

Response to comments

Manuscript Number: acp-2017-23

Title: In situ chemical measurement of individual cloud residue particles at a mountain site, South China. Qinhao Lin et al.

Received and published: 20 March 2017

Anonymous Referee #1

Lin et al describe measurements of the chemistry of cloud droplet residues at a mountain-top site in South China in January 2016. Few measurements of cloud droplet residual chemistry exist, so these are important measurements to help improve our knowledge of cloud formation and properties, which are important for predicting weather and climate. Detailed comments follow.

We would like to thank the reviewer for his/her useful comments and recommendations to improve the manuscript. We agree with the comments, and careful revision has been made according to the suggestions.

It would be helpful for the authors to provide additional information about the cloud events. Please provide, at minimum, ambient temperature during the cloud events to justify the presence of cloud droplets only and no influence from ice crystals would be useful to discuss (related to Line 123); this is shown in Fig 1 and would be useful to refer to earlier to justify the presence of cloud droplets only.

We agree with the comments, and additional information has been added in the revised manuscript as suggested: Ambient temperature on average was 6.9 °C (ranging from -7.2 to 11.4 °C) during the cloud events in this study. Therefore, the clouds here consisted of liquid droplets only. Please refer to Lines 124-126 of the revised manuscript.

It is stated on Line 135 that previous studies found an average cloud droplet size of 10 μm at this site, but the distribution is not discussed, nor is the time of year of the previous measurements. Since this work is published in Chinese, these information are not easily obtained by the reader. So, additional discussion would be helpful.

Measurement of drop size spectrum in this region performed during winter of 1999-2001 shows that size of cloud droplets ranged from 4 to 25 μm , with average size of 10 μm and a corresponding liquid water content of 0.11-0.15 g m^{-3} (Deng et al., 2007). Some studies in other locations also showed an average size at \sim 10 μm (Freud et al.,

2008; Shingler et al., 2012). Therefore, it is reasonable to select a cut size at 8 μm for cloud droplets in the present study. The discussion has been added in section 2 as suggested, Please refer to Lines 126-131 of the revised manuscript.

Is it correct that measurements of cloud droplet size were not completed during this study? It would be helpful to know what fraction of the cloud droplet population was sampled, given the cut size of 8 μm . For interpretation of the comparison between the cloud droplet residues and ambient particles, it is important to understand what fraction of the cloud droplets were measured. Previous studies (e.g. Bator & Collett 1997, J. Geophys. Res.) have found that cloud chemistry varies with droplet size. Sampling only the larger cloud droplets may also bias the cloud droplet residue size to larger particles, which is one of the observations. Since the cloud droplet activation process is also size-dependent, it is not possible for the reader to evaluate measurement vs droplet activation size dependencies currently.

It is true that measurements of cloud droplet size were not completed during this study. We agree with the comment. Sampling only the larger cloud droplets may also bias the cloud droplet residue size to larger particles. Previous measurements found that dust, playa salts or sea salt particles are often enriched in larger cloud droplets ($\sim 20 \mu\text{m}$) (Bator and Collett, 1997; Pratt et al., 2010b). Organic carbon tends to be enriched in small cloud/fog droplets, extending to 4 μm (Herckes et al., 2013). It has been clarified that cloud droplets above 8 μm were sampled by the GCVI. Thus, it partially leads to relatively larger fractions of the Dust and Na-rich cloud residues observed, while the fraction of the OC cloud residues might be underestimated. Please refer to Lines 320-325 of the revised manuscript.

Major Comments:

Lines 20-23, lines 220-221, Figure 4, & numerous other locations: Do these number fractions take into account the size bias in the instrument inlet transmission efficiency, which is clear in Figure S3? It is clear that there are particle size dependencies to the cloud residual chemical composition, particularly for the amine and aged EC particle types, that should be considered when reporting fractions. For example, even on lines 220-221, it is not clear if the authors are reporting 3.8% of the total cloud residues, or 3.8% of the particles measured from 0.7-1.9 μm , or 3.8% across each of the size bins from 0.7-1.9 μm .

We agree with the comments. The chemical composition of cloud residues is dependent on the particle size (Roth et al., 2016), and the number reported for each particle type

might suffer the bias from size-dependent transmission efficiency (Qin et al., 2006). The relative fraction of cloud residues in 100 nm size interval is presented to minimize the size-dependent transmission efficiency of single particle mass spectrometry (Roth et al., 2016). Similarly, we have provided information on the number fractions of amine and aged EC particle types in cloud residues with size. Nf of the aged EC residues significantly decreased from 54.1% in the size range of 0.2-1.0 μm to 19.2% in the size range of 1.1-1.9 μm . The Amine particles contributed to 3.8% by number of the total cloud residues. Moreover, higher Nf of the Amine residues was detected in size range from 0.7 to 1.9 μm relative to size range from 0.2 to 0.6 μm (16.7% versus 0.4%). Please refer to Lines 20-23, 223-230 and 260-263 of the revised manuscript.

Lines 64-68: Only two other cloud studies are mentioned, or referenced, here, which incorrectly suggests to the reader that the measurement of anthropogenic particles in clouds has only been measured twice. While not all papers need to necessarily be referenced here, it is important to provide a comprehensive view to the reader.

We have added references (Stier et al., 2005; Sorooshian et al., 2007b; Lohmann et al., 2007; Rosenfeld et al., 2008; Roth et al., 2016; Seinfeld. et al., 2016; Li et al., 2017) to discuss the anthropogenic influence on cloud. Anthropogenic particles can increase number concentration of small cloud droplets, in turn, affect reflectivity and life time of clouds (Stier et al., 2005; Lohmann et al., 2007; Rosenfeld et al., 2008). In-situ cloud chemical measurements show varied chemical composition of cloud droplets at various regions (Sorooshian et al., 2007a; Roth et al., 2016; Li et al., 2017). Although a large number of aerosol/cloud studies over the past 20 years, the uncertainty for evaluating radiative forcing due to aerosol-cloud interactions has not been reduced (Seinfeld. et al., 2016). Please refer to Lines 55-62 of the revised manuscript.

Lines 87-89: This list is not comprehensive and is missing many papers. The authors are strongly suggested to conduct a detailed literature search, as comparison of their results with these papers is important.

We agree with the comment, and we have added related references about combined technique of a CVI and AMS or single particle measurement. These studies were mainly conducted in North America including Wyoming (Pratt et al., 2010a), Ohio (Hayden et al., 2008), Oklahoma (Berg et al., 2009), Florida (Cziczo et al., 2004; Twohy et al., 2005), California (Coggon et al., 2014), Europe including Schmücke (Roth et al., 2016; Schneider et al., 2017), Jungfraujoch (Kamphus et al., 2010), Åreskutan

(Drewnick et al., 2007), Scandinavia (Targino et al., 2006), Arctic (Zelenyuk et al., 2010), Central America (Cziczo et al., 2013), West Africa (Matsuki et al., 2010) and Oceans (Twohy et al., 2009; Twohy et al., 2008; Shingler et al., 2012). Please refer to Lines 81-88 of the revised manuscript.

Line 205 & Figure 3: Provide possible ion marker formulae here. Provide a reference for the aged EC type based on comparison to other single-particle mass spectrometry studies (e.g., reference to Moffet and Prather 2009, PNAS). Given the strong K+ signal here, it is likely that both the “Aged EC” and “K-rich” are from biomass burning. Similarly, the OC particles are likely aged biomass burning particles as well, given the strong K+ signal.

Possible ion marker formulae (m/z 27 $C_2H_3^+$, 43 $C_2H_3O^+$) were provided as suggested. We also noted that the aged EC type is similarly observed by other single-particle mass spectrometry studies (e.g., Moffet and Prather 2009, PNAS). We agree with the comment that the “Aged EC”, “OC” and “K-rich” might be from biomass burning, as also discussed later. We have discussed the possibility, please refer to Lines 219-222, 232-233 and 314-315 of the revised manuscript.

Lines 209-210: The prevalence of wildfires, shown in Figure 2, suggests that these particles are primarily from biomass burning (see Pratt et al. 2011, ACP for a single particle mass spectrum of fresh biomass burning particles). Pratt et al. (2010, J. Atmos. Sci.) and Hudson et al. (2004, J. Geophys. Res.) discuss the identification of aged biomass burning particles by single-particle mass spectrometry. It seems that the authors can say with greater certainty the source of these particles, and discussion of this would elevate the paper by providing another evaluation of the influence of biomass burning aerosols on cloud activation, which is important and interesting.

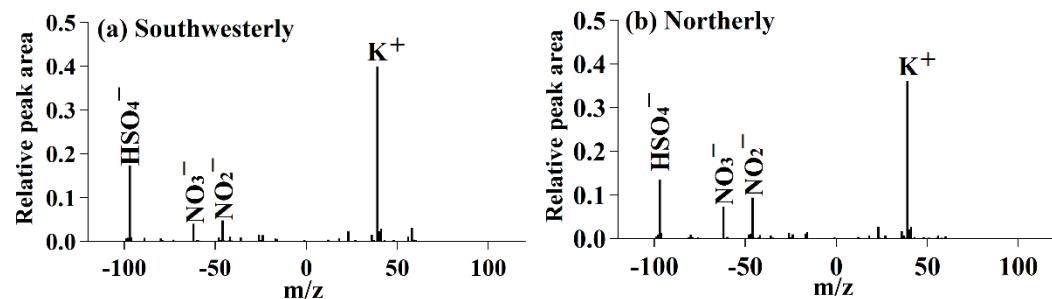
We greatly appreciate the comment. Pratt et al (2011) has been cited here to identify the K-rich particles as biomass burning origin. Related references (Hudson et al., 2004; Pratt et al., 2010) were also cited to discuss the identification of aged biomass burning particles and to evaluate the influence of biomass burning aerosols on cloud activation. Majority of the K-rich cloud residues observed here are expected to originate from long-range transportation. Aging process during long-range transportation can increase soluble species (e.g., sulfate, nitrate and oxalate) in the K-rich particles, in turn, improve CCN activity. Please refer to Lines 232-238 and 464-468 of the revised manuscript.

Lines 221-227: It is not clear if Roth et al. observed a decreased fraction of amines in

the clouds compared to the ambient, or if amines just do not influence the site. The presence and behavior of amines would be location and season dependent, so this discussion is not clear and seems to be comparing studies without considering commonalities.

We agree with the comment that the presence and behavior of amines would be location and season dependent. We have made it clear by comparing an Nf of amine-containing aerosol between cloud residues and background aerosol (9% versus 2% by number) in Roth et al. (2016). It indicates a preferential formation of amine in cloud. Aqueous reaction improving the participation of amine has been observed in Guangzhou (Zhang et al., 2012a) and Southern Ontario (Rehbein et al., 2011). Please refer to Lines 263-267 of the revised manuscript.

Lines 244-247: To further understand the source of the Na-rich particles, were they present for both coastal and non-coastal wind directions? Is there a difference in the average mass spectra for these wind directions considering the minor peaks? Are industrial sources located in both directions?


Na-rich particles were resulted from varied sources, including industrial emissions, sea salt or dry lake beds (Moffet et al. 2008). The Nf of the Na-rich cloud residues did not increase from continental (Northerly) air mass to maritime (southwesterly) air mass on 21 Jan (3.3% versus 2.4% by number). However, related sea salt ion peak area (m/z, 81/83Na₂³⁵Cl/Na₂³⁷Cl) were enhanced for Na-rich particles origination from maritime air mass relative to continental air mass (3.8 ± 2.4 times). Continental air masses crossed industrial areas where located in the Yangtze River Mid-Reaches city cluster (Figure 2). Industrial emissions was a possible contributor to Na-rich particles under the influence of continental air masses (Wang et al. 2016). This might suggests that the Na-rich particles were contributed by both the industrial emissions and sea salt. Therefore, under the influence of maritime air mass, the signals for sea salt contribution became stronger. Please refer to Lines 299-310 of the revised manuscript.

Lines 263-267: While ammonium nitrate does not contribute to the dust nitrate observed here, it is not appropriate to generalize this statement to suggest that previous studies in other very different locations did not measure ammonium nitrate.

We agree with the comment. We have revised this sentence to “in this region, ammonium nitrate was not a predominant form of nitrate in the Dust cloud residues”, to make it clear. Please refer to Lines 339-340 of the revised manuscript.

Lines 319-329: Was there a mass spectral difference in the K-rich particle type between the N and SW wind directions that would aid in source identification for the two air masses?

A similarity in averaged mass spectrum of the K-rich residues was found for the southwesterly and northerly air masses (Figure S6). Please refer to Lines 419-420 of the revised manuscript.

Figure S6: Average mass spectra of K-rich residues for southwesterly (a) and northerly (b) air masses.

Section 3.6: This authors should consider incorporating this discussion into the other sections of the manuscript so that comparisons are made when results are discussed. In addition, the authors should consider differences in atmospheric composition at the various sites. when discussing specific comparisons (i.e. are the contributing sources and magnitudes the same, or may this be a reason for differences? Or, are the seasons the same?). Currently only a general statement on lines 431-433 states that differences are specific to geographic location. As noted above, the literature cited is also not comprehensive, and this section would benefit from additional literature searching.

We agree with the comment. We have incorporated this discussion into the other sections of the manuscript. We have also discussed same or different reason for sources and magnitudes of cloud residues at various sites. We have also cited related literatures (Drewnick et al., 2007; Twohy et al., 2008; Twohy et al., 2009; Matsuki et al., 2010; Kamphus et al., 2010; Pratt et al., 2010b; Zelenyuk et al., 2010; Roth et al., 2016; Bi et al., 2016). Please refer to Lines 241-253, 273-275, 464-471, 489-494 and 505-509 of the revised manuscript.

Figure 4: It would be useful to add comparisons to the ambient and interstitial particles here. In addition, since the cloud residue types changed significantly based on air mass

origin (N vs SW), as stated in Section 3.4, it would be useful to separate out these wind directions and show the fractions of cloud residue, interstitial, and ambient, separated for the two wind directions.

We agree with the the comment. The fractions of the ambient and non-activated particles were provided in Figure 7. The fractions of cloud residue in comparison to ambient particles was performed based on northerly air mass. Please refer to section 3.4 of the revised manuscript.

During the sampling period, the cloud events occurred once the southwesterly air masses were dominant. Therefore, a comparison between cloud residues and ambient particles cannot be addressed under the influence of southwesterly air masses. Please refer to Lines 445-448 of the revised manuscript.

A comparison of cloud residues and non-activated particles has been performed. However, from 22 to 23 Jan during cloud III events, the air mass encountered initial mixing of cloud-free air originated from north and cloudy air originated from southwest. Therefore, a comparison of cloud residues and non-activated particles was not performed for a special wind direction during cloud III events. Please refer to section 3.5 of the revised manuscript.

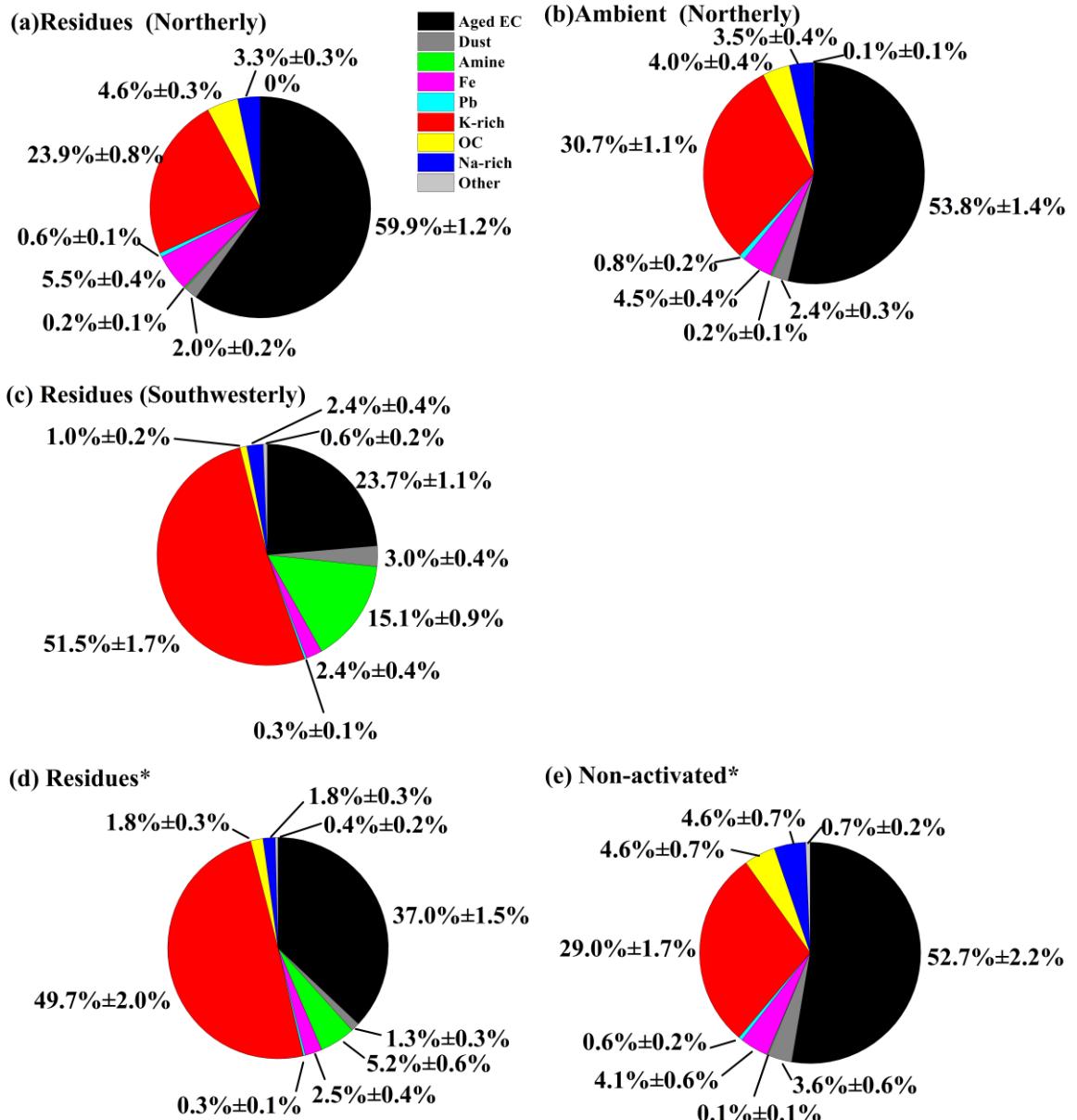


Figure 7: Number fraction of the cloud residues, ambient and non-activated particles. (a) cloud residues during northerly air mass; (b) ambient particle during northerly air mass; (c) cloud residues during southwesterly air mass; (d) cloud residues and (e) non-activated particles were alternately sampled with interval of one hour during the cloud III event; Uncertainties were calculated assuming Poisson statistics for analyzed particles.

Technical Comments:

Lines 24-26, 45, & other locations (search document): Please clarify what is meant by "intensity" in these statements.

Intensity refers to average ion peak area. We have clarified them. Please refer to Lines 24, 43-44 and 486 of the revised manuscript.

Lines 29-30: The phrase "To estimate how atmospheric aerosol particles respond to chemical properties of cloud droplets" is not clear since aerosols determine cloud droplet chemistry, outside of aqueous processing from dissolved trace gases.

The phrase has been changed to "To estimate how atmospheric aerosol particles interact with chemical composition of cloud". Please refer to Line 27 of the revised manuscript.

Lines 41-42: For readers not familiar with the region, it would be helpful to know the suggested source of the amine particles, which the authors are presumably referring to with respect to the wind direction change.

Sources of the amine particles (e.g., ocean and livestock areas) were provided under the influence of southwesterly air masses. Please refer to Lines 40 of the revised manuscript.

Line 44: What does "highly associated" mean in this context? This phrase occurs in other locations in the manuscript as well.

We have modified them. Higher Nfs of nitrate (88-89%) were found in the Dust and Na-rich cloud residues relative to sulfate (41-42%) and ammonium (15-23%). Please refer to Lines 41-43 and 530-532 of the revised manuscript.

Lines 76-80: This sentence incorrectly cites Pratt et al 2010a for cloud droplet residues. The authors should also consider Drewnick et al 2007, J. Atmos. Chem., who did observe lower sulfate mass fractions for droplet residues compared to ambient aerosol. Pratt et al 2010 (J. Geophys. Res.) shows increased mixing with sulfate/nitrate for liquid clouds, compared to ice clouds, as another example.

We have deleted the citation of Pratt et al 2010a and added a citation of Drewnick et al 2007 here. Please refer to Lines 74-75 of the revised manuscript.

A comparison of liquid clouds and ice clouds is beyond the scope of this work, Pratt et

al 2010 (J. Geophys. Res.) was not cited here.

Line 161: It should be clarified that “cloud droplet residue concentrations”, not “cloud droplet concentrations” were measured by the SMPS. This is an important distinction.

We have corrected “cloud droplet concentration” to “cloud residual concentration” throughout the manuscript. Please refer to Lines 165-168 of the revised manuscript.

Lines 163-165: Wouldn’t hazy days with low visibility be characterized by high, rather than low, PM2.5 concentrations? This is confusing.

Low level of PM_{2.5} ($\sim 12.7 \mu\text{g m}^{-3}$) excludes the influence of hazy days. Please refer to Lines 169-170 of the revised manuscript.

Line 165: Change “rainy” to “rain”.

We have changed “rainy” to “rain” accordingly. Please refer to Line 171 of the revised manuscript.

Line 216: It is important to consider the relative enhancement in amine peaks when using a 266 nm laser and that the amines themselves may not comprise the majority of the particle mass. See Pratt et al. 2009, Environ. Sci. Technol.

We have emphasized the effect of 266 nm ionization laser on amine peaks (Pratt et al., 2009). Please refer to Lines 257-259 of the revised manuscript.

Lines 230-232: It should be clarified when discussing previous vs the current study, and if previous studies are being discussed, the season should be noted if there are seasonal variations.

We agree with the comments. We have clarified the specific season in the discussion. At Mt. Tai in northern China, a high concentration of Ca²⁺ in cloud/fog water was mainly attributed to a sandstorm event during spring season (Wang et al., 2011). At Mt. Heng in southern China, abundant crust-related elements (e.g., Al) observed in cloud water is due to Asian dust storms occurring on March–May (Li et al., 2017). Based on backward trajectory, the site in this study was less affected by sandstorm source in northwestern China during cloud events. Local dust emission by anthropogenic-disturbing soils or removing vegetation cover can be excluded as a result of forest

protection. Therefore, a low fraction (2.9% by number) of dust cloud residue is acceptable in the present study. Please refer to Lines 278-287 of the revised manuscript.

Lines 231-237: Some grammar fixes are needed here.

The language has been edited by a native speaker.

Line 279: Please be more specific with the statement “plays a key role in cloud processes”. you mean that these particles were preferentially activated? Is there evidence of this?

We have reworded this sentence: “This result also implies that ammonium-containing particles are preferentially activated or enhanced by uptake of gaseous NH₃ to neutralize acidic cloud droplets for the OC and EC types. Please refer to Lines 354-356 of the revised manuscript.

Lines 358-396: The phrasing in these paragraphs should be improved for greater clarity and correct grammar.

These paragraphs have been reworded. Please refer to Lines 463-509 of the revised manuscript.

Line 390: This is an important finding, yet the phrasing “sulfate was observed to diminish” not clear, particularly when considering the following sentence. Please clarify.

We have rephrased and changed to “sulfate intensity was observed to diminish”. Please refer to Lines 502-503 of the revised manuscript.

Lines 395-396: What discrepancy? This is not clear.

The discrepancy refers to “the mass or number fraction of sulfate-containing particles in the cloud residues changed between ambient and interstitial (non-activated) particles (Drewnick et al., 2007; Twohy and Anderson, 2008; Schneider et al., 2017)”. We have changed “this discrepancy” to “these changes” to make it clear. Please refer to Lines 505-509 of the revised manuscript.

Line 397: Quantitatively, what is “no remarkable change”? The phrase “remarkable

“change” is used elsewhere in the manuscript as well, but it isn’t defined.

“no remarkable change”: We added the data on number fractions when the residual particles were compared with ambient or non-activated particles. “remarkable change” has been modified to “remarkable decrease/increase” and added the data on number fractions when the residual particles were compared with ambient or non-activated particles. Please refer to Lines 511-513 and 518-519 of the revised manuscript.

Table 2: Not sure what the authors mean by “way” here.

“way” : Cloud residues and non-activated particles were alternately sampled with interval of one hour during the cloud III event. Table 2 has been replaced by pie charts in Figure 7. Please refer to Lines 452-453 of the revised manuscript and the caption of Figure 7.

Figure 2: The lines and numbers on this map are difficult to read. It would be useful to make the text bold perhaps and increase the width of the lines.

We have changed accordingly. Please refer to the modified Figure 2a.

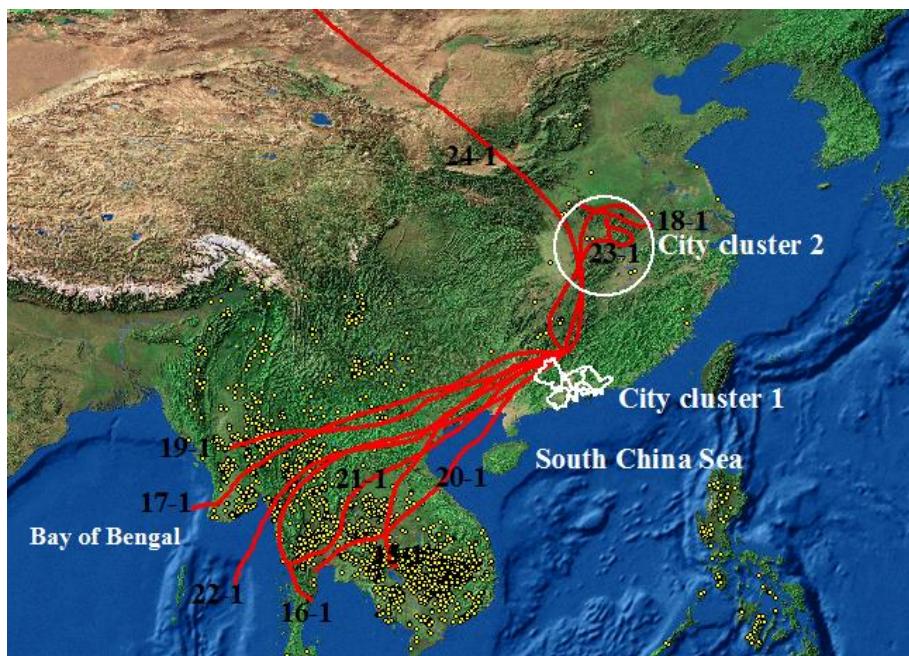


Figure 3: This plot is difficult to read. The authors should consider showing only the most abundant (and discussed) particle types in the main text figure and moving the others (including “Other”, which is somewhat meaningless as an average mass spectrum if it is made up of a diverse population of particles) to the supplemental

information.

We have improved Figure 3 resolution. Please refer to the modified Figure 3. Average mass spectrum of Pb, OC and Other types have been moved to the supplemental information (Figure S4)

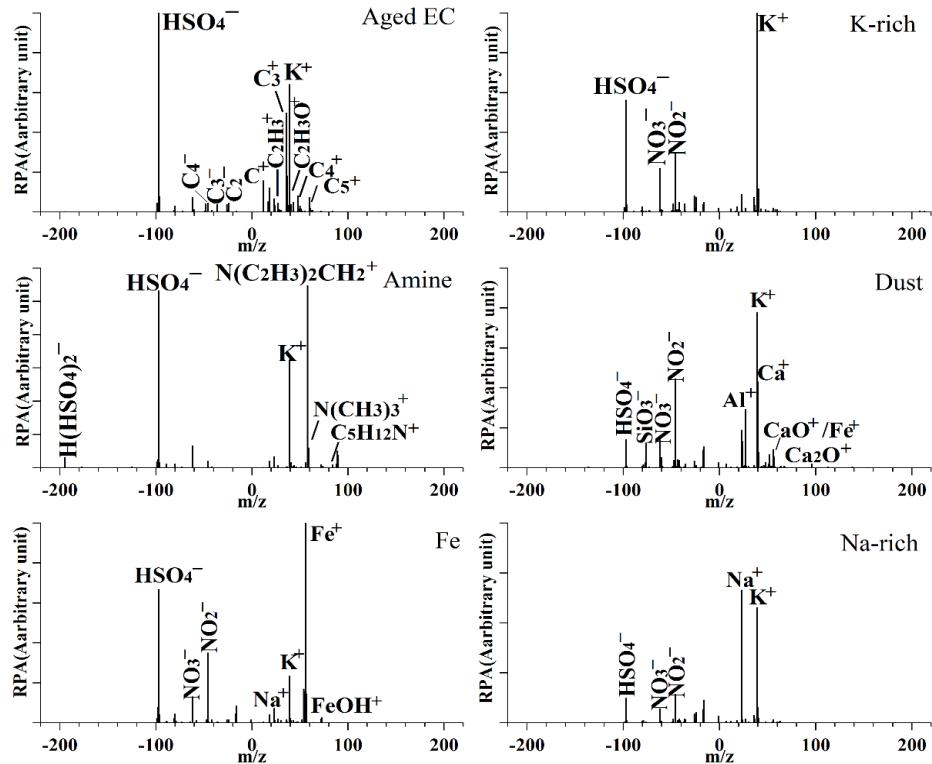


Figure 3: Averaged positive and negative mass spectra for the main 6 particle types (Aged EC, K-rich, Amine, Dust, Fe, Na-rich) of the sampled particles during the whole sampling period. RPA in the vertical axis refers to relative peak area. m/z in the horizontal axis represents mass-to-charge ratio.

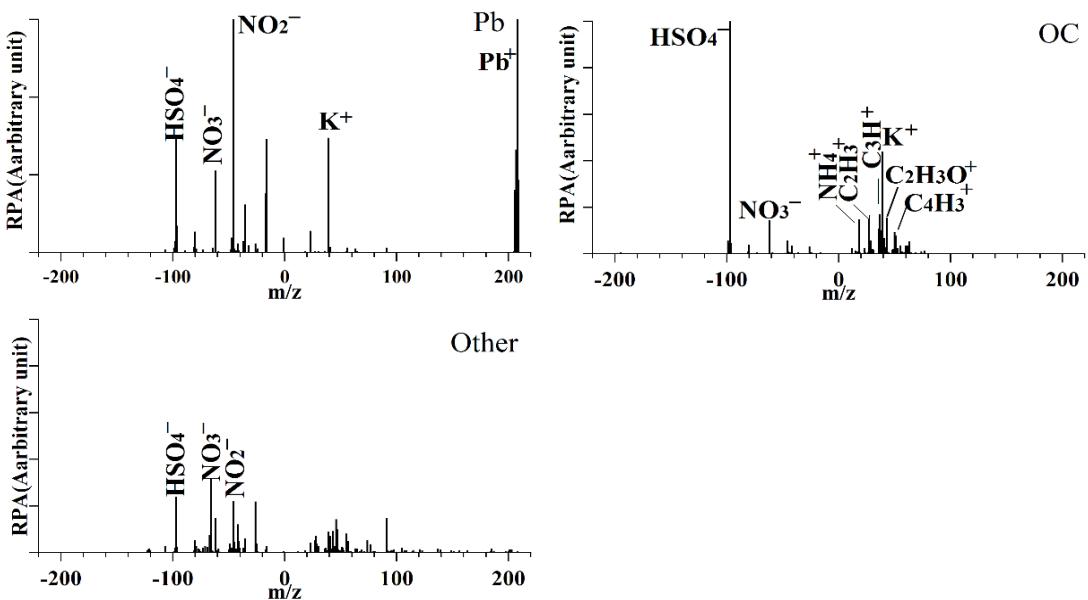


Figure S4: Averaged positive and negative mass spectra for Pb, OC and Other types of the sampled particles during the whole sampling period. RPA in the vertical axis refers to relative peak area. m/z in the horizontal axis represents mass-to-charge ratio.

Figures 7 and 8: Please indicate whether positive peak areas indicate preferentially in the cloud residues and negative indicate preferentially in the ambient/interstitial particles. This is currently not clear in the figure captions.

We have clarified them in the captions of Figures 8 and 9 of the revised manuscript.

Figure 8: Mass spectral subtraction plot of the average mass spectrum corresponding to cloud residues minus ambient particles. Positive peak area corresponds to higher abundance in cloud residues, whereas negative peak area show higher intensity in ambient particles.

Figure 9: Mass spectral subtraction plot of the average mass spectrum corresponding to cloud residues minus non-activated particles. Positive peak area correspond to higher abundance in cloud residues, whereas peak area show higher intensity in non-activated particles.

Figure S4: It is not clear in the maps where RH < and > 90% are located.

We have added contour lines of two relative humidity (50%, 70%) in the Figure S5. Please refer to the modified Figure S5.

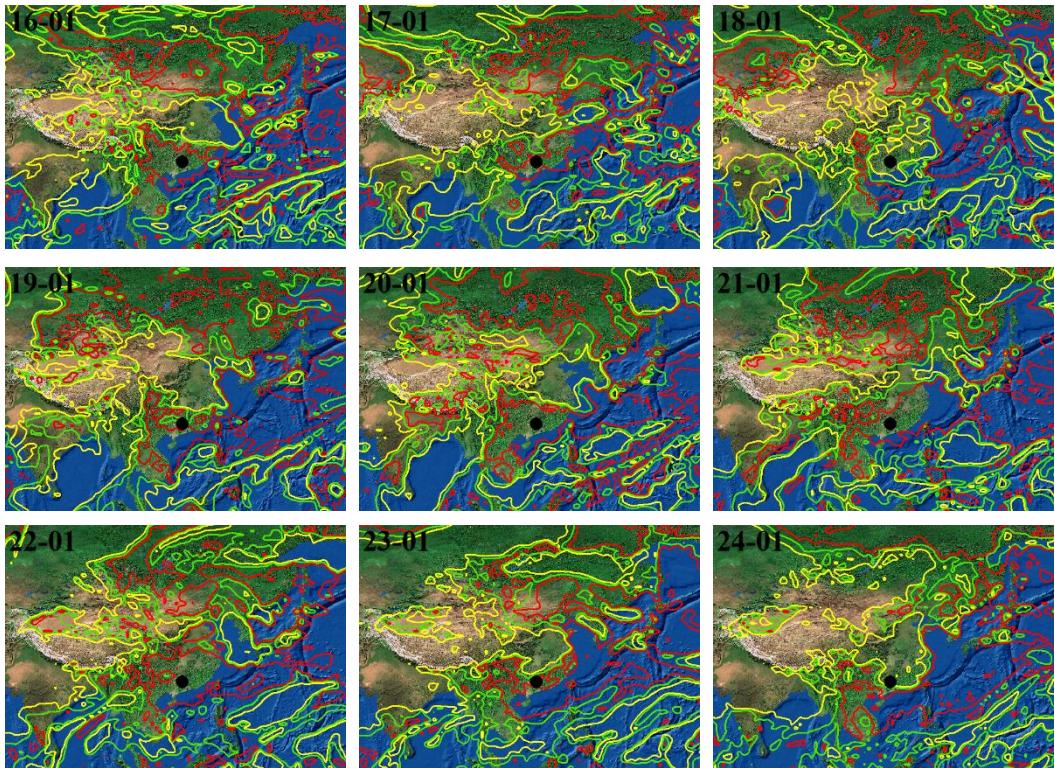


Figure S5: At 850 hPa (about 1,500 m a.s.l), Contour lines (red lines) of relative humidity 90%; Contour lines (green lines) of relative humidity 70%; Contour lines (yellow lines) of relative humidity 50%. Black mark represents the observed site. Data is available at <ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/>.

References:

Bator, A. and Collett, J.L.: Cloud chemistry varies with drop size, *J. Geophys. Res. Atmos.*, 102, 28071-28078. 1997.

Berg, L.K., Berkowitz, C.M., Hubbe, J.M., Ogren, J.A., Hostetler, C.A., Ferrare, R.A., Hair, J.W., Dubey, M.K., Mazzoleni, C. and Andrews, E.: Overview of the cumulus humilis aerosol processing study, *B. Am. Meteorol. Soc.* 90, 1653-1667, 2009.

Bi, X., Lin, Q., Peng, L., Zhang, G., Wang, X., Brechtel, F. J., Chen, D., Li, M., Peng, P. a., Sheng, G. and Zhou, Z.: In situ detection of the chemistry of individual fog droplet residues in the Pearl River Delta region, China, *J. Geophys. Res. Atmos.*, 121, 9105-9116, 2016.

Coggon, M.M., Sorooshian, A., Wang, Z., Craven, J.S., Metcalf, A.R., Lin, J.J., Nenes, A., Jonsson, H.H., Flagan, R.C., Seinfeld, J.H.: Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California, *J. Geophys. Res. Atmos.*, 119, 6724-6748, 2014.

Cziczo, D.J., Froyd, K.D., Hoose, C., Jensen, E.J., Diao, M., Zondlo, M.A., Smith, J.B., Twohy, C.H., Murphy, D.M.: Clarifying the dominant sources and mechanisms of cirrus cloud formation,

Science, 340, 1320-1324, 2013.

Cziczo, D.J., Murphy, D.M., Hudson, P.K., Thomson, D.S.: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE, *J. Geophys. Res. Atmos.*, 109, D04201, doi:10.1029/2003JD004032, 2004.

Deng, X., Wu, D., Shi, Y., Tang, H., Fan, S., Huang, H., Mao, W. and Ye, Y.: Comprehensive analysis of the macro-and micro-physical characteristics of dense fog in the area south of the Nanling Mountains (in Chinese), *J. Trop. Meteorol.*, 23, 424-434. 2007,

Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A., Weimer, S., and Borrmann, S.: Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI, *J. Atmos. Chem.*, 56, 1-20, 2007.

Freud, E., Rosenfeld, D., Andreae, M.O., Costa, A.A. and Artaxo, P.: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds, *Atmos. Chem. Phys.*, 8, 1661-1675, 2008.

Herckes, P., Valsaraj, K.T. and Collett, J.L.: A review of observations of organic matter in fogs and clouds: Origin, processing and fate, *Atmos. Res.*, 132, 434-449. 2013.

Hudson, P.K., Murphy, D.M., Cziczo, D.J., Thomson, D.S., de Gouw, J.A., Warneke, C., Holloway, J., Jost, H.J., Hübner, G.: Biomass-burning particle measurements: Characteristic composition and chemical processing, *J. Geophys. Res. Atmos.*, 109, D23S27, doi:10.1029/2003JD004398, 2004.

Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F., Keller, L., Cziczo, D. J., Mertes, S., Borrmann, S., and Curtius, J.: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6), *Atmos. Chem. Phys.*, 10, 8077-8095, 2010.

Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A., Nie, W., Xue, L., Wang, X. and Wang, W.: Evolution of trace elements in the planetary boundary layer in southern China: effects of dust storms and aerosol-cloud interaction, *J. Geophys. Res. Atmos.*, 122, 3492-3506, 2017.

Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., Zhang, J.: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, *Atmos. Chem. Phys.*, 7, 3425-3446, 2007.

Matsuki, A., Schwarzenboeck, A., Venzac, H., Laj, P., Crumeyrolle, S., Gomes, L.: Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006. *Atmos. Chem. Phys.*, 10, 1057-1069, 2010.

Moffet, R.C., Foy, B. d., Molina, L. a., Molina, M., and Prather, K.: Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry, *Atmos. Chem. Phys.*, 8, 4499-4516, 2008.

Moffet, R.C., Prather, K.A.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates, *Proc. Natl. Acad. Sci. USA*, 106, 11872-

11877, 2009.

Pratt, K. A., Hatch, L. E., and Prather, K. A.: Seasonal volatility dependence of ambient particle phase amines, *Environ. Sci. Technol.*, 43, 5276-5281, 2009.

Pratt, K. A., Heymsfield, A. J., Twohy, C. H., Murphy, S. M., DeMott, P. J., Hudson, J. G., Subramanian, R., Wang, Z., Seinfeld, J. H., and Prather, K. A.: In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds, *J. Atmos. Sci.*, 67, 2451-2468, 2010a.

Pratt, K.A., Murphy, S., Subramanian, R., DeMott, P., Kok, G., Campos, T., Rogers, D., Prenni, A., Heymsfield, A., Seinfeld, J.: Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes, *Atmos. Chem. Phys.*, 11, 12549-12565, 2011.

Pratt, K.A., Twohy, C.H., Murphy, S.M., Moffet, R.C., Heymsfield, A.J., Gaston, C.J., DeMott, P.J., Field, P.R., Henn, T.R., Rogers, D.C., Gilles, M.K., Seinfeld, J.H., Prather, K.A.: Observation of playa salts as nuclei in orographic wave clouds. *J. Geophys. Res. Atmos.*, 115, doi:10.1029/2009JD013606, 2010b.

Qin, X., Bhave, P.V. and Prather, K. A.: Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements, *Anal. Chem.*, 78(17), 6169-6178, doi: 10.1021/ac060395q, 2006.

Rehbein, P. J., Jeong, C. H., McGuire, M. L., Yao, X., Corbin, J. C., and Evans, G. J.: Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine, *Environ. Sci. Technol.*, 45, 4346-4352, doi:10.1021/es1042113, 2011.

Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae, M.O.: Flood or drought: how do aerosols affect precipitation? *Science*, 321, 1309-1313, 2008.

Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010, *Atmos. Chem. Phys.*, 16, 505-524, 2016.

Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Uptake of nitric acid, ammonia, and organics in orographic clouds: Mass spectrometric analyses of droplet residual and interstitial aerosol particles, *Atmos. Chem. Phys.*, 17, 1571-1593, 2017.

Seinfeld, J.H., Bretherton, C., Carslaw, K.S., Coe, H., DeMott, P.J., Dunlea, E.J., Feingold, G., Ghan, S., Guenther, A.B., Kahn, R.: Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. *Proc. Natl. Acad. Sci. USA*, 113, 5781-5790, 2016.

Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.: Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), *J. Geophys. Res. Atmos.*, 112(D13), doi:10.1029/2007JD008537, 2007a.

Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M.,

Mülmenslådt, J., Russell, L. M., Jonsson, H. H. and Seinfeld, J. H.: Characterisation and airborne deployment of a new counterflow virtual impactor inlet, *Atmos. Meas. Tech.*, 5, 1259-1269, doi:10.5194/amt-5-1259-2012, 2012.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y.: The aerosol-climate model ECHAM5-HAM. *Atmos. Chem. Phys.*, 5, 1125-1156. 2005.

Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, *Chem. Rev.*, doi:10.1021/acs.chemrev.5b00529, 2016.

Targino, A.C., Krejci, R., Noone, K.J., Glantz, P.: Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment, *Atmos. Chem. Phys.*, 6, 1977-1990, 2006.

Twohy C.H. and Anderson J. R.: Droplet nuclei in non-precipitating clouds: composition and size matter. *Environ. Res. Lett.*, 3, 045002, doi:10.1088/1748-9326/3/4/045002, 2008.

Twohy, C.H., Kreidenweis, S.M., Eidhammer, T., Browell, E.V., Heymsfield, A.J., Bansemer, A.R., Anderson, B.E., Chen, G., Ismail, S., DeMott, P.J., Van Den Heever, S.C.: Saharan dust particles nucleate droplets in eastern Atlantic clouds, *Geophys. Res. Lett.* 36, doi: 10.1029/2008GL035846, 2009.

Twohy, C.H., Poellot, M.: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: evidence for homogeneous and heterogeneous ice formation, *Atmos. Chem. Phys.*, 5, 2289-2297, 2005.

Wang, H., An, J., Shen, L., Zhu, B., Xia, L., Duan, Q. and Zou, J.: Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry, *Atmos. Environ.*, 132, 123-132, 2016.

Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J. L., and Wang, W.: Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China, *Atmos. Res.*, 99, 434-442, 2011.

Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., Macdonald, A. M., Ovchinnikov, M., and Strapp, W.: In Situ Characterization of Cloud Condensation Nuclei, Interstitial, and Background Particles Using the Single Particle Mass Spectrometer, SPLAT II†, *Anal. Chem.*, 82, 7943-7951, 2010.

Zhang, G., Bi, X., Chan, L. Y., Li, L., Wang, X., Feng, J., Sheng, G., Fu, J., Li, M., and Zhou, Z.: Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou, China, *Atmos. Environ.*, 55, 121-126, doi:10.1016/j.atmosenv.2012.03.038, 2012a.

Response to comments

Manuscript Number: acp-2017-23

Title: In situ chemical measurement of individual cloud residue particles at a mountain site, South China. Qinhao Lin et al.

Received and published: 20 March 2017

Referee #2: J. Schneider

In their manuscript "In situ chemical measurement of individual cloud residue particles at a mountain site, South China", Qinhao Lin and co-workers report on the analysis of single particles from cloud residues using a single particle aerosol mass spectrometer. They observed a high fraction of EC-containing particle in the residuals and detected amines with a high variability. Nitrate was found to be increased in residuals compared to ambient particles, while sulfate showed a dependency on the chemical composition of the residues. The topic of the paper is well suited for ACP, and the data itself are interesting, because single particle measurements of cloud residuals are still sparse. However, the manuscript suffers from many unclear statements and some severe uncertainties regarding the analysis of interstitial particles. I have many points where more information is needed or where I disagree. None of these points alone would be a "major" comment, but the multitude of my remarks and questions suggest to require a major revision and to reconsider the manuscript after my comments listed below have been addressed.

We would like to thank Prof. J. Schneider for his useful comments and recommendations to improve the manuscript. We agree with the comments, and careful revision has been made accordingly, please refer to the following responses for details.

Comments and remarks:

Title: I suggest to change the title to "In situ chemical composition measurement of individual cloud residue particles at a mountain site, South China"

We have changed accordingly. Please refer to Lines 1-2 of the revised manuscript.

Page 4, lines 64 – 68:

More references are needed here to discuss the anthropogenic influence on cloud particles, not just two papers on single particle analysis.

37
38 As also suggested by Reviewer 1, We have added references (Stier et al., 2005; Sorooshian
39 et al., 2007b; Lohmann et al., 2007; Rosenfeld et al., 2008; Roth et al., 2016; Seinfeld. et
40 al., 2016; Li et al., 2017) to discuss the anthropogenic influence on cloud particles.
41 Anthropogenic particles can increase number concentration of small cloud droplets, in turn,
42 affect reflectivity and life time of clouds (Rosenfeld et al., 2008; Stier et al., 2005;
43 Lohmann et al., 2007). In-situ cloud chemical measurements show varied chemical
44 composition of cloud droplets at various regions (Sorooshian et al., 2007a; Roth et al., 2016;
45 Li et al., 2017). Although a large number of aerosol/cloud studies over the past 20 years,
46 the uncertainty for evaluating radiative forcing due to aerosol-cloud interactions has not
47 been reduced (Seinfeld. et al., 2016). Please refer to Lines 55-62 of the revised manuscript.
48
49

50 *Page 5, line 79: Replace "Nf of sulfate" by "NF of sulfate-containing particles"*

51
52 We have changed it accordingly. Please refer to Line 74 of the revised manuscript.
53

54 *Page 5, line 80: Replace "other study" by "other studies"*

55
56 We have changed it accordingly. Please refer to Line 76 of the revised manuscript.
57

58 *Page 7, line 122: Was the humidity measured in the evaporation chamber? How do you
59 make sure that all water evaporates?*

60
61 Relative humidity (RH) was around 30% in the evaporation chamber, thus it can be
62 assumed that the majority of water was evaporated. Please refer to Lines 131-134 of the
63 revised manuscript.
64

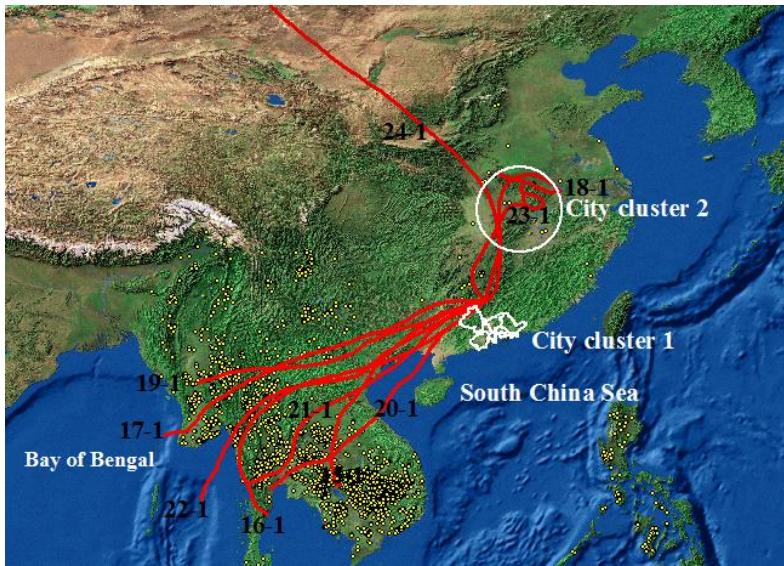
65 *Page 8, lines 147-149: Did you do the size calibration on the mountain top station? What
66 was the ambient pressure during the measurements and during the calibration? Did you
67 check the inlet flow or the pressure inside the aerodynamic lens?*

68
69 We did the size calibration on the mountain top station. Polystyrene latex spheres
70 (Nanosphere Size Standards, Duke Scientific Corp., Palo Alto) of 0.2-2.0 μm in diameter
71 were used to calibrate the sizes of the detected particles on the mountain top station. The
72 ambient pressure was 830 hPa (826-842 hPa) during the measurements and during the

73 calibration. The pressure inside the aerodynamic lens maintains about 3 hPa during the
74 measurements and during the calibration. Please refer to Lines 152-155 of the revised
75 manuscript.

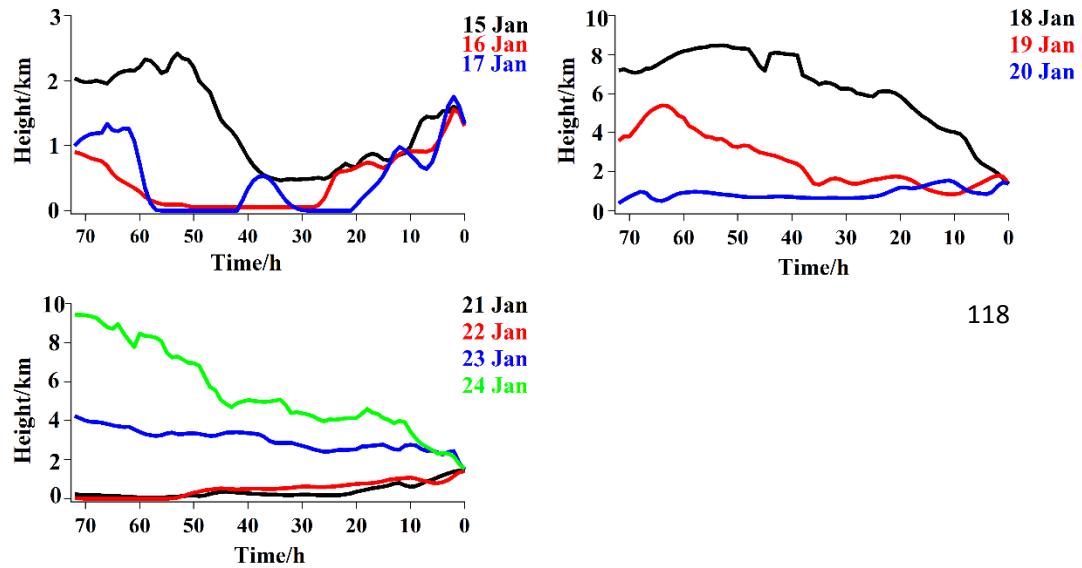
76
77 *Page 8, line 161: The SMPS does not measure the cloud droplet concentration but the*
78 *cloud residue concentration. Cloud droplets would have to be measured outside in the*
79 *cloud (by FSSP or similar instrumentation).*

80
81 We have corrected the mistake. “cloud droplet concentration” was replaced with “cloud
82 residual concentration”. Please refer to Lines 165-168 of the revised manuscript.


83
84 *Page 9, line 171: As I will outline in more detail below, I doubt the existence of interstitial*
85 *particles in this size range.*

86
87 The period of collecting interstitial particles on 22-23 Jan encountered initial mixing of
88 northerly cloud-free air (dry and cold airstreams) and southwesterly cloudy air (moist
89 airflows). The dry northern air mass might lower supersaturation, only larger particles
90 could be activated. This might result in non-activated particles observed to be above 200
91 nm here (Mertes et al., 2005; Kleinman et al., 2012; Hammer et al., 2014). To make it more
92 accurate, we prefer to name “non-activated particles”, rather than “interstitial particles”.
93 We have clarified them. Please refer to Lines 452-461 of the revised manuscript.

94
95 *Page 9 lines 184-185 and Figure 2: More info on the trajectories is needed: How did the*
96 *vertical evolution look like? How well is the mountain represented in the model? Is 1800*
97 *m the best altitude that represents the mountain site? Please add also the most important*
98 *megacities to the map to help estimating the influence of anthropogenic emissions.*


99
100 We have added the vertical evolution of the trajectories. The beginning of southwesterly
101 air masses traversed at lower heights relative to northerly air masses. Please refer to the
102 Figure 2 (b). Heights of the HYSPLIT model in the study region (a spatial resolution of
103 $0.5^\circ \times 0.5^\circ$) was averaged 500 m a.s.l, which was lower than height of the observed site
104 (1,690 m a.s.l). Therefore, a height of 1,800 m a.s.l. (approximately 100 m above the
105 observed site) was used as an endpoint in the model. Continental air masses crossed
106 industrial areas where located in the Yangtze River Mid-Reaches city cluster (Figure 2a).
107 The site was possibly affected by industrial emissions under the influence of continental
108 air masses. Please refer to Lines 189-196 of the revised manuscript.

109 (a)

110

111 (b)

124

125 Figure 2: (a) HYSPLIT back trajectories (72 h) for air masses at 1,800 m during the whole
126 sampling period. The white borders and circle refers to the Pearl River Delta (city cluster
127 1) and Yangtze River Mid-Reaches city cluster (city cluster 2), respectively. The yellow
128 dots represent fire dots during the study periods. The fire dots are available at
129 <https://earthdata.nasa.gov/>; (b) Heights (above model ground) of the air masses as a
130 function of time.

131

132

133 *Page 10, line 207: I suggest moving Figure S3 to the main paper.*

134

135 *Figure S3 has been moved to the main paper, please refer to Figure 4 in the revised*
136 *manuscript.*

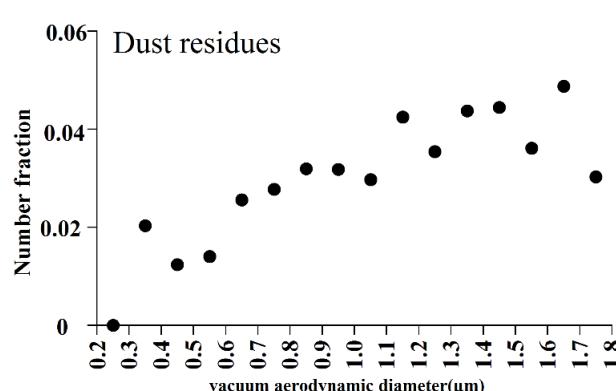
137

138 *Page 11, lines 221-222: But Roth et al. found a clear enhancement of amines in residues*
139 *compared to the background aerosol (9% to about 2%).*

140

141 We have added a comparison Nf of amine-containing particles between cloud residues and
142 background aerosol reported by Roth et al., (2016). Please refer to Lines 265-267 of the
143 revised manuscript.

144


145 *Page 12, lines 235-237: I agree that dust is found more frequently in the coarse particle*
146 *size range, but then I would expect to see an increase of the dust fraction in the residues*
147 *with increasing diameter. This is not seen in Figure S3. Is the identification of dust reliable?*
148 *What about the Fe-containing particles? They might be dust as well.*

149

150 We agree with the comment. As a matter of fact, Nf of dust cloud residues generally
151 increased with increasing diameter. Please refer to Lines 276-278 of the revised manuscript.

152

153 Approximately 16% of the Fe cloud residues contained Ca peak (m/z 40). Relatively weak
154 Na and K peaks in the Fe particles possibly contributes to anthropogenic sources (Zhang
155 et al., 2014), especially northern air mass across iron/steel industrial activities in Yangtze
156 River Mid-Reaches city clusters (Figure 2). These might suggest that Fe cloud residues
157 was likely to have come from mixed sources. Please refer to Lines 290-294 of the revised
158 manuscript.

169 *Page 12, lines 238-243: What could be the source of these Pb- and Fe-containing particles?*
170 *See also comment above. Can the Fe-containing particles belong to the dust-type?*

171
172 As mentioned above, the Fe cloud residues contain Ca peak (m/z 40, 16% by number) and
173 relatively weak Na and K peaks, which possibly contributes to anthropogenic sources
174 (Zhang et al., 2014), especially northern air mass across iron/steel industrial activities in
175 Yangtze River Mid-Reaches city clusters (Figure 2). These might suggest that this particle
176 type likely originated from mixed sources. Please refer to Lines 290-294 of the revised
177 manuscript.

178
179 The Pb particles showed its typical ions at m/z 208Pb⁺ and internally mixed with K and Cl.
180 Previous studies found that K and Cl internally mixed with Pb particles have a possible
181 origination of waste incineration (Zhang et al., 2009) or iron and steel facility (Tsai et al.,
182 2007). Please refer to Lines 315-318 of the revised manuscript.

183
184 *Page 12, lines 244-252: If these particles were from sea salt, they should contain chloride
185 ions. That is hard to see in Figure 3. Are these Na-rich particles correlated with air masses
186 coming from the ocean?*

187
188 Na-rich particles result from varied sources of industrial emissions or sea salt particles and
189 dry lake beds (Moffet et al. 2008). The Nf of the Na-rich cloud residues did not increase
190 from continental (Northerly) air mass to maritime (southwesterly) air mass on 21 Jan (3.3%
191 versus 2.4% by number). However, sea salt ion peak areas (m/z, 81/83Na₂³⁵Cl/Na₂³⁷Cl)
192 were enhanced for Na-rich particles origination from maritime air mass relative to
193 continental air mass (3.8 ±12.4 times). Continental air masses crossed industrial areas
194 where located in the Yangtze River Mid-Reaches city cluster (Figure 2). Industrial
195 emissions was a possible contributor to Na-rich particles under the influence of continental
196 air masses (Wang et al. 2016). This might suggests that the Na-rich particles were
197 contributed by both the industrial emissions and sea salt. Therefore, under the influence of
198 maritime air mass, the signals for sea salt contribution became stronger. Please refer to
199 Lines 299-310 of the revised manuscript.

200
201 *Page 13, line 259 and Figure 5: How do you distinguish between sulfuric acid and sulfate?
202 Besides, spelling (sulfate, sulphuric acid) should be consistent ("f" or "ph").*

203
204 Sulfate ion peak at m/z -97 HSO₄⁻ and sulfuric acid cluster ion peak at m/z -195 [H(HSO₄)₂⁻]

205 were given in previous single particle studies (Pratt et al., 2009; Rehbein et al., 2011).
206 "Sulphuric acid" has been replaced by "Sulfuric acid". Please refer to the caption of Figure
207 5.

208

209 *Page 13, lines 265-267: What other forms of nitrate do you suggest to be present on the*
210 *Na-rich and dust residues? What about uptake of nitric acid from the gas-phase by the*
211 *cloud droplets? How certain is the identification of ammonium? Which peak was used?*

212

213 The Na-rich and Dust types were mainly composed of alkaline ion peaks (m/z, 23Na⁺, 39K⁺
214 and 40Ca⁺) in the position mass spectra (Figure 3). This suggests that rather than NH₄NO₃,
215 nitrate might exist in the form of Ca(NO₃)₂, NaNO₃ or KNO₃ in the dust and Na-rich cloud
216 residues. Please refer to Lines 340-344 of the revised manuscript.

217

218 We agree with the comment. We have discussed the contribution of uptake of gas-phase
219 HNO₃ to enhanced nitrate in the cloud residues and cited Schneider et al. (2017). Please
220 refer to Lines 334-335 of the revised manuscript.

221

222 Generally, a NH₄⁺ ion signal (m/z 18) was used for identification of ammonium in the
223 analysis of single particle mass spectrometry (Pratt et al., 2009). Please refer to Line 338
224 of the revised manuscript.

225

226 *Page 13, line 268-272: The stability of ammonium nitrate depends also on the humidity. In*
227 *the book by Seinfeld and Pandis (2nd edition, Wiley and Sons, 2006, Chapter 10.4.3) it is*
228 *shown that at 30% RH ammonium nitrate does not exist above 30 C. I would assume that*
229 *the dry carrier gas in the evaporation section is below 30% RH. Thus, it may well be that*
230 *NH4NO3 evaporates in your system.*

231

232 We agree with the comment. We have clarified the artificial effect on ammonium nitrate in
233 the cloud residues. Please refer to Lines 344-346 of the revised manuscript.

234

235 *Page 13, lines 275-276: The sentences "The presence of abundant sulfate in aged EC cloud*
236 *residues was considered to be a good CCN species before activation:" needs rephrasing.*
237 *It is not clear to me what you want to say. Do you mean "aged EC particles mixed with*
238 *sulfate are good CCN"?*

239

240 The sentence has been changed to "aged EC particles mixed with sulfate are good CCN".

241 Please refer to Lines 350 of the revised manuscript.

242

243 *Page 13, line 279: Ammonium will most likely play a key role in the form of ammonium*
244 *sulfate or ammonium nitrate. In organic particles, amines may play that role*
245 *(methylamines). Again: how do you identify ammonium and how do you distinguish*
246 *between amines and ammonium?*

247

248 We agree with the comment. Ammonium will most likely play a key role in the form of
249 ammonium sulfate or ammonium nitrate in the OC and aged EC cloud residues (Zhang et
250 al., 2017). Please refer to Lines 353-354 of the revised manuscript.

251

252 A NH_4^+ ion signal (m/z 18) was used for identification of ammonium. The existences of
253 m/z 59 $\text{N}(\text{CH}_3)_3^+$ (trimethylamine, TMA) and related amine ion signals m/z
254 58 $\text{C}_2\text{H}_5\text{NHCH}_2^+$ (diethylamine, DEA) and m/z 86 $\text{C}_5\text{H}_{12}\text{N}^+$ (triethylamine, TEA) were used
255 for identification of amines (Angelino et al., 2001). Please refer to Lines 254-257 and 338
256 of the revised manuscript.

257

258 *Page 14, line 281 (and Figure 5): Why does oxalate nor correlate with OC?*

259

260 Classification of the OC particles mainly based on intense organic carbon ion signals (e.g.,
261 m/z 27 C_2H_3^+ , 37 C_3H^+ , 43 $\text{C}_2\text{H}_3\text{O}^+$ and 51 C_4H_3^+). However, majority of oxalate-containing
262 particles internally mixed with the K-rich type. Therefore, oxalate was classified to the K-
263 rich type, probably contributed from biomass burning. Noted that K-rich could contain a
264 large abundant of organics (Pratt et al. 2011), however, the signals of organics were covered
265 by the potassium due to its high sensitive to the laser. Please refer to Lines 371-378 of the
266 revised manuscript.

267

268 *Page 14, lines 284-285: What do you mean by "enrichment of TMA in amine cloud*
269 *residuals"? You observe that in 93% of those cloud residuals that are assigned to the*
270 *"amine" type contain TMA. That is not surprising, more surprising is that it's not 100%.*
271 *But that's inside the measurement uncertainties, to my opinion.*

272

273 We have changed "enrichment of TMA in amine cloud residuals" to "presence of TMA in
274 amine cloud residuals". Please refer to Lines 360-361 of the revised manuscript.

275

276 Amine family signals m/z 58 $\text{C}_2\text{H}_5\text{NHCH}_2^+$ and m/z 86 $\text{C}_5\text{H}_{12}\text{N}^+$ were also selected to

277 identify amines (Angelino et al., 2001), leading to only 93% of the "amine" residues
278 containing TMA. Particles that exist a peak signal m/z 58C₂H₅NHCH₂⁺, were found to
279 account for 99% of the Amine residues. Please refer to Lines 254-257 of the revised
280 manuscript.

281

282 *Page 14, lines 294-295: "This may result in 33% by number to the Amine residues
283 containing oxalate." Please rephrase, not clear what you want to say.*

284

285 We have rephrased this sentence to "it may facilitate the entrainment of oxalate (33% by
286 number) in the Amine residues. ". Please refer to Lines 370-371 of the revised manuscript.

287

288 *Page 14, line 298: What does "unscaled" mean? These are absolute particle numbers.*

289

290 Considering that the SPAMS mainly detected in size range 0.2-2.0 μm and has size-
291 dependent transmission efficiency. Detected particles were not corrected by a SMPS.
292 Therefore, detected particles cannot represent real atmospheric particle level. "unscaled"
293 has been changed to "detected particle counts". Please refer to Line 381 of the revised
294 manuscript.

295

296 *Page 14, lines 302-303: You say that the air masses change from northerly on 18 Jan to
297 southwesterly on 19 Jan, but the particles remain similar from 17 Jan (around noon) to 20
298 Jan (noon). On the other hand, the change in particle types is very abrupt from cloud
299 residuals to ambient on Jan 17.*

300

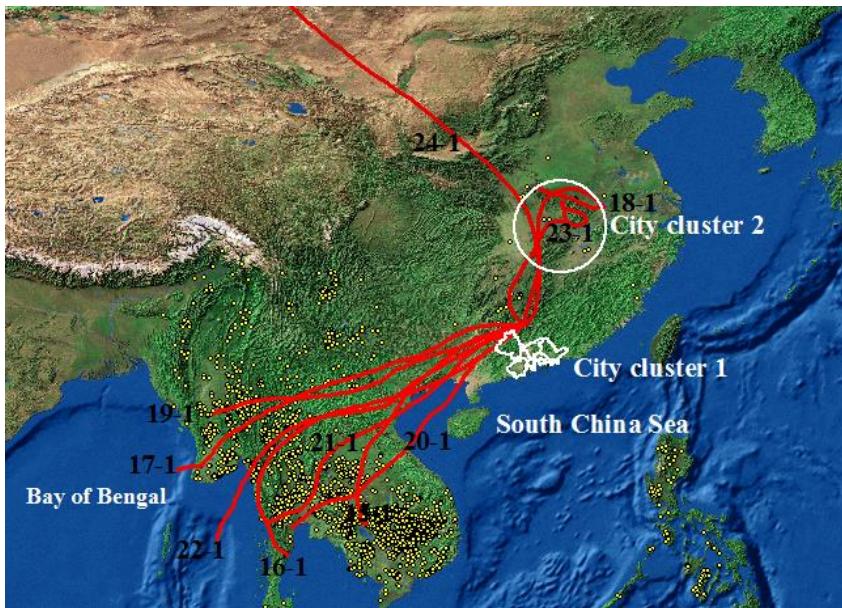
301 Southwesterly wind flow on 19-20 Jan was too weak ($\sim 2.75 \text{ m s}^{-1}$) to dilute particles
302 originated from northerly air masses (Figure 1). Additionally, high RH (90%) contour line
303 at height 1,500 m (a.s.l.) gradually moved to north China from 19 to 20 Jan (Figure S5).
304 These might lead to similar residual particle types observed from 19 Jan to 20 Jan, although
305 the site encountered southwesterly cloudy air on 19-20 Jan (Figure 2). Please refer to Lines
306 400-404 of the revised manuscript.

307

308 Ambient RH showed an abrupt decrease from nearly 100% at 10:00 to 85% at 11:00 on 17
309 Jan (Figure 1). The entrained particles originated from northern air mass might have
310 insufficient supersaturation to activate as cloud droplets. It leads to a very abrupt change
311 in Nf of particle types from cloud residues to ambient particles on Jan 17. Please refer to
312 Lines 382-390 of the revised manuscript.

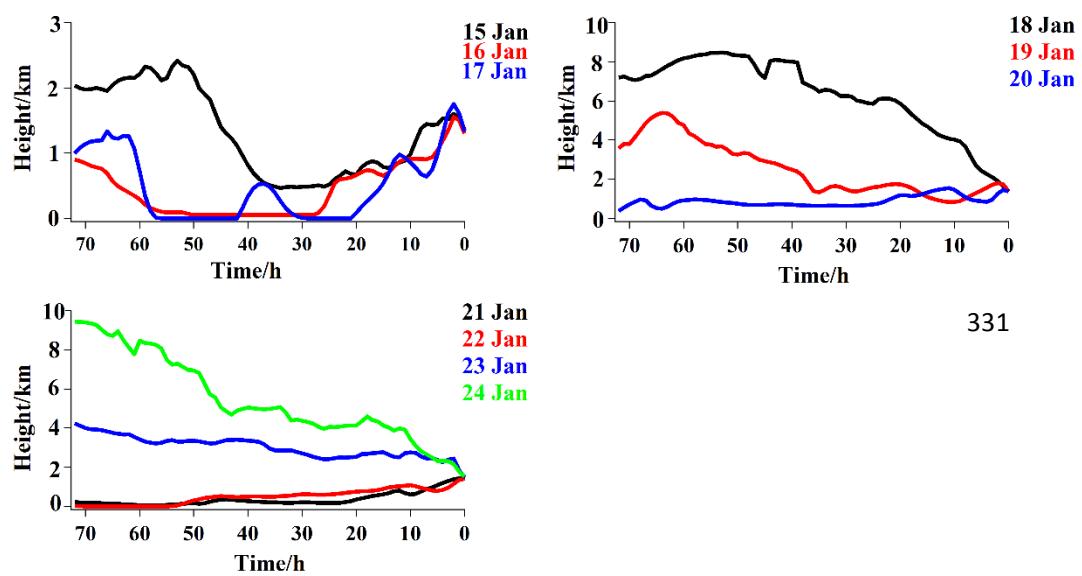
313

314


315 *Page 15, lines 322-325: Do verify the possible transport of biomass burning particles to*
316 *the site, the vertical history of the trajectories is required.*

317

318 We have added the vertical evolution of the trajectories. The beginning of trajectories
319 traversed at low heights (about 0-2 km above model ground) of Southeast Asia, where
320 abundant fire dots occurred. Please refer to the Figure 2 (b).


321

322 (a)

323

324 (b)

337 Figure 2: (a) HYSPLIT back trajectories (72 h) for air masses at 1,800 m during the whole
338 sampling period. The white borders and circle refers to the Pearl River Delta (city cluster
339 1) and Yangtze River Mid-Reaches city clusters (city cluster 2), respectively. The yellow
340 dots represent fire dots during the study periods. The fire dots are available at
341 <https://earthdata.nasa.gov/>; (b) Heights (above model ground) of the air masses as a
342 function of time.

343

344 *Page 16, lines 337-229: "Note that after the activation of amine particles, the partitioning
345 of the gas amine on cloud droplets may further contribute to the enhanced Amine cloud
346 residues". That is true, but holds also for other species, as nitrate (HNO₃) or water-soluble
347 OC.*

348

349 We have strengthened the important contribution of uptake of gaseous HNO₃ or water-
350 soluble OC to cloud droplets. Please refer to Lines 334-335, 364-366 and 490-494 of the
351 revised manuscript.

352

353 *Section 3.5: Here I have a major concern: You report interstitial particles containing
354 sulfate and nitrate in the size range between 200 and 1300 nm. It is very hard to believe
355 (not to say impossible) that such large particles are not activated in a cloud.*

356

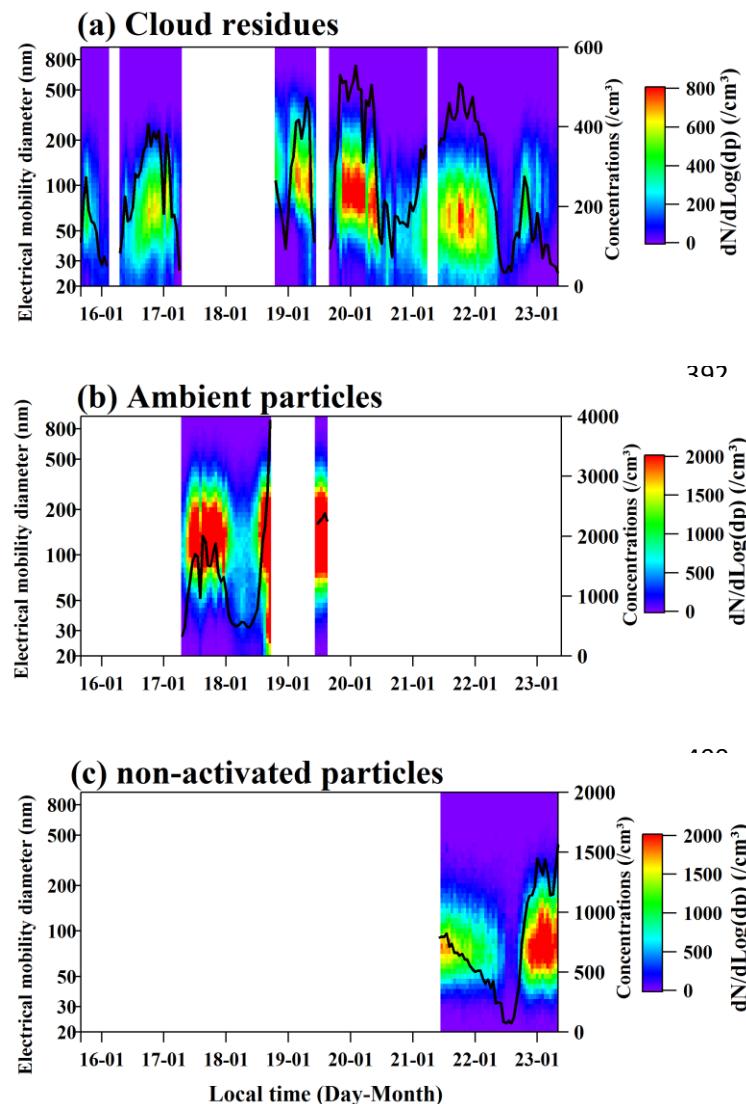
357 *Later (page 17, lines 366-368) you write "However, few studies have focused on this issue,
358 in part because interstitial particles show a smaller size than that detected by single-
359 particle mass spectrometry (Roth et al., 2016)." Since the SPAMS has a very similar lower
360 detection size range as the ALABAMA used by my group in Roth et al., 2016), you can not
361 expect that you detect non-activated interstitial particles which should be in the size range
362 below 200 nm.*

363 *My suspicion is: The clouds became thinner, and entrainment of cloud-free air has mixed
364 "normal" aerosol particles into the cloud. But such particles cannot be referred to as
365 "interstitial". As long as you don't have cloud microphysics (number and size of cloud
366 droplets) or at least liquid water content (Particle Volume Monitor) available, I would
367 suggest to remove this chapter on interstitial particles.*

368

369 The period of collecting interstitial particles on 22-23 Jan encountered initial mixing of
370 northerly cloud-free air (dry and cold airstreams) and southwesterly cloudy air (moist
371 airflows). The dry northern air mass might lower supersaturation, only larger particles
372 could be activated. This might result in above 200 nm non-activated particles observed

373 here (Mertes et al., 2005; Kleinman et al., 2012; Hammer et al., 2014). To make it more
374 accurate, we prefer to name “non-activated particles”, rather than “interstitial particles”.
375 We have clarified them. Please refer to Lines 453-461 of the revised manuscript.


376

377 *Page 17, line 358 / Table 1: I would prefer a graph with bars or pie charts. I also strongly
378 recommend showing the SMPS size distributions from residues, ambient and interstitial.
379 That might help to identify the issues with the large interstitial particles.*

380

381 Table 1 was replaced by pie charts. Please refer to Figure 7 in the revised manuscript. The
382 SMPS size distributions from residues, ambient and interstitial particle were provided in
383 Figure S2.

384

408 Figure S2: Size distribution (electrical mobility diameter 20-900 nm) of cloud residues (a),

409 ambient (b) and non-activated (c) particles were measured a scanning mobility particle
410 sizer (SMPS). Black lines represent particles concentrations integrated by the SMPS. The
411 data of cloud residual concentrations was corrected by enrichment factor of 5.25.

412

413 *Page 18, lines 374-375 / Figure 7 & 8: How are the difference mass spectra of Figure 7
414 and 8 calculated? Is it ambient - residues and interstitial – residues? Or vice versa? How
415 were the spectra normalized? Please explain.*

416

417 We have provide the information in the captions of Figures 8 and 9 of the revised
418 manuscript. Please refer to Lines 484-485 of the revised manuscript.

419

420 Figures 8: Mass spectral subtraction plot of the average mass spectrum corresponding to
421 cloud residues minus ambient particles. Positive area peaks correspond to higher
422 abundance in cloud residues, whereas negative area peaks show higher intensity in ambient
423 particles.

424

425 Figure 9: Mass spectral subtraction plot of the average mass spectrum corresponding to
426 cloud residues particles minus non-activated particles. Positive area peaks correspond to
427 higher abundance in cloud residues, whereas negative area peaks show higher intensity in
428 non-activated particles.

429

430

431 *Page 18, lines 376-382: Why not? I drew the same conclusion as Hayden et al. (2008) in
432 my 2017 paper (Schneider et al., 2017, please note the update from ACPD 2016 to ACP
433 2017). HNO₃ uptake may not be the source of the particles but explains the high amount
434 of nitrate found on many particles, also on the Na-rich and dust particles discussed above.*

435

436 We agree with the comment. We have strengthened the contribution of uptake of gaseous
437 HNO₃ to the enhanced nitrate in the cloud residues. We have update the citation of
438 Schneider et al. (2017) from ACPD 2016 to ACP 2017. Please refer to Lines 334-335 and
439 490-494 of the revised manuscript.

440

441 *Page 18, lines 384-386: I agree with that, but wouldn't that support the idea of uptake of
442 HNO₃ from the gas phase? If the nitrate content does not play the major role in the
443 activation, but more nitrate is found in the residues, that's an argument for HNO₃ uptake.*

444

445 We agree with the comment. We have strengthened the contribution of uptake of gaseous
446 HNO_3 to the enhanced nitrate in the cloud residues. Please refer to Lines 334-335 and 490-
447 494 of the revised manuscript.

448

449 *Page 18, lines 387-388: Can intensity simply be compared like this? What about size effects*
450 *and matrix effects? But again, an explanation how Figures 7 and 8 were calculated might*
451 *help here.*

452

453 We agree with the comment. Size and matrix might affect the mass spectra of single
454 particles. Such comparison has been perform in previous single particle studies (Moffet et
455 al., 2008; Pratt et al., 2011). In addition to comparison of certain compound's intensity, its
456 size distribution and number fractions of cloud residues was compared with ambient or
457 non-activated particles, to discuss size effect. Please refer to Lines 487-492 and 504-505
458 of the revised manuscript.

459

460 Figure 8 and 9 show differences in average mass spectra for cloud residues versus ambient
461 particles, as well as cloud residues versus non-activated particles, respectively. Intensity
462 refers to peak area. Please refer to Lines 484-485 of the revised manuscript.

463

464 Figures 8: Mass spectral subtraction plot of the average mass spectrum corresponding to
465 cloud residues minus ambient particles. Positive area peaks correspond to higher
466 abundance in cloud residues, whereas negative area peaks show higher intensity in ambient
467 particles.

468

469 Figure 9: Mass spectral subtraction plot of the average mass spectrum corresponding to
470 cloud residues particles minus non-activated particles. Positive area peaks correspond to
471 higher abundance in cloud residues, whereas negative area peaks show higher intensity in
472 non-activated particles.

473

474

475 *Page 18, lines 391-392: "Compared with interstitial particles, sulfate enhanced in the Fe*
476 *cloud residues." I think an "is" is missing here.*

477

478 We have changed "Compared with interstitial particles, sulfate enhanced in the Fe cloud
479 residues." to "Compared with non-activated particles, sulfate was found to enhance in the
480 Fe cloud residues.". Please refer to Lines 503-504 of the revised manuscript.

481

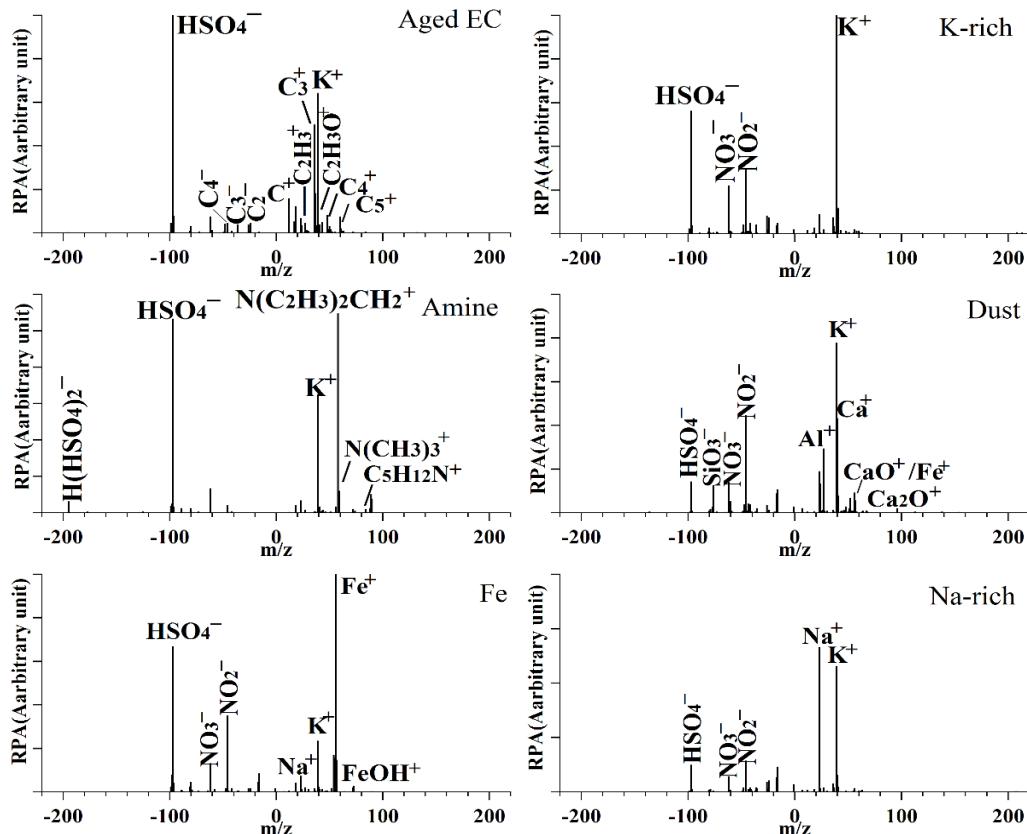
482 *Page 19, lines 398-399: Better: "The in-cloud process has been reported to be an important*
 483 *pathway: : :"*

484

485 We have changed accordingly. Please refer to Lines 510-511 of the revised manuscript.

486

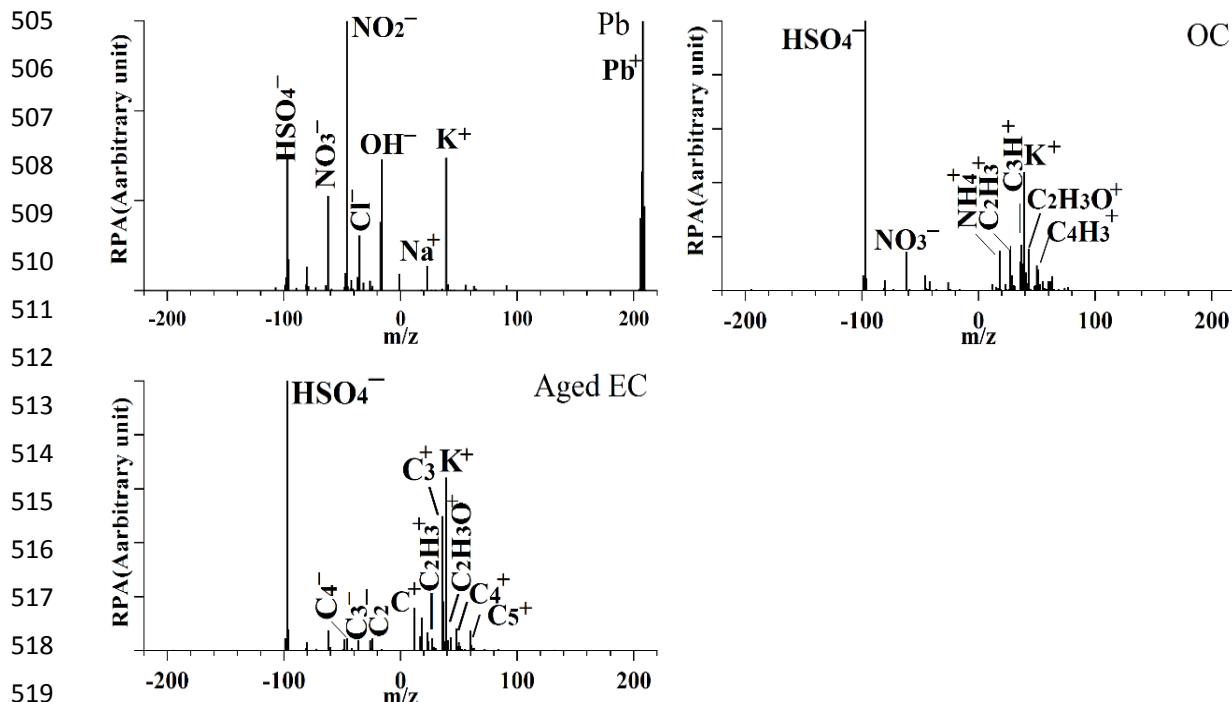
487 *Page 20, lines 421-422: The Jungfraujoch is a station located mostly in the free*
 488 *troposphere and in a remote region, so the biomass burning contribution can be expected*
 489 *to be lower than at other sites.*


490 We agree with the comment. We have discussed less number fraction of biomass burning
 491 in the observed cloud residues at the Jungfraujoch station, where located mostly in the free
 492 troposphere and in a remote region. Please refer to Lines 251-253 of the revised manuscript.

493

494 Figures

495 *Figure 3: Please improve resolution. Labels can't be read upon zooming in.*


496 We have improved Figure 3 resolution. Please refer to the modified Figure 3. Average mass
 497 spectrum of Pb, OC and Other types have been moved to the supplemental information
 498 (Figure S4)

499

500 Figure 3: Averaged positive and negative mass spectra for the main 6 particle types (Aged
 501 EC, K-rich, Amine, Dust, Fe, Na-rich) of the sampled particles during the whole sampling
 502 period. RPA in the vertical axis refers to relative peak area. m/z in the horizontal axis
 503 represents mass-to-charge ratio.

504

520

521 Figure S4: Averaged positive and negative mass spectra for Pb, OC and Other types of the
 522 sampled particles during the whole sampling period. RPA in the vertical axis refers to
 523 relative peak area. m/z in the horizontal axis represents mass-to-charge ratio.

524

525 *Figure 6: The ambient particle time series (b) are broader than the corresponding gaps in
 526 (a). Please make the Figure broader. You can move the legend with the particle types to
 527 above or below the graphs, plus the legend is only needed once.*

528

529 Ambient and cloud residues were collected at the same hour, which lead to ambient particle
 530 time series (b) broader than the corresponding gaps in (a). Figure 6 has been changed
 531 accordingly. Please refer to the modified Figure 6.

532

533

534

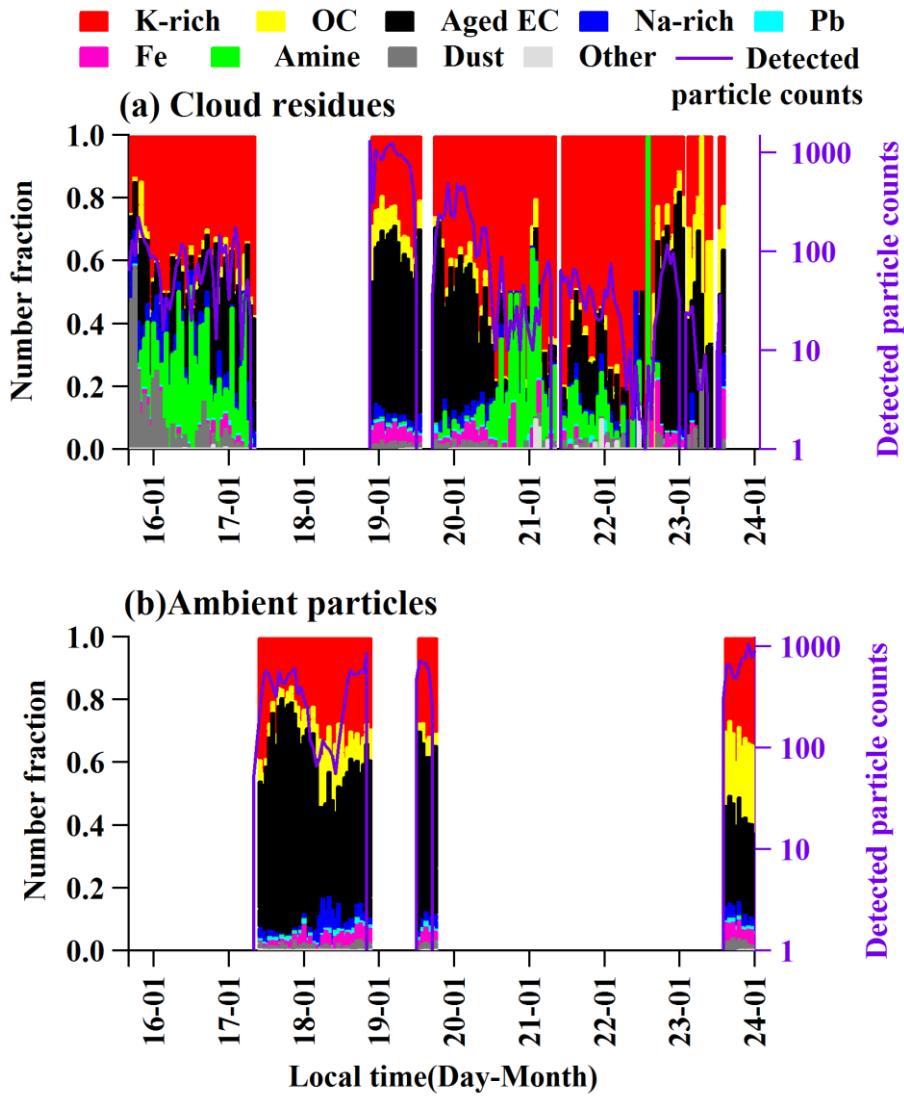


Figure 6: The hourly average variations in the cloud residual and ambient particles during the whole sampling period.

References:

Hammer, E., Gysel, M., Roberts, G.C., Elias, T., Hofer, J., Hoyle, C.R., Bukowiecki, N., Dupont, J.C., Burnet, F., Baltensperger, U. and Weingartner, E.: Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign, *Atmos. Chem. Phys.*, 14, 10517-10533, 2014.

Kleinman, L.I., Daum, P.H., Lee, Y.-N., Lewis, E.R., Sedlacek III, A., Sennum, G., Springston, S., Wang, J., Hubbe, J. and Jayne, J.: Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-Rex, *Atmos. Chem. Phys.*, 12, 207-223, 2012.

Li, T., Wang Y., Zhou J., Wang T., Ding A., Nie W., Xue L., Wang X., and Wang W.: Evolution of trace

571 elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud
572 interactions, *J. Geophys. Res. Atmos.*, 122, doi:10.1002/ 2016JD025541, 2017.

573 Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., Zhang, J.: Cloud microphysics
574 and aerosol indirect effects in the global climate model ECHAM5-HAM, *Atmos. Chem. Phys.*, 7,
575 3425-3446, 2007.

576 Mertes, S., Lehmann, K., Nowak, A., Massling, A. and Wiedensohler, A.: Link between aerosol
577 hygroscopic growth and dropletactivation observed for hill-capped clouds at connected flow
578 conditions during FEBUKO, *Atmos. Environ.*, 39, 4247-4256, 2005.

579 Moffet, R.C., Foy, B. d., Molina, L. a., Molina, M., and Prather, K.: Measurement of ambient aerosols
580 in northern Mexico City by single particle mass spectrometry, *Atmos. Chem. Phys.*, 8, 4499-4516,
581 doi:10.5194/acp-8-4499-2008, 2008.

582 Pratt, K. A., Heymsfield, A. J., Twohy, C. H., Murphy, S. M., DeMott, P. J., Hudson, J. G., Subramanian,
583 R., Wang, Z., Seinfeld, J. H., and Prather, K. A.: In Situ Chemical Characterization of Aged Biomass-
584 Burning Aerosols Impacting Cold Wave Clouds, *J. Atmos. Sci.*, 67, 2451-2468,
585 doi:10.1175/2010jas3330.1, 2010a.

586 Pratt, K.A., Murphy, S., Subramanian, R., DeMott, P., Kok, G., Campos, T., Rogers, D., Prenni, A.,
587 Heymsfield, A., Seinfeld, J.: Flight-based chemical characterization of biomass burning aerosols
588 within two prescribed burn smoke plumes, *Atmos. Chem. Phys.*, 11, 12549-12565, doi:10.5194/acp-
589 11-12549-2011, 2011.

590 Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae,
591 M.O.: Flood or drought: how do aerosols affect precipitation? *Science*, 321, 1309-1313, doi:
592 10.1126/science.1160606, 2008.

593 Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.:
594 Aerosol properties, source identification, and cloud processing in orographic clouds measured by
595 single particle mass spectrometry on a central European mountain site during HCCT-2010, *Atmos.*
596 *Chem. Phys.*, 16, 505-524, doi:10.5194/acp-16-505-2016, 2016.

597 Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Uptake of nitric acid,
598 ammonia, and organics in orographic clouds: Mass spectrometric analyses of droplet residual and
599 interstitial aerosol particles, *Atmos. Chem. Phys.*, 17, 1571-1593, doi:10.5194/acp-17-1571-2017,
600 2017.

601 Seinfeld, J.H., Bretherton, C., Carslaw, K.S., Coe, H., DeMott, P.J., Dunlea, E.J., Feingold, G., Ghan,
602 S., Guenther, A.B., Kahn, R.: Improving our fundamental understanding of the role of aerosol-cloud
603 interactions in the climate system. *Proc. Natl. Acad. Sci. USA*, 113, 5781-5790, doi:
604 10.1073/pnas.1514043113, 2016.

605 Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.: Particulate
606 organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of

607 Mexico Atmospheric Composition and Climate Study (GoMACCS), *J. Geophys. Res. Atmos.*,
608 112(D13), doi:10.1029/2007JD008537, 2007a.

609 Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M.,
610 Balkanski, Y.: The aerosol-climate model ECHAM5-HAM. *Atmos. Chem. Phys.*, 5, 1125-1156. 2005.

611 Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water
612 Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, *Chem. Rev.*,
613 doi:10.1021/acs.chemrev.5b00529, 2016.

614 Tsai, J.H., Lin, K.H., Chen, C.Y., Ding, J.Y., Choa, C.G. and Chiang, H.L.: Chemical constituents in
615 particulate emissions from an integrated iron and steel facility, *J. Hazard. Mater.*, 147, 111-119.
616 2007.

617 Wang, H., An, J., Shen, L., Zhu, B., Xia, L., Duan, Q. and Zou, J.: Mixing state of ambient aerosols in
618 Nanjing city by single particle mass spectrometry, *Atmos. Environ.*, 132, 123-132, 2016.

619 Zhang, G., Bi, X., Lou, S., Li, L., Wang, H., Wang, X., Zhou, Z., Sheng, G., Fu, J. and Chen, C.: Source
620 and mixing state of iron-containing particles in Shanghai by individual particle analysis,
621 *Chemosphere*, 95, 9-16, 2014.

622 Zhang, G., Lin, Q., Peng, L., Bi, X., Lei, M., Chen, D., Brechtel, F.J., Chen, X., Yan, W., Wang, X., Peng,
623 P., Sheng., G., Zhou, Z.: Single particle mixing state and cloud scavenging of black carbon at a
624 high-altitude mountain site in south China, *J. Geophys. Res. Atmos.* Submitted, 2017.

625 Zhang, Y.P., Wang, X.F., Chen, H., Yang, X., Chen, J.M. and Allen, J.O.: Source apportionment of lead-
626 containing aerosol particles in Shanghai using single particle mass spectrometry, *Chemosphere*, 74,
627 501-507, 2009.

1 **In situ chemical composition measurement of individual cloud residue**
2 **particles at a mountain site, South China**

3 Qiniao Lin^{1,2}, Guohua Zhang¹, Long Peng^{1,2}, Xinhui Bi^{1,*}, Ximeng Wang¹, Fred J.
4 Brechtel³, Mei Li⁴, Duohong Chen⁵, Ping'an Peng¹, Guoying Sheng¹, Zhen Zhou⁴

5

6 ¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
7 Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
8 Chinese Academy of Sciences, Guangzhou, 510640, PR China

9 ² University of Chinese Academy of Sciences, Beijing, 100049, PR China

10 ³ Brechtel Manufacturing Inc., Hayward, 94544, California, USA

11 ⁴ Atmospheric Environment Institute of Safety and Pollution Control, Jinan University,
12 Guangzhou 510632, PR China

13 ⁵ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
14 Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China

15

16 * Correspondence to: Xinhui Bi (bixh@gig.ac.cn)

17 Tel.: +86-20-85290195

18

19 **Highlights**

20 1. EC-containing particles comprised the largest fraction of the total cloud residues (49.3%
21 by number), with dominating size 0.2-1.0 μm .

22 2. Amine particles represented 0.2% to 15.1% by number of the total cloud residues
23 dependent on the air mass history, with dominating size 0.7-1.9 μm .

24 3. Higher fraction, intensity (average ion peak area) and larger size of nitrate-containing
25 particles were found in the cloud residues relative to the ambient particles.

26 **Abstract**

27 To estimate how atmospheric aerosol particles interact with chemical composition of cloud
28 droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time
29 single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical
30 composition and mixing state of individual cloud residue particles in the Nanling Mountain
31 Range (1,690 m a.s.l.), South China, in Jan 2016. The cloud residues were classified into
32 nine particle types: Aged elemental carbon (EC), Potassium-rich (K-rich), Amine, Dust,
33 Pb, Fe, Organic carbon (OC), Sodium-rich (Na-rich) and Other. The largest fraction of the
34 total cloud residues was the aged EC type (49.3% by number), followed by the K-rich type
35 (33.9% by number). Abundant aged EC cloud residues that internally mixed with inorganic
36 salts were found in air masses from northerly polluted areas. The number fraction (Nf) of
37 the K-rich cloud residues increased within southwesterly air masses from fire activities in
38 Southeast Asia. In addition, the Amine particles increased from 0.2% to 15.1% by number
39 to the total cloud residues, when air masses changed from northerly polluted areas to
40 southwesterly ocean and livestock areas. The Dust, Fe, Pb, Na-rich and OC particles had a
41 low contribution (0.5-4.1% by number) to the total cloud residues. Higher fraction of
42 nitrate (88-89% by number) was found in the Dust and Na-rich cloud residues relative to
43 sulfate (41-42%) and ammonium (15-23%). Higher fraction, intensity (average ion peak
44 area) and larger size of nitrate-containing particles were found in the cloud residues relative
45 to the ambient particles. To our knowledge, this study is the first report on in situ
46 observation of the chemical composition and mixing state of individual cloud residue
47 particles in China. This study increases our understanding of the impacts of aerosols on
48 cloud droplets in a remote area of China.

49

50 Keywords: GCVI, SPAMS, cloud residues, mixing state, South China

51

52

53 **1 Introduction**

54 Aerosol-cloud interactions influence the thermodynamic and radiation balance of the
55 atmosphere (IPCC, Boucher et al., 2013). Anthropogenic particles can increase number
56 concentration of small cloud droplets, in turn, affect reflectivity and life time of clouds
57 (Stier et al., 2005; Lohmann et al., 2007; Rosenfeld et al., 2008). In-situ cloud chemical
58 measurements show varied chemical composition of cloud water or residues at various
59 regions (Sorooshian et al., 2007a; Roth et al., 2016; Li et al., 2017). Although a large
60 number of aerosol/cloud studies over the past 20 years, the uncertainty for evaluating
61 radiative forcing due to aerosol-cloud interactions has not been reduced (Seinfeld. et al.,
62 2016). Therefore, it is crucial to assess how atmospheric aerosol particles contribute and
63 interact with cloud droplets.

64 The formation of cloud condensation nuclei (CCN) is dependent on the size and
65 chemical composition of atmospheric aerosol particles at a given supersaturation
66 (McFiggans et al., 2006). A change in the chemical composition of atmospheric aerosol
67 particles during atmospheric aging processes can strongly alter their CCN ability. The
68 presence of hydrophobic surface films lowers the CCN ability of atmospheric aerosol
69 particles (Andreae and Rosenfeld, 2008). Elemental carbon (EC) particles, normally
70 considered insoluble, show high CCN activity after mixing with sulfuric acid (Zhang et al.,
71 2008). However, sulfate and nitrate, which are generally regarded as soluble materials,
72 were found in particles ranging from high to low hygroscopicity (Herich et al., 2008).

73 Furthermore, several cloud measurements have pointed to a lower number fraction (Nf) or
74 mass fraction of sulfate-containing particles in cloud droplets relative to ambient or
75 interstitial particles (Drewnick et al., 2007; Twohy and Anderson, 2008). On the contrary,
76 other studies have reported a larger Nf of sulfate-containing particles in cloud droplets
77 (Zelenyuk et al., 2010; Roth et al., 2016). These discrepancies suggest that the influence of
78 the mixing state of atmospheric aerosol particles on CCN activity remains unclear.

79 The combined technique of a counterflow virtual impactor (CVI) and Aerosol Mass
80 Spectrometer (AMS) or single-particle measurement is widely used to characterize the
81 chemical composition and mixing state of cloud/fog droplet residue particles. These studies
82 were mainly conducted in North America including Wyoming (Pratt et al., 2010a), Ohio
83 (Hayden et al., 2008), Oklahoma (Berg et al., 2009), Florida (Cziczo et al., 2004; Twohy
84 et al., 2005), California (Coggon et al., 2014), Europe including Schmücke (Roth et al.,
85 2016; Schneider et al., 2017), Jungfraujoch (Kamphus et al., 2010), Åreskutan (Drewnick
86 et al., 2007), Scandinavia (Targino et al., 2006), Arctic (Zelenyuk et al., 2010), Central
87 America (Cziczo et al., 2013), West Africa (Matsuki et al., 2010) and Oceans (Twohy and
88 Anderson 2008; Twohy et al., 2009; Shingler et al., 2012). Over the past three decades,
89 China has undergone rapid economic growth accompanied by increased aerosol emissions.
90 Scientists have worked to increase our understanding of an emissions inventory and the
91 temporal and spatial variation of atmospheric aerosols in China (Zhang et al., 2012b).
92 However, few studies employ direct observation of the chemical composition and mixing
93 state of cloud/fog droplets. Li et al. (2011b) used transmission electron microscopy to
94 obtain mixing state of single ambient particle during cloud events at Mt. Tai in northern
95 China. Their result showed that sulfate-related salts dominated in large particle. Bi et al.

96 (2016) used a ground-counterflow virtual impactor (GCVI) coupled with a real-time single
97 particle aerosol mass spectrometer (SPAMS) to explore the chemical composition and
98 mixing state of single fog residue particles in an urban area of South China at ground level.
99 They found abundant anthropogenic emitted particles including soot or element carbon
100 (EC) in fog residues.

101 Here, we present a study on the chemical composition and mixing state of individual
102 cloud residue particles at a mountain site of South China. The same experimental methods
103 of Bi et al. (2016) were used in this study on the summit of South China's Nanling mountain
104 region. The size distribution, chemical composition and mixing state of cloud residues
105 during cloud events are discussed. Moreover, the chemical compositions of ambient and
106 non-activated particles were also compared with the cloud residues. The aim of this study
107 is to assess the potential effects of anthropogenic aerosols from regional transportation on
108 cloud formation and to investigate the dominant particle types in cloud droplets at a
109 mountain site in South China.

110

111 **2 Experimental**

112 **2.1 Measurement site**

113 Measurements were carried out 15-26 Jan, 2016. The sampling site was located in the
114 Nanling Background Station ($112^{\circ}53'56''$ E, $24^{\circ}41'56''$ N, 1,690 m a.s.l.) at the National
115 Air Pollution Monitoring System in South China (Figure S1). This station is 200 km north
116 of the metropolitan city Guangzhou and 350 km north of the South China Sea. This site is
117 also surrounded by a national park forest (273 km^2) where there are hardly any emissions
118 from anthropogenic activities. However, during the winter monsoon period, air pollution

119 from northern China moves south to the southern coastal region and crosses the study
120 region (Lee et al., 2005).

121

122 **2.2 Instrumentation**

123 In this study, a GCVI inlet system (GCVI Model 1205, Brechtel Mfg. Inc.) was used to
124 sample cloud droplets with a diameter greater than 8 μm . Ambient temperature on average
125 was 6.9 $^{\circ}\text{C}$ (ranging from -7.2 to 11.4 $^{\circ}\text{C}$) during cloud events in this study. Therefore, the
126 clouds here consisted of liquid droplets only. Measurement of drop size spectrum in this
127 region performed during winter of 1999-2001 shows that size of cloud droplets ranged
128 from 4 to 25 μm , with average size of 10 μm and a corresponding liquid water content of
129 0.11-0.15 g m^{-3} (Deng et al., 2007). Some studies in other locations also showed an average
130 size at \sim 10 μm (Freud et al., 2008; Shingler et al., 2012). Therefore, it is reasonable to
131 select a cut size at 8 μm for cloud droplets in the present study. The sampled cloud droplets
132 were passed through an evaporation chamber (air flow temperature at 40 $^{\circ}\text{C}$), where the
133 associated water was removed and the dry residue particles (with the air flow RH lower
134 than 30%), considered as CCN, remained. The particle transmission efficiency of the cut
135 size (8 μm) was 50% (Shingler et al., 2012). The enrichment factor of the particles collected
136 by the GCVI inlet was estimated to be 5.25 based on theoretical calculation (Shingler et
137 al., 2012). Ambient particles were collected through an ambient inlet with a cut-off
138 aerodynamic diameter (d_a) of 2.5 μm when no cloud events were present. Additionally,
139 non-activated particles were sampled through the ambient inlet during the cloud events.
140 The cloud droplet residues, ambient or non-activated particles were subsequently analyzed
141 by a suite of aerosol measurement devices, including a SPAMS (Hexin Analytical

142 Instrument Co., Ltd., Guangzhou, China), a scanning mobility particle sizer (SMPS) (MSP
143 Cooperation) and an aethalometer (AE-33, Magee Scientific Inc.). Detailed information
144 and parameter settings regarding the GCVI operation can be found in the work of Bi et al.
145 (2016).

146 A detailed operational principle of the SPAMS has been described elsewhere (Li et al.,
147 2011a). Briefly, aerosol particles are drawn into SPAMS through a critical orifice. The
148 particles are focused and aerodynamically sized by two continuous diode Nd:YAG laser
149 beams (532 nm). The particles are subsequently desorbed/ionized by a pulsed laser (266
150 nm) triggered exactly based on the velocity of the specific particle. The positive and
151 negative ions generated are recorded with the corresponding size of each single particle.

152 Polystyrene latex spheres (Nanosphere Size Standards, Duke Scientific Corp., Palo Alto)
153 of 0.2-2.0 μm in diameter were used to calibrate the sizes of the detected particles on the
154 mountain top station. The ambient pressure was 830 hPa (826-842 hPa) during the
155 measurements and during the calibration. Particles measured by SPAMS mostly fell within
156 the size range of d_{va} 0.2-2.0 μm (Li et al., 2011a).

157

158 **2.3 Definition of cloud events**

159 To reliably identify the presence of cloud events, an upper-limit visibility threshold of 5
160 km and a lower-limit relative humidity (RH) threshold of 95% were set in the GCVI
161 software (Bi et al., 2016). Three long-time cloud events occurred during the periods of
162 16:00 (local time) 15 Jan - 07:00 17 Jan (cloud I), 20:00 18 Jan - 12:00 19 Jan (cloud II)
163 and 17:00 19 Jan - 13:00 23 Jan (cloud III), as marked in Figure 1. In addition, a cloud
164 event occurred at 14:40 - 15:00 on 17 Jan, but we did not complete an analysis due to the

165 short duration of this cloud event. The measured cloud residual concentration was
166 integrated by a SMPS and was divided by 5.25 (enrichment factor of CVI). The corrected
167 cloud residual concentrations on average were 218 cm^{-3} , 284 cm^{-3} and 272 cm^{-3} for cloud
168 I, cloud II and cloud III, respectively (Figure S2). Note that during cloud events, ambient
169 RH was close to 100%, as illustrated in Figure 1. Low level of PM_{2.5} ($\sim 12.7 \mu\text{g m}^{-3}$)
170 excludes the influence of hazy days. A rainfall detector of the GCVI system was also used
171 to exclude rain droplet contamination. When cloud events occurred without precipitation,
172 sampling was automatically triggered by the GCVI control software.

173

174 **2.4 Particle classification**

175 During the study period, a total of 73996 sampled particles including 49322 ambient, 23611
176 cloud residues and 1063 non-activated particles with bipolar mass spectra were chemically
177 analyzed in the size range of d_{va} 0.2-1.9 μm . The sampled particles were first classified
178 into 101 clusters using an Adaptive Resonance Theory neural network (ART-2a) with a
179 vigilance factor of 0.75, a learning rate of 0.05, and 20 iterations (Song et al., 1999). By
180 manually combining similar clusters, aged EC, Potassium-rich (K-rich), Amine, Dust, Fe,
181 Pb, Organic carbon (OC), and Sodium-rich (Na-rich), eight major particle types with
182 distinct chemical patterns were obtained, which represented ~99.9% of the population of
183 the detected particles. The remaining particles were grouped together as “Other”.
184 Assuming that number of individual particles follows Poisson distribution, standard errors
185 for number fraction of particle type were estimated (Pratt et al., 2010a).

186

187 **3 Results and discussion**

188 **3.1 Back trajectories and meteorological conditions**

189 Back trajectories in this study were calculated using the Hybrid Single Particle Lagrangian
190 Integrated Trajectory (HYSPLIT Model). Heights of the HYSPLIT model in the study
191 region (a spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$) is averaged 500 m a.s.l., lower than height of the
192 observed site (1,690 m a.s.l.). Therefore, a height of 1,800 m a.s.l. (approximately 100 m
193 above the observed site) was chosen as an endpoint in the model. During the study period,
194 the station was mainly affected by southwesterly or northerly air masses (Figure 2). In
195 addition, the beginning of southwesterly air masses traversed at lower heights relative to
196 northerly air masses (Figure 2). The southwesterly air masses, accompanied by warm and
197 moist airflows, occurred during 15-17 and 20-21 Jan, which promoted cloud formation
198 (Figure 1). Conversely, the northerly air masses, associated with cool and dry airstreams,
199 occurred during 18 and 23-24 Jan and led to a decrease in temperature and relative humidity.
200 Note that on 18-19 and 22-23 Jan, the air mass encountered initial mixing of northerly
201 cloud-free air and southwesterly cloudy air. Entrained of nuclei particles originated from
202 northern air mass would be activated to become cloud droplets (Sect. 3.4). On the other
203 hand, entrainment of non-activated particles originated from northern air mass has also
204 mixed into the cloud (Sect. 3.5).

205 Meteorological conditions were unstable, with high southwesterly flow ($\sim 6.5 \text{ m s}^{-1}$)
206 during 15-17 and 20-22 Jan (Figure 1). The level of $\text{PM}_{2.5}$ remained low with a value of
207 approximately $3 \text{ } \mu\text{g m}^{-3}$ for this time period. A high level of $\text{PM}_{2.5}$ ($\sim 20 \text{ } \mu\text{g m}^{-3}$) was
208 observed during 18 Jan when the northerly flow dominated. Similarly, the average $\text{PM}_{2.5}$
209 value reached $24 \text{ } \mu\text{g m}^{-3}$ during 24 Jan when the local northerly and southwesterly flows
210 occurred alternately. However, the particles still originated from northerly air masses for

211 this period (Figure 2). During 23-24 Jan, a big freeze associated with a violent northerly
212 flow and a wind speed that exceeded the upper-limit speed (~12 m/s) of a wind speed sensor
213 resulted in a sharp decrease in temperature (Figure 1).

214

215 **3.2 The chemical characterization of cloud droplet residues**

216 Figure 3 shows the average positive and negative mass spectra of main six particle types.
217 The aged EC particles were identified by EC cluster ions (e.g., m/z $\pm 12C^{+/-}$, $\pm 36C_3^{+/-}$,
218 $\pm 48C_4^{+/-}$, $\pm 60C_5^{+/-}$, ...) and a strong K^+ ion signal (m/z 39 K^+) as well as a sulfate ion signal
219 (m/z -97 HSO_4^-), and minor organic markers (m/z 27 $C_2H_3^+$, 43 $C_2H_3O^+$) (Moffet and
220 Prather, 2009). EC particles mainly originated from combustion processes (Bond et al.,
221 2013). Strong K^+ ion signal observed here, it is likely that the aged EC particles in part are
222 from biomass burning (Bi et al. 2011). The aged EC particle type was the largest fraction
223 (49.3% by number) of the the total cloud residues (Figure S3). In addition, Nf of the aged
224 EC residues significantly decreased from 54.1% in the size range of 0.2-1.0 μm to 19.2%
225 in the size range of 1.1-1.9 μm (Figure 4). Note that the chemical composition of cloud
226 residues is dependent on the particle size (Roth et al., 2016), and the number reported for
227 each particle type might suffer the bias from size-dependent transmission efficiency (Qin
228 et al., 2006). The relative fraction of cloud residues in 100 nm size interval is presented to
229 minimize the influence of size-dependent transmission efficiency of single particle mass
230 spectrometry (Roth et al., 2016).

231 The K-rich particles exhibited the highest peak at m/z 39 K^+ , mainly combined with
232 sulfate and nitrate (m/z -46 NO_2^- , -62 NO_3^-). The K-rich particles presumably result from
233 biomass/biofuel burning source (Moffet et al., 2008; Pratt et al. 2011; Zhang et al., 2013).

234 Aged time 81-88 min of biomass burning particles show increase in the mass fractions of
235 ammonium, sulfate, and nitrate (Pratt et al. 2011). In this study, the K-rich particles would
236 be expected to experience aged process due to strong sulfate and nitrate signals (Hudson et
237 al. 2004; Pratt et al. 2011). Aged biomass burning particles can participate in cloud droplets
238 formation and show an effective CCN activity (Pratt et al. 2010a). The K-rich particle type,
239 the second largest contributor, accounted for 33.9% by number of the the total cloud
240 residues (Figure S3).

241 The abundant aged soot/EC and biomass burning particles were often detected in
242 cloud residues (Pratt et al., 2010a; Roth et al., 2016). The contribution of local
243 anthropogenic origins to aged soot and/or biomass burning particles in cloud/fog residues
244 has been reported in Schmücke (Roth et al., 2016) and Guangzhou city (Bi et al., 2016). At
245 the North Slope of Alaska, the measurement of biomass burning particles in cloud residues
246 mainly resulted from Asia sources (Zelenyuk et al., 2010). Similarly, majority of aged EC
247 and K-rich cloud residues observed here are expected to originate from long-range
248 transportation due to insignificant sources of local anthropogenic emissions or fire dots. At
249 the Jungfraujoch station (3,580 m a.s.l.) in Europe, the K-rich (biomass burning) particles
250 was only found to contribute 3% of the cloud droplets and the aged EC cloud residue was
251 insignificant (<1% by number) (Kamphus et al., 2010). The Jungfraujoch is a station where
252 located mostly in the free troposphere and in a remote region, so the biomass burning
253 contribution can be expected to be lower than at other sites.

254 The Amine particles were characterized by related amine ion signals at m/z
255 58C₂H₅NHCH₂⁺ (diethylamine, DEA), 59N(CH₃)₃⁺ (trimethylamine, TMA) and
256 86C₅H₁₂N⁺ (triethylamine, TEA) (Angelino et al., 2001; Moffet et al., 2008; Pratt and

257 Prather, 2010). Note that amine peaks would be enhanced when using a 266 nm ionization
258 laser and that the amines themselves may not comprise the majority of the particle mass
259 (Pratt et al., 2009). This particle type also contained sulfuric acid ion signals at m/z -
260 195H(HSO₄)₂⁻, indicative of acidic particles (Rehbein et al., 2011). The Amine particles
261 represented 3.8% by number of the total cloud residues (Figure S3). Higher Nf of the
262 Amine residues was detected in size range from 0.7 to 1.9 μm relative to size range from
263 0.2 to 0.6 μm (16.7% versus 0.4%), as shown in Figure 4. Aqueous reaction improving the
264 participation of amine has been observed in Guangzhou (Zhang et al., 2012a) and Southern
265 Ontario (Rehbein et al., 2011). A recent study also shows a clear enhancement of amine-
266 containing particles in cloud residues compared to the ambient particles (9% versus 2% by
267 number) (Roth et al., 2016). It indicates a preferential formation of amine in cloud.
268 However, this possibility was not supported by the observations of Bi et al. (2016), who
269 did not detect amine-containing particles in fog residues. In this study, the Nf of the Amine
270 particles varied from 0.2% to 15.1% of the total cloud residues dependent on air mass
271 history (see Sect. 3.4).

272 The Dust particles presented significant ions at m/z 40Ca⁺, 56CaO⁺/Fe⁺, 96Ca₂O⁺ and
273 -76SiO₃⁻. Internal mixing with sulfate and nitrate in the Dust particle is expect to act as
274 CCN (Twohy and Anderson 2008; Twohy et al., 2009; Matsuki et al., 2010), despite sulfate
275 and nitrate partly contribution from in-cloud production. This type contributed 2.9% by
276 number of the total cloud residues (Figure S3). A slightly increase in Nf of the Dust
277 residues was observed in size range above 0.5 μm relative to below 0.5 μm (3.0% versus
278 1.0%). At Mt. Tai in northern China, a high concentration of Ca²⁺ in cloud/fog water was
279 mainly attributed to a sandstorm event during spring season (Wang et al., 2011). At Mt.

280 Heng in southern China, abundant crust-related elements (e.g., Al) observed in cloud water
281 is due to Asian dust storms occurred on March-May (Li et al., 2017). Based on the
282 backward trajectory, the site was less affected by sandstorm source in northwestern China
283 during cloud events. Local dust emission by anthropogenic-disturbing soils or removing
284 vegetation cover can be excluded as a result of forest protection. Additionally, dust residues
285 may occupied larger CCN (Tang et al., 2016), which cannot be detected by the SPAMS.
286 Therefore, a low fraction (2.9% by number) of dust cloud residue is reasonable in the
287 present study.

288 The Fe particles had its typical ions at m/z 56Fe⁺ and internally mixed with sulfate
289 and nitrate. The Fe particle type made up 4.1% by number of the total cloud residues.
290 Approximately 16% of the Fe cloud residues contained Ca⁺ peak (m/z 40). Relatively weak
291 Na⁺ and K⁺ peaks in the Fe particles possibly contributes to anthropogenic sources (Zhang
292 et al., 2014), especially northern air mass across iron/steel industrial activities in Yangtze
293 River Mid-Reaches city clusters (Figure 2). These might suggest that the Fe residues was
294 likely to have come from mixed sources. The presence of Fe in the cloud droplets play an
295 important role in aqueous-phase SO₂ catalytic oxidation in cloud processing (Harris et al.,
296 2013), thus accelerating the sulfate content of Fe-containing particles in cloud processing.

297 The Na-rich particles were mainly composed of ion peaks at m/z 23Na⁺ and 39K⁺ in
298 the positive mass spectra, and nitrate and sulfate species in the negative mass spectra. The
299 Na-rich particle type made up 3.0% by number of the total cloud residues. Na-rich particles
300 were resulted from varied sources including industrial emissions, sea salt or dry lake beds
301 (Moffet et al. 2008). The Nf of the Na-rich cloud residues did not increase from continental
302 (Northerly) air mass to maritime (southwesterly) air mass on 21 Jan (3.3% versus 2.4% by

303 number). However, related sea salt ion peak area (m/z, 81/83 $\text{Na}_2^{35}\text{Cl}/\text{Na}_2^{37}\text{Cl}$) were
304 enhanced for Na-rich particles origination from maritime air mass relative to continental
305 air mass (3.8 ± 2.4 times). Continental air masses crossed industrial areas where located in
306 the Yangtze River Mid-Reaches city cluster (Figure 2). Industrial emissions was a possible
307 contributor to Na-rich particles under the influence of continental air masses (Wang et al.
308 2016). This might suggests that the Na-rich particles were contributed from both the
309 industrial emissions and sea salt. Therefore, under the influence of maritime air mass, the
310 signals for sea salt contribution became obvious.

311 The OC, Pb and Other particle types contributed 0.1-2.3% by number to the total cloud
312 residues (Figure S3). Their average mass spectra can be found in Figure S4. The OC
313 particles presented dominant intense OC signals (e.g., m/z $27\text{C}_2\text{H}_3^+$, $37\text{C}_3\text{H}^+$, $43\text{C}_2\text{H}_3\text{O}^+$
314 and $51\text{C}_4\text{H}_3^+$) and abundant sulfate. Presence of K^+ signal was found in the OC particles
315 suggesting possible biomass burning sources (Bi et al. 2011). The Pb particles showed its
316 typical ions at m/z 208Pb^+ and internally mixed with K^+ and Cl^- . Previous studies found
317 that K and Cl internally mixed with Pb particles have a possible origination of waste
318 incineration (Zhang et al., 2009) or iron and steel facility (Tsai et al., 2007). Internally
319 mixed EC with metal signatures was observed in the Other particles.

320 Previous measurements found that dust, playa salts or sea salt particles are often
321 enriched in larger cloud droplets ($\sim 20 \mu\text{m}$) (Bator and Collett, 1997; Pratt et al., 2010b).
322 Organic carbon tend to be enriched in small cloud/fog droplets, extending to $4 \mu\text{m}$ (Herckes
323 et al., 2013). It is wealth to note that cloud droplets were above $8 \mu\text{m}$ in the present study.
324 Thus, it partially leads to relatively larger fractions of the Dust and Na-rich cloud residues
325 observed, and the less fractions of the OC cloud residues.

326

327 **3.3 Mixing state of secondary species in cloud residues**

328 The Nf of sulfate-containing particles were found to be highly related to the K-rich (91%),
329 OC (100%), aged EC (98%), Pb (74%), Fe (93%) and Amine (99%) cloud residues, as
330 shown in Figure 5. Lower Nf of sulfate-containing particles were observed in the Na-rich
331 (41%) and Dust (42%) cloud residues. In contrast, nitrate-containing particles contributed
332 89% and 88% by number to the Na-rich and Dust cloud residues, respectively. The
333 heterogeneous chemistry of HNO_3 in the Na-rich and Dust particles may lead to the
334 preferential enrichment of nitrate (Li and Shao, 2009). Note that after activation, uptake of
335 gas-phase HNO_3 would increase nitrate level in the cloud residues (Schneider et al., 2017).
336 The detection of nitrate in the cloud residues was thought to be the form of ammonium-
337 nitrate by estimating the ratio of m/z 30 to m/z 46 in AMS data (Drewnick et al., 2007;
338 Hayden et al., 2008). Low portions of ammonium (m/z, 18 NH_4^+) in the Na-rich (23% by
339 number) and Dust (15% by number) cloud residues suggest that in this region, ammonium
340 nitrate was not a predominant form of nitrate in the two cloud residual type. The Na-rich
341 and Dust types were mainly composed of alkaline ion peaks (m/z, 23 Na^+ , 39 K^+ and 40 Ca^+)
342 in the position mass spectra (Figure 3), accompanied with larger fraction (88-89%) of
343 nitrate. It suggests that nitrate might exist in the form of $\text{Ca}(\text{NO}_3)_2$, NaNO_3 or KNO_3 in the
344 Dust and Na-rich cloud residues. It should be noted that the evaporation chamber of the
345 GCVI may lead to a reduction of ammonium nitrate in the cloud residues (Hayden et al.,
346 2008). We found that nitrate-containing particles accounted for only 46% by number of the
347 aged EC cloud residues, which is significantly less than the contribution of sulfate-
348 containing particles. Previous studies found that aged EC (soot) fog/cloud residues are

349 mainly internally mixed with sulfate (Pratt et al., 2010a; Harris et al., 2014; Bi et al., 2016).
350 Aged EC particles mixed with sulfate are good CCN, rather than formed by in-cloud
351 processing (Bi et al., 2016; Roth et al., 2016). High portions (75-86% by number) of
352 ammonium-containing particles were observed for the OC and aged EC cloud residues,
353 suggesting that ammonium will mostly be in the form of ammonium sulfate or ammonium
354 nitrate for the two cloud residue types (Zhang et al., 2017). This result also implies that
355 ammonium-containing particles are preferentially activated or enhanced by uptake of
356 gaseous NH₃ to neutralize acidic cloud droplets for the OC and EC types.

357 Organics (e.g., amine and oxalate) have previously been measured in cloud
358 water/residues (Sellegrí et al., 2003; Sorooshian et al., 2007a; Pratt et al., 2010a). Amine
359 and oxalate particles with mixtures of inorganic salts could enhance water uptake behavior
360 (Sorooshian et al., 2008; Wu et al., 2011). The presence of TMA in the Amine cloud
361 residues is expected to promote water uptake in sub- and supersaturated regimes
362 (Sorooshian et al., 2007b). A total of 3,410 oxalate-containing particles (m/z, -89HC₂O₄⁻)
363 represented 14.4% by number of the total cloud residues, which was mainly associated
364 with the K-rich cloud residues (~70% by number). Note that after activation, gas phase
365 partitioning into condensed phase or in-cloud production pathways would increase oxalate
366 level in cloud droplets (Sellegrí et al., 2003; Pratt et al., 2010a). Relative high portions (~30%
367 by number) of oxalate-containing particles in the metal (Pb, Fe) cloud residues might be
368 the form of metal oxalate complexes from reactions of in-cloud formation oxalate with
369 metals (Furukawa and Takahashi, 2011). Oxalate can readily partition into the particle
370 phase to form amine salts (Pratt et al., 2009), it may facilitate the entrainment of oxalate
371 (33% by number) in the Amine residues. A low fraction (4%) of oxalate-containing

372 particles in the OC type is a result of restrictive classification. Classification of the OC
373 particles mainly based on intense organic carbon ion signals (e.g., m/z 27C₂H₃⁺, 37C₃H⁺,
374 43C₂H₃O⁺ and 51C₄H₃⁺). However, majority of oxalate-containing particles internally
375 mixed with the K-rich type. Therefore, oxalate was classified to the K-rich type, probably
376 contributed from biomass burning. Noted that K-rich could contain a large abundant of
377 organics (Pratt et al. 2011), however, the signals of organics were covered by the potassium
378 due to its high sensitive to the laser.

379

380 **3.4 Comparison of cloud residues in different air mass sources**

381 Figure 6 displays hourly detected particle counts and Nf values of nine types of cloud
382 residues and ambient particles. A very abrupt increase (decrease) in Nf of aged EC (Amine)
383 particle types from cloud residues to ambient particles was observed on Jan 17. Ambient
384 RH showed an abrupt decrease from nearly 100% at 10:00 to 85% at 11:00 on 17 Jan
385 (Figure 1). Ambient temperature also decreased from 10 °C at 11:00 to 4 °C at 18:00 on
386 17 Jan (Figure 1). These changes imply that the air mass changed from southwesterly
387 cloudy air to northerly cloud-free air around noon on 17 Jan (Figure 2). The entrained
388 particles originated from northern air mass might have insufficient supersaturation to
389 activate as cloud droplets. It is the reason that Nf of particle types abruptly varied from
390 cloud residues to ambient particles on Jan 17 (Figure 6).

391 Ambient RH increased from 60% at 19:00 to nearly 100% at 21:00 on 18 Jan (Figure
392 1). Ambient temperature also increased from 1.3 °C at 22:00 on 18 Jan to 3.2 °C at 06:00
393 on 19 Jan (Figure 1). These changes imply that the air mass changed from northerly cloud-
394 free air to southwesterly cloudy air at night on 18 Jan (Figure 2). During 18-19 Jan, the

395 cloud residues and ambient particles showed similar chemical characteristics and were
396 dominated by aged EC particles (Figure 6). A lack of significant variation in the Nf of
397 particle types for this period suggests that nuclei particles originated from northerly cloud-
398 free air could be activated to become cloud droplets. Note that ambient particles when a
399 cloud-free event occurred at 11:00-17:00 on 19 Jan with a remaining high level of PM_{2.5}
400 ($\sim 22.7 \mu\text{g m}^{-3}$). Southwesterly wind flow on 19-20 Jan was too weak ($\sim 2.75 \text{ m s}^{-1}$) to
401 dilute particles originated from northerly air masses (Figure 1). Additionally, high RH
402 (90%) air mass at height 1,500 m (a.s.l.) gradually moved to north China from 19 to 20 Jan
403 (Figure S5). These might lead to similar residual particle types observed from 19 Jan to 20
404 Jan, although the site encountered southwesterly cloudy air on 19-20 Jan (Figure 2).

405 During 16-17 and 21-22 Jan, the cloud residues consisted of a high fraction of the
406 Amine type, which significantly differed from the observation during 18-19 Jan. Clearly,
407 the observations during 16-17 and 21-22 Jan were influenced by a strong southwesterly
408 flow with a low value of PM_{2.5} ($\sim 3 \mu\text{g m}^{-3}$).

409 As mentioned above, the Nf of the cloud residue types significantly changed as the air
410 mass origin varied from northerly to southwesterly. To further investigate the influence of
411 air mass history, we selected cloud residues that had arrived from a northerly air mass on
412 18-19 Jan and compared these to cloud residues originating from a southwesterly air mass
413 during the periods of 16-17 and 21-22 Jan. The detected number of cloud residues for the
414 northerly and southwesterly air masses are given in Table S1. Note that southwesterly air
415 mass accompanied by high relative humidity (90%) (Figure S5) may have triggered
416 particles activated to CCN prior to their arrival to the sampling site.

417 The K-rich type was found to contribute 23.9% to the cloud residues in the northerly air
418 mass, which was significantly lower than its contribution to the southwesterly air mass
419 (51.5%), as shown in Figure 7. **A similarity in averaged mass spectrum of the K-rich**
420 **residues was found for the southwesterly and northerly air masses (Figure S6).** The
421 considerable increase of K-rich cloud residues suggests a major influence of regional
422 biomass-burning activities. Biomass-burning emissions from Southeast Asia, including
423 Myanmar, Vietnam, Laos and Thailand, where abundant fire dots are observed (Figure 2),
424 could have been transported to the sampling site under a southwesterly air mass (Duncan
425 et al., 2003). In contrast, the aged EC type represented only 23.7% of the cloud residues
426 under the influence of the southwesterly air mass, which was significantly lower than
427 observations for the northerly air mass (59.9%), as shown in Figure 7. This result suggests
428 that the northern air mass has a greater influence on the presence of aged EC cloud residues.

429 In addition, an obvious increase in Nf of the Amine type was observed in the
430 southwesterly air mass (15.1%) compared to the northerly air mass (0.2%), as shown in
431 Figure 7. This implies that the sources or formation mechanisms of amine in cloud residues
432 varied in different air masses. The southwesterly air mass arrived from as far as the Bay of
433 Bengal and then travelled through Southeast Asia before reaching South China (Figure 2).
434 The potential gas amine emissions from ocean (Facchini et al., 2008) and livestock areas
435 (90 million animals, data was available at the website <http://faostat3.fao.org>) in Southeast
436 Asia might promote the enrichment of amine particles. Note that after activation, the
437 partitioning of the gas amine on cloud droplets may further contribute to the enhanced
438 Amine cloud residues (Rehbein et al., 2011), especially for air masses delivered via routes
439 with high relative humidity, as mentioned above (Figure S5). In contrast, northerly air mass

440 accompanied with dry airstreams may inadequately induce the partitioning of gas amines
441 into the particle phase (Rehbein et al., 2011).

442

443 **3.5 Comparison of cloud residues with ambient and non-activated particles**

444 A direct comparison between cloud residues and ambient particles was limited because of
445 their differences in air mass origins. During the sampling period, the cloud events occurred
446 once the southwesterly air masses were dominant. Therefore, a comparison between cloud
447 residues and ambient particles cannot be addressed under the influence of southwesterly
448 air masses. Here, we chose five hours before and after the beginning of the cloud II period
449 in order to compare cloud residues and ambient particles with similar northerly air mass
450 origins, as discussion in Sect. 3.4. The time and detected counts of cloud residues and
451 ambient particles for this comparison are listed in Table S1.

452 From 10:00 21 Jan to 13:00 23 Jan, cloud residues and non-activated particles were
453 alternately sampled with interval of one hour. Ambient temperature decreased from 6 °C
454 at 11:00 to 0 °C at 23:00 on 22 Jan (Figure 1). Additionally, ambient particles level
455 (residual and non-activated particles) showed a clearly increase from 121 cm^{-3} to 1339 cm^{-3}
456 during this period (Figure S2). It suggests that initial mixing of northerly cloud-free
457 air and southwesterly cloudy air around noon on 22 Jan. It is noted that non-activated
458 particles were detected in size range above 200 nm, extending to 500 nm (Figure S7). The
459 dry northern air mass might lower supersaturation, only larger particles could be activated.
460 This might result in above 200 nm non-activated particles observed here (Mertes et al.,
461 2005; Kleinman et al., 2012; Hammer et al., 2014). The detected particle counts in the
462 cloud residues and non-activated particles are given in Table S1.

463 The contribution of K-rich particles in cloud residues slightly decreased relative to
464 ambient particles (23.9% versus 30.7%), as shown in Figure 7. Previous studies also
465 showed that no significant change in Nf of biomass-burning particles for cloud residues
466 relative to ambient particles (Pratt et al., 2010a; Roth et al., 2016). The biomass-burning
467 particles internally mixed with soluble species (e.g., sulfate, nitrate and oxalate) enhanced
468 their ability to act as CCN, as discussion in Sect. 3.3. However, Kamphus et al. (2010)
469 reported that biomass-burning particles account for only 3% of cloud residues compared
470 with 43% of ambient particles, and they suspected that biomass-burning particles might
471 exist in the form of tar balls (hydrophobic materials). A slight increase in Nf of the aged
472 EC cloud residues was observed relative to ambient particles (59.9% versus 53.8%), as
473 shown in Figure 7. In general, freshly emitted EC particles are less hydrophilic and do not
474 active as CCN (Bond et al., 2013). The aged EC particles show a high degree of internal
475 mixing with secondary inorganic compounds in this study (Figure 5), improving their
476 ability to act as CCN. The remaining particle types showed no clear differences in Nf
477 between cloud residues and ambient particles.

478 In comparing the cloud residues with non-activated particles, a significant change in Nf
479 was found for the aged EC and K-rich type. A higher Nf of K-rich particles and a lower Nf
480 of EC particles were found for the cloud residues relative to the non-activated particles
481 (Figure 7). Entrainment of northerly cloud-free air might lower supersaturation during this
482 period. Aged EC particles may require very high supersaturation to grow into cloud
483 droplets and thus, only form hydrated non-activated aerosol (Hallberg et al., 1994).

484 Figure 8 and 9 show differences in average mass spectra for cloud residues versus
485 ambient particles, as well as cloud residues versus non-activated particles, respectively.

486 Nitrate intensity (average ion peak area) was found to enhance in the cloud residues
487 compared to ambient particles. In addition, nitrate-containing particles has been observed
488 to account for 70% of the cloud residues compared to 38% of the ambient particles.
489 Drewnick et al. (2007) suggested that rather than sulfate, high nitrate content in pre-existing
490 particles preferentially acted as cloud droplets. Compared with containing-nitrate ambient
491 particles, larger size of containing-nitrate residues (Figure S8) is more likely to be uptake
492 of gaseous HNO_3 during cloud process (Hayden et al. 2008; Roth et al., 2016). A recent
493 study also confirmed that uptake of gaseous HNO_3 was an important contributor for
494 increasing in nitrate level in the cloud residues (Schneider et al., 2017). Interestingly, we
495 observed a decrease in nitrate intensity in cloud residues except dust type (Figure 9) and a
496 large size distribution of nitrate-containing cloud residues (Figure S7) compared with non-
497 activated particles. This result suggests that particle size, rather than nitrate content, plays
498 a more important role in the activation of particles into cloud droplets.

499 Sulfate intensity was only observed to enhance for the OC cloud residues relative to both
500 ambient and non-activated particles. Although the in-cloud addition of sulfate can be
501 produced from aqueous Fe-catalyzed or oxidation by $\text{H}_2\text{O}_2/\text{O}_3$ reactions (Harris et al.,
502 2014), sulfate intensity was found to diminish in the Fe cloud residues relative to ambient
503 particles. Compared with non-activated particles, sulfate intensity was found to enhance in
504 the Fe cloud residues. Additionally, sulfate-containing particles accounted for 94%, 93%
505 and 94% of cloud residues, ambient and non-activated particles, respectively. Previous
506 studies also showed that the mass or number fraction of sulfate-containing particles in the
507 cloud residues changed between ambient and non-activated particles (Drewnick et al., 2007;
508 Twohy and Anderson, 2008; Schneider et al., 2017). However, the reason for these changes

509 remains unclear.

510 The in-cloud process has been reported to be an important pathway for the production
511 of amine particles (Rehbein et al., 2011; Zhang et al., 2012a). In this study, no remarkable
512 change in Nf of the Amine cloud residues was obtained relative to the ambient particles
513 (0.2% versus 0.2%), as shown in Figure 7. Bi et al. (2016) considered that the absence of
514 amine species in fog residues may be partially affected by droplet evaporation in the GCVI.
515 We did find a high fraction of the Amine cloud residues when the southwesterly air mass
516 prevailed, as discussion in Sect. 3.4. A lack of gas-phase amines may be the cause of few
517 amine particles detected in the ambient particles and cloud residues (Rehbein et al., 2011).

518 An increase in Nf of cloud residues was observed compared with non-activated particles
519 (5.2% versus 0.1%), as shown in Figure 7. Increasing the particle water content facilitates
520 partitioning of gas-phase amine species into the aqueous phase when gas-phase amines
521 present (Rehbein et al., 2011).

522

523 **4 Conclusions**

524 This study presented an in situ observation of individual cloud residues, non-activated and
525 ambient particles at a mountain site in South China. The finding shows that internal mixing
526 with soluble species (e.g., sulfate) in EC particles was an important contributor to cloud
527 residues in a remote area of China. Change in Nf of the cloud residue types influenced by
528 various air masses highlights the important role of regional transportation in the observed
529 cloud residual chemistry. Initial mixing of northerly cloud-free air and southwesterly
530 cloudy air can induce the activation of the nuclei particles to become cloud droplets. Higher
531 fractions of nitrate (88-89% by number) were found in the Dust and Na-rich cloud residues

532 relative to sulfate (41-42%) and ammonium (15-23%). Higher fraction, intensity (average
533 ion peak area) and larger size of nitrate-containing particles were found in the cloud
534 residues relative to the ambient particles. This result is most likely the cause of the uptake
535 from gas-phase HNO₃.

536

537 **Acknowledgments**

538 This work was supported by the National Nature Science Foundation of China (No.
539 91544101 and 41405131), the National Key Research and Development Program of China
540 (SQ2017ZY01014804) and the Foundation for Leading Talents of the Guangdong
541 Province Government. The authors thank Ji Ou from Shaoguan city Environmental
542 Monitoring Center for the support at the observed site. We also acknowledge the NOAA
543 Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and
544 dispersion model and/or READY website (<http://ready.arl.noaa.gov>) used in this
545 publication. All the data can be obtained by contacting the corresponding author.

546

547 **References**

548 Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The
549 nature and sources of cloud-active aerosols, *Earth-Sci. Revi.*, 89, 13-41, doi:
550 10.1016/j.earscirev.2008.03.001, 2008.

551 Angelino, S., Suess, D.T. and Prather, K. A.: Formation of aerosol particles from reactions
552 of secondary and tertiary alkylamines: Characterization by aerosol time-of-flight mass
553 spectrometry, *Environ. Sci. Technol.*, 35, 3130-3138, doi: 10.1021/es0015444, 2001.

554 Bator, A. and Collett, J.L.: Cloud chemistry varies with drop size, *J. Geophys. Res. Atmos.*,
555 102, 28071-28078. 1997.

556 Bi, X., Lin, Q., Peng, L., Zhang, G., Wang, X., Brechtel, F. J., Chen, D., Li, M., Peng, P.
557 a., Sheng, G. and Zhou, Z.: In situ detection of the chemistry of individual fog droplet
558 residues in the Pearl River Delta region, China, *J. Geophys. Res. Atmos.*, 121(15), 9105-
559 9116, doi:10.1002/2016jd024886, 2016.

560 Bi, X., Zhang, G., Li, L., Wang, X., Li, M., Sheng, G., Fu, J. and Zhou, Z.: Mixing state of
561 biomass burning particles by single particle aerosol mass spectrometer in the urban area
562 of PRD, China. *Atmos. Environ.*, 45, 3447-3453, doi:10.1016/j.atmosenv.2011.03.034,
563 2011.

564 Berg, L.K., Berkowitz, C.M., Hubbe, J.M., Ogren, J.A., Hostetler, C.A., Ferrare, R.A., Hair,
565 J.W., Dubey, M.K., Mazzoleni, C. and Andrews, E.: Overview of the cumulus humilis
566 aerosol processing study, *B. Am. Meteorol. Soc.* 90, 1653-1667,
567 <http://dx.doi.org/10.1175/2009BAMS2760.1>, 2009.

568 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,
569 Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K.,
570 Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S.,
571 Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont,
572 Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. and Zender,
573 C. S.: Bounding the role of black carbon in the climate system: A scientific assessment,
574 *J. Geophys. Res. Atmos.*, 118, 5380-5552, doi:10.1002/jgrd.50171, 2013.

575 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen,
576 V., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B.

577 and Zhang X.: Clouds and Aerosols. In Climate Change 2013: The Physical Science
578 Basis. Contribution of Working Group I to the Fifth Assessment Report of the
579 Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
580 Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
581 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
582 2013

583 Coggon, M.M., Sorooshian, A., Wang, Z., Craven, J.S., Metcalf, A.R., Lin, J.J., Nenes, A.,
584 Jonsson, H.H., Flagan, R.C. and Seinfeld, J.H.: Observations of continental biogenic
585 impacts on marine aerosol and clouds off the coast of California, *J. Geophys. Res.*
586 *Atmos.*, 119, 6724-6748. doi:10.1002/2013JD021228, 2014.

587 Cziczo, D.J., Murphy, D.M., Hudson, P.K. and Thomson, D.S.: Single particle
588 measurements of the chemical composition of cirrus ice residue during CRYSTAL-
589 FACE, *J. Geophys. Res. Atmos.*, 109, D04201, doi:10.1029/2003JD004032, 2004.

590 Cziczo, D.J., Froyd, K.D., Hoose, C., Jensen, E.J., Diao, M., Zondlo, M.A., Smith, J.B.,
591 Twohy, C.H. and Murphy, D.M.: Clarifying the dominant sources and mechanisms of
592 cirrus cloud formation, *Science*, 340, 1320-1324. doi: 10.1126/science.1234145, 2013.

593 Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A., Weimer, S.
594 and Borrmann, S.: Measurement of ambient, interstitial, and residual aerosol particles
595 on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI,
596 *J. Atmos. Chem.*, 56, 1-20, doi:10.1007/s10874-006-9036-8, 2007.

597 Deng, X., Wu, D., Shi, Y., Tang, H., Fan, S., Huang, H., Mao, W. and Ye, Y.:
598 Comprehensive analysis of the macro-and micro-physical characteristics of dense fog in

599 the area south of the Nanling Mountains (in Chinese), *J.Trop. Meteorol.*, 23, 424-434.
600 2007.

601 Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R. and Logan, J. A.: Interannual and
602 seasonal variability of biomass burning emissions constrained by satellite observations,
603 *J. Geophys. Res. Atmos.*, 108(D2), doi:10.1029/2002jd002378, 2003.

604 Freud, E., Rosenfeld, D., Andreae, M.O., Costa, A.A. and Artaxo, P.: Robust relations
605 between CCN and the vertical evolution of cloud drop size distribution in deep
606 convective clouds, *Atmos. Chem. Phys.*, 8, 1661-1675, 2008.

607 Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S.,
608 Moretti, F., Tagliavini, E. and Ceburnis, D.: Important source of marine secondary
609 organic aerosol from biogenic amines, *Environ. Sci. Technol.*, 42, 9116-9121, doi:
610 10.1021/es8018385, 2008.

611 Furukawa, T. and Takahashi, Y.: Oxalate metal complexes in aerosol particles:
612 implications for the hygroscopicity of oxalate-containing particles, *Atmos. Chem. Phys.*,
613 11, 4289-4301, doi:10.5194/acp-11-4289-2011, 2011.

614 Hallberg, A., Ogren, J. A., Noone, K. J., Okada, K., Heintzenberg, J. and Svenningsson, I.
615 B.: The influence of aerosol particle composition on cloud droplet formation, *J. Atmos.*
616 *Chem.*, 19, 153-171, doi: 10.1007/978-94-011-0313-8_8, 1994.

617 Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A.,
618 Gnauk, T., Fahlbusch, B. and Mertes, S.: Enhanced role of transition metal ion catalysis
619 during in-cloud oxidation of SO₂, *Science*, 340, 727-730, doi:10.1126/science.1230911,
620 2013.

621 Harris, E., Sinha, B., van Pinxteren, D., Schneider, J., Poulain, L., Collett, J., D'Anna, B.,
622 Fahlbusch, B., Foley, S., Fomba, K. W., George, C., Gnauk, T., Henning, S., Lee, T.,
623 Mertes, S., Roth, A., Stratmann, F., Borrmann, S., Hoppe, P. and Herrmann, H.: In-cloud
624 sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-
625 2010, *Atmos. Chem. Phys.*, 14, 4219-4235, doi:10.5194/acp-14-4219-2014, 2014.

626 Hammer, E., Gysel, M., Roberts, G.C., Elias, T., Hofer, J., Hoyle, C.R., Bukowiecki, N.,
627 Dupont, J.C., Burnet, F., Baltensperger, U. and Weingartner, E.: Size-dependent particle
628 activation properties in fog during the ParisFog 2012/13 field campaign, *Atmos. Chem.*
629 *Phys.*, 14, 10517-10533, 2014.

630 Hayden, K. L., Macdonald, A. M., Gong, W., Toom-Sauntry, D., Anlauf, K. G., Leithead,
631 A., Li, S. M., Leaitch, W. R. and Noone, K.: Cloud processing of nitrate, *J. Geophys.*
632 *Res. Atmos.*, 113(D18), doi:10.1029/2007jd009732, 2008.

633 Herich, H., Kammermann, L., Gysel, M., Weingartner, E., Baltensperger, U., Lohmann, U.
634 and Cziczo, D. J.: In situ determination of atmospheric aerosol composition as a function
635 of hygroscopic growth, *J. Geophys. Res. Atmos.*, 113(D16), doi:10.1029/2008jd009954,
636 2008.

637 Herckes, P., Valsaraj, K.T. and Collett, J.L., A review of observations of organic matter in
638 fogs and clouds: Origin, processing and fate, *Atmos. Res.*, 132, 434-449. 2013.

639 Hudson, P.K., Murphy, D.M., Cziczo, D.J., Thomson, D.S., de Gouw, J.A., Warneke, C.,
640 Holloway, J., Jost, H.J. and Hübner, G.: Biomass-burning particle measurements:
641 Characteristic composition and chemical processing, *J. Geophys. Res. Atmos.*, 109,
642 D23S27, doi:10.1029/2003JD004398, 2004.

643 Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F., Keller, L., Cziczo, D. J.,
644 Mertes, S., Borrmann, S. and Curtius, J.: Chemical composition of ambient aerosol, ice
645 residues and cloud droplet residues in mixed-phase clouds: single particle analysis
646 during the Cloud and Aerosol Characterization Experiment (CLACE 6), *Atmos. Chem.*
647 *Phys.*, 10, 8077-8095, doi:10.5194/acp-10-8077-2010, 2010.

648 Kleinman, L.I., Daum, P.H., Lee, Y.-N., Lewis, E.R., Sedlacek III, A., Senum, G.,
649 Springston, S., Wang, J., Hubbe, J. and Jayne, J.: Aerosol concentration and size
650 distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-
651 Rex, *Atmos. Chem. Phys.*, 12, 207-223, 2012.

652 Lee, C. S. L., Li, X., Zhang, G., Peng, X. and Zhang, L.: Biomonitoring of trace metals in
653 the atmosphere using moss (*Hypnum plumaeforme*) in the Nanling Mountains and the
654 Pearl River Delta, Southern China. *Atmos. Environ.*, 39(3), 397-407, 2005.

655 Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G., Bi, X. and Cheng,
656 P.: Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol
657 particles, *Int. J. Mass Spectrom.*, 303, 118-124,
658 doi:<http://dx.doi.org/10.1016/j.ijms.2011.01.017>, 2011a.

659 Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A., Nie, W., Xue, L., Wang, X. and Wang, W.:
660 Evolution of trace elements in the planetary boundary layer in southern China: effects of
661 dust storms and aerosol-cloud interaction, *J. Geophys. Res. Atmos.*, 122, 3492-3506,
662 2017.

663 Li, W., Li, P., Sun, G., Zhou, S., Yuan, Q. and Wang, W.: Cloud residues and interstitial
664 aerosols from non-precipitating clouds over an industrial and urban area in northern
665 China, *Atmos. Environ.*, 45, 2488-2495, doi:10.1016/j.atmosenv.2011.02.044, 2011b.

666 Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E. and Zhang, J.:
667 Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-
668 HAM, *Atmos. Chem. Phys.*, 7, 3425-3446, 2007.

669 Matsuki, A., Schwarzenboeck, A., Venzac, H., Laj, P., Crumeyrolle, S. and Gomes, L.:
670 Cloud processing of mineral dust: direct comparison of cloud residual and clear sky
671 particles during AMMA aircraft campaign in summer 2006, *Atmos. Chem. Phys.*, 10,
672 1057-1069, 2010.

673 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi,
674 S., Gysel, M., Laaksonen, A. and Lohmann, U.: The effect of physical and chemical
675 aerosol properties on warm cloud droplet activation, *Atmos. Chem. Phys.*, 6, 2593-2649,
676 doi:10.5194/acp-6-2593-2006, 2006.

677 Mertes, S., Lehmann, K., Nowak, A., Massling, A. and Wiedensohler, A.: Link between
678 aerosol hygroscopic growth and dropletactivation observed for hill-capped clouds at
679 connected flow conditions during FEBUKO, *Atmos. Environ.*, 39, 4247-4256, 2005.

680 Moffet, R.C., Foy, B. D., Molina, L. A., Molina, M. and Prather, K.A.: Measurement of
681 ambient aerosols in northern Mexico City by single particle mass spectrometry, *Atmos.*
682 *Chem. Phys.*, 8, 4499-4516, doi:10.5194/acp-8-4499-2008, 2008.

683 Moffet, R.C. and Prather, K.A.: In-situ measurements of the mixing state and optical
684 properties of soot with implications for radiative forcing estimates, *Proc. Natl. Acad. Sci.*
685 USA, 106, 11872-11877, doi: 10.1073/pnas.0900040106, 2009.

686 Pratt, K.A., Hatch, L. E. and Prather, K. A.: Seasonal volatility dependence of ambient
687 particle phase amines, *Environ. Sci. Technol.*, 43, 5276-5281, doi:10.1021/es803189n,
688 2009.

689 Pratt, K.A., Heymsfield, A. J., Twohy, C. H., Murphy, S. M., DeMott, P. J., Hudson, J. G.,
690 Subramanian, R., Wang, Z., Seinfeld, J. H. and Prather, K. A.: In Situ Chemical
691 Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds, *J.*
692 *Atmos. Sci.*, 67, 2451-2468, doi:10.1175/2010jas3330.1, 2010a.

693 Pratt, K.A., Murphy, S., Subramanian, R., DeMott, P., Kok, G., Campos, T., Rogers, D.,
694 Prenni, A., Heymsfield, A. and Seinfeld, J.: Flight-based chemical characterization of
695 biomass burning aerosols within two prescribed burn smoke plumes, *Atmos. Chem.*
696 *Phys.*, 11, 12549-12565, doi:10.5194/acp-11-12549-2011, 2011.

697 Pratt, K.A., Twohy, C.H., Murphy, S.M., Moffet, R.C., Heymsfield, A.J., Gaston, C.J.,
698 DeMott, P.J., Field, P.R., Henn, T.R., Rogers, D.C., Gilles, M.K., Seinfeld, J.H. and
699 Prather, K.A.: Observation of playa salts as nuclei in orographic wave clouds, *J. Geophys.*
700 *Res. Atmos.*, 115, D15301, doi:10.1029/2009JD013606, 2010b.

701 Qin, X., Bhave, P.V. and Prather, K. A.: Comparison of two methods for obtaining
702 quantitative mass concentrations from aerosol time-of-flight mass spectrometry
703 measurements, *Anal. Chem.*, 78(17), 6169-6178, doi: 10.1021/ac060395q, 2006.

704 Rehbein, P. J., Jeong, C. H., McGuire, M. L., Yao, X., Corbin, J. C. and Evans, G. J.: Cloud
705 and fog processing enhanced gas-to-particle partitioning of trimethylamine, *Environ. Sci.*
706 *Technol.*, 45, 4346-4352, doi:10.1021/es1042113, 2011.

707 Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell,
708 A. and Andreae, M.O.: Flood or drought: how do aerosols affect precipitation?, *Science*,
709 321, 1309-1313, doi: 10.1126/science.1160606, 2008.

710 Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H. and
711 Borrmann, S.: Aerosol properties, source identification, and cloud processing in

712 orographic clouds measured by single particle mass spectrometry on a central European
713 mountain site during HCCT-2010, *Atmos. Chem. Phys.*, 16, 505-524, doi:10.5194/acp-
714 16-505-2016, 2016.

715 Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H. and Borrmann, S.: Uptake of
716 nitric acid, ammonia, and organics in orographic clouds: Mass spectrometric analyses of
717 droplet residual and interstitial aerosol particles, *Atmos. Chem. Phys.*, 17, 1571-1593,
718 doi:10.5194/acp-17-1571-2017, 2017.

719 Seinfeld, J.H., Bretherton, C., Carslaw, K.S., Coe, H., DeMott, P.J., Dunlea, E.J., Feingold,
720 G., Ghan, S., Guenther, A.B. and Kahn, R.: Improving our fundamental understanding
721 of the role of aerosol-cloud interactions in the climate system, *Proc. Natl. Acad. Sci.*
722 USA, 113, 5781-5790, doi: 10.1073/pnas.1514043113, 2016.

723 Sellegrí, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M. and Preunkert, S.: Contribution
724 of gaseous and particulate species to droplet solute composition at the Puy de Dôme,
725 France, *Atmos. Chem. Phys.*, 3, 1509-1522, doi:10.5194/acp-3-1509-2003, 2003.

726 Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M.,
727 Mülmenstädt, J., Russell, L. M., Jonsson, H. H. and Seinfeld, J. H.: Characterisation and
728 airborne deployment of a new counterflow virtual impactor inlet, *Atmos. Meas. Tech.*,
729 5, 1259-1269, doi:10.5194/amt-5-1259-2012, 2012.

730 Song, X.H., Hopke, P. K., Fergenson, D. P. and Prather, K. A.: Classification of single
731 particles analyzed by ATOFMS using an artificial neural network, *ART-2A, Anal.*
732 *Chem.*, 71, 860-865, doi:10.1021/ac9809682, 1999.

733 Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C. and Seinfeld, J. H.:
734 Particulate organic acids and overall water-soluble aerosol composition measurements

735 from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study
736 (GoMACCS), *J. Geophys. Res. Atmos.*, 112(D13), doi:10.1029/2007JD008537, 2007a.

737 Sorooshian, A., Lu, M. L., Brechtel, F. J., Jonsson, H., Feingold, G., Flagan, R. C. and
738 Seinfeld, J. H.: On the source of organic acid aerosol layers above clouds, *Environ. Sci.*
739 *Technol.*, 41, 4647-4654, doi: 10.1021/es0630442, 2007b.

740 Sorooshian, A., Murphy, S., Hersey, S., Gates, H., Padro, L., Nenes, A., Brechtel, F.,
741 Jonsson, H., Flagan, R. and Seinfeld, J.: Comprehensive airborne characterization of
742 aerosol from a major bovine source, *Atmos. Chem. Phys.*, 8, 5489-5520, doi:
743 <http://dx.doi.org/10.5194/acp-8-5489-2008>, 2008.

744 Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen,
745 I., Werner, M. and Balkanski, Y.: The aerosol-climate model ECHAM5-HAM, *Atmos.*
746 *Chem. Phys.*, 5, 1125-1156. 2005.

747 Tang, M., Cziczo, D. J. and Grassian, V. H.: Interactions of Water with Mineral Dust
748 Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation,
749 *Chem. Rev.*, doi:10.1021/acs.chemrev.5b00529, 2016.

750 Targino, A.C., Krejci, R., Noone, K.J. and Glantz, P.: Single particle analysis of ice crystal
751 residuals observed in orographic wave clouds over Scandinavia during INTACC
752 experiment, *Atmos. Chem. Phys.*, 6, 1977-1990, 2006.

753 Tsai, J.H., Lin, K.H., Chen, C.Y., Ding, J.Y., Choa, C.G. and Chiang, H.L.: Chemical
754 constituents in particulate emissions from an integrated iron and steel facility, *J. Hazard.*
755 *Mater.*, 147, 111-119. 2007.

756 Twohy, C.H., Kreidenweis, S.M., Eidhammer, T., Browell, E.V., Heymsfield, A.J.,
757 Bansemer, A.R., Anderson, B.E., Chen, G., Ismail, S., DeMott, P.J. and Van Den Heever,

758 S.C.: Saharan dust particles nucleate droplets in eastern Atlantic clouds, Geophys. Res.
759 Lett., 36, doi: 10.1029/2008GL035846, 2009.

760 Twohy, C.H. and Poellot, M.: Chemical characteristics of ice residual nuclei in anvil cirrus
761 clouds: evidence for homogeneous and heterogeneous ice formation, Atmos. Chem.
762 Phys., 5, 2289-2297, 2005.

763 Twohy C.H. and Anderson J. R.: Droplet nuclei in non-precipitating clouds: composition
764 and size matter. Environ. Res. Lett., 3, 045002, doi:10.1088/1748-9326/3/4/045002,
765 2008.

766 Wang, H., An, J., Shen, L., Zhu, B., Xia, L., Duan, Q. and Zou, J.: Mixing state of ambient
767 aerosols in Nanjing city by single particle mass spectrometry, Atmos. Environ., 132,
768 123-132, 2016.

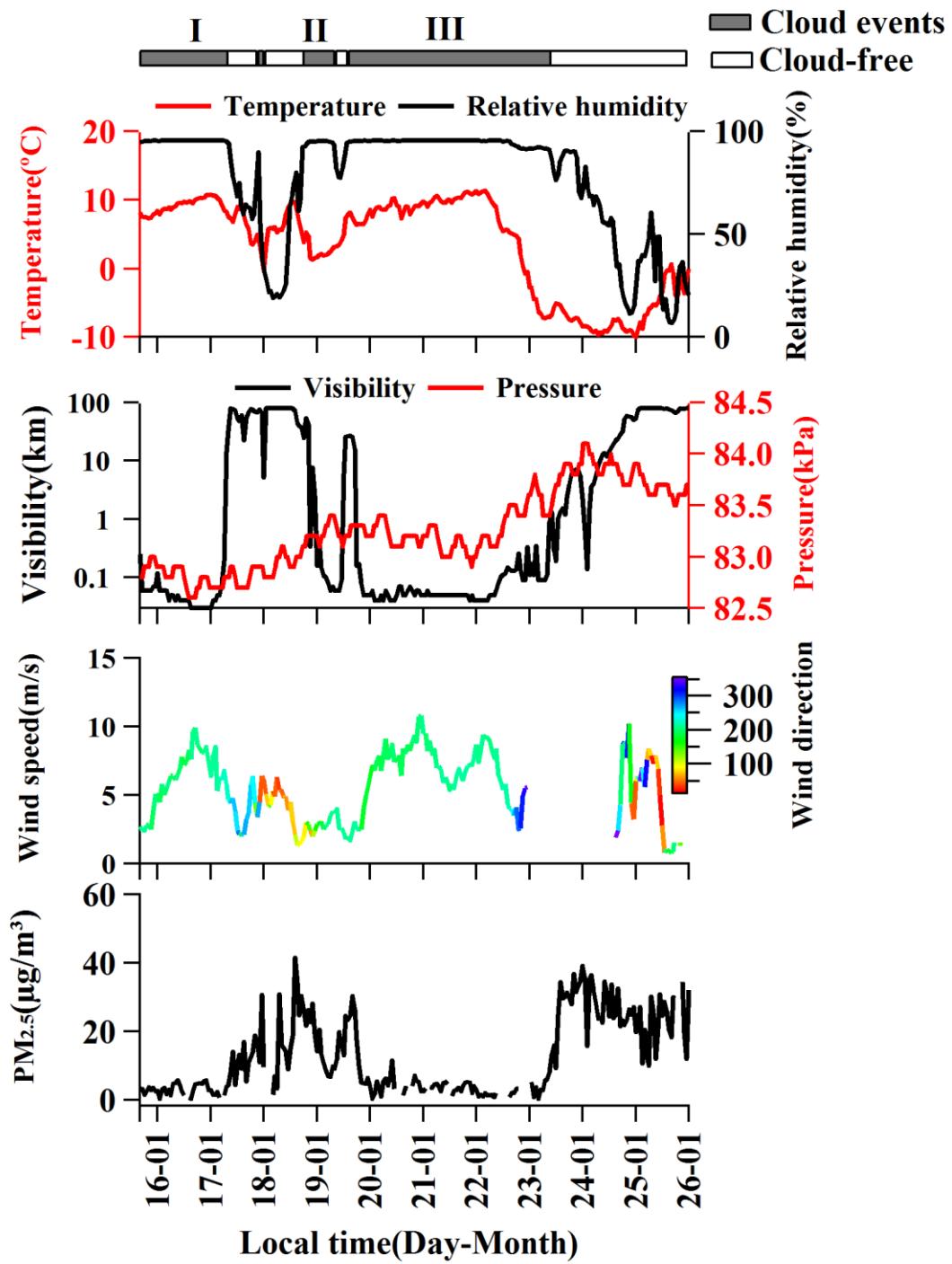
769 Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J. L. and Wang, W.:
770 Influence of regional pollution and sandstorms on the chemical composition of cloud/fog
771 at the summit of Mt. Taishan in northern China, Atmos. Res., 99, 434-442,
772 doi:10.1016/j.atmosres.2010.11.010, 2011.

773 Wu, Z., Nowak, A., Poulain, L., Herrmann, H., and Wiedensohler, A.: Hygroscopic
774 behavior of atmospherically relevant water-soluble carboxylic salts and their influence
775 on the water uptake of ammonium sulfate, Atmos. Chem. Phys., 11, 12617-12626,
776 doi:10.5194/acp-11-12617-2011, 2011.

777 Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., Macdonald,
778 A. M., Ovchinnikov, M. and Strapp, W.: In Situ Characterization of Cloud Condensation
779 Nuclei, Interstitial, and Background Particles Using the Single Particle Mass
780 Spectrometer, SPLAT II†, Anal. Chem., 82, 7943-7951, doi:10.1021/ac1013892, 2010.

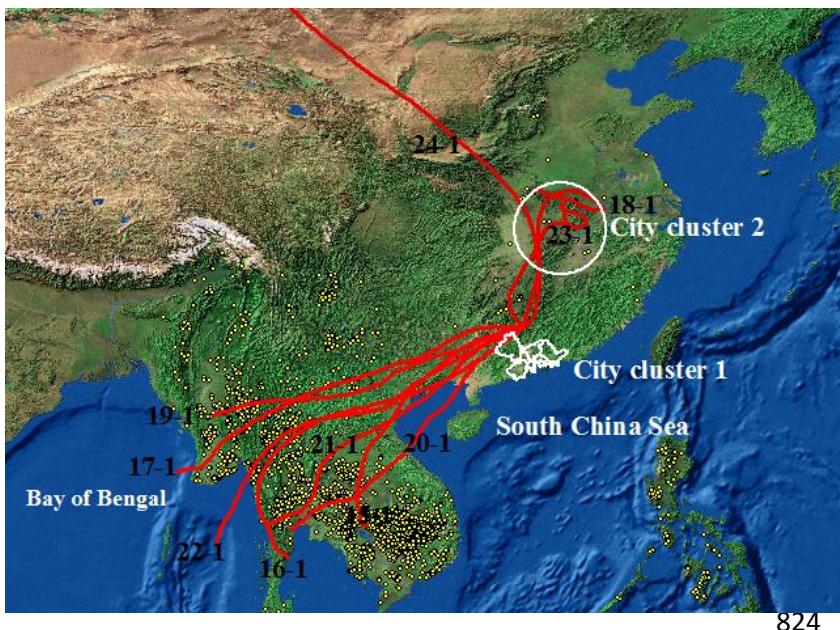
781 Zhang, Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. and McMurry, P. H.: Variability in
782 morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric
783 processing, Proc. Natl. Acad. Sci. USA, 105, 10291-10296,
784 doi:10.1073/pnas.0804860105, 2008.

785 Zhang, G., Bi, X., Chan, L. Y., Li, L., Wang, X., Feng, J., Sheng, G., Fu, J., Li, M. and
786 Zhou, Z.: Enhanced trimethylamine-containing particles during fog events detected by
787 single particle aerosol mass spectrometry in urban Guangzhou, China, *Atmos. Environ.*,
788 55, 121-126, doi:10.1016/j.atmosenv.2012.03.038, 2012a.


789 Zhang, G., Bi, X., Li, L., Chan, L. Y., Li, M., Wang, X., Sheng, G., Fu, J. and Zhou, Z.:
790 Mixing state of individual submicron carbon-containing particles during spring and fall
791 seasons in urban Guangzhou, China: a case study, *Atmos. Chem. Phys.*, 13, 4723-4735,
792 doi:10.5194/acp-13-4723-2013, 2013.

793 Zhang, G., Bi, X., Lou, S., Li, L., Wang, H., Wang, X., Zhou, Z., Sheng, G., Fu, J. and
794 Chen, C.: Source and mixing state of iron-containing particles in Shanghai by individual
795 particle analysis, *Chemosphere*, 95, 9-16, 2014.

796 Zhang, G., Lin, Q., Peng, L., Bi, X., Lei, M., Chen, D., Brechtel, F.J., Chen, X., Yan,
797 W., Wang, X., Peng, P., Sheng., G. and Zhou, Z.: Single particle mixing state and cloud
798 scavenging of black carbon at a high-altitude mountain site in south China, *J. Geophys.*
799 *Res. Atmos.* in revise, 2017.

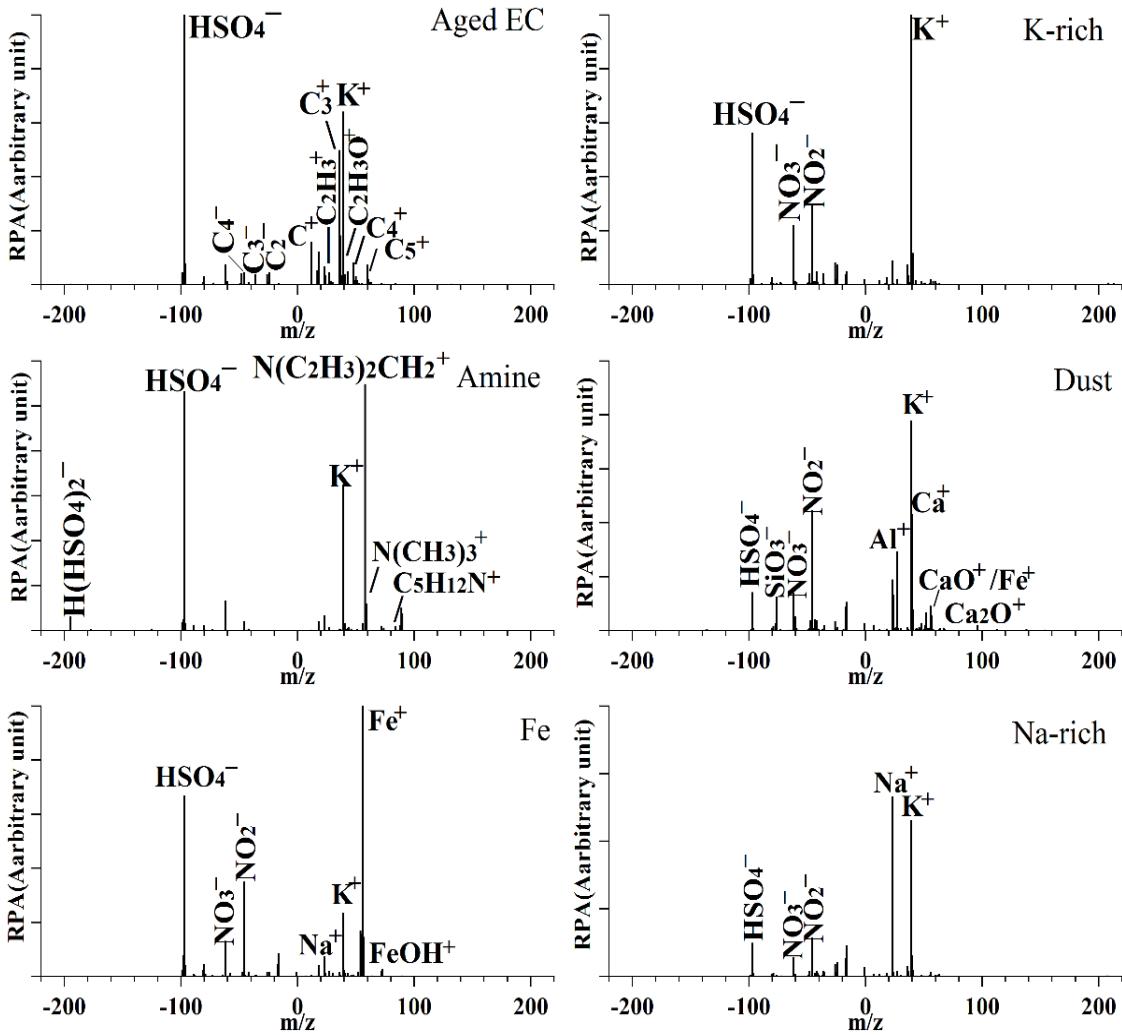

800 Zhang, X., Wang, Y., Niu, T., Zhang, X., Gong, S., Zhang, Y. and Sun, J.: Atmospheric
801 aerosol compositions in China: spatial/temporal variability, chemical signature, regional
802 haze distribution and comparisons with global aerosols, *Atmos. Chem. Phys.*, 12, 779-
803 799, doi:10.5194/acp-12-779-2012, 2012b.

804 Zhang, Y.P., Wang, X.F., Chen, H., Yang, X., Chen, J.M. and Allen, J.O.: Source
805 apportionment of lead-containing aerosol particles in Shanghai using single particle
806 mass spectrometry, Chemosphere, 74, 501-507, 2009.

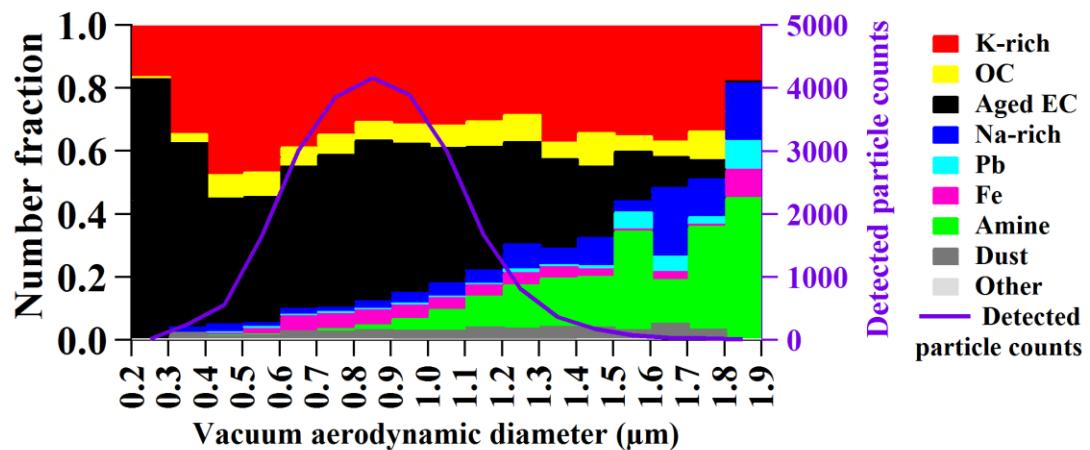


810 Figure 1: The hourly average variations in meteorological conditions (temperature,
 811 relative humidity, visibility, pressure, wind speed and direction) and PM_{2.5}.
 812

813 (a)



825 (b)

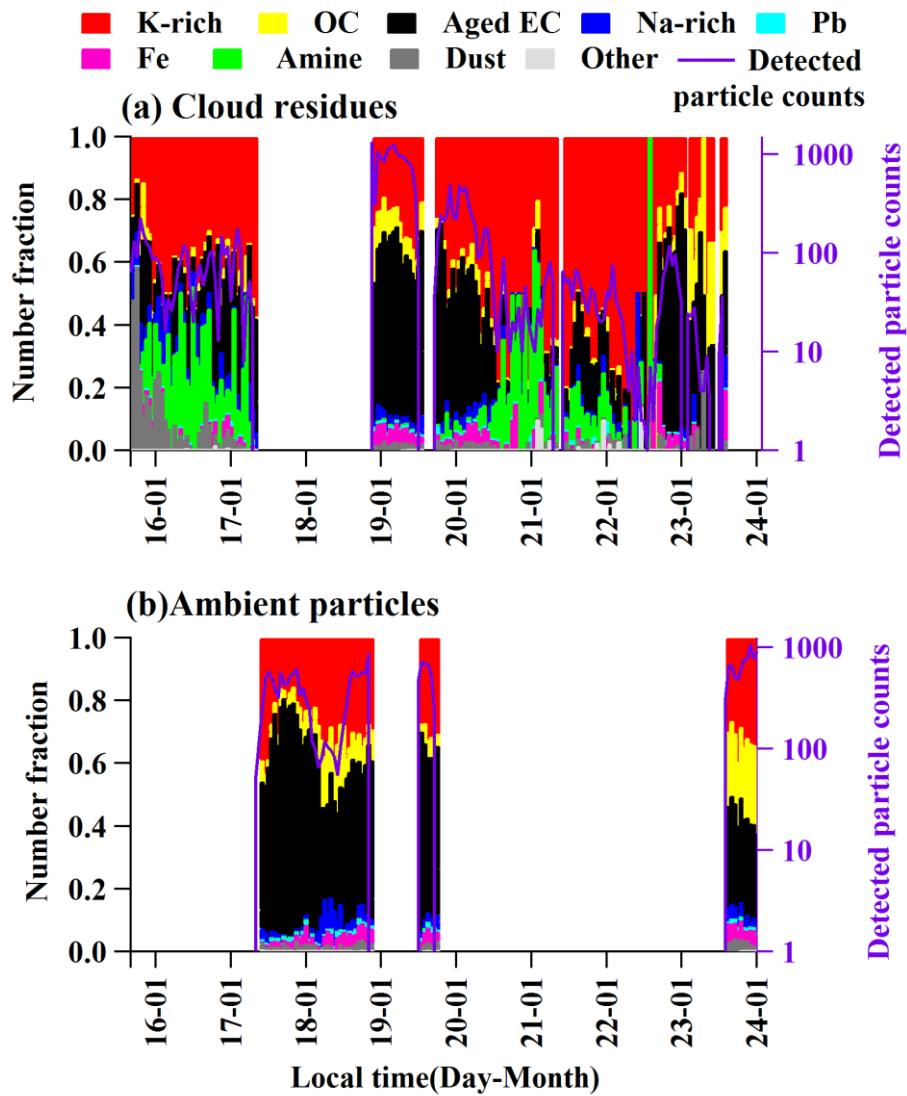


834 Figure 2: (a) HYSPLIT back trajectories (72 h) for air masses at 1,800 m during the whole
 835 sampling period. The white borders and circle refer to the Pearl River Delta (city cluster 1)
 836 and Yangtze River Mid-Reaches city clusters (city cluster 2), respectively. The yellow dots
 837 represent fire dots during the study periods. The fire dots are available at

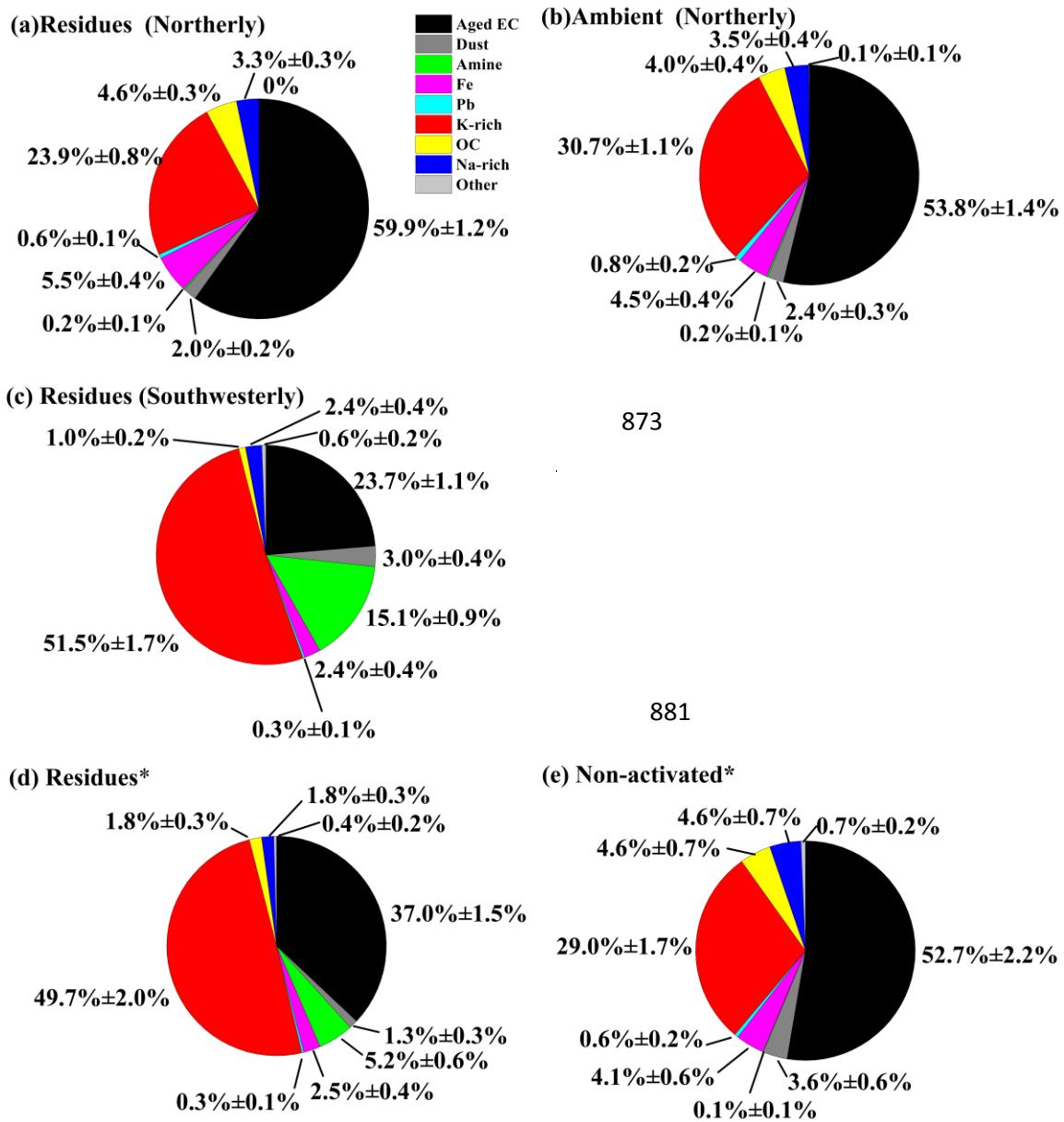
838 https://earthdata.nasa.gov/; (b) Heights (above model ground) of the air masses as a
839 function of time.



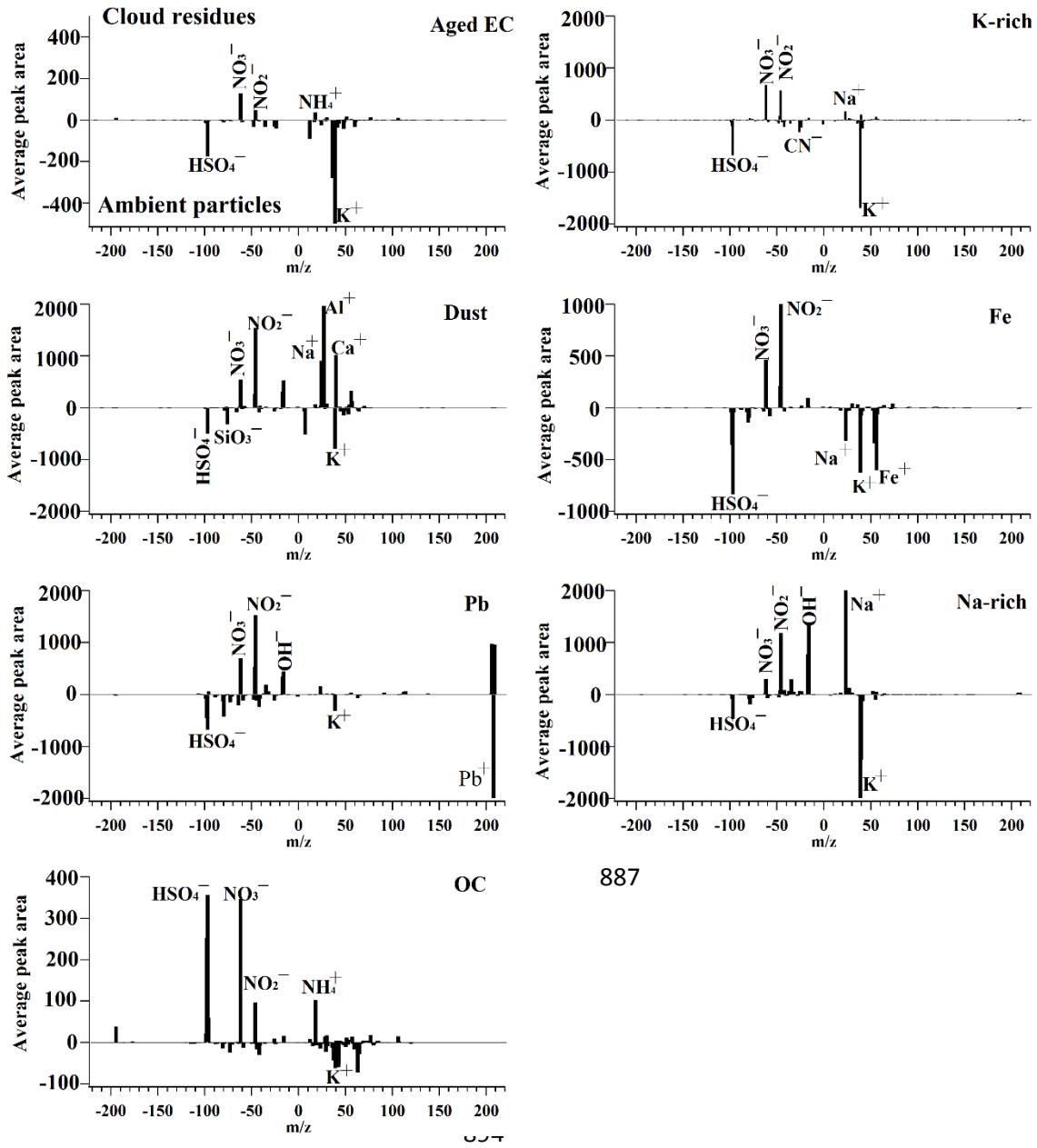
840
841 Figure 3: Averaged positive and negative mass spectra for the main 6 particle types (Aged
842 EC, K-rich, Amine, Dust, Fe, Na-rich) of the sampled particles during the whole sampling
843 period. RPA in the vertical axis refers to relative peak area. m/z in the horizontal axis
844 represents mass-to-charge ratio.


845

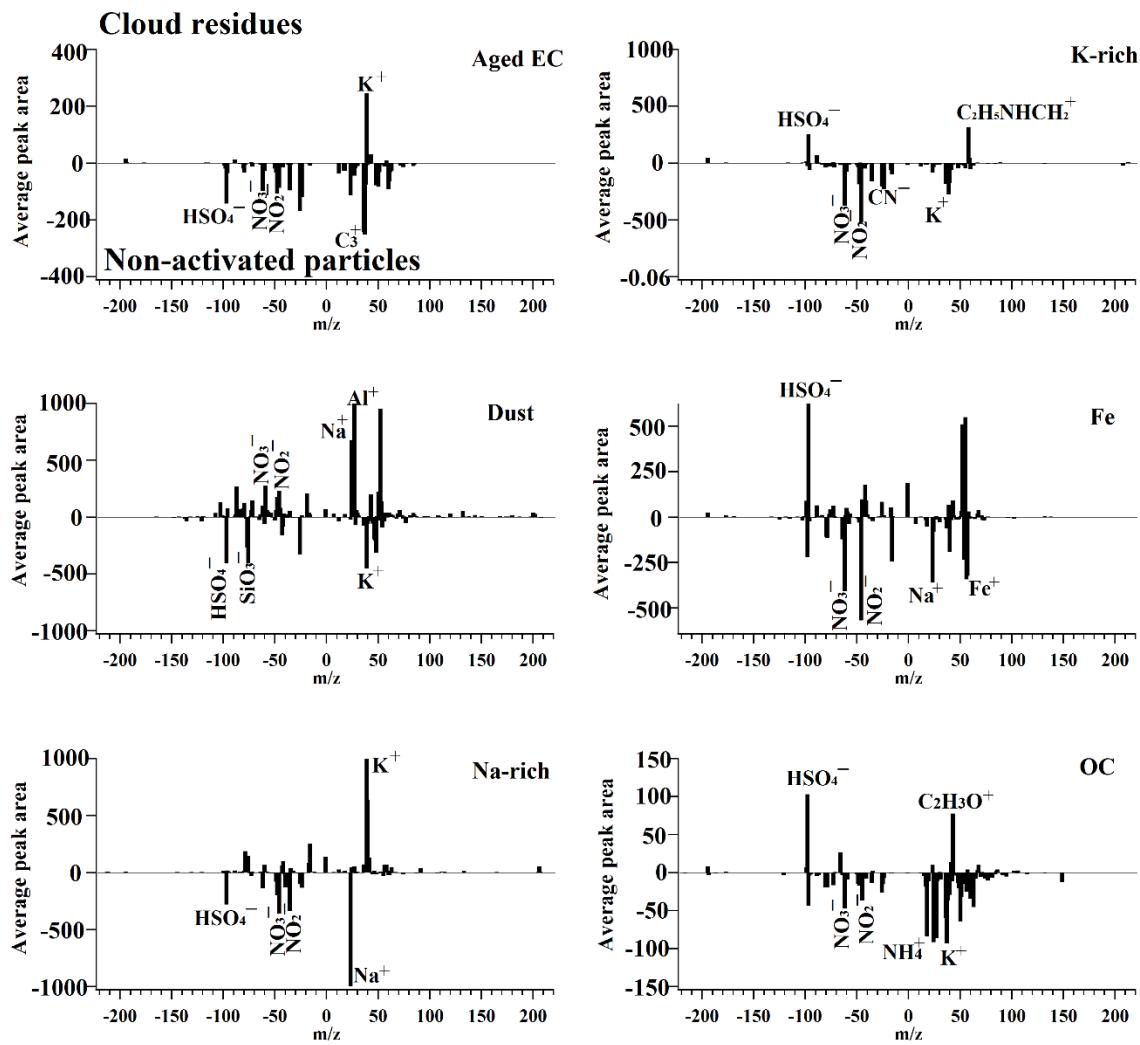
846 Figure 4: Number fraction for size distribution of the cloud residual types in 100 nm size
 847 intervals.



848


849 Figure 5: Mixing state of secondary markers with the total cloud residues types; Sulfate
 850 (m/z , -97HSO₄⁻), Nitrate (m/z , -46NO₂⁻ or -62NO₃⁻), Ammonium (m/z , 18NH₄⁺), Sulfuric
 851 acid (m/z , -195H(HSO₄)₂⁻), TMA (m/z , 59N(CH₃)₃⁺), Oxalate (m/z , -89HC₂O₄⁻).

870 Figure 6: The hourly average variations in the cloud residual and ambient particles during
 871 the whole sampling period.



882 Figure 7: Number fraction of the cloud residues, ambient and non-activated particles. (a)
883 cloud residues during northerly air mass; (b) ambient particle during northerly air mass; (c)
884 cloud residues during southwesterly air mass; (d) cloud residues and (e) non-activated
885 particles were alternately sampled with interval of one hour during the cloud III event;
886 Uncertainties were calculated assuming Poisson statistics for analyzed particles.

895

896 Figure 8: Mass spectral subtraction plot of the average mass spectrum corresponding to
 897 cloud residues minus ambient particles. Positive area peaks correspond to higher
 898 abundance in cloud residues, whereas negative area peaks show higher intensity in ambient
 899 particles.

900
901 Figure 9: Mass spectral subtraction plot of the average mass spectrum corresponding to
902 cloud residues minus non-activated particles. Positive area peaks correspond to higher
903 abundance in cloud residues, whereas negative area peaks show higher intensity in non-
904 activated particles.

905