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Abstract. Black carbon (BC) aerosol particles play an important role in regulating earth’s climate and their climate effects 

depend on their mixing state. During the CAREBeijing 2013 campaign, we measured the size-resolved mixing state of 

refractory BC particles in North China Plain and performed intercomparison between a single particle soot photometer (SP2) 

and a volatility tandem differential mobility analyzer (VTDMA). The intercomparison shows a good agreement between the 

optical particle diameter determined by SP2 and the mobility particle diameter determined by VTDMA for non-BC as well 20 

as for internally mixed refractory BC particles. The VTDMA shows a higher concentration of refractory particles than that of 

the SP2, which suggests the existence of a large fraction of low volatile non-BC aerosols. Following parameters were 

constrained by closure studies to improve the inversion of the mixing state of ambient BC (i.e., coating thickness (CT) and 

shell/core ratio (Dp/Dc)) by SP2: a) refractive indices (RI) of 1.42 and 1.67-0.56i for non-BC and rBC core components, 

respectively, b) refractory BC (rBC) core density of 1.2 g cm-3 for internally-mixed BC particles, and c) an effective density 25 

range of 0.25-0.45 g cm-3 for externally-mixed BC particles. Moreover, the upper limit of the measurable particle size of SP2 

was extended by the leading-edge-only (LEO) fit from ~400 nm to ~550 nm as confirmed by the VTDMA measurement. 

Based on the improved inversion from SP2 measurement, we found that non-BC containing particles, internally-mixed BC 

and externally-mixed BC contribute 85-90%, 5-7% and 5-10% of the total aerosol number in the size range of 200 nm to 350 

nm. The number fraction of internally-mixed BC in total BC-containing aerosols (Fin) shows pronounced diurnal cycles with 30 

a peak around noon time and an apparent turnover rate up to 6-9% h-1. Such diurnal cycles are similar to the finding of 

Cheng et al. (2012) suggesting the competing effect of emissions and aging processes. In this study, the observed internally-

mixed BC particles in the polluted regional NCP (North China Plain) background site (Xianghe) suggest a rapid aging 
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process of BC on the regional scale. During the intensive field study period, ~80% of internally-mixed BC particles at 200-

300 nm showed a Dp/Dc ratio of more than 2, accompanying with an average value of 2.3-2.8. Meanwhile, the CT of 

internally-mixed BC particles (200-350 nm) with rBC core size of 80-200 nm was in the range of 50-150 nm. Compared 

with previous measurements in developed countries, the observed BC particles on regional scale (i.e., internally-mixed BC 

particles) were more-aged, indicating stronger optical and climate effect of BC on the regional scale in northern China. 5 

1 Introduction 

Black carbon (BC) as a light absorbing aerosol compound have been suggested as the second most important climate-

warming agent due to human emissions and plays an important role in the Earth’s climate system (Cappa et al., 2012; Cheng 

et al., 2006; Cheng et al., 2012; Cheng et al., 2008; Fuller et al., 1999;Jacobson, 2001; Japar et al., 1986; Rosen et al., 1978; 

Rose et al. 2011). It can directly contribute to the particulate matter (PM) pollution (Zheng et al. 2015) or indirectly enhance 10 

air pollution by modifying the planetary boundary layer meteorology (Ding et al. 2016). Current uncertainties in assessing 

the radiative effect of BC may be due to uncertainties in the model treatment of BC emissions, size segregation (Chen et al. 

2016; Nordmann et al. 2014) and removal processes as well as the BC mixing state. 

The radiative effect of BC strongly depends on its mixing state (how BC is mixed with other aerosol components), of 

which insufficient knowledge results in largest uncertainties in the estimation of its climate effect (Cappa et al. 2012; 15 

Nordmann et al. 2014). Several online techniques have been developed to characterize the mixing state of BC, such as 

volatility tandem differential mobility analyzer (VTDMA) (Cheng et al., 2012; Philippin et al., 2004; Wehner et al., 2004; 

Zhang et al, 2016a), single particle soot photometer (SP2) (Metcalf et al., 2013; Schwarz et al., 2006; Sedlacek et al., 2012) 

and derivative techniques such as soot particle aerosol mass spectrometer (SP-AMS) (Cappa et al., 2012; Lee et al., 2015). 

This study focuses on the two techniques of VTDMA and SP2. The VTDMA method investigates the mixing state of BC 20 

particle by measuring the change of aerosol particle size at different temperatures. As a refractory component, BC will 

remain in the particle phase upon heating while the rest components tend to evaporate resulting in a change of particle size 

(Cheng et al., 2009; Frey et al., 2008; Wehner et al., 2009). The change is then used to discriminate internally-mixed BC 

from externally-mixed ones and to derive the coating thickness. There exist uncertainties in estimate of BC mixing state 

using VTDMA measurement. The causes are due to that VTDMA cannot identify doubly/multiply charged particles and 25 

cannot isolate the influence of low-volatile components (i.e., refractory organic matter (OM), mineral dust, trace metals 

and/or sea salt) (Cheng et al., 2009). 

The SP2 technique characterizes the mixing state of single BC particle through its laser-induced incandescence and 

scattering properties. The refractory BC (rBC) mass is determined from incandescence intensity and the total particle size is 

retrieved from its scattering properties. The coating thickness can be calculated from BC mass and the total particle size. The 30 

inversion of total particle size, however, is very challenging in early SP2 studies. This is because the initial scattering 

properties changes with evaporation of coatings for BC-containing particles. The initial scattering properties of BC-
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containing particle are necessary to be inverted for estimating the optical size. To overcome this problem, Gao et al. (2007) 

developed a leading-edge-only (LEO) fit method to derive the initial scattering properties of aerosol particles, especially BC-

containing particles. The SP2 have still limitations in determining the mixing state of BC aerosol. The uncertainties of SP2 

technique are mainly due to the uncertainties of the input parameters for the Mie calculation. These input parameters include 

refractive index (RI), the density of BC core, and the morphology of particles (Cappa et al., 2012).  5 

Owing to intensive BC emissions, China has been one of the hot spots of global absorbing aerosol. The amount of BC 

emissions in China are around 1.8 Tg in the year 2006 estimated by Zhang et al. (2009). BC solar absorption in China plays 

an important role in global climate change. Model studies show that the BC absorption can be enhanced by a factor of 2-3 as 

a result of BC mixing with secondary species (Jacobson et al., 2001; Bond et al., 2006; Cheng et al. 2006). Therefore, the BC 

mixing state in China becomes an important issue in estimate of the regional forcing of BC aerosols. However, to date, there 10 

are few reports on BC mixing state (i.e., coating thickness (CT) and shell/core ratio (Dp/Dc)) in China due to the limitations 

in measurement techniques.  

 In this study, we measured BC mixing state combining SP2 and VTDMA techniques in northern China. Firstly, the 

single particle size of non-BC, externally-mixed BC and internally-mixed BC measured in SP2 was accurately inverted by 

parameterization of particle characteristics (i.e., refractive index, effective density and morphology) observed in our site. 15 

Compared with SP2 measurement (as a standard reference), we then discussed the performance of VTDMA measurement 

and potential methods to reduce their uncertainties. Finally, the mixing state of ambient BC aerosols observed in our site 

were quantified to investigate the BC aging on regional scale of the North China Plain. 

2 Methodology 

2.1 Experimental setup 20 

As a part of the CAREBeijing 2013 campaign, we performed in site measurements of BC-containing particles from 8 July to 

27 July at the regional Atmospheric Observatory Xianghe (39.80°N, 116.96 °E) in the polluted North China Plain. The 

Xianghe site is located in the southeast of the capital Beijing (~60 km) and northwest of the megacity Tianjin (~100 km), 

which is surrounded by residential suburban areas and around 5 km from the local town center (Kecorius et al., 2015; Ma et 

al., 2016; Teich et al. 2016).  25 

The ambient aerosol particles were collected by a sampling system comprised of a PM10 cyclone inlet and an automated 

diffusion dryer (Tuch et al., 2009), and then analyzed by a combination of a SP2 and a VTDMA. A special configuration is 

that the SP2 was installed after the first differential mobility analyzer (DMA1) of the VTDMA to investigate the ability of 

SP2 in the inversion of particle sizes (Fig. 1). Since SP2 is recommended for measuring particles with diameters of 200 nm 

to 400 nm, four sizes (mobility diameter) in this range were selected in our measurements, i.e., 200 nm, 250 nm, 300 nm and 30 

350 nm.  

The VTDMA consists of two DMA (labeled as DMA1 and DMA2), two CPC (condensation particle counter) and two 
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thermodenuders. DMA1 is used to select mono-dispersed aerosol particles, which are then passed through either a 300 °C 

thermodenuder or a tube kept at 25°C. The 300 °C thermodenuder is used to remove the volatile components for the 

determination of nonvolatile/refractory materials. The 25°C tube is used as a reference channel. The number size distribution 

of residual particles after the thermodnuder is measured by the DMA2 and CPC2. The residual materials after being heated 

at 300°C were mostly considered as BC components (Cheng et al., 2009; Wehner et al., 2009). Details about the VTDMA 5 

system can be found in the work of Philippin et al., 2004; Wehner et al., 2009; and Cheng et al., 2009. 

As shown in Fig. 1, we also used a SP2 to measure the mono-dispersed particles selected by DMA1. The mass of rBC 

can be quantified by its incandescence signals. The SP2 can also determine the optical diameter of single particle from its 

scattering signals and the goal of performing size-resolved SP2 measurements (DMA1+SP2) is to evaluate its sizing ability. 

Detailed description of the SP2 instrument could be found in the work of Schwarz et al., 2006; Gysel et al., 2011; Moteki and 10 

Kondo, 2007, Zhang et al., 2016b. 

2.2 Data analysis 

2.2.1 Classification of aerosol particles measured by SP2 

In this study, ambient particles are classified into non-BC particles and BC-containing particles (i.e., externally-mixed BC 

and externally-mixed BC). Particles with detectable amounts of rBC by SP2 are considered as BC-containing particles. 15 

According to the lagtimes (Δt), namely the time of the peak of the incandescence signal minus the time of the peak of the 

scattering signal (Moteki and Kondo, 2007; Schwarz et al., 2006; Sedlacek et al., 2012; Subramanian et al., 2010), BC-

containing particles are further classified into externally-mixed BC (Δt <1.6 μs) and internally-mixed BC (Δt >=1.6 μs). 

2.2.2 Morphology and effective density of BC 

For internally-mixed BC, the rBC core is characterized by a near-spherical shape with an effective density (ρeff) of 1.2 g m-3 20 

as detailed in Zhang et al. (2016b). For externally-mixed BC particle, it is characterized by irregular morphology with 

smaller effective density (Park et al., 2003; Slowik et al., 2004). The morphology of externally-mixed BC is determined by 

the relationship between the rBC mass (M) and BC mobility size (Dm) (Park et al., 2003), as in Eq. (1): 

𝑀 = 𝑎𝐷𝑚
𝐷𝑓 ,                                                                                                                                                                             (1) 

where the M and Dm were measured by the SP2 and the DMA1 of VTDMA, respectively; a is the parameter of mass-25 

mobility fit; Df represents fractal dimension of particle, Df of 3 for spherical particle and 1<Df<3 for non-spherical particle. 

The effective density (ρeff) of externally-mixed BC is also derived by M and Dm (Zhang et al., 2008), expressed by Eq. (2):  

𝜌𝑒𝑓𝑓 =
6𝑀

𝜋𝐷𝑚
3  ,                                                                                                                                                                             (2). 

2.2.3 Optical size derived from SP2 

SP2 data have been used to determine the optical particle diameter through their scattering signals. This information is 30 
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especially important to determine the coating thickness of internally-mixed BC particles. The size inversion by SP2 is based 

on the Mie theory.  

Equations (3) and (4) list the required input parameters for the Mie model calculation. For non-BC particles, its optical 

diameter Dopt,non-BC can be determined from its scattering cross section (Cs) and the refractive index (RInon-BC) of non-BC 

components (Cheng et al., 2009; Cheng et al., 2006). For internally-mixed BC particles, we need additional information of 5 

the rBC core, i.e., the volume equivalent spherical diameter of the rBC core (Dc) and its refractive index (RIc) (Cheng et al., 

2009; Cheng et al., 2006). 

𝐷𝑜𝑝𝑡,𝑛𝑜𝑛−𝐵𝐶~(𝐶𝑠, 𝑅𝐼𝑛𝑜𝑛−𝐵𝐶),                                                                                                                                                  (3)    

𝐷𝑜𝑝𝑡,𝐼𝑛−𝐵𝐶~(𝐶𝑠, 𝐷𝑐 , 𝑅𝐼𝑛𝑜𝑛−𝐵𝐶 , 𝑅𝐼𝑐)~(𝐶𝑠, 𝑀, 𝜌𝑒𝑓𝑓 , 𝑅𝐼𝑛𝑜𝑛−𝐵𝐶 , 𝑅𝐼𝑐),                                                                                         (4)    

In this study, Cs was determined by the LEO fit (Gao et al., 2007). RInon-BC was determined through a closure study: we 10 

scanned different values of RInon-BC until the calculated optical diameter matches the measured mobility diameter. Figure 2 

shows the RInon-BC determined for non-BC particles. Since a DMA selects only quasi-monodispersed aerosol particles (due to 

the width of the transfer function), the real diameter shows a distribution rather than a single value of the nominal mobility 

diameter, which results in a more widely distributed RInon-BC (~1.2-1.6). To account for this effect, we took only the averaged 

peak value of each distribution for further calculations, which corresponds to the peak of the DMA transfer function. During 15 

the intensive study period, RInon-BC inversed from different sizes are quite similar with an average of 1.4209. For the 

validation, we also applied this method to polystyrene latex (PSL) spheres. As shown in Fig. 2, the inversion gives a peak RI 

of 1.5861, the same as the RI of PSL (1.59) in literature (Gao et al., 2007).   

In Eq. (4), Dc is calculated from its mass (M) and effective density (ρeff, 1.2 g m-3, Zhang et al. 2016b), as shown in Eq. 

(5):  20 

𝐷c = (
6𝑚

𝜋𝜌eff
)

1

3,                                                                                                                                                                           (5). 

For RIc, we assume that BC and some non-BC materials together make a spherical core and serves as bones and flesh, 

respectively. Then RIc can be approximated by the volume-weighted RI of the BC and non-BC mixtures as in Eq. (6): 

𝑅𝐼c = [𝑛BC × (1 − 𝑅void) + 𝑛nonBC × 𝑅void] + [𝑘BC × (1 − 𝑅void)]𝑖,                                         (6) 

In which, 𝑛𝐵𝐶  and 𝑛𝑛𝑜𝑛𝐵𝐶  are the real parts of RI for the BC materials and non-BC components (nBC = 1.95 and nnonBC = 25 

1.42); 𝑘BC is the imaginary part of the refractive index for BC (𝑘BC = 0.79) (Bond and Bergstrom, 2006); Rvoid is the volume 

fraction of internal voids in BC core, which is 0.30 during the campaign based on SP2 and VTDMA measurement (Zhang et 

al. 2016b). 

2.2.4 Mixing state of BC-containing particles 

In this study, the mixing state of BC-containing particles is characterized by the coating thickness (CT) and the shell/core 30 

ratio (Dp/Dc), which can be determined by the whole particle size (Dp) and the rBC core size (Dc), as in Eqs. (7) and (8): 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

CT =
𝐷𝑝−𝐷𝑐

2
 ,                                                                                                                                                                             (7) 

shell

core
=

𝐷𝑝

𝐷𝑐
 ,                                                                                                                                                                                 (8). 

3 Results and discussion 

3.1 Particle size derived from SP2 measurement 

3.1.1 Non-BC and internally-mixed BC particles 5 

In SP2 measurement, the uncertainties of BC mixing state is mainly from the inversion of particle size. For non-BC and 

internally-mixed BC particles, their optical size was determined by LEO fit and Mie mode calculation, which was improved 

by constraining some input parameters (ρeff, RInon-BC and RIc, discussed in Sect. 2.2.3). These parameters can reflect the real 

characteristics of the observed particles at our site.  

To evaluate the particle size derived from SP2 measurement, we compared the optical diameter (determined by the SP2) 10 

for non-BC and internally-mixed BC particles with the mobility diameter (determined by the DMA1), shown in Fig. 3. The 

combination of DMA with SP2 makes it possible to distinguish singly charged particles from the doubly/multiply charged 

particles. Here, we compared the optical diameter of doubly/multiply charged particles with the nominal sizes of those 

particles in Fig. 3. The optical particle diameter showed an excellent agreement with the mobility diameter, with a difference 

of ~1%. The agreement revealed that the LEO method was applicable for ambient aerosol particles. It also validated the 15 

assumption on a spherical BC particle in the Mie model calculation. The accurate inversion of particle size of internally-

mixed BC particles indicated a reliable estimate of their mixing state in this work. 

3.1.2 Sizing of externally-mixed BC 

For externally-mixed BC particles, a diameter is hard to define due to their irregular morphology (Park et al., 2003; Slowik 

et al., 2004). Figure 4 shows the fractal dimension and effective density of externally-mixed BC particles observed during 20 

the campaign period. The mass-mobility relationship exhibited a power law with a scaling exponent of ~2.23 for externally-

mixed BC over the range mobility size from 200 to 350nm, suggesting a fractal dimension of 2.23. Compared with spherical 

particles (Df of 3), the lower fractal dimension of observed externally-mixed BC particles demonstrated their irregular shape. 

This indicated that the assumption on a spherical particle in the Mie model was inappropriate for externally-mixed BC 

particles. Therefore, we did not used the LEO fit and Mie model to calculate the optical size of externally-mixed BC 25 

particles based on SP2 measurement in this study.  

Figure 5 shows a comparison between its volume equivalent diameter (Dve) and the mobility diameter (Dm). The Dve is 

calculated from its mass and the void-free BC density of 1.8 g m-3 (Metcalf et al., 2012; Schwarz et al., 2008; Subramanian 

et al., 2010). As shown in Fig. 4, the peak in the volume equivalent size distribution of externally-mixed BC were ~120-160 
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nm, remarkably lower than the mobility size (200-350 nm). The large discrepancy between Dve and Dm suggested that the 

externally-mixed BC was not a void-free sphere because the internal voids and irregular shape resulted in lower density and 

larger sized, as observed by DMA. Therefore, it is inappropriate for SP2 measurement using void-free BC density of 1.8 g m-

3 to calculate the size of externally-mixed BC. In this study, we assumed that there was little coatings on the surface of 

externally-mixed BC particle, and then used an effective density of 0.25-0.45 g cm-3 for externally-mixed BC particle (Fig. 5 

4) to calculate its size based on SP2-measured rBC mass. 

3.1.3 The size distribution of charged particles 

To further assess the ambient particle size derived from SP2 measurement in our study, we discussed the number size 

distribution of charged particles (i.e., singly, doubly or triply charged aerosol particles). Our setup (combination of DMA 

with SP2) is able to separate aerosol particles with different charges. As shown in Fig. 6 (A), the total particle number size 10 

distribution is calculated as the sum of optical particle number size distribution of non-BC particles and internally-mixed BC 

particles, plus the mobility particle number size distribution of externally-mixed BC particle. The first peak of the number 

size distribution represents the mode of singly charged particles, of which the diameter coincides with the mobility diameter 

of DMA1 (200, 250, 300 and 350 nm). The second or the third peak corresponds to the mode of doubly or triply charged 

aerosol particles. We also calculated the theoretical mobility diameter of doubly/triply charged particles. Most of 15 

theoretically calculated diameter of double charged or triple charged aerosols agrees well with the measured diameter (323, 

414, 438 and 508 nm) except for the double charged particles with a diameter of 601 nm. The result revealed that the LEO fit 

used in our study was valid for particles with diameters lower than ~550 nm, indicating that our method used in this study 

extended the measurable size range of SP2 (~200-400 nm). 

According to the particle number size distribution shown in Fig. 6 (A), we further calculated the ratio of number 20 

concentration between single and double charged particles (Rsingle-double), which was then compared with the theoretical 

calculated Rsingle-double values to further assess the optical particle diameter information derived from SP2 measurement. The 

observed Rsingle-double was determined by separately integrating the front two peak areas of number size distribution for size-

resolved ambient particles while the theoretical calculated Rsingle-double was derived from bipolar charged distribution 

(Wiedensohler, 1988; Wiedensohler et al., 2012) and particle number size distribution of ambient particles from mobility 25 

particle size spectrometer measurements. As shown in Fig.6 (B), the measured Rsingle-double showed a good agreement with the 

theoretically calculated Rsingle-double with a slope of 0.9090 and a R2 of 0.9335, which demonstrated the potential of optical 

sizing instruments (e.g., SP2) in determining the bipolar charge distribution of aerosol particles. Our results further revealed 

that the accurate particle size was derived by our method (discussed in Sect. 3.3.1 and Sect. 3.3.2) based on SP2 

measurement. 30 

3.2 Comparison between SP2 and VTDMA measurements 

As SP2 technique, VTDMA measurement can also derive the mixing state of BC-containing particles based on their size 
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information. BC-containing particles can be determined by SP2 according to the incandescence light emitted at rBC 

vaporization temperature of ~4000 K. It is also suggested that nonvolatile materials at high temperature determined by 

VTDMA and other thermodenuder measurements can be considered as BC (Cappa et al. 2012; Cheng et al., 2009; Wehner et 

al., 2009). In this work, we compared the results of these two methods, i.e., the size distribution of rBC (externally mixed BC 

and BC core of internally mixed BC) measured by SP2 and that of residual materials from our VTDMA measurement at 300 5 

ºC (Fig. 7). Note that the SP2 detection efficiency and experimentally determined effective density have been considered in 

the calculation of the rBC size distribution (Fig. S1, S2). 

As shown in Fig. 7, the number size distribution exhibited a large discrepancy between the SP2 and VTDMA 

measurements. The SP2 measurement show two peaks of rBC around prescribed size (200, 250, 300 and 350 nm selected by 

DMA1) and smaller size, representing externally-mixed BC and internally-mixed BC cores, respectively. For VTDMA 10 

measurement, the number size distribution of residual low-volatile particles (300 ºC) also showed a peak of externally-mixed 

BC, but two peaks at smaller sizes similar to previous measurements in Beijing (Cheng et al., 2012). The discrepancy of size 

distribution would lead to significant difference in BC mixing state between the SP2 and VTDMA measurements. As our 

discussed in Sect. 3.1, data inversion of SP2 measurement was accurate in this work, suggesting that VTDMA measurement 

had a larger uncertainty.  15 

Figure 7 also shows that the VTDMA-produced number concentration of residual aerosol particles at 300 ºC was much 

higher than the SP2-produced number concentration of rBC. However, the number concentration of the total ambient 

samples at 200-350 nm (selected by DMA1) measured by SP2 showed an excellent agreement with that measured by 

VTDMA (counted by CPC1), shown in Fig.S3. If we consider the SP2 results as a standard reference, the higher 

concentration of VTDMA shown in Fig.7 suggested that there were a large fraction of non-BC aerosol particles which 20 

contained low-volatile components (e.g. refractory OM, mineral dust, trace metals and sea salt) (Cheng et al., 2009; Ehn et 

al., 2014; Kalberer et al., 2004). The number concentration of rBC particles from SP2 measurement accounted for ~20% of 

residual particles measured by VTDMA. During the intensive study period, lots of non-BC particles that could not 

completely volatile at 300°C and just shrank to smaller particles, would cause uncertainties of BC mixing state estimated by 

VTDMA measurement. To improve VTDMA measurement, it is important to quantify low-volatile components.  25 

3.3 BC mixing state 

As discussed above, more accurate size information obtained by SP2 measurement in this work can improve the estimate of 

mixing state for ambient BC-containing particles. The BC mixing state observed at our site (i.e., Xianghe), especially for 

internally-mixed BC particles, can characterize the BC aging process during regional transport, considering that Xianghe is a 

polluted regional background site of the North China Plain influenced by mixed regional emission sources from the Jing-Jin-30 

Ji region.  

   During the campaign period, the size-resolved number and mass fraction of BC and non-BC are shown in Fig.8. Most 

of ambient aerosol particles are non-BC particles in the investigated size range (200 nm to 350 nm) while the BC-containing 
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particles contribute a number fraction of 7-10% (Fig. 8A). Concerning the mass fraction, the BC components (externally-

mixed BC and internally-mixed BC core) account for 3-7% of the particle mass in the investigated size range (200 nm to 

350nm) while the non-BC component (including non-BC particles and internally-mixed BC shell) contributes more than 

90% of particle mass (Fig. 8B), which was consist with previous studies in Jing-Jin-Ji region (Yang et al., 2015; Zheng et al., 

2015). The smaller contribution of BC as a primary component, revealed that the aerosol particles sampled at our site was 5 

mostly from regional sources and likely underwent a long-range transport. When long-range transport was a dominant 

influence, the BC-containing particles would be more-aged. Figure 8B shows that the mass of the BC shell for internally-

mixed BC particles was about 3 times higher than that of the BC core, suggesting the nature of thick coating. 

For internally-mixed BC particles observed in our site, their mixing state reflected the long-range transport of aged 

aerosol from regional sources of the North China Plain. During the intensive study period, the fraction of internally-mixed 10 

BC particles (FIn-BC) at 200-300 nm were 38-51% (Fig. 8A). The FIn-BC showed pronounce diurnal variation, with a 

maximum at~14:00 LT and a minimum at morning rush hours (~07:00 LT) (Fig. 9). The peak around noontime can be 

attributed to secondary photochemical formation and regional transport. On the other hand, the low FIn-BC in the morning 

rush hours was due to the large contribution of fresh BC particles from traffic emissions. Fin then increased from 8:00 to 

14:00, with an apparent turnover rate up to 6-9% h-1 for BC-containing particles at 200-350 nm, which was consistent with 15 

the finding of Cheng et al. (2012). The results suggested the observed mixing state of BC-containing particles were subject to 

the competing effect of emissions and aging processes. To investigate the BC aging on regional scale, we quantified the 

mixing state of internally-mixed BC particles (i.e., CT and Dp/Dc ratio) observed at our site in the following analysis.  

Figure 10 shows that the relative contribution of different Dp/Dc ratio of internally-mixed BC particles at 200-350 nm. 

The observed internally-mixed BC aerosols are dominated by particles with Dp/Dc ratio of 2-3, ~80% of internally-mixed BC 20 

particles with a Dp/Dc ratio more than 2. On average, the Dp/Dc ratio of internally-mixed BC particles at 200-350 nm were 

2.3-2.7, which increased as the particle size increases. The results revealed that BC was fully aged during regional transport 

from the Jing-Jin-Ji region in the North China Plain, which can be attributed to large-scale regional production by secondary 

process in the atmosphere (e.g., oxidation of SO2, NOx and volatile organic carbon (VOC) to sulfate, nitrate and secondary 

organic aerosol (SOA), respectively) (Andreae et al., 2008). The thick coatings on the surface of internally-mixed BC 25 

observed at Xianghe site suggested that the absorption of BC from regional sources in the North China Plain could be 

strongly enhanced by the lensing effect of coatings (Zhang et al., 2016b).  

According to the diffusion-controlled growth law of BC aging during the atmospheric process (Seinfeld and Pandis, 

2006), the amount of coating materials on BC surface is size-dependent. Figure 11 shows the coating thickness of internally-

mixed BC particles as a function of rBC core size (Dc). The CT of internally-mixed BC particles decreased as Dc increased 30 

and increased as the BC particle size (Dp) increased, following the diffusion-controlled growth law. For internally-mixed BC 

particles of 200-350 nm, the Dc and CT showed a wide mode, which were in the range of ~80-200 nm and ~50-150 nm, 

respective. The wide range of Dc and CT revealed that the internally-mixed BC particles at our site consisted of a mixture of 

BC from various regional sources of the North China Plain. The more-aged BC particles were mostly from long-range 
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transport from polluted regions (i.e., the densely populated and industrialized regions such as the megacities Beijing and 

Tianjin).  

In this work, we found that the BC aerosols of the North China Plain were more-aged than BC aerosols observed in those 

observed in developed countries (Table 1).  The thicker coating suggests a faster aging rate of BC aerosols in the North 

China Plain, which can be attributed to much higher concentration of aerosols and condensable vapors in China compared to 5 

those in developed countries. The more-aged BC aerosols in China could lead to stronger absorptivity of BC, suggesting the 

important contribution of BC aerosols in China to climate change. 

4 Conclusions 

The light absorption of BC-containing particles strongly depends on their mixing state. In this work, we have investigated 

the comprehensive characterization of BC mixing state at a polluted regional background site (Xianghe) of the North China 10 

Plain during the summer of 2013. Our work provides the information on ambient BC aging in northern China based on in 

situ measurement.  

   In this study, the mixing state of BC-containing particles (i.e., CT and Dp/Dc ratio) was determined by the BC size. In 

SP2 measurement, the optical sizes of non-BC particles and internally-mixed BC particles were calculated by LEO fit and 

Mie mode, which was improved with more accurate input parameters (RInon-BC=1.42, RIc=1.67-0.56i, ρc=1.2 g cm-3). 15 

However, the size of an externally-mixed BC particle measured by SP2 was characterized by mobility size according to its 

mass and effective density (0.25-0.45 g cm-3) due to its irregular shape (fractal dimension of 2.23). Using our method to 

inverse particle size, the upper limit of the measurable particle size of SP2 was extended from ~400 nm to ~550 nm as 

confirmed by the VDMA measurement. The particle size derived from SP2 in this work have been demonstrated to be 

accurate for estimate of BC mixing state.   20 

Considering the SP2 results as a standard reference, we found that low-volatile non-BC materials at 300 ºC would affect 

the estimate of BC mixing state by VTDMA measurement. During the campaign at our site, about ~80% of remained 

particles in number concentration after 300 ºC were low-volatile non-BC particles. In this case, the mixing state of ambient 

BC determining by VTDMA existed a large uncertainty. To improve VTDMA measurement, quantifying the low-volatile 

non-BC materials should be conducted, which will be discussed in our future study.  25 

 We quantified BC mixing state during an intensive field campaign in North China using the SP2 results. The BC-

containing particles account for 7-10% of the particle number in the investigated size range (200 nm to 350nm), while the 

externally-mixed BC, internally-mixed BC core and coating components contributed 2-3%, 1-4% and 7-10% of particle 

mass, respectively. Larger particles tended to have more internally-mixed BC particles and BC coating materials. The 

component analysis indicated that the aerosol particles observed at our site was mostly from regional sources.  30 

The internally-mixed BC particles at the polluted regional background site (Xianghe) could characterize the BC mixing 

state on regional scale (i.e., Jing-Jin-Ji region). During the campaign period, the FIn-BC was 38-51% for BC-containing 
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particles of 200-350 nm, with an apparent turnover rate up to 6-9% h-1 at noon time, indicating a rapid aging process of BC 

on the regional scale. The average Dp/Dc of internally-mixed BC particles at 200-350 nm was 2.3-2.7, while the number 

fraction of Dp/Dc more than 2 was ~80%, indicated that the observed BC-containing particles from regional sources of the 

North China Plain were strongly aged during regional transport. The internally-mixed BC particles at 200-350 nm showed a 

rBC core size in the range of ~80-200 nm, accompanying with CT of ~50-150 nm. The wide range of rBC size and CT 5 

revealed the BC aerosols observed in our site from various regional sources. More-aged BC particles on regional scale was 

found in China compared with those observed in developed countries, indicating stronger light absorptivity of BC. Our 

results suggested the importance of BC aerosols in polluted regions (e.g., Jing-Jin-Ji region) in China to climate change.  

Acknowledgments 

This work was funded by the National Natural Science Foundation of China (41571130035, 41625020, 41330635, 10 

21107061, and 21190054), the Max Planck Society (MPG) Minerva program and the EU project BACCHUS (603445).  

References 

Andreae, M. O., Schmid, O., Yang, H., Chand, D., Zhen Yu, J., Zeng, L.-M., and Zhang, Y.-H.: Optical properties and 

chemical composition of the atmospheric aerosol in urban Guangzhou, China, Atmos. Environ., 42, 6335-6350, 2008. 

Bond, T. C., and Bergstrom R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Sci. 15 

Technol., 40, 27-67, 2006. 

Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., 

Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, 

P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption Enhancements Due to the Mixing 

State of Atmospheric Black Carbon, Science, 337, 1078-1081, 2012. 20 

Chen, Y., Cheng, Y. F., Nordmann, S., Birmili, W., Denier van der Gon, H. A. C., Ma, N., Wolke, R., Wehner, B., Sun, J., 

Spindler, G., Mu, Q., Pöschl, U., Su, H., and Wiedensohler, A.: Evaluation of the size segregation of elemental carbon (EC) 

emission in Europe: influence on the simulation of EC long-range transportation, Atmos. Chem. Phys., 16, 1823-1835, 2016. 

Cheng, Y. F., Eichler, H., Wiedensohler, A., Heintzenberg, J., Zhang, Y. H., Hu, M., Herrmann, H., Zeng, L. M., Liu, S., 

Gnauk, T., Brüggemann, E., and He, L. Y.: Mixing state of elemental carbon and non-light-absorbing aerosol components 25 

derived from in situ particle optical properties at Xinken in Pearl River Delta of China, J. Geophys. Res.-Atmos., 111, 2006. 

Cheng, Y. F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brüggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., 

Tuch, T., Hu, M., and Zhang, Y. H.: Aerosol optical properties and related chemical apportionment at Xinken in Pearl River 

Delta of China, Atmos. Environ., 42, 6351-6372, 2008. 

Cheng, Y. F., Berghof, M., Garland, R. M., Wiedensohler, A., Wehner, B., Müller, T., Su, H., Zhang, Y. H., Achtert, P., 30 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



12 

 

Nowak, A., Pöschl, U., Zhu, T., Hu, M., and Zeng, L. M.: Influence of soot mixing state on aerosol light absorption and 

single scattering albedo during air mass aging at a polluted regional site in northeastern China, J. Geophys. Res.-Atmos., 

2009. 

Cheng, Y. F., Su, H., Rose, D., Gunthe, S. S., Berghof, M., Wehner, B., Achtert, P., Nowak, A., Takegawa, N., Kondo, Y., 

Shiraiwa, M., Gong, Y. G., Shao, M., Hu, M., Zhu, T., Zhang, Y. H., Carmichael, G. R., Wiedensohler, A., Andreae, M. O., 5 

and Pöschl, U.: Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging 

and parameterization, Atmos. Chem. Phys., 12, 4477-4491, 2012. 

Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, 

X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, 

S., Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in megacities in China, Geophys. Res. Lett., 2016. 10 

Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., 

Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., 

Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petaja, 

T., Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility 

secondary organic aerosol, Nature, 506, 476-479, 2014. 15 

Frey, A., Rose, D., Wehner, B., Müller, T., Cheng, Y., Wiedensohler, A., and Virkkula, A.: Application of the Volatility-

TDMA Technique to Determine the Number Size Distribution and Mass Concentration of Less Volatile Particles, Aerosol 

Sci. Technol., 42, 817-828, 2008. 

Fuller, K. A., Malm, W. C., and Kreidenweis, S. M.: Effects of mixing on extinction by carbonaceous particles, J. Geophys. 

Res.-Atmos., 104, 15941-15954, 1999. 20 

Gao, R. S., Schwarz, J. P., Kelly, K. K., Fahey, D. W., Watts, L. A., Thompson, T. L., Spackman, J. R., Slowik, J. G., Cross, 

E. S., Han, J. H., Davidovits, P., Onasch, T. B., and Worsnop, D. R.: A Novel Method for Estimating Light-Scattering 

Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer, Aerosol Sci. Technol., 41, 125-135, 2007. 

Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R., and Gröhn, A. J.: Effective density of Aquadag and fullerene soot 

black carbon reference materials used for SP2 calibration, Atmos. Meas. Tech., 4, 2851-2858, 2011. 25 

Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-

697, 2001. 

Japar, S. M., Brachaczek, W. W., Gorse Jr, R. A., Norbeck, J. M., and Pierson, W. R.: The contribution of elemental carbon to 

the optical properties of rural atmospheric aerosols, Atmos. Environ., 20, 1281-1289, 1986. 

Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R., Weingartner, E., Frankevich, 30 

V., Zenobi, R., and Baltensperger, U.: Identification of Polymers as Major Components of Atmospheric Organic Aerosols, 

Science, 303, 1659-1662, 2004. 

Kecorius, S., Zhang, S., Wang, Z., Gross, J., Ma, N., Wu, Z., Ran, L., Hu, M., Wang, P., Ulevicius, V., and Wiedensohler, A.: 

Nocturnal Aerosol Particle Formation in the North China Plain, Lith. J. Phys., 55, 44-53, 2015. 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



13 

 

Laborde, M., Crippa, M., Tritscher, T., Jurányi, Z., Decarlo, P. F., Temime-Roussel, B., Marchand, N., Eckhardt, S., Stohl, A., 

Baltensperger, U., Prévôt, A. S. H., Weingartner, E., and Gysel, M.: Black carbon physical properties and mixing state in the 

European megacity Paris, Atmos. Chem. Phys., 13, 5831-5856, 2013. 

Lee, A. K. Y., Willis, M. D., Healy, R. M., Onasch, T. B., and Abbatt, J. P. D.: Mixing state of carbonaceous aerosol in an 

urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS), Atmos. 5 

Chem. Phys., 15, 1823-1841, 2015. 

Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y., Teich, M., Spindler, G., 

Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new particle 

formation events in the North China Plain, Atmos. Chem. Phys., 16, 8593-8607, 2016. 

Metcalf, A. R., Craven, J. S., Ensberg, J. J., Brioude, J., Angevine, W., Sorooshian, A., Duong, H. T., Jonsson, H. H., Flagan, 10 

R. C., and Seinfeld, J. H.: Black carbon aerosol over the Los Angeles Basin during CalNex, J. Geophys. Res.-Atmos., 117, 

2012. 

Metcalf, A. R., Loza, C. L., Coggon, M. M., Craven, J. S., Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: Secondary 

Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-

Particle Soot Photometer, Aerosol Sci. Technol., 47, 326-347, 2013. 15 

Moteki, N., and Kondo, Y.: Effects of Mixing State on Black Carbon Measurements by Laser-Induced Incandescence, 

Aerosol Sci. Technol., 41, 398-417, 2007. 

Nordmann, S., Cheng, Y. F., Carmichael, G. R., Yu, M., Denier van der Gon, H. A. C., Zhang, Q., Saide, P. E., Pöschl, U., Su, 

H., Birmili, W., and Wiedensohler, A.: Atmospheric black carbon and warming effects influenced by the source and 

absorption enhancement in central Europe, Atmos. Chem. Phys., 14, 12683-12699, 2014. 20 

Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H.: Relationship between Particle Mass and Mobility for Diesel Exhaust 

Particles, Environ. Sci. Technol., 37, 577-583, 2003. 

Philippin, S., Wiedensohler, A., and Stratmann, F.: Measurements of non-volatile fractions of pollution aerosols with an 

eight-tube volatility tandem differential mobility analyzer (VTDMA-8), J. Aerosol Sci., 35, 185-203, 2004. 

Rose, D., Gunthe, S. S., Su, H., Garland, R. M., Yang, H., Berghof, M., Cheng, Y. F., Wehner, B., Achtert, P., Nowak, A., 25 

Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei 

in polluted air and biomass burning smoke near the mega-city Guangzhou, China-Part 2: Size-resolved aerosol chemical 

composition, diurnal cycles, and externally mixed weakly CCN-active soot particles, Atmos. Chem. Phys., 11, 2817-2836, 

2011. 

Rosen, H., Hansen, A. D. A., Gundel, L., and Novakov, T.: Identification of the optically absorbing component in urban 30 

aerosols, Appl. Opt., 17, 3859-3861, 1978. 

Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., 

Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. 

H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



14 

 

carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res.-Atmos., 111, 2006. 

Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., Ryerson, T. B., Peischl, J., 

Holloway, J. S., Trainer, M., Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A., Warneke, C., and Del Negro, L. A.: 

Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning 

emissions, Geophys. Res. Lett., 35, 2008. 5 

Sedlacek, A. J., Lewis, E. R., Kleinman, L., Xu, J., and Zhang, Q.: Determination of and evidence for non-core-shell 

structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2), Geophys. Res. Lett., 39, 2012. 

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed. John 

Wiley & Sons, Inc., New York, 2006. 

Shiraiwa, M., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L. K., Takami, A., Hatakeyama, S., Yonemura, S., and Blake, D. 10 

R.: Radiative impact of mixing state of black carbon aerosol in Asian outflow, J. Geophys. Res.-Atmos., 2008. 

Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., Worsnop, D. R., Rudich, Y., DeCarlo, P. 

F., and Jimenez, J. L.: Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter 

Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio, 

Aerosol Sci. Technol., 38, 1206-1222, 2004. 15 

Subramanian, R., Kok, G. L., Baumgardner, D., Clarke, A., Shinozuka, Y., Campos, T. L., Heizer, C. G., Stephens, B. B., de 

Foy, B., Voss, P. B., and Zaveri, R. A.: Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass 

absorption cross-section, and BC/CO ratios, Atmos. Chem. Phys., 10, 219-237, 2010. 

Taylor, J. W., Allan, J. D., Liu, D., Flynn, M., Weber, R., Zhang, X., Lefer, B. L., Grossberg, N., Flynn, J., and Coe, H.: 

Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and 20 

refractive index, Atmos. Meas. Tech., 8, 1701-1718, 2015. 

Teich, M., van Pinxteren, D., Kecorius, S., Wang, Z., and Herrmann, H.: First Quantification of Imidazoles in Ambient 

Aerosol Particles: Potential Photosensitizers, Brown Carbon Constituents, and Hazardous Components, Environ. Sci. 

Technol., 50, 1166-1173, 2016. 

Tuch, T. M., Haudek, A., Müller, T., Nowak, A., Wex, H., and Wiedensohler, A.: Design and performance of an automatic 25 

regenerating adsorption aerosol dryer for continuous operation at monitoring sites, Atmos. Meas. Tech., 2, 417-422, 2009. 

Wehner, B., Philippin, S., Wiedensohler, A., Scheer, V., and Vogt, R.: Variability of non-volatile fractions of atmospheric 

aerosol particles with traffic influence, Atmos. Environ., 38, 6081-6090, 2004. 

Wehner, B., Berghof, M., Cheng, Y. F., Achtert, P., Birmili, W., Nowak, A., Wiedensohler, A., Garland, R. M., Pöschl, U., 

Hu, M., and Zhu, T.: Mixing state of nonvolatile aerosol particle fractions and comparison with light absorption in the 30 

polluted Beijing region, J. Geophys. Res.-Atmos., 114, 2009. 

Wiedensohler, A.: An approximation of the bipolar charge distribution for particles in the submicron size range, J. Aerosol 

Sci., 19, 387-389, 1988. 

Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



15 

 

M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., 

Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, 

S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, 

H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., 

Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to 5 

facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657-

685, 2012. 

Yang, Y. R., Liu, X. G., Qu, Y., An, J. L., Jiang, R., Zhang, Y. H., Sun, Y. L., Wu, Z. J., Zhang, F., Xu, W. Q., and Ma, Q. X.: 

Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North 

China Plain, Atmos. Chem. Phys., 15, 2015. 10 

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S. , 

Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. 

Chem. Phys., 9, 5131-5153, 2009. 

Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H.: Variability in morphology, hygroscopicity, 

and optical properties of soot aerosols during atmospheric processing, Proc. Natl. Acad. Sci. USA, 105, 10291-10296, 2008. 15 

Zhang, S. L., Ma, N., Kecorius, S., Wang, P. C., Hu, M., Wang, Z. B., Größ, J., Wu, Z. J., and Wiedensohler, A.: Mixing state 

of atmospheric particles over the North China Plain, Atmos. Environ., 125, Part A, 152-164, 2016a. 

Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Kecorius, S., Wang, Z., Wu, Z., Hu, M., Zhu, T., Wiedensohler, A., and He, K.: 

Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the 

absorption enhancement of black carbon in the atmosphere, Atmos. Meas. Tech., 9, 1833-1843, 2016b. 20 

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., 

Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport 

and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969-2983, 2015. 

  

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-222, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



16 

 

Table 1. Comparison of BC mixing state measured in our study and previous studies. 

Site Air mass type Dp (nm) Dc (nm) CT (nm) Reference 

Xianghe, China Polluted regional air 200-350 ~80-200 ~50-150 This study 

Fukue Island, Japan Asian outflow ~320 ~200 ~60 Shiraiwa et al., 2008 

Long Island, USA Suburban air ~150-180 ~80 ~20-50 Sedlacek et al., 2012 

Paris, France Urban air ~265 ~200 ~33 Laborde et al., 2013 

Pasadena, USA Urban air ~170-260 135-200 ~22 Taylor et al., 2015 

Toronto, Canada Urban air ~200 ~180 ~10 Lee et al., 2015 
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Figure 1. Schematic of instrument setup. 
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Figure 2. The distribution of RI for size-resolved non-BC particles and PSL sphere. 
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Figure 3. Comparison the prescribed mobility size (Dm) by DMA1 and the optical size (Dopt) determined by SP2 for (A) 

non-BC particles and (B) internally-mixed BC particles. The solid lines are fitted based on average data (blue triangle); the 

black circles and red circles represent the singly charged particle samples and doubly/ multiply charged particle samples, 

respectively. 5 
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Figure 4. Mass (M) and effective density (ρeff) of externally-mixed BC at different mobility diameters (Dm). 
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Figure 5. The volume equivalent diameter (Dve) and mobility diameter (Dm) distribution for size-resolved externally-mixed 

BC at (A) 200 nm , (B) 250 nm (B), (C) 300 nm and (D) 350 nm. 
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Figure 6. (A) Normalized size distribution of size-resolved aerosol particles (including non-BC particles, internally-mixed 

BC and externally-mixed BC) at 200-350 nm derived from SP2 measurement; (B) comparison of the observed ratio of singly 

charged particles and doubly charged particles from the SP2 measurement (i.e., the observed Rsingle-double) and that from 

theoretical calculation(i.e., the theoretically calculated Rsingle-double). 5 
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Figure 7. Size distributions of rBC (externally-mixed BC and BC core of internally-mixed BC) measured by SP2 (red lines) 

and that of residual materials from our VTDMA measurement at 300 ºC (black lines). Before the measurements were taken 

with SP2 and VTDMA at 300ºC, the initial particle sizes selected by DMA1 were 200, 250, 300 and 350 nm.  
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Figure 8. (A) The number and (B) mass composition of ambient particle samples with different mobility diameters (200, 250, 

300 and 350 nm) selected by DMA1. 
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Figure 9. Diurnal variation of the fraction of internally-mixed BC particles (Fin) with different mobility diameters (200, 250, 

300 and 350 nm) selected by DMA1. 
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Figure 10. The number fraction of different mixing state for internally-mixed BC particles with DMA1 selecting size (200-

350 nm). 
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Figure 11. Coating thickness (CT) of internally-mixed BC particles at 200-350 nm (selected by DMA1) as a function of rBC 

core size (Dc). 
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