
Reply to referee#1 
The authors would like to thank the referee for the careful review and the helpful comments. In the 
following, the reviewer’s comments will be in bold font, and the responses will be in plain font, with 
suggested new text in italics. 

 

On the gridded emissions. Some issues could be addressed to make things more robust and clear. 
It is indeed striking the visual differences in different approaches to gridding the EDGAR emissions 
in Figure 5. It would have helped me if you had mentioned in this section the spatial distribution of 
the native EDGAR inventory estimates and, how consistent country totals are after this gridding by 
the different methods (shown in Figure 11). Given the rather significant and arbitrary variations in 
the  priors,  a  discussion  of  emission  updates  (Figures  6‐8)  becomes  one  that  is  related  to  two 
factors: the arbitrary errors in the priors because of the imperfect gridding process, and differences 
in model performance. At this point in the text only the second influence is considered, though it 
seems necessary to consider how the first factor is influencing the results too. (In other words, if all 
the  models  performed  exactly  the  same  in  their  inversion,  there  would  still  be  substantially 
different updates apparent  in Figure 6‐8 because of  the different gridding errors associated with 
the prior.) The better discussion of these issues comes later in the text in the comparison of figures 
11 and 12, in my opinion. The authors might consider shortening or revising this earlier section. 

Although the different grids have  largely different resolutions and structure, all gridding algorithms 
are  conserving  the mass emitted  in  the original EDGAR v4.2  inventory.  In  that  sense  there are no 
"imperfections"  or  "gridding  errors".  Differences  in  the  a  priori  emissions  only  occur  for  smaller 
spatial  aggregates  such  as  country  totals,  that  do  not  perfectly  align with  the  grid  structure. We 
added this information as well as the spatial resolution of EDGAR v4.2. as follows: 

Although based on exactly  the  same EDGAR v4.2  inventory data, which has a  resolution of 0.1° x 
0.1°,  the  spatial  aggregation  to  the  different  inversion  grids  leads  to  visually  quite  different 
distributions  despite  the  fact  that all  gridding algorithms are mass  conserving,  i.e.  the  emission 
from a coarse grid cell exactly corresponds to the sum of emissions from all finer EDGAR grid cells 
within that cell. 

In this section, we tried to focus on the broad spatial patterns, which should be much less sensitive to 
the specific grid configuration than the analysis of country totals. 

 

Regarding  the  apparent  large  differences  in  adjustments  by  the  different  models  despite  the 
reasonable similarity  in posterior mole  fraction  time series generated by  these models:  It would 
seem  that  these  aren’t  directly  relatable  unless  you  consider  the  sum  of  the  fluxes  shown  in 
Figures 5 and 6, given that the posterior mixing ratios are from the sum of the prior emissions plus 
adjustments. Given the  large apparent differences  in the priors because of the different gridding 
approaches, this seems important to consider. 

The mole fraction simulated for a given measurement location and time is determined by the fluxes 
within  its  footprint  plus  background.  Assuming  that  the  footprints  of  the  transport models  are 
similar/identical  (which  is  certainly  true  for  the  three  FLEXPART  systems),  a  similarity  in  the  time 
series can be translated  into the expectation that the spatial emission patterns are similar, too. We 
agree that the fluxes correspond to the sum of Figures 5 and 6, but since there are no biases in the 
priors  due  to  the  conservation  of  emissions  in  each  grid  cell  (as  explained  above), we  think  that 
Figure 6 alone is sufficient to discuss the broad spatial patterns. 

 

On background levels. Since the approach for deriving background mole fractions taken by NILU is 
unique because  it  involves a subtraction related to the calculated  influence of regional emissions 
on the observations deemed to represent background,  it would seem reasonable to suggest that 
this  subtraction might be  causing  the  lower background mole  fractions  it derives.  Is  it not  fairly 
easy to determine if this is the source of the offset? 



The procedure of NILU  indeed  leads  to a  lower background as compared  to  the other approaches. 
Combined with the fact that NILU does not adjust this background in the inversion, this likely leads to 
comparatively high emissions. We will conduct another simulation with the EMPA2 system mimicking 
this approach. We don't expect, however, that this will explain all differences, because the difference 
between  background with  and without  correction  for  regional  influence  is  expected  to  be  small. 
Nevertheless, this  is a very valid suggestion that will be  included as an additional sensitivity test  in 
the revised manuscript. 

 

Another  minor  issue,  with  regard  to  backgrounds  for  the  approaches  by  EMPA2.  The  REBS 
approach  is mentioned and an optimization  is also  indicated. Details about  the optimization are 
lacking. Was the optimization applied to the REBS results? And how was that process constrained? 
Does the text mentioning that “the background is then allowed to evolve slowly with time” mean 
that  it was  just  another  optimized  parameter  in  the  inversion who’s  only  constraint was  low‐
frequency variation? 

Indeed, EMPA2 optimized the REBS background levels. We will make this clear in the text as follows: 
EMPA2  optimized  the  REBS  background  levels  separately  for  each measurement  site  at  selected 
reference points every 14 days. Background  levels  in between  these  reference points were  linearly 
interpolated. 

And  yes,  in  the  EMPA  system, which  is  sequentially  applied  to  the  data,  the  background  level  is 
another optimized parameter. It's update equation from one time step to the next follows the same 
equation  (eq.  7)  as  the  update  for  the  emissions.  The magnitude  of  the  update  uncertainty  (εk) 
determines, how "slowly" the background is allowed to change from one time step to the next. We 
will add a reference to Equation (7) near the end of Sect. 2.3. 

 

On section 3.3., uncertainty reductions. The authors seem to succeed in showing evidence refuting 
the  initial  statement  that  this  is  "a  useful  diagnostic"  since  the  magnitudes  seem  primarily 
dependent on what  is assumed as the uncertainty on the prior!  In  looking for robust conclusions 
from  this  section,  there  is  one  that  I  struggle  to  reconcile:  How  can  uncertainty  reductions 
expressed  relative  to  absolute  emission  magnitudes  be  larger  for  those  regions  with  higher 
emissions?  Some  explanation  would  be  helpful  here,  since  it  seems  not  an  expected  or 
straightforward conclusion. 

We  fully  agree  that  the  discussion  of  uncertainty  reductions  is  challenged  by  the  fact  that  these 
strongly  depend  on  the  prior  uncertainties.  This  issue  is  already  addressed  by  the  statement 
"Together with the different spatial uncertainty correlations, these differences have a marked effect 
on the resulting uncertainty reductions". We will better emphasize this  issue already at the start of 
the section with a cautionary note: 

However,  it  should  be  noted  that  the  uncertainty  reduction  depends  on  the  magnitude  and 
correlation  structure  of  the  prior  uncertainties.  Comparing  the  uncertainty  reductions  thus  helps 
illustrating the effect of the different model choices. 

 

Details: Sentence two of abstract, consider adding a word: "but *emissions* have large GWPs and 
are,  therefore..."  Also,  in  the  abstract  the  discrepancy  in  HFC‐125  emissions  estimated  for  the 
Iberian peninsula  is  the  first point made  in  the  comparison of  results  vs  the UNFCCC  inventory 
emissions,  yet  the main  text mentions  that  "emissions  from  the  Iberian  countries  are  not well 
constrained  by  the  current  observation  network."  Some  modifications  to  the  abstract  seem 
necessary. 

We don't think that adding "emissions" would make the sentence more easily understandable.  It  is 
common practice to refer to the GWP of a gas rather than to the GWP of its emissions. Ultimately, it 
is the gas itself that has the properties leading to a high or low GWP. 



It is true that emissions are not very well constrained for the Iberian Peninsula. Nevertheless, the fact 
that all models estimate much higher than reported emissions for HFC‐125 but not for HFC‐134a, is a 
strong  indication  that HFC‐125 emissions are underreported. We will add a note of caution  to  the 
abstract:  
.. though with a large scatter between individual estimates. 

 

Define "standard deviation  (normalized)"  in  the caption of  the  figure showing Taylor diagrams.  I 
presume  it  is the ratio between the observed vs posterior calculated mole fractions. Tthis should 
be mentioned  if true. Any de‐trending applied to the results over the year, or  is  it just the s.d. of 
the annual data record considered together? 

The word  "normalized"  refers  to  the  fact  that  in  a  Taylor  diagram  the  standard  deviation  of  the 
simulated values is normalized by the standard deviation of the observations. A value of 1 indicates 
perfect  agreement between  the magnitude of  scatter  in  the  simulated  and observed  values.  This 
information will be added to the caption. 

 

Figure 1 caption, mention that the reduced grid is only associated with the EMPA simulations, 

if true. 

Correct, the figure caption was indeed lacking and will be change to: 

Annual mean surface sensitivity in units of [ppb/(kg m‐2 s‐1)] for (a) the original 0.1°x0.1°grid and (b) 
for the reduced grid of the FLEXPART‐based model system EMPA. 

   



Reply to referee#2 
The  authors  would  like  to  thank  anonymous  referee  #2  for  the  careful  review  and  the  helpful 
comments. In the following, the reviewer’s comments will be in bold font, and the responses will be 
in plain font, with suggested new text in italics. 

 

The  conclusions  on  country‐wide  emissions  appear  somewhat  unconsolidated  given  that  the 
model‐to‐model differences are as large as the estimated emissions for some countries (e.g. Figure 
12). While  I  accept  the  approach  to  use model  versions  that  are  as  close  as  possible  to  the 
respective production settings, it is quite unsatisfying that the reasons for these model differences 
are essentially unresolved.  In  that  context,  I am also not  convinced by using  the model median 
value  (of only 4 models).  I would suggest making abstract and conclusions somewhat humble by 
adding  some  more  discussion  on  how  the  discrepancies  between  bottom‐up  and  top‐down 
emissions compare to model differences. 

Being  humble  in  terms  of  conclusions  about  country  scale  emissions  is  a  valid  suggestion.  In  the 
abstract we will expand  the sentence  regarding  the much higher simulated  than reported HFC‐125 
emissions from Spain+Portugal with 

.. though with a large scatter between individual estimates 

and will add "country‐scale" to the last sentence to read as follows: 

.. but a denser network would be needed for more reliable monitoring of country‐scale emissions of 
these important greenhouse gases across Europe. 

In the conclusions section, the  limitations of the  inversions with respect to country emissions were 
already pointed out quite clearly, e.g. in the third last paragraph with the sentences  

"However, the estimates of the individual models varied considerably. Considering all three gases and 
the largest countries, the scatter was smallest for the UK (1σ standard deviation of 3‐11%), followed 
by France  (8‐15%), Germany  (19‐22%),  Italy  (12‐31%), and Spain+Portugal  (24‐30%). The  individual 
models often did not overlap within the range of the combined uncertainties suggesting that .." 

and in the last paragraph with  

"The  network  has  the  potential  to  identify  significant  shortcomings  in  the  nationally  reported 
emissions  but  a  denser  network would  be  needed  for  a more  accurate  assignment  to  individual 
countries. Model‐to‐model differences were often very  large whereas the model median appears to 
have  significant  skill as  judged  from  the  comparison with  reported HFC‐134a emissions, which are 
considered to be relatively well known."  

Nevertheless, to better emphasize the wide range of country estimates, we will replace the standard 
uncertainties of the means by the standard deviations of the  individual estimates (in percent of the 
mean) and add another sentence on typical ranges between minimum and maximum. The sentences 
in the 3rd last paragraph will read as follows: 

Considering  all  three  gases  and  the  largest  countries  and  defining  "scatter"  by  the  1σ  standard 
deviation of  individual  estimates  (in % of  the mean),  the  scatter was  smallest  for  the UK  (5‐22%), 
followed  by  France  (16‐28%),  Germany  (38‐43%),  Italy  (23‐63%),  and  Spain+Portugal  (42‐51%). 
Differences between minimum and maximum estimates for a given country were often as large as a 
factor 2, sometimes even a factor of 3, especially for Italy and Spain+Portugal.  

Furthermore,  the last sentence in the conclusions will be changed to 

Model‐to‐model differences were often very large, occasionally as large as the estimated emissions, 
whereas the median appears to .. 

It  is difficult to provide a useful statistics summarizing the results of an ensemble of only 4 models. 
Nevertheless,  the median  is more  robust  than  the mean  value  and  is  commonly  used  for model 
ensembles. Note that we also show the full range of the model estimates  (in Fig. 13), not only the 
medians. 

 



A detail that came to my attention is that the release height for the particles at Jungfraujoch was 
adjusted  for  the  NAME model  to match  the  FLEXPART  footprints.  Essentially,  this  adjustment 
appears  arbitrary  and  contradicts  the  general  philosophy  to  use  production  settings  for  each 
model.  If  the  adjustment was  not made  (transport  induced) model  differences would  be  even 
larger.  So,  given  that  (at  least  one  of)  the  transport models  are  not  able  to  correctly model 
transport at the mountain sites, how confident are you with respect to your overall conclusions? 

Unlike  for  FLEXPART, we  did  not  do  any  independent  analysis  on  the  best  release  height  for  the 
NAME model. Previous analysis provided an optimum release height for FLEXPART. Instead, we used 
a release height for NAME that produced model time series as close as possible to FLEXPART’s given 
a specific emissions  field. We will explain  this  in  the  text. This approach allowed us  to  include  the 
results  of  NAME  despite  of  the  difficulties  in  representing  this  mountain  site.  A  thorough 
investigation of the reasons for the differences between FLEXPART and NAME for Jungfraujoch would 
be desirable, but was not feasible within the scope of this project. 

 

P2,L24: regulated reported ‐> reported 

Done 

 

P9,L6 and following: Occasionally, I got confused by the naming conventions. I would suggest using 
NAME and FLEXPART when referring to transport  issues and the others names when referring to 
the entire modelling systems: P9,L6: UKMO ‐> NAME, P9,L13: NAME‐>UKMO, check other places. 

We changed the sentence that confused the reviewer to: 

In particular,  the  score of  the NAME‐based  system UKMO  is moving closer  to  the  three FLEXPART‐
based systems EMPA, EMPA2, and NILU. 

   



Reply to referee#3 
The  authors  would  like  to  thank  anonymous  referee  #3  for  the  careful  review  and  the  helpful 
comments.  

In the following, the reviewer’s comments will be in bold font, and the responses will be in plain font, 
with suggested new text in italics. 

 

The authors used four  inverse models to estimate European emissions of HFC‐134a, HFC‐125 and 
SF6 for the year 2011. All systems used measurements from Jungfraujoch, Mace Head, and Monte 
Cimone. The paper is well written and provides interesting insights. I think the main problem of the 
paper  was  that  the  differences  in  the  choices,  such  as  spatial  correlations  of  the  prior  and 
background treatment, had a quite substantial impact on differences among the models. What was 
the reason that those were not controlled?  If they were better controlled, maybe we could have 
had more  insights  on  which models  are  doing  better  and  what  we might  do  to  improve  the 
emissions estimation through inverse modeling. Below are some other comments and questions I 
had and I would recommend publication after they are addressed. 

The main motivation was  to document  the uncertainty  associated with  the different  choices  that 
have been made  in  recent halocarbon  inversion  studies. There  is no doubt  that differences would 
have been  substantially  smaller with a more  strongly controlled  setup.  It was not our  intention  to 
assess  the quality of  the  transport simulations of FLEXPART as compared  to NAME, which  it would 
ultimately come down to if all other choices were identical. 

 

For Figure 1, is this the sensitivity created using FLEXPART or NAME? I would also assume that the 
sensitivity is quite different depending on the month. Which month is this? And is this the monthly 
mean? 

We apologize that the figure caption was not sufficiently clear (as also noted by another reviewer). It 
will be changed to 

Annual mean surface sensitivity in units of [ppb/(kg m‐2 s‐1)] for (a) the original 0.1°x0.1°grid and (b) 
for the reduced grid of the FLEXPART‐based model system EMPA. 

 

It was a little unclear why NAME needed such a high release height at Jungfraujoch. If the point of 
the  paper  is  to  better  understand  the  differences  among  the  four  inversion  systems,  I  find  it 
puzzling  that  the authors would modify  to make  the model  footprint sensitivities comparable  to 
each other.  

As also mentioned in our reply to reviewer #2, the measurements from Jungfraujoch have not been 
used  in  previous  inversion  studies  based  on  the NAME model,  because  the  results  had  not  been 
satisfactory  for  this  site  and  no  independent  analysis  on  the  optimal  release  height  had  been 
conducted before, in contrast to FLEXPART. The approach chosen here  was pragmatic, so as to not 
disadvantage  the NAME model,  and  allowed  us  to  include  the  results  of NAME  despite  of  these 
difficulties. A thorough investigation of the reasons for the differences between FLEXPART and NAME 
for Jungfraujoch would be desirable, but was not feasible within the scope of this project. 

 

I had a hard time understanding how the emissions were created following the country outlines. 
What was  the means used  to  split  the EDGAR grid  to  country outlines? Also, because  the prior 
emissions are so different, I find it more informative if the Fig. 6 was not comparing between prior 
and posterior but EDGAR and posterior.  

We will add the information that the original resolution of EDGAR was 0.1° x 0.1°. In the case of the 
UKMO system, EDGAR emissions were  first regridded  to a  fine grid, and  the country outlines were 
then followed as closely as possible. Each grid cell was assigned to the country with the largest share. 
Except for small countries, the error introduced by this procedure with cells at the borders shared by 



more than one country is small. We extended the sentence explaining the grid for the UKMO system 
with  

follows the country outlines as closely as possible given the resolution of a fine grid uncerlying the 
reduced inversion grid. 

EDGAR is the prior. Note that the prior emissions are not different, only their spatial representation. 
Comparing  the  results  with  EDGAR  at  the  original  resolution  would  require  redistributing  the 
emissions estimated on the reduced grid to the original fine grid. This would be doable technically, 
but it would give a wrong impression of high resolution of the inverted emissions. We strongly prefer 
the present representation of the results. 

 

Why did EMPA2 use the uncertainty set uniformly to 137%? This seemed a  little strange and was 
curious for the reason behind this specific value. 

The 137% was a result of the requirement, that the total uncertainty of a domain covering most of 
Europe was 20%. We will add this information to the text. 

 

One of the explanations for why UK’s estimated emissions are much higher than what is reported 
to UNFCCC,  the authors mention  the use of an assumed high  loss  rate of HFC‐134a  from car air 
conditioning systems in the UK. Why is this only in the UK and how different is the loss rate among 
the  countries?  Is  a  similar  explanation  possible  for  overestimation  and/or  underestimation  for 
different species?  

The UK inventory is conservative (overestimates), as it assumes that there is a 100% replacement of 
air conditioning fluid in all mobile air conditioning systems each year. Each country makes their own 
choice  in  this aspect provided  it  is backed by expert knowledge.  It  is not clear what every country 
across Europe does  in this respect. This particular situation  is specific for HFC‐134a but other  issues 
will undoubtedly impact the emissions of different countries for different gases. 

 

Backwards mode time differ substantially among the models and I would have expected UKMO to 
have  larger difference between prior and posterior away from the measurement sites, compared 
to  the other model systems  that have shorter  time span. Why  is  it  that UKMO shows almost no 
difference between the two farther away from the measurement sites? 

A  backward  simulation  over  5  days  captures  most  of  the  sensitivities  of  the  measurements  to 
emissions within Europe because the sensitivity decreases very rapidly as time and distance from the 
measurement increases. Extending to 10 days (NILU) or even 19 days (UKMO) changes little. The fact 
that UKMO  adjusts  relatively  little  at  larger  distances  from  the  sites must  be  due  to  the  specific 
choices of a priori versus observation uncertainties.  

 

Minor comments 

1. Sometimes authors state the country by name and sometimes by the ISO2 convention country 
code. It is a little confusing to me and so I would suggest to be consistent and I would appreciate if 
there was a table listing the country names with ISO2 code if the authors want to use the codes. 

Instead of adding another table we added the country names in the caption of Figure 11: 

CH=Switzerland,  DE=Germany,  IT=Italy,  FR=France,  ES=Spain,  PT=Portugal,  UK=United  Kingdom, 
IR=Ireland,  BE=Belgium,  NL=Netherlands,  LU=Luxemburg,  AT=Austria,  DK=Denmark,  SW=Sweden, 
FI=Finland, PO=Poland, CZ=Czech Republic, SV=Slovakia, NO=Norway. 

 

2. P. 11  l. 4 “An  important question  is  the context …  is  the question”  ‐> delete  the  second “the 
question” in the sentence to make it “… Paris Agreement is, how suitable is…” 

Thank you, done 



 

3. I am not quite sure what 0.1°x0.1°min means in Table 1. 

It means that the minimum size of a grid cell is 0.1°x0.1°, but larger when cells are aggregated for the 
reduced grid. We will change "min." to "minimum". 

 

4. “reduced acc. to” ‐> “reduced according to” in Table 1 for UKMO 

Done 

 

5. State vector length is mentioned in Table 1 but was not explained in the text at all. Can this be 
clarified  in  terms  of  how  this  is  used  in  the  equation  and why  the  equations  look  so  different 
depending on the system? 

We don't quite agree: The state vector x was introduced in the context of equation 1 as follows: "x is 
the  state  vector  which  includes  the  gridded  emissions  and  possibly  other  elements  such  as 
background mole fractions, and n is the number of state vector elements to be estimated/optimized 
by the inversion." The state vector was also referred to at other locations, e.g. in the sentence "In the 
EMPA  system, a  single  element per observation  site  is added  to  the  state  vector  to  represent  the 
background at time step k." 

To better  link the  information  in Table 1 with the  text we will add the  following  line after the  first 
sentence mentioned above: 

An overview of the number and type of state vector elements used in each system is provided in Table 
1. 

Note that the equations presented in the manuscript do not depend on the specific choices of state 
vector elements.  

 

6. How is the EDGAR prior uncertainty determined in Figure 13? I find that to be a little misleading, 
since I do not think EDGAR provides such a value. 

EDGAR  indeed does not report uncertainties. These uncertainties denote the range of uncertainties 
in the prior that  is  introduced by the different gridding methods. This  information will be added to 
the caption. 

 

7. Figure 14 is very difficult to see – maybe a different color scheme would work better. 

We played a lot with different color schemes and found that using a single color in different shadings 
works best. The main issue is that the different grid shapes already introduce a lot of variation, such 
that the figures become too complex and less easily readable when using a color scheme composed 
of multiple colors. 
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Abstract. Hydrofluorocarbons (HFCs) are used in a range of industrial applications and have largely replaced previously 

used gases (CFCs and HCFCs). HFCs are not ozone depleting but have large global warming potentials and are, therefore, 15 

reported to the United Nations Framework Convention on Climate Change (UNFCCC). Here, we use four independent 

inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and 

HFC-125) and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand 

systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch 

(Switzerland), Mace Head (Ireland), and Monte Cimone (Italy), and the same a priori emissions, but differed in terms of 20 

Lagrangian transport model (FLEXPART, NAME), inversion method (Bayesian, Extended Kalman Filter), treatment of 

background mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the 

ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, 

and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very 

well with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all 25 

models estimated higher emissions from Spain+Portugal than reported to UNFCCC (median higher by 390%) though with a 

large scatter between individual estimates. Estimates for Germany (+140%) and Ireland (+850%) were also considerably 

higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to 

HFC-125, HFC-134a emissions from Spain+Portugal were broadly consistent with UNFCCC, and emissions from Germany 

were only 30% higher. The data suggests that the UK over reports its HFC-134a emissions to UNFCCC, as the model 30 

median emission was significantly lower, by 50%. An overestimation of both HFC-125 and HFC-134a emissions by about a 

factor 2 was also found for a group of eastern European countries (Czech Republic + Poland + Slovakia), though with less 

confidence since the measurement network has a low sensitivity to these countries. Consistent with UNFCCC, the models 

identified Germany as the highest national emitter of SF6 in Europe, and the model median emission was only 1% lower than 

the UNFCCC numbers. In contrast, the model median emissions were 2-3 times higher than UNFCCC numbers for Italy, 35 

France and Spain+Portugal. The country-aggregated emissions from the different models often did not overlap within the 

range of the analytical uncertainties formally given by the inversion systems, suggesting that  parametric and structural 

uncertainties are often dominant in the overall a posteriori uncertainty. The current European network of three routine 

monitoring sites for synthetic greenhouse gases has the potential to identify significant shortcomings in nationally reported 
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emissions, but a denser network would be needed for more reliable monitoring of country-wide emissions of these important 

greenhouse gases across Europe. 

1 Introduction 

Synthetic halocarbons are used for a wide range of applications such as refrigeration and air conditioning, foams, solvents, 

aerosol products and fire protection. The first generation of compounds, the chlorine containing chlorofluorocarbons (CFCs) 5 

and bromine containing halons, were harmful to the stratospheric ozone layer and were phased-out under the Montreal 

Protocol entering into force in 1987. They were substituted by natural refrigerants including hydrocarbons and ammonia and 

by another class of halocarbons, the hydro-chlorofluorocarbons (HCFCs), which have lower stratospheric ozone depletion 

potentials (ODPs) and lower global warming potentials (GWPs) than the CFCs. Regulation of the production and 

consumption of HCFCs under the Montreal Protocol led to a strong decline in their emissions over Europe after 2004 10 

(Brunner et al., 2012; Derwent et al., 2007; Graziosi et al., 2015) whereas emissions were still increasing in developing 

countries until recently (Saikawa et al., 2012; Xiang et al., 2014). Today, HCFCs and CFCs are mainly replaced by chlorine-

free hydrofluorocarbons (HFCs), which are no longer harmful to the ozone layer except for minor indirect effects (Hurwitz 

et al., 2015), but some have large GWPs. 

Current emissions of HFCs and CFCs are equivalent to only about 5% of global CO2 emissions on a CO2-equivalent basis, 15 

but, as Velders et al. (2009) highlighted, in a business as usual scenario without further regulations, HFC emissions could 

grow to an equivalent of 9 – 19% of projected global CO2 emissions by 2050, stressing the need for binding emission 

regulations. In view of the urgency of the problem and the success of the Paris Agreement, 197 countries adopted in October 

2016 an amendment to the Montreal Protocol to phase down the emissions of HFCs by more than 80% over the next 30 

years. 20 

HFC-134a and HFC-125 considered in this study are the two most abundant HFCs in Europe constituting 69% of all HFC 

emissions (CO2-eq.) in 2012, with HFC-143a contributing another 23% according to officially reported emissions of the EU-

28 countries. HFC-134a has a 100-yr GWP of 1,300 and is the preferred refrigerant in motor vehicle air conditioning 

systems. HFC-125 has a GWP of 3,170 and is mainly used in refrigerant blends for residential and commercial refrigeration 

and in smaller amounts as a fire suppression agent (O'Doherty et al., 2009; Velders et al., 2009). Sulfur hexafluoride (SF6) is 25 

primarily used as a dielectric and insulator in high-voltage electronic installations. With a GWP of around 22,800, SF6 is the 

most potent greenhouse gas reported to UNFCCC. SF6 emissions are equivalent to about 0.5% of current global CO2 

emissions (CO2-eq.), but emissions are still growing, especially in developing countries (Levin et al., 2010; Rigby et al., 

2010). 

Due to their long atmospheric lifetime, HFCs and SF6 are rather uniformly distributed in the atmosphere. Global emissions 30 

can, therefore, be estimated from measurements at a few representative baseline stations distributed across the globe 

(Cunnold et al., 1994; Montzka et al., 2015; Vollmer et al., 2011; Xiang et al., 2014). Estimating emissions at continental or 

even regional and country scale, however, requires a denser network of sites with varying sensitivity to emissions from the 

region of interest (Villani et al., 2010).  

Currently, HFCs are routinely measured at only three sites in Europe: Jungfraujoch in Switzerland, Mace Head in Ireland, 35 

and Monte Cimone in Italy. Measurements from these sites have been used in several previous inverse modeling studies to 

estimate European emissions of selected halocarbons and SF6 (Brunner et al., 2012; Ganesan et al., 2014; Keller et al., 2011; 

Keller et al., 2012; Lunt et al., 2015; Maione et al., 2014; Manning, 2011; Manning et al., 2003; Rigby et al., 2011; 

Simmonds et al., 2016; Stohl et al., 2009). Different Lagrangian transport models and inversion approaches have been 
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applied in these studies but no systematic comparison between the model systems has been undertaken so far. The European 

infrastructure project InGOS (Integrated non-CO2 Greenhouse gas Observation System) helped to improve the quality and 

compatibility of these measurements, to further develop the measurement technologies, and to collect and harmonize the 

data. It also supported a range of modeling studies to quantify European emissions of non-CO2 greenhouse gases including 

CH4 and N2O (Bergamaschi et al., 2015) and halocarbons (this study), and to evaluate the models with respect to their 5 

transport properties. 

Inverse emission estimation using direct atmospheric observations (commonly referred to as ‘top-down’) has been proposed 

as a tool for helping to verify anthropogenic emission inventories estimated by the individual countries based on statistical 

data and source-specific emission factors (commonly referred to as ‘bottom-up’) (Nisbet and Weiss, 2010). However, to 

enhance the credibility of this top-down approach, a better understanding of the associated uncertainties is needed. Currently, 10 

there is no commonly accepted benchmark against which to test the models and there is no single emission source that is 

known well enough to serve this purpose. Emissions of radon, for example, have turned out to be spatially and temporally 

more variable than previously thought (Karstens et al., 2015). Large-scale tracer release experiments such as ETEX (Van 

dop et al., 1998) have been instrumental in the development of dispersion models, but their temporal and spatial coverage is 

too sparse for an overall assessment of atmospheric transport and inverse modeling systems. Traditionally, inverse modeling 15 

studies have applied a single transport model and inversion setup and reported posterior uncertainties deduced from Gaussian 

error statistics in a Bayesian framework. More recently, awareness has grown that this approach may miss important 

contributions to the true uncertainties, including errors in model transport, representation errors, and uncertainties related to 

the chosen setup and the expert judgments that classical Bayesian inversions heavily rely on. Approaches to overcome these 

limitations included a better consideration of transport uncertainties (Baker et al., 2006; Lin and Gerbig, 2005; Locatelli et 20 

al., 2013), objective estimation of error covariance parameters (Berchet et al., 2013; Brunner et al., 2012; Michalak et al., 

2005), and model experiments exploring the sensitivity of the results to different assumptions (Bergamaschi et al., 2010; 

Brunner et al., 2012; Henne et al., 2016) . A promising new avenue is to extend the classical Bayesian framework with the 

dimension of ‘uncertainties of uncertainties’ (Berchet et al., 2015; Ganesan et al., 2014). 

Here we apply four independent inversion systems to quantify the emissions of HFC-134a, HFC-125 and SF6 over Europe 25 

for the year 2011 in a set of well-defined model experiments with common observation data and a priori emissions. We aim 

to compare the results of four well-established systems used in previous studies and to better assess the uncertainties 

associated with different choices of transport model, inversion method, treatment of background mole fractions, spatial 

gridding, a priori uncertainties, and error correlation structures, which add to the analytical uncertainties determined by the 

individual systems. Furthermore, we aim to evaluate the ability of the current network of three monitoring sites in Europe to 30 

constrain the emissions of synthetic greenhouse gases in individual European countries. 

2 Methods 

2.1 Observation Data 

Measurements were available as hourly or two-hourly samples from the coastal site, Mace Head (9.90°W, 53.33°N, 15 m 

above mean sea level (amsl)), Ireland, and the two mountain sites, Jungfraujoch (7.99°E, 46.55°N, 3573 m amsl), 35 

Switzerland, and Monte Cimone (10.70°E, 44.18°N, 2165 m amsl), Italy. Halocarbons and SF6 are measured at Jungfraujoch 

and Mace Head with a 'Medusa' Gas Chromatography/Mass Spectrometry (GC/MS) system (Miller et al., 2008). At Monte 

Cimone, an Adsorption Desorption System (ADS) GC/MS (Maione et al., 2013) is used, which does not enable SF6 to be 

measured. The measurement data and their uncertainties (1σ single measurement precision determined as running mean of 
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calibration standards bracketing each measurement) were provided to all groups at their native time resolution. Typical 

precisions for HFC-134a, HFC-125 and SF6 are in the range 0.2-0.5 ppt, 0.05-0.1 ppt and 0.02-0.03 ppt, respectively. 

For the assimilation, these observations were averaged to 3-hourly values in the EMPA and EMPA2 models and to daily 

means in NILU. UKMO used a single 3-hourly mean value per day around the time when the uncertainty of boundary layer 

heights was considered to be lowest, i.e. in the early afternoon (12-15 UTC) at Mace Head, and when the least influence 5 

from local boundary layer transport can be expected at the two mountain sites (06-09 UTC). 

2.2 Inverse Modelling Systems 

A brief overview of the four inversion systems employed in this study is presented in Table 1. All systems have been used in 

similar configurations in previous studies as referenced in the table. In all systems, atmospheric transport was described by a 

Lagrangian Particle Dispersion Model (LPDM). The LPDMs were operated in backwards in time, receptor-oriented mode 10 

(Seibert and Frank, 2004). In this mode, virtual particles (infinitesimally small air parcels) are released at the measurement 

sites and followed backwards in time, typically for a few days.  

Three systems (EMPA, EMPA2, NILU) used the transport model FLEXPART (Stohl et al., 2005) driven by 3-hourly 

analysis and forecast fields from the European Centre for Medium Range Weather Forecasts - Integrated Forecast System 

(ECMWF-IFS). The fourth system, UKMO, relied on the transport model NAME (Ryall and Maryon, 1998) driven by 15 

global analyses of the UK Met Office’s Numerical Weather Prediction model. 

The outputs of the LPDMs are emission sensitivity maps, so-called 'footprints', for each particle ensemble release time. The 

footprints represent the total sensitivity of an observation to surface emissions over the backwards simulation time. 

Multiplying the footprint by an emission map and integrating in space and time gives a simulated mole fraction at each 

release time and location. Assuming temporally constant emissions for the inversion period, the relation between emissions 20 

and simulated mole fractions can be written as 

ܡ  ൌ  (1) ,ܠۻ

where ܡ ൌ ሺݕଵ ⋯  ሻ is the vector of simulated mole fractions at all times and stations, with m being the total number ofݕ

available measurements. ܠ ൌ ሺݔଵ ⋯  ሻ is the state vector which includes the gridded emissions and possibly otherݔ

elements such as background mole fractions, and n is the number of state vector elements to be estimated/optimized by the 

inversion. An overview of the number and type of state vector elements used in each system is provided in Table 1. M is the 25 

sensitivity matrix (with dimension m x n),   

 
ۻ ൌ ቌ

ଵ,ଵܯ ⋯ ଵ,ܯ
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,ଵܯ ⋯ ,ܯ

ቍ. (2) 

Each row of M describes the sensitivity of a given measurement to all state vector elements composed of the footprint 

computed by the LPDM and possibly other elements such as the sensitivity to the background field (see e.g. Thompson and 

Stohl, 2014). 

The goal of the inversion is to estimate an optimized state x, which accounts for the observed mole fractions yo by reducing 30 

the difference between observed and simulated values, additionally constrained by the uncertainty bounds of the prior state 

variables. In the Bayesian framework and assuming Gaussian uncertainty distributions, this optimized state is obtained by 

minimizing the following cost function J(x) (e.g. Tarantola, 2005) 
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(3) 

The first term on the right-hand side describes the deviation of the optimized state x from a prior state xb, the second term the 

deviation of the simulated mole fractions from the observations. Both terms are weighted by their uncertainties represented 

by the error covariance matrices B (n x n) and R (m x m) for the prior and observation uncertainties, respectively. 

This approach was employed by the inversion systems EMPA2, NILU and UKMO, which, however, differed in various 

other aspects of the implementation. In order to mimic the approach presented by Stohl et al. (2009) as closely as possible, 5 

EMPA2 assumed the matrices B and R to be diagonal (i.e., uncorrelated errors). NILU, instead, assumed a correlation length 

scale of 200 km over land and 1000 km over ocean for the prior emission field, and R contained off-diagonal elements to 

represent the cross-correlations of the model representation error (see Thompson and Stohl, 2014). Like EMPA2, UKMO did 

not account for potentially correlated errors in the prior emission field. As will be shown in Sect. 3, the choice of correlation 

structure has quite a strong influence on the results. Due to the way bottom-up inventories are generated, it may be justified 10 

to assume stronger error correlations within a country than across country borders, but none of the inversion systems adopted 

such a strategy. 

To avoid non-physical negative emissions, NILU applied a ‘truncated Gaussian’ approach (Thacker, 2007; Thompson and 

Stohl, 2014). This entails performing a second step after the inversion in which an inequality constraint, namely that the 

emissions must be greater than or equal to zero, is applied accounting also for the error-covariance between grid-cells. 15 

EMPA2 estimated the model uncertainty following the suggestions by Stohl et al. (2009). In a first step, the Root Mean 

Square Error (RMSE) of the prior simulation minus observations was calculated for each site separately. The model residuals 

were then scaled by the RMSE. The normalized residual distribution often does not follow a normal distribution, but is 

skewed towards large negative values (large model underestimations). In order to reduce the influence of such points in the 

inversion, the model uncertainty for these ‘outliers’ was iteratively adjusted so that the normalized residual distribution 20 

followed a normal distribution more closely. This procedure was repeated using the posterior simulations of a first inversion 

run. A second and third inversion run was then performed using the updated model uncertainties but the same prior state. 

Furthermore, prior uncertainties were reduced for grid cells with negative posterior emissions, and the inversion was iterated 

until a solution without significant negative emission contributions was obtained, again following the suggestion by Stohl et 

al. (2009). 25 

The Met Office’s inverse modelling system (InTEM – Inversion Technique for Emission Modelling) using the NAME model 

has evolved since the work of Manning et al. (2011) and the NitroEurope project (Bergamaschi et al., 2015) and is now 

based on a Bayesian methodology. Measurement uncertainty reported in the InGOS data set was used as observation error. 

Model-measurement mismatch errors were also applied to each measurement and were calculated using a metric based on 

the degree of influence of local fluxes on the measurement (Manning et al., 2011). These model errors were inflated based 30 

on the difference between the model release height above sea level and the true altitude of the observation, and the relative 

difference between the modelled boundary layer height and the observation height. No spatial or temporal correlations were 

applied in these inversions. Grid boxes were aggregated based on the sensitivity of measurements to emissions, creating 

around 100-150 course grid regions within the inversion domain. A non-negative least square solver was used to optimise 

the solution thus preventing negative emissions from being estimated. 35 

EMPA applied an extended Kalman Filter (ExtKF) as described in detail in Brunner et al. (2012). Different from the other 

systems the observations are not used all at the same time, but are assimilated sequentially thereby gradually adjusting the 
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state to a solution that is optimal given all past observations up to the assimilation time. The Kalman filter update equations 

are for the state:  

୩ܠ 
ା ൌ ୩ܠ

ି  ۹୩ሺܡ୩ െ ୩ܠ୩ۻ
ିሻ (4) 

and for the uncertainty of the state: 

୩۾ 
ା ൌ ሺ െ ۹୩ۻ୩ሻ۾୩

ି (5) 

where k is the time index, Kk the Kalman Gain matrix, defined as 

 ۹୩ ൌ ୩۾
ିMk

T൫܀୩ െ ୩۾୩ۻ
ିMk

T൯
ିଵ

, (6) 

Pk the state error covariance matrix, and Mk the sensitivity matrix for time k. The minus sign denotes a ‘first guess’ state 5 

before assimilation of the observation yk available at time k, and the plus sign denotes the ‘analysis’ state after assimilation. 

The matrix P essentially takes the role of B in the Bayesian inversion and the observation and model representation 

uncertainty matrix R is included in the definition of the Kalman Gain matrix. The similarity between the Kalman Filter and 

Bayesian inversion is further illustrated by the fact that the solution to Eq. (3) is given by the same Eq. (4) but with B 

replacing Pk
- in the Kalman Gain matrix and all observations being used at once instead of looping over time steps k.  10 

Different from the Bayesian inversions, however, the emissions were not assumed to be constant but to evolve slowly with 

time as expressed by the forecast equation  

୩ାଵܠ 
ି ൌ ୩ܠ

ା  ઽ୩, (7) 

which states that the emissions at time k+1 are expected to be the same as at time k within an uncertainty εk. This step adds 

uncertainty to the emissions according to 

୩ାଵ۾ 
ି ൌ ୩۾

ା   ୩, (8)ۿ

so that the uncertainty can grow with time in regions poorly covered by the observations. This is different from the other 15 

inversions where the posterior uncertainties are always smaller than the prior uncertainties. Without this forecast step, the 

solution after assimilating all observations would be identical to the solution obtained with Eq. (3). The new matrix Qk, 

which has no correspondence in the Bayesian inversion, describes the uncertainty of the forecast and determines how rapidly 

the emissions (and background levels, see below) are allowed to change with time.  

Another unique feature of the EMPA system is that it estimates the logarithm of the emissions in order to constrain the 20 

solution to positive values. This makes the problem non-linear and, therefore, requires the application of an Extended 

Kalman Filter that linearizes the sensitivity matrix around the current state. An important effect of this approach is that the 

residuals (ܡ୩ െ ୩ܠ୩ۻ
ି ) become approximately normally distributed, a prerequisite for the Kalman Filter to provide an 

optimal solution. Finally, temporal correlations in the residuals were accounted for by applying an augmented state red-noise 

Kalman Filter as described in Brunner et al. (2012). 25 



7 
 

2.3 Background Treatment 

The mole fractions of an inert trace gas at any given point in the atmosphere may be considered to be composed of a 

smoothly varying, large-scale background plus a more rapidly varying component containing the imprint of recent sources 

and sinks. Since the LPDM simulations only account for the contribution from recent emissions (the time period covered by 

the backward simulations), the background has to be treated separately. All inversion systems estimated a prior background, 5 

and three of the four systems optimized the background along with the emissions, but the details of this optimization 

differed. 

For the prior background mole fractions, NILU used the method described in Thompson and Stohl (2014). In brief, this 

involved the following three steps: 1) selecting observations defined to be representative of the background, i.e., lower 

quartile of values in a shifting time window of 60 days (30 days for SF6), 2) calculating the contribution to these 10 

observations from prior emissions within the domain and subtracting these, and 3) interpolating the background mole 

fractions to the observation time step. 

EMPA2 applied the Robust Estimation of Baseline Signal (REBS) method (Ruckstuhl et al., 2012), which iteratively fits a 

non-parametric local regression curve to the observations, successively excluding points outside a certain range around the 

baseline curve. REBS was applied separately to individual observations from each site using asymmetric robustness weights 15 

with a tuning factor of b =2.5, a temporal window width of 60 days and a maximum of 10 iterations. An estimate of the 

baseline uncertainty is given by REBS as a constant value for the whole time series. 

In the UKMO set up, a total of eleven extra ‘boundary condition’ variables were estimated as part of the inversion. The prior 

background time-series was calculated using data at Mace Head when well-mixed ‘clean’ air arrived from the North Atlantic 

Ocean. The eleven variables are multiplication factors to calculate the mole fractions of the background air arriving from 20 

eight horizontal (SSE, SSW, WSW,…, ESE) boundaries at 0-6 km, two boundaries (north and south) from 6 to 9 km, and a 

boundary at 9 km (upper troposphere to stratosphere). 

EMPA2 optimized the REBS background levels separately for each measurement site at selected reference points every 14 

days. The uncertainty provided by the REBS procedure served as prior uncertainty during the inversion. Background levels 

in between these reference points were linearly interpolated. NILU did not optimize the background to avoid cross-talk 25 

between the optimization of the emissions and the baseline. In the EMPA system, a single element per observation site is 

added to the state vector to represent the background at time step k. This background is then allowed to evolve slowly with 

time similar to the evolution of the emissions (see Eq. 7). As first guess for the initialization of the assimilation, the 5th 

percentile of the first 12 days of measurements is used. 

2.4 Inversion Grids 30 

In order to limit the dimension of the problem, all four systems feature a reduced resolution grid to represent the emissions in 

the state vector. EMPA and EMPA2 computed a reduced grid by iteratively aggregating grid cells until the enlarged cell 

passed a threshold with respect to its annual mean total surface sensitivity. The result of this procedure is illustrated in Figure 

1, which also presents the position of the three measurement sites and the common domain chosen for the inversion. 

NILU employed a reduced grid based on the emission sensitivity with a maximum resolution of 1°x1° over land (effectively 35 

most of Europe is resolved at 1°x1° and larger grid cells are only found in Eastern Europe), and a resolution of 4°x4° over 

sea. UKMO used a grid that follows the outlines of countries or groups of countries of interest, which ensures that parts of 

different countries are prevented from being aggregated into the same coarse grid. Within country, grid cells can be split 

further depending on the sensitivity of the measurements to emissions from such areas. 
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2.5 Experiments 

All experiments and required outputs were described in a detailed modelling protocol available to the participants. Three 

main experiments (M1-M3) were defined to estimate the emissions of HFC-125, HFC-134a, and SF6, respectively. For HFC-

125, several additional experiments were defined to test the sensitivity to changing prior uncertainty, background treatment, 

data selection, and uniform versus spatially resolved prior emissions. Most of these sensitivity tests were limited to a single 5 

inversion system. A summary of the main and sensitivity experiments is presented in Table 2. All experiments were 

performed for a single year (2011) and the main scope was the estimation of annual mean emissions.  

To make the results as comparable as possible, all inversion systems used the same observation data (including uncertainties) 

and prior emissions, and the backward transport simulations were started from the same horizontal coordinates. Since the 

comparatively coarse topography in the transport models significantly underestimates the true altitude of the two mountains 10 

sites, particles were released at 3000 m amsl at Jungfraujoch and at 2000 m amsl at Monte Cimone, thus a few hundred 

meters below the true station height but still well above the model topography. Previous analyses of FLEXPART simulations 

indicated that 3000 m amsl is an optimal release height for Jungfraujoch at the given model resolution of 0.2° x 0.2° 

(Brunner et al., 2012). However, for the NAME model it turned out that a release height of 3000 m amsl. overestimates the 

sensitivity to regions surrounding Jungfraujoch, especially France. For NAME a significantly higher release height of 2000 15 

m above model ground (which corresponds to 3906 m amsl) was selected to provide footprint sensitivities comparable to 

those of FLEXPART. 

In order to preserve the characteristics of the individual inversion systems as used in previous studies, no further common 

settings were specified. In particular, the groups were free to choose the inversion grid, the prior uncertainties (except for 

experiment FLAT) and error correlation structures (see Table 1). Model outputs defined by the protocol included simulated 20 

time series at the measurement sites, gridded emission fields, and estimates of country-aggregated emissions. These outputs 

form the basis of the results presented in the following. 

3. Results and Discussion 

3.1 Simulated Time Series 

Simulated prior and posterior time series at all three measurement sites are shown in Figure 2 and 3 for HFC-125 mole 25 

fractions for experiment M1 (definition see Table 2). Corresponding figures for M2 (HFC-134a) and M3 (SF6) are presented 

in the supplementary material.  

The simulations successfully reproduce much of the observed variability, indicating that the underlying variations in 

meteorology and atmospheric transport are well represented by the models. The variance explained by the prior time series 

ranges between 30% and 80% depending on the site (lowest at Monte Cimone, highest at Mace Head) and the LPDM, and is 30 

further increased in the posterior time series. The alternation between clean Atlantic air and advection of polluted air masses 

from UK and the European continent observed at Mace Head is very well matched by all models. The largest difference 

between the models is the representation of background concentrations, with NILU being lower than the other models 

towards the end of the one-year period at Mace Head. The two mountain sites Jungfraujoch and Monte Cimone are more 

frequently perturbed by polluted air masses and the background level is less clearly defined. As a consequence, the scatter 35 

between the background levels is rather large with UKMO tending to be at the lower and EMPA at the upper end of the 

estimates. Note, however, that EMPA does not have a prior background in the same way as the other models since its 
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background is constructed directly during the assimilation process. The prior mole fractions shown in Figure 2, therefore, 

have been added to the posterior background in the case of EMPA.  

Although many of the peaks observed at the two mountain sites are well captured, reproducing the observations is more 

challenging at these sites compared to Mace Head. At all three sites, the performance of the posterior simulations is clearly 

improved and the spread between model simulated peaks and background levels is reduced. 5 

The overall model performances in experiments M1-M3 are summarized in Figure 4 in the form of Taylor diagrams. For 

HFC-125, the diagrams confirm the qualitative picture presented above: Mace Head is simulated best with posterior 

correlations between 0.8 and 0.92, compared to values in the range of 0.6 to 0.82 at the mountain sites. The posterior scores 

are closer to each other than the prior scores. In particular, the score of the NAME-based system UKMO is moving closer to 

the three FLEXPART-based systems EMPA, EMPA2, and NILU. For HFC-134a, the posterior performances are similar as 10 

for HFC-125 except for Monte Cimone where all models have difficulties in reproducing the observations. While the prior 

simulations of HFC-125 showed too little variance at Jungfraujoch and Mace Head suggesting that emissions in the 

surroundings of these sites were underestimated, the prior simulations of HFC-134a tended to be too high. Observations of 

SF6 were only available from Jungfraujoch and Mace Head. SF6 is very well simulated at these sites such that the 

improvement from prior to posterior is relatively small. 15 

Overall, the FLEXPART-based systems performed somewhat better than the UKMO system. This is especially true for 

Jungfraujoch whereas at Mace Head the differences were minor. The reasons for this are unclear: Differences in the 

dispersion model, the underlying meteorological model, and/or model setup (e.g. particle release height) are all potential 

candidates for further study. 

3.2 Gridded emissions 20 

Gridded prior emissions are exemplarily presented in Figure 5 for HFC-134a (experiment M2). Although based on exactly 

the same EDGAR v4.2 inventory data, which has a resolution of 0.1° x 0.1°, the spatial aggregation to the different inversion 

grids leads to visually quite different distributions despite the fact that all gridding algorithms are mass conserving, i.e. the 

emission from a coarse grid cell exactly corresponds to the sum of emissions from all finer EDGAR grid cells within that 

cell. The UKMO grid, for example, is rather coarse and follows the country outlines as closely as possible given the 25 

resolution of EDGAR v4.2. The grids of NAME, EMPA and EMPA2 have higher resolution (up to 0.1°, see Table 1) near 

the observation sites and lower resolution further away. NILU has a nearly constant resolution over land and reduced 

resolution over the sea. These different grids combined with different a priori uncertainties and correlation length scales will 

influence the inversion results as they offer different flexibility to optimize the emissions. Further insights into these 

sensitivities will be presented in Sect. 3.4 (country aggregated emissions). 30 

The emission updates, i.e., the posterior minus prior emissions are shown in Figures 6–8 for experiments M1 to M3. For 

HFC-125, the posterior differences share a number of similarities between the models such as positive values over the 

Iberian Peninsula, mid and southern Italy, western France, south-western UK, and negative values over northern Italy and 

northern/north-eastern UK. Overall, EMPA and EMPA2 are quite similar except for opposing patterns over the Benelux 

countries and south-eastern UK. NILU estimates much larger enhancements over Spain than the other models. It also finds 35 

significant enhancements in a band extending from Germany towards the Baltic countries, where the other models find either 

small (UKMO) or even negative increments (EMPA, EMPA2). These rather large differences are somewhat surprising 

considering the fact that the posterior time series simulated by the models are of similar quality (Figure 3). A notable 

difference between the models is the consistently lower background in the NILU system at Mace Head between October and 

December, probably because it does not optimize the background in the inversion. However, the sensitivity test NOBLOPT 40 
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(Table 2, results in Sect. 3.4), where EMPA2 repeated the experiment without background adjustment, still showed large 

differences from NILU in this period, suggesting that they were already present in the prior background. In the case of no 

background optimisation, emissions estimated by EMPA2 were generally higher in most of the domain (total of 1.1 Gg/yr 

higher) as compared with the reference run M1. Differences were especially large for the Iberian Peninsula and Italy, but not 

towards north-eastern Europe as in NILU. 5 

A similar picture emerges for HFC-134a (Figure 7). The models estimate reductions with respect to the prior emissions over 

eastern and northern UK and northern Italy. All models find enhanced posterior emissions over Spain and Portugal with 

NILU estimating again the largest changes, similar to HFC-125. For Germany, there is little consistency between the models. 

While NILU and EMPA show reductions over the western and increases over the eastern parts of the country, EMPA2 

estimates a uniform reduction and UKMO finds decreases in the northern and increases in the southern parts. A unique 10 

feature of NILU is again a band of positive changes extending from Germany to the Baltic countries. UKMO simulates a 

pronounced dipole pattern in the area of Paris. Such dipole patterns occur more easily when spatial correlations in the prior 

uncertainties are not considered. 

For SF6, all models consistently simulate lower posterior than prior emissions over Germany, the country with the largest 

emissions of SF6 in Europe. Except for UKMO, the models consistently find increased emissions in Italy and the western 15 

parts of France. Similar to HFC-125 and HFC-134a but different from the other systems, NILU simulates strong 

enhancements for the Iberian Peninsula. Most models find a local reduction around Jungfraujoch, especially UKMO. 

3.3 Uncertainty reductions 

A useful diagnostic of the model results is the uncertainty reduction as it illustrates the influence of the measurements on the 

posterior fields. However, it should be noted that the uncertainty reduction depends on the magnitude and correlation 20 

structure of the prior uncertainties. Comparing the uncertainty reductions thus helps illustrating the effect of the different 

model choices.  

Figure 9 presents the absolute prior uncertainties chosen in the four systems for the example of HFC-134a. Corresponding 

figures for HFC-125 and SF6 are provided in the supplement. EMPA and EMPA2 specified the uncertainties relative to the 

prior emissions. As a result, the distribution closely follows the pattern of prior emissions. This is also true for UKMO 25 

although uncertainties in grid cells with very low emissions were set to a minimum value. Overall, much lower prior 

uncertainties were specified in EMPA and EMPA2 compared to NILU and UKMO. In EMPA, the relative uncertainties 

were set to a range of about 70% for the largest and 100% for the smallest grid cells, accounting for the assumed uncertainty 

correlation length of 500 km. In EMPA2, the uncertainties were set uniformly to 137%, but to prevent negative emissions, 

these uncertainties had to be reduced iteratively in some grid cells. UKMO assumed a 200% uncertainty in the prior 30 

emissions plus a minimum value. In NILU the uncertainties for each grid cell were set to 100% of the largest emission out of 

itself and the 8 neighbouring grid cells and in addition, a minimum uncertainty was specified. This was done to allow a 

higher degree of freedom in adjusting the spatial pattern of emissions. 

Together with the different spatial uncertainty correlations, these differences have a marked effect on the resulting 

uncertainty reductions.  Figure 10 shows the reductions achieved for HFC-134a. Uncertainty reductions are largest and rather 35 

uniform for NILU due to the large prior uncertainties and prior error correlations with a length scale of 200 km over land. 

Almost no reductions are found over sea due to very low prior uncertainties. Uncertainty reductions are more scattered in 

EMPA2 due to the absence of spatial correlations in the prior error covariance matrix. The pattern reflects a combination of 

the influence of the measurements and magnitude of the prior fluxes. Largest reductions tend to occur in grid cells with large 
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prior emissions. Due to the growing cell sizes with increasing distance from the measurements, error reductions do not fall 

off as clearly with distance from the sites as in the NILU system. 

Uncertainty reductions are only moderate in UKMO despite rather large prior uncertainties. This is likely due to an eight 

times smaller number of observations assimilated (one morning or afternoon value instead of eight 3-hourly values per day) 

compared to EMPA and EMPA2 and larger assumed data-mismatch uncertainties, especially compared to NILU. The data-5 

mismatch uncertainties adopted for Mace Head, for example, correspond to average HFC-134a mole fraction uncertainties of 

1.9 ppt for EMPA and EMPA2, 1.2 ppt for NILU, and 3.4 ppt for UKMO, respectively. At Jungfraujoch, the uncertainty 

specified in UKMO was about 5 times larger than in the other models, reflecting the high uncertainty in simulated transport 

assumed for this site. Note that in all inversion systems the data-mismatch uncertainty is much larger than the stated 

measurement precision and is thus dominated by representation and transport model uncertainties. 10 

Due to the optimization of the logarithm of emissions, the EMPA system reduces relative rather than absolute uncertainties. 

The uncertainty reduction is, therefore, presented in terms of reduction of relative uncertainties. The uncertainty reductions 

are typically between 40% and 70%. Similar to EMPA2, the uncertainty reductions do not fall off strongly with distance 

from the sites due to the irregular grid. Unlike EMPA2, however, the pattern is much more uniform due to the consideration 

of spatial error correlations. Minor maxima coincide with grid cells with large prior emissions.  15 

3.4 Country aggregated emissions 

An important question in the context of international treaties such as the recent Paris Agreement is, how suitable is the 

current observation network to constrain emissions at the country level? For this purpose, the gridded emission fields were 

aggregated to individual countries or groups of countries. Due to the relatively coarse grids, this aggregation can be a 

significant source of error. Emissions from grid cells covering two or more countries need to be properly assigned to the 20 

individual countries. This was done either by weighting according to the fractional area covered by each country (EMPA, 

NILU), or by weighting according to the relative share of the population in the overlapping cell using high-resolution 

population density data (EMPA2). UKMO circumvented the problem by specifying a grid following the country borders.  

Another critical question is whether emissions from grid cells covering both land and sea should be fully assigned to the land 

areas or whether only the fraction covered by land should be considered. This is particularly relevant for countries like Italy 25 

with long coastlines and for inversion grids with large cells. In all models it was assumed that emissions from grid cells 

partially overlapping sea areas are fully assigned to the adjacent land areas assuming that emissions over sea are negligible. 

UKMO explicitly extended the country masks to include offshore sea areas. 

Figure 11 presents the prior emissions of HFC-125 estimated by the four model systems. Differences between these 

estimates reflect the uncertainty introduced by the different grids and country attribution strategies. These differences are 30 

typically in the range of 1% to 6% of the country emissions but occasionally can be larger. For Denmark, for example, the 

values vary between a minimum of 32 Mg/yr (EMPA) and 120 Mg/yr (UKMO). The low value estimated by EMPA is 

largely attributable to the area of Copenhagen being part of a large grid cell also covering large parts of southern Sweden 

resulting in a significant misattribution of emissions from Denmark to Sweden. As a consequence, emissions from 

SW+FI+BALT are relatively high in this model. Estimates of EMPA2 and UKMO are generally very close to each other 35 

suggesting that the usage of high-resolution population density data for redistributing sub-grid cell emissions is nearly 

equivalent to using a grid following the country outlines.  

The corresponding posterior estimates for HFC-125 are shown in Figure 12. Here, the differences between the models are 

much larger. EMPA and NILU have larger adjustments with respect to the prior than the other two models; integrated over 

all countries their emissions are about 50% higher. The standard deviation between the four model estimates for the domain 40 
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total is 26%. NILU estimates particularly large enhancements for Germany, the Iberian countries ES+PT, the Nordic 

countries SW+FI+BALT, and the eastern European countries PO+CZ+SV, consistent with the spatial pattern in Figure 6. 

EMPA, conversely, estimates only small changes for Germany, similarly large enhancements for ES+PO, and uniquely large 

enhancements for Italy and the Benelux countries BE+NL+LU. The stronger adjustments in EMPA and NILU are likely 

related to the spatial error correlations considered in these systems but also to other factors (see Sect. 3.5). 5 

Rather than considering the models individually, they may also be treated as an ensemble of estimates that can be compared 

to the bottom-up emissions officially reported to UNFCCC. A summary of this comparison for the experiments M1-M3 as 

well as the sensitivity experiment FLAT (discussed in Sect. 3.5) is presented in Figure 13. Shown are median values for the 

prior and posterior model estimates as well as the range between minimum and maximum. For HFC-125 (panel a) there is a 

rather high consistency between the top-down estimates and the UNFCCC values for many countries including FR, IT, UK, 10 

and Benelux. Marked differences with all models being either higher or lower than UNFCCC are found for DE (model 

median is 2.4x higher than UNFCCC), ES+PT (4.9x higher), IR (9.5x higher), SW+FI+BALT (2x higher), PO+CZ+SV 

(2.8x smaller), and CH (2x smaller). It should be noted that the prior emissions based on the EDGAR v4.2 2008 inventory 

for HFC-125 are significantly different from the UNFCCC 2011 emissions officially reported by the countries (grey bars). 

This is especially true for the countries DE and PO+CZ+SV, where the posterior model estimates are closer to the EDGAR 15 

prior. The estimated significant underestimation of the HFC-125 emissions reported to UNFCCC by Ireland and 

Spain+Portugal, that was consistently found across all model systems, has also been reported previously by Brunner et al. 

(2012). Summed over all countries, the model median estimate is 24% higher than the UNFCCC total. For some countries, 

our results can also be compared with those by Lunt et al. (2015), which covered a similar period (2010-2012) and also used 

EDGAR as prior (see their Table S3). For example, they also found higher than UNFCCC emissions from Germany though 20 

not as large as EDGAR. For France their posterior remained close to EDGAR and was lower than UNFCCC. Emissions 

from UK and Italy were significantly increased which is in contrast to our results. 

For HFC-134a, the model estimates are generally more consistent with UNFCCC than for HFC-125 (Figure 13c). In strong 

contrast to HFC-125, this is also true for Ireland and Spain+Portugal. The high consistency also applies to the domain total, 

which is only 11% lower than the total reported to UNFCCC. For SW+FI+BALT and PO+CZ+SV there are similar 25 

discrepancies as for HFC-125. Again, this is at least partly caused by the large differences between the prior and UNFCCC 

emissions and the large influence of the prior on the final model estimates. The model estimates are consistently lower than 

the UNFCCC values for UK by about a factor of two, which contributes strongly to the 11% difference for the domain total. 

An overestimation of the HFC-134a emissions reported by UK has also been found previously by Lunt et al. (2015) and Say 

et al. (2016) and is in part due to the use of an assumed high loss rate of HFC-134a from car air conditioning systems in the 30 

UK.  For Italy, the model estimates are consistently higher than the UNFCCC values by 40% on average. Note, however, 

that the results for Italy are strongly influenced by the measurements at Monte Cimone where the models had difficulties in 

reproducing the HFC-134a measurements. Lunt et al. (2015) found an even stronger increase over Italy (factor 2.4), whereas 

they obtained relatively consistent (compared with UNFCCC) estimates for Germany and reductions by ~25 % in France, in 

fair agreement with our results. 35 

For emissions of SF6 the attribution to the different countries is very different from HFC-125 and HFC-134 (Fig. 13d). 

Consistent with the bottom-up estimates reported to UNFCCC, the models identify Germany as the highest national emitter 

in Europe. The model median is highly consistent with UNFCCC but almost a factor 2 lower than the EDGAR v4.2 prior. 

For almost all other countries, however, the model estimates are closer to EDGAR v4.2 than to UNFCCC. For Italy, France, 

and Spain+Portugal, for example, the model medians are a factor 2-3 higher than the UNFCCC values but very close to 40 

EDGAR v4.2. Summed over all countries, the models are 47% higher than UNFCCC. SF6 emissions have also been 
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estimated by Ganesan et al. (2014) for the year 2012 based on a slightly modified EDGAR4.2 prior. Their estimates for 

Germany (348 Mg/yr) were much higher than ours (137 Mg/yr), but also their prior was much higher (650 Mg/yr compared 

to 254 Mg/yr). We note that our prior (obtained as a sum over all grid cells covering Germany) is consistent with the country 

table provided by the EDGAR inventory. 

3.5 Sensitivity to different model assumptions 5 

A set of additional HFC-125 experiments was conducted by a subset of models to analyse the sensitivity to different 

assumptions and identify possible reasons for the model-to-model differences (Table 2). A first test conducted by all models 

was an experiment for HFC-125 similar to M1 but using a flat, non-informative prior (FLAT), which had one emission value 

over land and one over ocean, to test the ability of the models to reconstruct the spatial distribution of emissions with no 

corresponding prior information. In this experiment, the uncertainty for the domain total emissions was set to 100%. Other 10 

experiments included tests with doubled (U200%) and halved (U50%) prior uncertainties conducted by NILU and UKMO,  

two tests with no optimization of the baseline conducted by EMPA2, the first one using EMPA2's baseline (NOBLOPT) and 

the second one using NILU's somewhat lower baseline (NILUBL), and tests with daily mean (DMEAN) and one single 

observation per day (ONEOBS) instead of 3-hourly observations conducted by EMPA to mimic the sampling of NILU and 

UKMO. 15 

The estimates with a flat prior (Figure 13, panel b) are similar to those with the spatially explicit prior (panel a) for most 

countries well covered by the footprint of the three measurement stations, notably for DE, IT, FR, UK, and IR, suggesting 

that the model ensemble provides a robust estimate for these countries that is mainly informed by the measurements rather 

than the prior. This is less true for the individual models as shown in Table 3, which summarizes the results of all 

experiments for the largest well-covered countries in the domain. For countries in the east and northeast of the domain 20 

(SW+FI+BALT, NO, PO+CZ+SV), which are poorly 'seen' by the three sites, the median posterior remains close to the 

prior, and the posterior differences between experiments FLAT and M1 resemble the prior differences. For ES+PT both 

priors are too low, but starting from a higher prior (experiment FLAT) results in an even higher posterior, especially in 

EMPA2 and UKMO. 

Comparing the range of individual model estimates (Table 3 and uncertainty bars in Figure 13) suggests that model-to-model 25 

differences were of similar magnitude in experiments FLAT and M1 despite a more uniform setup in FLAT with an agreed 

total uncertainty. The differences thus appear to be mainly caused by the many other choices such as spatial correlations of 

the prior, grid structure, background treatment, magnitude and correlation structure of the observation uncertainties, and 

transport model. 

Some further insight is provided by the other sensitivity simulations: Decreasing or increasing the prior uncertainties by a 30 

factor of two relative to M1 changed the country estimates by only about 10% or less (Table 3). An exception is ES+PT 

where the results depended strongly on the prior uncertainty, which is a clear indication that the emissions from the Iberian 

countries are not well constrained by the current observation network. Switching off the baseline optimization in EMPA2 to 

mimic the setup of NILU increased the emissions in all countries between +6% (DE) and up to +19% (FR, ES+PT). This 

indicates that with optimization the baseline in EMPA2 tended to be corrected upward and that without optimization this had 35 

to be compensated by higher emissions. In a further sensitivity experiment conducted by EMPA2 with no optimization, 

EMPA2's baseline was replaced by NILU's baseline, which tends to be lower due to the subtraction of simulated mole 

fractions from the background values (see Sect. 2.3). This further increases the emissions in almost all countries, most 

strongly in France (+117% with respect to experiment M1) followed by Span+Portugal (+55%) and Italy (+35%), whereas in 

Germany and UK the changes are small. Despite using the same baseline, the spatial pattern of emission adjustments does 40 
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not bring EMPA2 much closer to NILU (not shown). In particular, the large positive changes over Germany are not 

reproduced and those over Italy and France become more strongly positive compared to NILU. This suggests that the 

baseline selection is not the only factor explaining the differences between EMPA2 and NILU, but that the amplitude and 

correlation structure of the prior uncertainties as well as the grid geometry are also contributing. 

Finally, the influence of different sampling and averaging of the observations was tested with the EMPA system in 5 

experiments DMEAN and ONEOBS to mimic the sampling of NILU and UKMO, respectively. Note that for experiment 

DMEAN the model-data mismatch uncertainty was reduced to respect the requirement of a χ2 value close to the number of 

observations (Brunner et al., 2006). The results for DE and IT changed only little but they changed substantially for FR, UK 

and ES+PT. With daily averaged instead of 3-hourly observations the estimate for FR increased by 17%, and with one 

observation per day decreased by 22%, the latter being closer to the prior. For the UK, however, the opposite effect is seen, 10 

with daily means reducing (-13%) and one-observation-per-day increasing (+31%) the estimate relative to M1. The results 

for the UK are dominated by observations from the station Mace Head. At this site, the mean diurnal cycle of the differences 

between FLEXPART simulated and observed concentrations exhibits negative differences (-0.07 ppt) in the afternoon but 

positive differences (0.02-0.05 ppt) during the rest of the day. When using only afternoon observations as in experiment 

ONEOBS and as used by UKMO, the EMPA system thus requires higher emissions to compensate for the negative bias 15 

compared to when all data are used. Both experiments suggest a considerable impact of the choice of observations, which is 

in contrast to previous findings of Brunner et al. (2012), who made a similar sensitivity experiment and found only a 

relatively small influence. Except for the UK, the estimates of experiment DMEAN were always higher than those of 

experiment ONEOBS, consistent with NILU being generally higher than UKMO. Some of the differences between the 

model results are thus likely attributable to the specific selection and aggregation of the observation data. 20 

4 Conclusions 

For the first time, four independent regional inversion systems for synthetic greenhouse gas emissions have been applied in 

well-controlled model experiments to compare the systems and to analyse the performance of the ensemble. Emissions of the 

two most important halocarbons in terms of (CO2-eq.) greenhouse gas emissions in Europe, HFC-125 and HFC-134a, as well 

as SF6 were estimated for the year 2011. The four model systems, referred to as EMPA, EMPA2, NILU, and UKMO, 25 

differed in terms of Lagrangian transport model (3 x FLEXPART with ECMWF IFS meteorology, 1 x NAME with UKMO 

meteorology) and inversion method (3 x Bayesian inversion, 1 x extended Kalman Filter). The inversion systems used the 

same observation time series and a priori emission fields but differed in a number of other aspects such as the amplitude and 

correlation structure of the prior and observation uncertainty covariance matrices, the treatment of background mole 

fractions, the inversion grid and resolution, and the averaging or subsampling of observations, in order to preserve the 30 

characteristics of the individual approaches as used in previous studies as much as possible. 

All systems were able to reproduce the measurement time series well to very well. Pearson’s correlation coefficients for the 

prior simulations were typically in the range 0.6-0.7 at Jungfraujoch, 0.8-0.9 at Mace Head, and 0.5-0.7 at Monte Cimone. 

Correlation coefficients for the posterior time series were about 0.05 to 0.1 better and bias-corrected RMSE were typically 

reduced by 10 to 40% with the exception of HFC-134a at Monte Cimone, where the reduction was only between 2 and 5% in 35 

all systems. The transport model NAME was less successful than FLEXPART in reproducing the measurements at the two 

mountain sites JFJ and CMN but showed comparable performance at MHD. 

The comparison of gridded emissions was complicated by the large differences in resolution and structure of the inversion 

grids: the number of grid elements optimized varied between 150 in the UKMO, 522 in EMPA2, 1083 in EMPA and 1140 in 
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the NILU system. UKMO, EMPA and EMPA2 had a high grid resolution near the measurement sites and lower resolution at 

larger distance where the measurements were less sensitive, especially over eastern and south-eastern Europe and 

Scandinavia. The UKMO grid followed the country borders to simplify emission attribution to individual countries. 

For HFC-125, all inversion systems estimated higher posterior emissions compared to the EDGAR v4.2 prior for the Iberian 

Peninsula and most of Italy except northern Italy. The models also tended towards higher posterior emissions over Ireland 5 

and southwestern UK but lower emissions over the eastern and northern parts of UK. A unique feature of the NILU system 

was a band of positive posterior – prior differences extending from Germany towards the Baltic countries. For HFC-134a, 

the patterns of changes were similar but showed more negative posterior – prior differences (e.g., over the Benelux countries 

and the UK). For SF6, all models simulated the highest emissions over Germany though much reduced with respect to the 

EDGAR v4.2 prior. In contrast to Germany, SF6 emissions for Italy and France were higher than the prior. 10 

Overall, NILU and EMPA tended to retrieve higher emissions than UKMO and EMPA2. For all three gases, NILU had the 

highest total domain emissions and EMPA2 the lowest. These results are related to two main factors: First, EMPA and NILU 

were the only systems considering spatial correlations in the prior resulting in a smaller number of degrees of freedom and a 

correspondingly stronger influence of the observations on the posterior emissions. Second, NILU was the only system not 

applying a correction to the background in order to avoid cross-talk between the optimization of the emissions and the 15 

background. A sensitivity experiment for HFC-125 with no background adjustment conducted by EMPA2 indeed resulted in 

higher emissions though not reaching the levels of NILU. 

The patterns of uncertainty reductions differed strongly: NILU and EMPA had rather smooth reductions whereas the patterns 

of EMPA2 and UKMO were more scattered due to the absence of spatial correlations in the prior uncertainties. NILU 

assumed large and rather uniform (absolute) prior uncertainties and, as a result, found the largest uncertainty reductions. 20 

UKMO also had large prior uncertainties but much smaller reductions due to their assumption of large observation 

uncertainties. 

Gridded emissions were aggregated to individual countries to analyse the consistency between the models and to compare 

the results against country totals officially reported to the UNFCCC (reported in 2013 for the year 2011) and to the EDGAR 

v4.2 prior (representing 2008). The rather coarse inversion grids were a non-negligible source of uncertainty (typically 25 

between 1 and 6%) when aggregating the emissions to individual countries. The overall magnitude of the emissions and the 

attribution to different countries such as the dominant role of Germany for SF6 emissions were quite consistent with the 

UNFCCC estimates. However, the estimates of the individual models varied considerably. Considering all three gases and 

the largest countries and defining "scatter" by the 1σ standard deviation of individual estimates (in % of the mean), the 

scatter was smallest for the UK (5-22%), followed by France (16-28%), Germany (38-43%), Italy (23-63%), and 30 

Spain+Portugal (42-51%). Differences between minimum and maximum estimates for a given country were often as large as 

a factor 2, sometimes even a factor of 3, especially for Italy and Spain+Portugal. The individual models often did not overlap 

within the range of the combined uncertainties suggesting that the analytical uncertainties are a poor representation of the 

true uncertainties, which are rather dominated by parametric and structural uncertainties. 

The ensemble median agreed very well with the UNFCCC estimates for HFC-134a for most countries, better than any single 35 

model. As also found in previous studies, emissions of HFC-134a reported to UNFCCC by the UK appear to be about a 

factor two too high. A similar conclusion may be drawn for the group Poland+Czech Republic+Slovakia though with less 

confidence due to the limited coverage of these countries by the current observation network. In terms of HFC-125 

emissions the largest discrepancies from UNFCCC values were found for Spain+Portugal and for Ireland, with model 

medians 4.9 times and 9.5 times higher, respectively. Interestingly, for the same countries the model estimates for HFC-134a 40 

were highly consistent with the reported values, providing further evidence that the reported HFC-125 emissions are too low. 
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Consistent with the UNFCCC reports, the models identified Germany as the highest national emitter of SF6 in Europe. The 

model estimates for Germany agreed well with the UNFCCC numbers but were a factor 2 to 3 higher for Italy, France and 

Spain+Portugal. 

The current network of three routine monitoring sites for synthetic greenhouse gases in Europe is only able to constrain the 

broad spatial patterns of their emissions, such as the concentration of SF6 emissions on Germany as opposed to the more 5 

uniform distribution of emissions of HFC-125 and HFC-134a. The network has the potential to identify significant 

shortcomings in the nationally reported emissions but a denser network would be needed for a more accurate assignment to 

individual countries. Model-to-model differences were often very large, occasionally as large as the estimated emissions, 

whereas the median appears to have significant skill as judged from the comparison with reported HFC-134a emissions, 

which are considered to be relatively well known. The sensitivity experiments were not sufficient to fully disclose the origin 10 

of the model-to-model differences, but factors such as subsampling of observations, background treatment, and magnitude 

and correlation structure of the prior uncertainties were identified as playing an important role. Further work will be needed, 

for example by testing the model's internal consistency using a χ2 test, and by separating model transport from other 

uncertainties, to build trust in the inverse modelling systems. 

 15 
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Table 1: Overview of inversion systems 

Characteristic EMPA EMPA2 NILU UKMO 
Approach Extended Kalman 

Filter (ExKF) 
Bayesian Bayesian Bayesian 

Transport model FLEXPART FLEXPART FLEXPART NAME 

Meteorology ECMWF analyses 
0.2°x0.2°, 3hrly 

ECMWF analyses 
0.2°x0.2°, 3hrly 

ECMWF analyses 
0.2°x0.2°, 3hrly 

UKMO analyses 
0.352° x 0.234°, 3hrly 

Computational 
domain 

Nested, global Nested, global Nested, global 45°W - 40°E, 
25°N - 80°N 

Inversion grid 0.1°x0.1°minimum, 
reduced according to 
residence time 

0.1°x0.1°minimum, 
reduced according to 
residence time 

1°x1° over land, 
reduced over ocean 
and far eastern 
boundary 

0.352° x 0.234° min., 
reduced according to 
residence time and 
within country 
boundaries 

State vector length 
(e=emiss., b=backg., 
o=other)  

1083e + 3b + 6o 522 e + 84 b 
(405 e + 56 b for M3) 
 

1140e 
 

150e + 11 b 

Assimilation time 
resolution 

3-hourly means 3-hourly means Daily means 3-hourly means  
once per day 

Spatial correlation of 
prior 

500 km None 200 km over land 
1000 km over sea 

None 

Backwards mode run 
time 

5 days 5 days 10 days 19 days 

Prior background 
mole factions 

None, continuously 
estimated by ExKF 

60-day REBS 
window,  biweekly 
reference points 

See Thompson and 
Stohl (2014) and 
description below. 

Mace Head baseline 
for all sites, see 
Manning  et al. (2011) 

Temporal correlation 
of observation error 

Red-noise Kalman 
filter 

None None, assumed 
negligible for 
daily means 

None, assumed 
negligible with 
one value per day 

Key references Brunner et al., 2012 Stohl et al., 2009, 
Vollmer et al., 2009 

Thompson and Stohl, 
2014 

Manning et al., 2011 
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Table 2: Main (M1-M3) and sensitivity inversion experiments 

ID Gas Prior inventory Description Groups 

M1 HFC-125 EDGARv4.2 2008 Reference inversion for HFC-125 for 2011 All 

M2 HFC-134a EDGARv4.2 2008 Reference inversion for HFC-134a for 2011 All 

M3 SF6 EDGARv4.2 2008 Reference inversion for SF6 for 2011 All 

FLAT HFC-125 Uniform prior(1) Spatially uniform prior instead of EDGAR All 

U50% HFC-125 EDGARv4.2 2008 Prior uncertainty reduced by factor 2 UKMO, NILU 

U200% HFC-125 EDGARv4.2 2008 Prior uncertainty increased by factor 2 UKMO, NILU 

NOBLOPT HFC-125 EDGARv4.2 2008 No baseline optimization EMPA2 

NILUBL HFC-125 EDGARv4.2 2008 Same baseline as NILU, no optimization EMPA2 

DMEAN HFC-125 EDGARv4.2 2008 Daily means instead of 3-hourly EMPA 

ONEOBS HFC-125 EDGARv4.2 2008 One instead of eight observations per day EMPA 

(1) One value over land and one value over sea 

 

Table 3: Emissions of HFC-125 in the main experiment M1 and the different sensitivity experiments for major countries in western 
Europe. UNFCCC refers to the 2011 emissions according to the country reports submitted to UNFCCC in 2013. EDGAR v4.2 refers to 5 
2008 emissions according to the gridding method applied by EMPA2. Uncertainties are shown as ±1σ estimates. 

Exp. ID Model/Inventory DE IT FR UK ES+PT 

  (Mg yr-1) (Mg yr-1) (Mg yr-1) (Mg yr-1) (Mg yr-1) 

 UNFCCC 2011  548  1169  1234  1061  390 

 EDGAR v4.2 2008  1232  801  1001  793  491 

M1 EMPA  1094 ± 237  2138 ± 240  1483 ± 180  918 ± 144  2599 ± 353 

 EMPA2  721 ± 196  1212 ± 73  787 ± 100  812 ± 64  1076 ± 121 

 NILU  2078 ± 22  1039 ± 7  1195 ± 13  758 ± 13  2849 ± 17 

 UKMO  1568 ± 327  1021 ± 102  919 ± 123  702 ± 235  1218 ± 136 

 Median  1331  1125  1057  785  1909 

 Range (min-max) 721-2078 1021-2138 787-1483 702-918 1076-2849 

FLAT EMPA  1016 ± 354  1522 ± 285  1929 ± 295  1172 ± 273  2713 ± 537 

 EMPA2  772 ± 142  1302 ± 149  1067 ± 134  651 ± 94  1769 ± 245 

 NILU  1956 ± 20  736 ± 17  1037 ± 17  535 ± 16  2928 ± 29 

 UKMO  1586 ± 946  1115 ± 276  1276 ± 298  737 ± 440  3009 ± 499 

 Median  1301  1209  1172  694  2820 

 Range (min-max) 772-1956 736-1522 1037-1929 535-1172 1769-2928 

U50% NILU  2151 ± 21  1055 ± 6  1292 ± 10  766 ± 10  2372 ± 14 

 UKMO  1539 ± 195  910 ± 72  824 ± 98  797 ± 145  899 ± 91 

U200% NILU  1936 ± 21  1033 ± 10  1030 ± 14  746 ± 14  3426 ± 19 

 UKMO(1)  1422 ± 545  999 ± 165  1066 ± 164  530 ± 330  1739 ± 208 

NOBLOPT EMPA2  770 ± 196  1330 ± 71  937 ± 98  926 ± 64  1284 ± 118 

NILUBL EMPA2  785 ± 181  1643 ± 71  1709 ± 83  837 ± 49  1673 ± 114 

DMEAN EMPA  1123 ± 471  2192 ± 500  1739 ± 399  797 ± 271  2582 ± 780 

ONEOBS EMPA  1068 ± 491  2015 ± 559  1138 ± 337  1209 ± 460  1655 ± 604 

 Median  1488  1055  1066  797  1740 

 Range (min-max) 770-2151 910-2192 824-1739 530-1209 899-3426 

(1) Uncertainty increased by 250% rather than 200% 
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a) b) 

    

Figure 1:  Annual mean surface sensitivity in units of [ppb/(kg m-2 s-1)] for (a) the original 0.1°x0.1°grid and (b) for the reduced grid of 
the FLEXPART-based model system EMPA. 
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Figure 2:  Prior simulated HFC-125 mole fractions (colour lines) overlaid over observations (thick grey line) at the three sites 
Jungfraujoch, Mace Head and Monte Cimone. 
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Figure 3:  Same as Figure 2 but for posterior simulations. 
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Figure 4:  Taylor diagrams of model performance for the simulated prior (open circles) and posterior (filled circles) mole fraction time 
series. The filled blue triangle for EMPA indicates the performance when including an AR(1) autocorrelation term in the Kalman filter. 
The linear distance from the reference point (Ref.) is proportional to the centred (bias corrected) root mean square error (RMSE). The 
angle of rotation with respect to the vertical axis corresponds to the Pearson correlation coefficient R. 5 
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Figure 5:  Prior emissions of HFC-134a as represented in the four inversion systems. 

 

Figure 6:  Posterior – prior HFC-125 emission differences (experiment M1). 
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Figure 7:  Posterior – prior HFC-134a emission differences (experiment M2). 

 

Figure 8:  Posterior – prior SF6 emission differences (experiment M3). 
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Figure 9: Uncertainty of prior HFC-134a emissions (experiment M2). 

 

Figure 10: Uncertainty reduction (1-upost/uprior) in % for HFC-134a (experiment M2). For EMPA, the reduction is shown in terms of 
reduction of relative uncertainties [1-(upost/xpost)/(uprior/xprior)]. 5 
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Figure 11: Country-aggregated prior emissions of HFC-125 (experiment M1). Country codes following ISO2 conventions except for 
BALT = Baltic countries (Estonia, Latvia and Lithuania). CH=Switzerland, DE=Germany, IT=Italy, FR=France, ES=Spain, PT=Portugal, 
UK=United Kingdom, IR=Ireland, BE=Belgium, NL=Netherlands, LU=Luxemburg, AT=Austria, DK=Denmark, SW=Sweden, 
FI=Finland, PO=Poland, CZ=Czech Republic, SV=Slovakia, NO=Norway. 5 

 

Figure 12: Country-aggregated posterior emissions of HFC-125 (experiment M1). 
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a) HFC-125 

 

b) HFC-125 with flat prior 

 
c) HFC-134a 

 

d) SF6 

 
Figure 13: Median country-aggregated posterior emissions for a) HFC-125 (experiment M1), b) HFC-125 with flat prior (experiment 
FLAT), c) HFC-134a (experiment M2), d) SF6 (experiment M3). Uncertainties bars denote the range between minimum and maximum 
estimate of the four models. 
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Figure 14:  Posterior emissions of HFC-125 for the reference experiment M1 (left column) and the experiment with flat prior (right 
column). 


