasonal variability may explain its observed seasonal cycle.

3.3 Southern Africa

The average AODssgyy, in the southern African sites range 0.064—0.21, with maximum AODjssg,,, peaking at 0.095-0.50
and minimum AODssony ranging 0.046-0.13. The region has larger o.xas0-870) values, with averages ranging 0.7-1.6. The
maximum monthly averages range 1.12—1.85, and the minima range 0.28—-1.14. Mongu and Skukuza in southern Africa have
the highest observed o.x40-870) values, indicating little influence from coarse dust and confirming the importance of biomass

burning as an aerosol source in this region.
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Previous studies have shown AOD is highest in this region during the biomass burning season, from AERONET AOD
through the year 2007 at Mongu and Skukuza (Queface et al., 2011) and MISR satellite data over South Africa (Tesfaye et
al., 2011). Mongu is situated in Zambia in the middle of the biomass burning source region in southern Africa (e.g., Swap et
al., 2003; Eck et al., 2003; Edwards et al., 2006; Queface et al., 2011). For Southern Hemisphere Africa, peak fire activity
typically occurs in June through October, with a shift in general toward later months moving from north to south, except in
the winter rain areas of southwestern South Africa (Archibald et al., 2010; Giglio et al., 2006).

At Ascension Island, the transport of biomass burning aerosols from southern Africa west over the Atlantic Ocean is
observed in the seasonal cycle of 0exy440-870)and AODsson, as both peak in September, which is the timing of climatological
peak AOD and peak biomass burning at Mongu (Giglio et al., 2006). This known transport pathway off the coast of Angola
(Garstang et al., 1996) is also seen in the AODssonm and Olexa40-370) Observed at Etosha Pan, but peak values occur in October
as opposed to September. However, these values at Etosha Pan may not represent a long-term mean seasonal cycle as only
one year of data was available at this site.

The AODssonm at Skukuza also peaks in September, indicating transport of biomass burning aerosols southeast over the
site and exiting the continent toward the Indian Ocean, consistent with the so-called “river of smoke” or major export
pathway off the coast of southeastern South Africa (e.g., Swap et al., 2003). Although Reunion Island is not within this path,
evidence of eventual transport of biomass burning aerosols from southern Africa is apparent in the seasonal cycle of ex44o-
870y and AODsso,m, Which increase toward an October peak.

The continental sites closest to the region of burning have sustained and relatively constant high values of dlexy440-870)
during April-October. This is especially evident at Mongu. The Oex440-370) at all southern Africa sites declines in austral
spring and summer. While these small variations in e.ya40-370)alone are not enough to distinguish aerosol size distributions,
they are consistent with results from MISR for the central South African region (including Skukuza) that showed an increase
in the coarse mode fraction in summer due to dust from the Northern Cape and Namibian desert regions (Tesfaye et al.,

2011).

4. Model evaluation
4.1 Annual model aerosol budgets

Annual burdens, deposition, wet deposition fraction, lifetime, and emissions for each of the four prognostic aerosol
species in 2010 are shown in Table 2 for the globe and the Africa domain (40°S to 40°N, 20°W to 60°E), separately. These
values are compared to estimates from other present-day models and the CMIP5 and AeroCom experiments in Fig. 5.

CCAM is within the range of global present-day annual aerosol burden estimates from models within CMIPS5 and
AeroCom experiments for BC, OC, and sulfate. In addition, in Fig. Sb—c, CCAM is within the range of estimates for total
deposition, fraction wet deposition, burden and lifetime of organic aerosols (OA) and BC (Tsigaridis et al., 2014; Allen and

Landuyt, 2014). CCAM modeled OC emissions and burden is converted to OA by multiplying by a factor of 1.4 for a
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consistent comparison (Tsigaridis et al., 2014). In general the CCAM values for BC are higher than the CMIP5 median
values, but are well within the range of models. For OA, CCAM is close to median estimates from the AeroCom Phase II
models with the exception of OA/OC lifetime, which is at the high end of all models.

While CCAM performs well compared to other models for BC, OC and sulfate, CCAM has a dust burden (68 Tg) ~2—7
times higher than AeroCom Phase I models (Huneeus et al., 2011) and all available dust modeling results summarized in a
recent review (Kinne et al., 2006; Zender et al., 2004) (see Fig. 5a, 5d). In the CCAM model, annual dust emissions over the
Africa region alone (40°S to 40°N, 20°E to 60°W) in 2010 are 2320 Tg yr', contributing 83% of global total modeled dust
emissions. The range from AeroCom models is 35-77.9% of global dust emissions (Huneeus et al., 2011). Global dust
emissions (Fig. 5) are above the mean but within the range of AeroCom models. This together with an overestimation of dust
in Africa would lead to a large percentage contribution of global dust emissions from Africa.

The global dust emissions, burden, wet deposition, dry deposition and sedimentation, and lifetime are compared to
AeroCom experiments in Fig. 5d (Huneeus et al., 2011). The modeled dust lifetime (8.9 days) is longer than models
examined in Zender et al. (2004) that range from 2.8 to 7.1 days, and AeroCom Phase I that range from 1.6 to 7.1 days
(Huneeus et al., 2011), indicating the sinks of dust in the model may be too low, contributing to a high global dust burden.
The wet deposition (1571 Tg a™') is higher than AeroCom results (range of 295 to 1382 Tg a”', median 357 Tg a™'), however
the dry deposition and sedimentation (1209 Tg a') are similar to the AeroCom median (753 Tg a™') in spite of the much

higher dust burden. This overestimation of dust is discussed more in Sect. 4.2.2 and Sect. 4.2.3 below.

4.2 Evaluation of model against observations: Multi-year mean seasonal cycle comparison

Figure 6 shows the same observed multi-year mean seasonal cycle as in Fig. 3 (here in red triangles), overlaid with
CCAM results for all model years (dark blue) and only those months with corresponding AERONET data that met the 70%
completeness cutoff (yellow). The shaded red areas are £1 standard deviation from the observed values, and the shaded blue
areas are +1 standard deviation from the all model years CCAM output. In this comparison, only AERONET sites with
multiple years of complete data for most of the annual cycle are included in order to compare multi-year monthly cycles
from observations and the model.

The monthly cycle from CCAM considering the full model period (dark blue line) and only those years with
observational data (yellow line) are similar across all sites, with only minor differences that are within +1 standard deviation
of the full model period. Thus, the full model time period (1999-2012) can be used to evaluate modeled spatial patterns
against all available AERONET sites, even though the observations at different sites are from disparate time periods. All
following analyses are presented using the full model time period.

For most sites, the monthly cycle (i.e. timing of peak and minimum AODss,, values) is well-captured by CCAM,
indicating the seasonality in CMIP5 emissions and the model parameterization of dust emissions is adequate. A few notable

exceptions (e.g., timing of maxima at Mongu and Ascension Island, missing winter minima in western African sites, and
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spurious summertime peaks after observed springtime maxima at Sede Boker and Solar Village) will be investigated in Sect.
4.2.1-4.2.3 below. The magnitude of modeled and observed multi-year monthly average AODsso,, overlap within £ 1
standard deviation of each other for at least 7 months at all sites except Reunion Island, and for all observed months at 8 sites
that span all three regions (Granada, Blida, Zinder Airport, Banizoumbou, Ouagadougou, Djougou, Ilorin, and Skukuza).
The differences in magnitude per region will also be detailed in Sect. 4.2.1-4.2.3 below.

Figure 7 highlights two representative sites each from the northern, western, and southern regions with the most
observational data available in greater detail, comparing multi-year monthly mean observed and modeled AODss,,, with the
modeled contribution of each aerosol type (sea salt, large size bin dust (radius > 1 ym),, small size bin dust (radius < 1 ym),

BC, OC, sulfate) to total AODssg,, shown.) Further investigation of model performance, by region, follows.

4.2.1 Southern Africa

The model generally represents the magnitude of AODssgny at all southern African sites outside of Reunion Island (see
also Fig. 6, Table 3). However, the timing of the modeled peak AODssg,y, at two of the sites where maximum AODss,p, is
dominated by biomass-burning (Ascension Island and Mongu) occurs 1 month too early (in August, instead of September as
highlighted in Table 1). Modeled AODssgny at both Mongu and Skukuza remain relatively constant between August and
September (Fig. 7). This is consistent with the observations at Skukuza, likely due to the greater influence of anthropogenic
aerosol sources at this site. Figure 7, shows the modeled sulfate contribution (emitted from both anthropogenic and biomass
burning) to total AODssgnm 1s higher and that of OC (primarily emitted from biomass burning) is lower at Skukuza relative to
Mongu, indicating the breakdown of model emissions sources is consistent with this explanation. There is a larger observed
increase in AODsso,, between August and September at the biomass burning source region (Mongu) and the more remote
Ascension Island whose seasonality is impacted by transported biomass burning aerosol as seen in the Olex440-870) (Fig. 4a and
4b).

This mismatch in timing of the peaks is a long-standing issue in understanding southern African biomass burning, first
noted during the SAFARI-2000 measurement campaign (Swap et al., 2003). In a study of Southern Hemisphere biomass
burning observed by satellite, Edwards et al. (2006) found that in southern Africa alone, peak CO and AOD lagged peak fire
counts by ~1 month (late September to October vs. late August, respectively). Using a chemical transport model, they found
that the residence time of CO over the region was much too short for transport patterns to explain the 1 month time lag
(Edwards et al., 2006). Two recent modeling studies also found that peak AOD over Southern Hemisphere Africa lagged
peak fire counts and estimates of peak biomass burning emissions using either the GFEDv2 or AMMA inventories by 1-2
months (Magi et al., 2009; Tummon et al., 2010). The CMIP5 emissions used in our CCAM model study are from GFEDv2
for year 2000 onward (van der Werf et al., 2006; Lamarque et al., 2010), which at the source region of Mongu peak in
August leading to the maximum modeled AOD. The GFED inventory is based on estimates of burned area from burn scars
and thermal signatures of active fires viewed by the MODIS satellite, combined with land cover data and meteorological

parameters to estimate emissions for different vegetation types (van der Werf et al., 2006; van der Werf et al., 2010). This
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type of method would only capture large fires that produce satellite-detectable burn scars. A recent study updated the GFED
inventory to include a parameterization of fire counts, burned area, and emissions from previously missing small fires, but
this did not change the seasonality in biomass burning emissions over Southern Hemisphere Africa (Randerson et al., 2012).
Burned area still peaked in August, as it increased more early in the biomass burning season than late in the season when
small fires were included, and higher fuel load burns (e.g., from dense, wooded vegetation) late in the season did not lead to
a compensating change in emissions (Randerson et al., 2012). The small fires parameterization still relies on detection of
thermal anomalies (Randerson et al., 2012).

The AODssonm peak in September aligns with the peak in fire intensity found in the generalized fire regime of savanna-
woodland in Archibald et al. (2010). The peak in fire intensity in southern Africa as well as fire size occurs later in the
season than the peak in fire number, though the increase in these is not large over the season (Archibald et al., 2010).
However, this does suggest that fire intensity may be an important factor to consider in modeling emissions from biomass
burning in southern Africa, e.g., through the new initiative FireMIP (Hantson et al., 2016).

Table 3 displays a summary of model-observation comparison by site. The normalized mean bias of the model is
negative at Mongu (-21.2%) and positive at the three other southern Africa sites, showing that overall AODssg,y, is
underestimated at the source while overestimated at receptor regions (Table 3). Figure 6 suggests the model overestimates
transport of biomass burning emissions to receptor sites in particular for the months of June through August. Because the
AODss0n, values in both the model and observations are smaller here than in other regions, the mean absolute error is very
low (0.07—0.09) and is the lowest of all sites in this model comparison. At all sites except Reunion Island, the model captures
some of the temporal variability, with highly statistically significant correlation coefficients ranging from 0.48 to 0.67.
Relative to other regions, the model performs best over southern Africa in terms of mean AODss,, magnitude, but

overestimates the transport of biomass burning aerosols to Reunion Island in June through September.

4.2.2 Western Africa

At the western African sites, which in the observations are dominated by dust (Fig. 4b), the model captures the overall
seasonal cycle in AODssg,, except between September and December, where the observations show a decrease at all sites
except the two southernmost (Djougou and Ilorin) while the model increases (see Fig. 6). As a result, the modeled minimum
AODssonm Occurs between August and October, instead of in November—December as in the observations at Agoufou, Dakar,
Zinder Airport, Banizoumbou, DMN Maine Soroa, and Ouagadougou.

Figure 7 shows in a case study for two sites, Dakar and Banizoumbou, the strong influence of dust on these sites. The
increase in modeled AODjss,,, from September through December, which is not seen in the observations, is due to increases
in the large dust (orange bars) and small dust (red bars) contribution. This could be due to the systematic overestimate of
10m wind speed during the dry season in several meteorological re-analyses in the Sahelian region (Largeron et al., 2015).

Although the ERA-Interim reanalysis used in this study was found to perform best overall against wind speed observations,
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it also exhibited a strong positive bias during Northern Hemisphere winter (Largeron et al., 2015), which would lead to an
overestimate in wind-driven dust emissions during this season (September—December).

The remainder of the shape of the seasonal cycle is captured relatively well at western African sites, with the peaks in
AODss0ny, in CCAM occurring within 1 month of the peak in AERONET AODssgpy,. Only at Ilorin is the timing of the peak
the same in the model and the observations. The Pearson’s correlation coefficient between the modeled and observation
AODssonn are statistically significant (» ranges 0.27-0.61) at all sites except Djougou (Table 3). The lack of statistically
significant correlation at Djougou may in part be due to a lack of data with only 24 individual months. In most of the western
African sites, the model has an overall positive normalized mean bias (ranging from 29% to 103%). The exceptions are
Djougou and Ilorin, which are the two southernmost sites. Djougou and Ilorin are slightly farther away from major dust
sources originating in topographic depressions (Evan et al., 2015), which are represented in the CCAM dust emissions
scheme (Rotstayn et al., 2011), and have relatively small, but negative normalized mean biases (-1.3%, -12.6%,
respectively). The mean absolute error for all sites ranges from 0.20-0.48, which are higher than southern Africa, but lower
than northern Africa, which has lower AODjss,,,, on average compared to the western African sites.

The model overestimates in AODssg,, at western African sites closer to the dust source regions may be due to an
overestimate of wind speeds. Largeron et al. (2015) found that on an annual mean scale, ERA-Interim overestimates
observed 10m wind speeds by 0.27 m s™'B in the Sahel, but this was largely a result of the wintertime overestimate mentioned
previously. In fact, wind speeds during springtime and the monsoon season were underestimated in the ERA-Interim because
the reanalysis did not represent large increases in wind speed from boundary layer free convection and deep convection
(Largeron et al., 2015). Previously, the CSIRO Mk3 coupled GCM accounted for this by estimating sub-grid gustiness from
both boundary layer and deep convection to increase the effective 10m wind speed used in the model dust emission
parameterization (Ginoux et al., 2004). In the case of CCAM, it was found that the effective sub-grid scale winds were too
high, possibly due to differences in vertical and horizontal resolution, as well as changes in the model physical
parameterizations. This led to an overestimation of global total dust emissions that were far outside the range suggested by
observations (Rotstayn et al., 2011; Rotstayn et al., 2012). Therefore, these sub-grid gustiness terms have been removed
from the model version presented here. In spite of this, it is still possible that 10m winds in the model may be inaccurate, as
the horizontal wind fields are only nudged to ERA-Interim above 900 hPa, not down to the surface, and at a coarse scale
(2250 km resolution; see Sect. 2.1). Part of the determination of surface wind speeds in CCAM relies on the Community
Atmosphere-Biosphere Land Exchange (CABLE) model estimate of surface roughness. Dust emissions additionally depend
on local soil moisture and soil texture from the CABLE land surface model. Issues with modeled precipitation, the response
of soil moisture to precipitation, and how recent changes to soil texture implemented in CABLE from the Harmonized World

Soil Database affect the atmospheric simulation could contribute to an overestimate in dust emissions.

14



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-250, 2017 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 11 May 2017 and Physics

(© Author(s) 2017. CC-BY 3.0 License.

Discussions

20

25

30

4.2.3 Northern Africa and Middle East

Potential issues with dust emissions and transport in CCAM become more apparent when comparing to northern African
AODss,m observations. There are substantial overestimates of the multi-year monthly mean AODss,,, values in northern
Africa (see Fig. 6) of up to a factor of 8 to 42 for individual months at each site. This region has the highest normalized mean
biases, with NMB over 200% at 6 of the 11 sites (see Table 3). As shown in Fig. 7 for two of the northern sites, Saada and
Izana, almost all modeled AODssg,, in this region comes from dust. However, the observational data indicate that Saada and
Izana rarely experience low values of Ocx40/870) T€aching the threshold representative of coarse dust (Fig. 4a). Thus, CCAM
overestimates the contribution of dust to AODss,,, over Saada and Izana. The global dust burden in CCAM (67 Tg) is more
than twice that of the high end of values in a recent review of global dust models as well as AeroCom and CMIP5 models
(Zender et al., 2004). Global dust emissions are higher than the median but are well within the range of estimates from
Zender et al. (2004) and AeroCom models (Huneeus et al., 2011) (see Fig. 5). It is possible that an overestimate of dust
lifetime combined with an overestimate of dust emissions plays a major role in this issue (see Section 4.1). At the same time,
over the Arabian Peninsula (Dhadnah, Solar Village, Hamim) the model performs better with the lowest mean biases across
sites in northern Africa and the Middle East (Table 3), suggesting dust emissions and transport may be better characterized in
this region.

However, the model does capture the monthly trends in observed AODssg,y, With a strong peak in boreal summer and
relatively lower values through rest of the year. At Saada, Izana and Dahkla, CCAM AODssg,, peaks in August, while the
observations peak in July. Modeled and observed AODssp,, peaks in June at Hamim and July at Blida and Dhadnah. At
Tamanrasset INM, CCAM AODssg,, also peaks in July, however there are no data for July at that site. The model output
shows a higher proportion of dust AODssg,y, relative to total AODssg,, in the summer months, especially July and August
(Fig. 7), which is consistent with the observed decrease in 0yy440/870) and known northward movement of Saharan dust
transport in summer from the shifting ITCZ (Jankowiak and Tanre, 1992; Moulin et al., 1997; Leon et al., 2009; Schepanski
et al., 2009). The model also reproduces the increase in fine aerosol (e.g., BC and SOy) relative to coarse dust in winter
months at the two sites (Fig. 7) as implied by the increasing observed Oexi40/570) (Fig. 4a). In spite of the high model bias, all
sites in northern Africa and the Middle East have statistically significant correlations, including some of the highest
correlation coefficient values (ranging from 0.23 to 0.89). At Sede Boker, which has the lowest correlation coefficient in this
region, the model predicts an increase in AODjssgy,, from June to August, similar to other Northern African sites, which is not

observed. This discrepancy may be caused by an overestimate of Saharan dust transported to the site during summer.

4.2.4 Spatial patterns

Figure 8 shows the multi-year monthly mean climatology of modeled (background) and observed (filled circles)
AODss0n, for March (Fig. 8a), representing high values of AODssg,,, at many western African sites, and September (Fig. 8b),

the peak observed AODssg,, at many southern Africa sites impacted by biomass burning (note the different scales for the
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two months). Panels showing the 5™ and 95" percentiles of 6-hourly CCAM AODssgqr, highlight the modeled variability and
additional spatial features. The scales are consistent across the maps within each month to aid in comparison and as such
some high AODssg,, values are saturated in the color scale (see legend in Fig. 8).

We take advantage of the high temporal and spatial resolution of the model to show how significantly an individual 6-
hourly output, in this example within the months of March and September (Fig. 8), can depart from the multiyear monthly
mean AODjssg,,. Given that the emissions of all aerosol species and their precursors (with the exception of dust) vary only on
a monthly to multi-annual timescale in CMIP5 emissions (see Sect. 2.1) the variability at the 6-hourly timescale must be a
result of transport and aerosol sinks in the model (and dust emissions for western and Northern Africa). This confirms the
importance of model processes driven by meteorology to modeled AODsspyn. In Southern Hemisphere Africa, where
aerosols are dominated by emissions that in the CMIP5 emissions inventory are constant within a given month for a 5 to 10
year period, Fig. 8b shows that fine-scale temporal variability can still be represented in spite of limitations in emissions
inventories, consistent with previous work in this region (Myhre et al., 2003).

In March (Fig. 8a), the discrepancy in the modeled location of maximum AODssg,, in dust-dominated northern and
western Africa and the Middle East is clear, as CCAM overestimates mean AODssg,, at all sites in this region except
Djougou and Ilorin, the two southernmost sites, which are underestimated. Given that the large-scale circulation in the model
is constrained to reanalysis data, it seems unlikely that issues with large-scale transport would lead to this spatial pattern in
the misrepresentation of AODsso,n. It is more likely that the overall overestimate in total dust emissions varies regionally due
to regional discrepancies in precipitation, soil texture, and soil moisture, that contribute to the surface roughness (which
affects surface wind speeds, feeding into the magnitude of dust emissions) and dryness (which determines the likelihood of
erosion and dust emission). Dust emissions may be especially overestimated towards the north and northwest of Africa, and
may even be locally underestimated in the southern Sahel. Figure 8a also shows modeled AODssg,, over the Arabian
Peninsula is more consistent with observations, suggesting a better model representation of local dust emissions in this
region (see also Sect. 4.2.3). In September, when AODssp,, 1S less impacted by dust, CCAM better captures the mean
AODssom at the available sites in western Africa along a similar latitude band, but still significantly overestimates AODssonm
at more northern sites. This also points to a regional overestimate in dust emissions. Modeled dust lifetime may also play a
role, which is longer than CMIPS and AeroCom models (see Fig. 5 and Sect. 4.1) and could lead to dust transported too far
off the northern coast of Africa. Another climate modeling study found that a non-prognostic dust scheme resulted in dust
shifted too far north, while prognostic dust simulations had too much dust transport off the coast of western Africa (Mulcahy
et al., 2014), suggesting the interaction between dust and meteorology in the model may be important in the current study as
well. This is an area of on-going study in CCAM.

Modeled AODssgny at the biomass burning source region, Mongu, is slightly underestimated in September, as seen in
Fig. 8b, but the mean modeled AODssy,,, values at receptor regions like Ascension Island and Skukuza are similar to the
observed values. The transport in CCAM of biomass burning aerosols off the coast of Angola and southeastern Africa is

visible with small enhancements in the mean modeled AODjss,,,, but is more apparent in the 5" and 95% percentile results,
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showing that the model captures known exit pathways for southern African biomass burning (Garstang et al., 1996; Swap et
al., 2003). Figure 8b also illustrates that the transport of biomass burning aerosols from southern Africa eastward toward
Reunion Island is overestimated. Overall, from this analysis and given that the lifetime of OC and BC aerosols in CCAM is
more consistent with other global models from AeroCom and CMIP5 (Tsigaridis et al., 2014; Allen and Landuyt, 2014),
biomass burning aerosol emissions and transport are relatively well represented in CCAM driven by the CMIPS emissions

inventory.

5 Conclusions

The compilation of long-term AERONET observations across Africa indicates different regimes of source types and
their seasonality for northern, western, and southern Africa. The importance of dust and biomass burning aerosols in the
regions, as well as the transport and long-range impact of these aerosol sources, are evident in the AODssoum and Olexia40-870)
trends across sites.

The prognostic aerosol scheme in CCAM is a key feature in the coupled earth system model VRESM currently under
development for inclusion in the CMIP6 intercomparison. An accurate representation of African aerosols is critical in
climate models and this current evaluation to understand how well the scheme performs in the present-day when forced with
CMIP-style emissions is essential to interpreting any future climate predictions using the model. CCAM aerosol output for
OC, BC and sulfate compares well with output other CMIP5 models and AeroCom model global experiments. CCAM
captures the seasonal cycle of the AODss,, well at most sites, with statistically significant correlation coefficients between
the model and observed monthly mean timeseries of AODssony at all but two sites of the 23 sites studied. The seasonal cycle
at these sites is strongly influenced by dust and biomass burning aerosols, and thus CCAM is able to capture the general
seasonal cycle of the emissions of dust, and the transport of all aerosol types.

This analysis has also highlighted areas within CCAM and the emissions inventory that need further work. There is a
notable shift in peak AODssp,,, one month earlier than observations in biomass burning regions. This shift has been seen in
previous modeling studies, and is likely due to missing processes in the emissions inventory. Comparing to CMIP5 models
and AeroCom global experiments, CCAM overestimates many dust parameters including burden and lifetime. This
overestimate is also seen in the comparisons to AERONET at northern and western African sites. At the northern African
sites in particular, the model has large positive normalized mean biases. The model attributes large AODsso,, values
primarily to dust where the observations of the Angstrom exponent and AODssom suggest there is very little dust present.
This is likely a combination of an overestimate of dust lifetime leading to longer-range transport of dust and higher dust
burdens, and overestimated dust emissions in the northwestern Sahara. The increase in AODssg,, in the boreal winter at
western African dust-influenced sites is likely due to a high bias in ERA-Interim reanalysis wind speeds in the Sahel during

this season (also present in other reanalyses). The simulation of local soil parameters and injection height in CCAM could
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also lead to emissions biases; testing and improvement of these fields in the CABLE land surface model in the development
of VRESM may help to improve the representation of dust aerosols in Africa.

The CCAM results are consistent with state-of-the-art CMIP5 GCMs, providing confidence for using the model to study
the regional impacts and linkages between African aerosols and climate change under different scenarios. In addition,
CCAM can be used to downscale the CMIP5 GCMs to finer spatial scales with its variable resolution global grid, and

therefore refine our understanding of aerosols in this important region.
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Table 2. Global and Africa-only annual average burdens, lifetimes, total deposition fluxes, and fraction wet deposition of four
prognostic aerosol species in CCAM for the year 2010.

Species  Burden (Tg) Total deposition Fraction wet Lifetime (days) Emissions (Tg yr")
(Tg a™) deposition of total
Global Africa Global Africa Global Africa Global Africa Global Africa
BC 0.187 0.0465  6.84 1.56 0.844 0.802 9.98 10.9 7.38 2.05
ocC 1.11 0.305 44.1 12.1 0.819 0.782 9.22 9.19 44.8 14.8
Sulfate 0.961 0.161 65.1 7.18 0.865 0.833 5.39 8.16 57 9.18
Dust 67.7 26.9 2780 1460 0.565 0.364 8.9 6.72 2805 2320
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Table 3. Summary of model-observation comparison of monthly-average AODssg,,. The significance of the Pearson’s correlation
is indicated by ‘*’ for p<0.05, ‘**’ for p<0.01, and ‘***’ for p<0.001; NS is not significant at 0.05 level.

Site Correlation Normalized Mean Number of

coefficient Mean Bias Absolute months

(r) Error

Granada 0.47 *** 176.6 % 0.27 50
Blida 0.70 *** 220.0 % 0.54 33
Lampedusa 0.58 *** 278.2 % 0.51 46
Saada 0.60 ** 231.7 % 0.50 74
Sede Boker 0.23 * 245.5% 0.43 129
Izana 0.46 ** 970.0 % 0.65 75
Dhadnah 0.81 *** 125.1 % 0.45 50
Solar Village 0.51 *** 121.1 % 0.42 128
Dahkla 0.49 * 2422 % 0.75 19
Hamim 0.82 *** 1152 % 0.37 28
Tamanrasset INM 0.89 ** 253.6 % 0.51 19
Agoufou 0.51 ** 89.7 % 0.47 58
Dakar 0.33 ** 103.2 % 0.48 95
Zinder_Airport 0.61 ** 59.3 % 0.35 30
Banizoumbou 0.50 ** 58.6 % 0.34 126
DMN_Maine_Soroa 0.52 ** 94.5 % 0.46 41
Ouagadougou 0.27 * 293 % 0.28 61
Djougou 0.29 NS -1.3% 0.20 24
Ilorin 0.59 ** -12.6 % 0.22 61
Ascension_Island 0.51 ** 41.8 % 0.09 53
Mongu 0.67 ** 212 % 0.09 77
Reunion — St Dénis 0.21 NS 135.0 % 0.09 84
Skukuza 0.48 ** 24.6 % 0.07 72
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Figure 1: Map of long-term AERONET sites used in this study. Sites are color-coded by general geographic area and aerosol
5  source type. Site names in bold italics are used in model comparison.
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Figure 2: Comparison of methods to compute mean modeled AODssg,,, for an example in January 2000: red bars
include model output only for 6am to 2pm local time; yellow bars for 6am to 8pm local time; and blue bars for 24
hours.
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Figure 5: Comparison of present-day model results for CCAM (blue triangles) against ranges from other models
(shaded gray area), for a) global burdens of major aerosol constituents, b) characteristics of OA aerosol, c)
characteristics of BC aerosol, and d) characteristic of dust aerosol. Reference model ranges in a) are from Kinne
et al. (2006) with additional models provided from Jathar et al. (2011) for OC, Liu et al. (2005) for sulfate, and
Zender et al. (2004) for dust. AeroCom Phase II model ranges and medians (black crosses) in b) are from
Tsigaridis et al. (2014); CCAM modeled OC is converted to OA by multiplying by a factor of 1.4 for a consistent
comparison (Tsigaridis et al., 2014). CMIP5 model ranges and medians (black circles) in c) are from Allen and
Landuyt (2014). AeroCom Phase I model ranges and medians (black crosses) in d) are from Huneeus et al. (2011).
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Figure 7: Multi-year mean observed vs. modeled seasonal cycle of AODssoymnm at six AERONET sites. Modeled AODssgy,yy, is
broken down into the contribution from each aerosol species (sea salt, large size bin dust (radius > 1 pym), small size bin dust
(radius <1 ym), BC, OC, sulfate (SOy)).
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a) March
5th percentile

b) September
5th percentile

0 0.2 0.4 0.6 0.8 =1

Figure 8: Seasonal variation in multi-year monthly 5 percentile, mean, and 95 percentile modeled AODssy,, (map background)
for the full model climatology (1999-2012), with observed multi-year means (points) for all available AERONET data, for a)
September and b) March. The number of years and range of years used for each site is the same as in Fig. 3.
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