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Abstract 23 
 24 

Accurate exposure estimates are required for health effects analyses of severe air pollution in 25 

China. Chemical transport models (CTMs) are widely used to provide spatial distribution, 26 

chemical composition, particle size fractions, and source origins of air pollutants. The accuracy 27 

of air quality predictions in China is largely affected by the uncertainties of public available 28 

emission inventories. The Community Multiscale Air Quality (CMAQ) model with 29 

meteorological inputs from the Weather Research and Forecasting (WRF) model were used in 30 

this study to simulate air pollutants in China in 2013. Four sets of simulations were conducted 31 

with four different anthropogenic emission inventories, including the Multi-resolution Emission 32 

Inventory for China (MEIC), the Emission Inventory for China by School of Environment at 33 

Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research 34 

(EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance 35 

was evaluated against available observation data from 422 sites in 60 cities across China. Model 36 

predictions of O3 and PM2.5 generally meet the model performance criteria, but performance 37 

difference exists in different pollutants and regions among inventories. Ensemble predictions 38 

were calculated by linearly combining the results from different inventories to minimize the sum 39 

of the squared errors between the ensemble results and the observations from all the cities. The 40 

ensemble concentrations show improved agreement with observations in most cities. The mean 41 

fractional bias (MFB) and mean fractional errors (MFE) of the ensemble annual PM2.5 at the 60 42 

cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 – -0.16) and MFE 43 

(0.26 – 0.31) of individual simulations. The ensemble annual daily maximum 1-hour O3 (O3-1h) 44 

concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean 45 

normalized errors (MNE) of 0.14, compared to MNB of 0.06 – 0.19 and MNE of 0.16 – 0.22 of 46 

the individual predictions. The ensemble predictions agree better with observations with daily, 47 

monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1h. The study 48 

demonstrates that ensemble predictions by combining predictions from individual emission 49 

inventories can improve the accuracy of predicted temporal and spatial distributions of air 50 

pollutants. This study is the first ensemble model study in China using multiple emission 51 

inventories and the results are publicly available for future health effects studies. 52 

 53 

Key words: chemical transport model; emission inventory; ensemble; China; PM2.5  54 
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1. Introduction 55 

 56 

A significant portion of the population in China has been exposed to severe air pollution in 57 

recent decades as the consequence of intensive energy use without efficient control measures. 58 

Based on ambient air pollution data published by the China National Environmental Monitoring 59 

Center (CNEMC), most of the major cities are in violation of the Chinese Ambient Air Quality 60 

Standards grade II standard (35 μg m-3) for annual average particulate matter with diameter of 61 

2.5 μm or less (PM2.5) (Zhang and Cao, 2015;Wang et al., 2014b), with a mean population 62 

weighted PM2.5 concentration of over 60 μg m-3 during 2013-2014. Long-term exposure to such 63 

high levels of PM2.5 greatly threatens public health in China. Recent studies have suggested that 64 

approximately more than one million premature deaths can be attributed to outdoor air pollution 65 

each year in China (Lelieveld et al., 2015a;Liu et al., 2016;Hu et al., 2017a). 66 

 67 

Accurate exposure estimates are required in health effects studies. Ambient air quality is usually 68 

measured at monitoring sites and used to represent the exposure of population in the surrounding 69 

areas. However, a routine central monitoring network in China has just been established since 70 

2013, and is still limited in spatial coverage and lack of detailed information of the chemical 71 

composition, PM size fractions, and source origins of air pollutants. Chemical transport models 72 

(CTMs) have been widely used in health effects studies to overcome the limitations in central 73 

monitor measurements for exposure estimates (Philip et al., 2014;Lelieveld et al., 2015b;Liu et 74 

al., 2016;Laurent et al., 2016a;Laurent et al., 2016b;Ostro et al., 2015). However, the accuracy of  75 

the predictions from CTMs is largely affected by the accuracies of the emission inventories 76 

(Wang et al., 2010), meteorological fields (Hu et al., 2010), and numerical solutions to the 77 

equations that describe various atmospheric processes (Hu et al., 2006;Yu et al., 2005). Emission 78 

inventories are indispensable tools for a wide range of environmental activities from 79 

management of chemicals to the prevention of air pollution. Several emission inventories have 80 

been created to cover China. Different emission inventories focus on specific geographical 81 

regions in the urban, regional (Zhao et al., 2012;Zhang et al., 2008), national or continental 82 

(Zhang et al., 2009;Kurokawa et al., 2013) scales; and/or focus on pollutants from individual (Su 83 

et al., 2011;Ou et al., 2015) and specific sectors (Zhao et al., 2008;Xu et al., 2017). 84 

 85 

Despite the great efforts in improving the accuracy of emission inventories in China, large 86 

uncertainties still remain. Generally, the emissions of pollutants are estimated as the product of 87 

activity levels (such as industrial production or energy consumption), unabated emission factors 88 

(i.e. mass of emitted pollutant per unit activity level), and the efficiency of emission controls. 89 

Large uncertainties are associated with activity levels, emission source fractions, and emission 90 

factors (Akimoto et al., 2006;Lei et al., 2011a). The uncertainties are especially significant for 91 

some pollutants, such as ammonia (NH3) and volatile organic compounds (VOCs). For example, 92 

for a Pearl River Delta (PRD) inventory in 2006, SO2 emission has low uncertainties of -93 

16%~21% from power plant sources quantified by Monte Carlo simulations, while NOx has 94 

medium to high uncertainties of -55%~150% and VOC, CO, and PM have even higher 95 

uncertainties (Zheng et al., 2009). For an inventory for the Yangtze River Delta (YRD) region, 96 

the overall uncertainties for CO, SO2, NOx, PM10, PM2.5, VOCs, and NH3 emissions are ±47.1 %, 97 

±19.1 %, ±27.7 %, ±117.4 %, ±167.6 %, ±133.4 %, and ±112.8 %, respectively (Huang et al., 98 

2011). A comprehensive quantification study by Zhao et al. (2011) using Monte Carlo 99 

simulations showed that the uncertainties of Chinese emissions of SO2, NOx, PM2.5, BC, and OC 100 
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in 2005 are −14%∼13%, −13%∼37%, −17%∼54%, −25%∼136%, and −40%∼121%, 101 

respectively.  102 

 103 

The uncertainties in emission inventories are carried into CTMs simulations, leading to biases in 104 

air quality predictions, which need to be carefully evaluated to identify the useful information for 105 

health effects studies (Hu et al., 2016b;Hu et al., 2014c;Hu et al., 2014b;Hu et al., 2015b;Tao et 106 

al., 2014). An evaluation of one-year air pollutants predictions using the Weather Research and 107 

Forecasting (WRF) / Community Multi-scale Air Quality (CMAQ) modeling system with the 108 

Multi-resolution Emission Inventory for China (MEIC) has been reported (Hu et al., 2016a). The 109 

model predictions of O3 and PM2.5 generally agree with ambient measured concentrations, but 110 

the model performance varies in different regions and seasons. In some regions, such as the 111 

northwest of China, the model significantly under-predicted PM2.5 concentrations.  112 

 113 

The technique of ensemble is often used to reduce uncertainties in model predictions by 114 

combining multiple sets of predictions. This technique has been widely used in the climate 115 

predictions (Murphy et al., 2004;Tebaldi and Knutti, 2007), and recently adopted in air quality 116 

predictions (Delle Monache et al., 2006;Huijnen et al., 2010). A recent study has compared a few 117 

anthropogenic emission inventories in China during 2000-2008 (Saikawa et al., 2016), but 118 

detailed evaluation of model results based on these inventories have not been performed. The 119 

methods to utilize the strength of different emission inventories to get improved air quality 120 

predictions for China have not been reported in the literature. The aim of this study is to create 121 

an improved set of air quality predictions in China by using an ensemble technique. First, four 122 

sets of one-year air quality predictions were conducted with the WRF/CMAQ modeling system 123 

with four different anthropogenic emission inventories for China in 2013. In addition to MEIC, 124 

the three other emission inventories are the Emissions Database for Global Atmospheric 125 

Research (EDGAR), Regional Emission inventory in Asia version 2 (REAS2), and Emission 126 

Inventory for China developed by School of Environment at Tsinghua University (SOE). The 127 

model performance on PM2.5 and O3 concentrations in 2013 with different emission inventories 128 

was then evaluated against available observation data in 60 cities in China. The differences 129 

among air quality predictions were also compared and identified. Finally, an ensemble technique 130 

was developed to minimize the bias of model predictions and to create improved exposure 131 

predictions. To the authors’ best knowledge, this is the first ensemble model study in China 132 

using multiple emission inventories. The ensemble predictions of this study are available for 133 

public health effects analyses. 134 

 135 

This paper is organized as follows. The CMAQ model, emissions and other inputs for the model, 136 

observational datasets used for model performance evaluation, and the method for ensemble 137 

calculation are described in Section 2. Section 3 discusses the model performance on gaseous 138 

and particulate pollutants simulated with four emission inventories, as well as the performance of 139 

the ensemble predictions in different regions/cities and with different averaging times. At last, 140 

the major findings are summarized in the Conclusion section. 141 

2. Method 142 

2.1 Model description 143 

 144 
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In this study, the applied CMAQ model is based on CMAQ v5.0.1 with changes to improve the 145 

model’s performance in predicting secondary organic and inorganic aerosols. The details of these 146 

changes could been found in previous studies (Hu et al., 2016a;Hu et al., 2017b) and the 147 

references therein, therefore only a brief description is summarized here. The gas phase 148 

photochemical mechanism SARPC-11 was modified to better treat isoprene oxidation chemistry 149 

(Ying et al., 2015;Hu et al., 2017b). Formation of secondary organic aerosol (SOA) from 150 

reactive uptake of dicarbonyls, methacrylic acid epoxide, and isoprene epoxydiol through surface 151 

pathway (Li et al., 2015;Ying et al., 2015) was added. Corrected SOA yields due to vapor wall-152 

loss (Zhang et al., 2014) were adopted. Formation of secondary nitrate and sulfate through 153 

heterogeneous reactions of NO2 and SO2 on particle surface (Ying et al., 2014) was also 154 

incorporated. It has been shown that these modifications improved the model performance on 155 

secondary inorganic and organic PM2.5 components. 156 
 157 

2.2 Anthropogenic emissions 158 

 159 

The CMAQ model was applied to China and surrounding countries in East Asia using the 160 

horizontal resolution of 36-km. The modeling domain is shown in Figure 1. The anthropogenic 161 

emissions are from four inventories: MEIC, SOE, EDGAR, and REAS2. MEIC was developed 162 

by a research group in Tsinghua University (http://www.meicmodel.org). Compared with other 163 

inventories for China, e.g. INTEX-B (Zhang et al., 2009) or TRACE-P (Streets et al., 2003), the 164 

major improvements include a unit-based inventory for power plants (Wang et al., 2012) and 165 

cement plants (Lei et al., 2011b), a county-level high-resolution vehicle inventory (Zheng et al., 166 

2014), and a novel NMVOC speciation approach (Li et al., 2014). The VOCs were speciated to 167 

the SAPRC-07 mechanism. As the detailed species to model species mapping of the SAPRC-11 168 

mechanism is essentially the same as the SAPRC-07 mechanism (Carter and Heo, 2012), the 169 

speciated VOC emissions in the MEIC inventory were directly used in the simulation.   170 

 171 

The SOE emission inventory was developed using an emission factor method (Wang et al., 172 

2011;Zhao et al., 2013). The sectorial emissions in different provinces were calculated based on 173 

activity data, technology-based and uncontrolled emissions factors, and penetrations (fractions of 174 

pollutants not collected) of control technologies. Elemental carbon (EC) and organic carbon 175 

(OC) emissions were calculated based on PM2.5 emissions and their ratios to PM2.5. The sectorial 176 

activity data and technology distribution were obtained using an energy demand modeling 177 

approach with various Chinese statistics and technology reports. More details, including the 178 

spatio-temporal distributions and speciation of NMVOC emissions, can be found in previous 179 

publications (Zhao et al., 2013;Wang et al., 2011;Bin et al., 2013). Since MEIC and SOE 180 

emission inventories only cover China, emissions from outside China countries and regions were 181 

based on REAS2 (Kurokawa et al., 2013). 182 

 183 

The version 4.2 of EDGAR emission (http://edgar.jrc.ec.europa.eu/overview.php?v=42) has a 184 

spatial resolution of 0.1o×0.1o. The EDGAR inventory contains annual emissions from different 185 

sectors based on IPCC designations. REAS2 has a spatial resolution of 0.25˚ ×0.25˚ for the entire 186 

Asia. The inventory contains monthly emissions of pollutants from different source categories. 187 

Saikawa et al. (2016) compared the major features of different anthropogenic emission 188 

inventories for China. Detailed information regarding these inventories can be found in the 189 

publications presenting them. Table S1 shows the total emissions of major pollutants within 190 

http://edgar.jrc.ec.europa.eu/overview.php?v=42
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China in a typical workday of each season. In general, large differences exist among different 191 

inventories for China. MEIC has the highest CO emissions in winter while REAS2 has the 192 

highest in other seasons. MEIC has the highest NOx emissions while REAS2 has the highest 193 

emissions of VOCs in all seasons. EDGAR predicts the highest SO2 emissions, which are 194 

approximately a factor of two higher than those estimated by SOE. SOE has highest NH3 195 

emissions while EDGAR has much lower NH3 emissions than the other three. EDGAR also has 196 

lowest EC and OC emissions, but the total PM2.5 emissions are the highest. Standard deviations 197 

indicate that winter has the largest uncertainties for all species except SO2 and NH3. Winter has 198 

the smallest SO2 uncertainties while summer has the largest NH3 uncertainties. 199 

 200 

All the emissions inventories were processed with an in-house program and re-gridded into the 201 

36-km resolution CMAQ domain when necessary. Representative speciation profiles based on 202 

the SPECIATE 4.3 database maintained by U.S. EPA were applied to split NMVOC of EDGAR 203 

and REAS2 into SAPRC-11 mechanism and PM2.5 of all inventories was split into AERO6 204 

species. Monthly emissions were temporally allocated into hourly files using temporal allocation 205 

profiles from previous studies (Chinkin et al., 2003; Olivier et al., 2003; Wang et al., 2010a). 206 

More details regarding EDGAR can be found in Wang et al. (2014a), while those for REAS2 can 207 

be found in Qiao et al. (2015). 208 

 209 

2.3 Other inputs 210 

 211 

The Model for Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 was used to 212 

generated biogenic emissions (Guenther et al., 2012). The 8-day Moderate Resolution Imaging 213 

Spectroradiometer (MODIS) leaf area index (LAI) product (MOD15A2) and the plant function 214 

type (PFT) files used in the Global Community Land Model (CLM 3.0) were applied to generate 215 

inputs to MEGAN. The readers are referred to Qiao et al. (2015) for more information. Open 216 

biomass burning emissions were generated using a satellite observation based fire inventory 217 

developed by NCAR (Wiedinmyer et al., 2011). The dust emission module was updated to be 218 

compatible with the 20-category MODIS land use data (Hu et al., 2015a) for in-line dust 219 

emission processing and sea salt emissions were also generated during CMAQ simulations. 220 

 221 

The meteorological inputs were generated using WRF v3.6.1 (Skamarock et al., 2008). The 222 

initial and boundary conditions to WRF were downloaded from the NCEP FNL Operational 223 

Model Global Tropospheric Analyses dataset. WRF configurations details can be found in Zhang 224 

et al. (2012). WRF performance has been evaluated by comparing predicted 2m above surface 225 

temperature and relative humidity, and 10m wind speed and wind direction with all available 226 

observational data at ~1200 stations from the National Climate Data Center (NCDC). The model 227 

performance is generally acceptable and detailed evaluation results can be found in a previous 228 

study (Hu et al., 2016a). 229 

 230 

The initial and boundary conditions representing relatively clean tropospheric concentrations 231 

were generated using CMAQ default profiles.  232 
 233 

2.4 Model evaluation  234 

 235 



7 

 

Model predictions with the four emission inventories were evaluated against available 236 

observation data in China. Hourly observations of PM2.5, PM10, O3, CO, SO2, and NO2 from 237 

March to December 2013 at 422 stations in 60 cities were obtained from CNEMC 238 

(http://113.108.142.147:20035/emcpublish/) but no observations were available for January and 239 

February. Observations at multiple sites in one city were averaged to calculate the average 240 

concentrations of the city. Detailed quality control of the data can be found in previous studies 241 

(Hu et al., 2016a;Hu et al., 2014a;Wang et al., 2014b). Statistical matrix of mean normalized bias 242 

(MNB), mean normalized error (MNE), mean fractional bias (MFB) and mean fractional error 243 

(MFE) were calculated using the Equations (E1)-(E4): 244 
 245 
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where mC  and oC  are the predicted and observed city average concentrations, respectively, and 250 

N is the total number of observation data. MNB and MNE are commonly used in evaluation of 251 

model performance of O3, and MFB and MFE are commonly used in evaluation of model 252 

performance of PM2.5 (Tao et al., 2014). The U.S. EPA previously recommended O3 model 253 

performance criteria of within ± 0.15 for MNB and less than 0.30 for MNE (as shown in Figure 1) 254 

and PM model performance criteria of within ± 0.60 for MFB and less than 0.75 for MFE (EPA, 255 

2001b). Figure 2 includes the criteria and goals for PM as a function of PM concentration, as 256 

suggested by Boylan and Russell (2006), which have been widely used in model evaluation. 257 
 258 

2.5 Ensemble predictions 259 

 260 

The four sets of predictions with different inventories were combined linearly to calculate the 261 

ensemble predictions, as shown in Equation (E5): 262 

, ,

1

m

m

N
pred ens pred m

m

C w C


                                                             (E5) 263 

where 𝐶𝑝𝑟𝑒𝑑,𝑒𝑛𝑠 is the ensemble prediction, 𝐶𝑝𝑟𝑒𝑑,𝑚 is the predicted concentration from the mth 264 

simulation, Nm is the number of simulations in the ensemble (Nm=4), and mw is the weighting 265 

factor of the mth simulation. The weighting factor for each set of predictions was determined by 266 

minimizing the objective function Q in Equation (6): 267 

  268 

http://113.108.142.147:20035/emcpublish/
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where 𝐶𝑖
𝑜𝑏𝑠 is the observed PM2.5 or O3 concentration at the ith city, Ncity is the total number of 269 

cities with observation (N=60), 𝐶𝑖
𝑝𝑟𝑒𝑑,𝑚

 is the predicted concentration at the ith city from the mth 270 

simulation, and Nm is the number of simulations in the ensemble (Nm=4). The weight factor wm 271 

of the mth simulation to be determined is within the range of [0, 1], with w=0 represents no 272 

influence of the individual simulation on the ensemble prediction, and w=1 indicates that 273 

concentrations of the individual simulation are fully accounted in the ensemble prediction. The 274 

observations data were the same as used in the model evaluation. Ensemble predictions were 275 

performed for PM2.5 and O3 in this study. A MATLAB program was developed to solve above 276 

equation and determine the weighting factors using the linear least square solver “lsqlin”. 277 
 278 

3. Results 279 

3.1 Model performance on gaseous and particulate pollutants 280 

 281 

Table 1 summarizes the overall model performance on O3, CO, NO2, SO2, PM2.5, and PM10 with 282 

different inventories using the averaged observations in 60 cities in 2013. Model performance 283 

meets the O3 criteria for all inventories. O3 from SOE are 7.2 parts per billion (ppb) lower than 284 

the mean observed concentration while the under-predictions of the other three inventories are 285 

less than 2 ppb. CO, NO2, and SO2 are under-predicted by all inventories, indicating potential 286 

uncertainties in the inventories. CO predictions from three inventories (SOE inventory does not 287 

include CO) are substantially lower than observations, with the best performance (lowest MNB 288 

and MNE) from REAS2. NO2 overall performance is similar to CO. However, MEIC and SOE 289 

yield the lowest MNB, and EDGAR yields the highest. SO2 performance is better than CO and 290 

NO2, and MEIC and SOE yield the lowest MNB, while MNE values of the four inventories are 291 

very similar. PM2.5 and PM10 predictions using all inventories meet the performance criteria with 292 

similar MFB and MFE values. REAS2 generally yields slightly better PM2.5 and PM10 293 

performance, but all inventories under-predict the concentrations generally. 294 

 295 

The difference in model performance with the four inventories also varies seasonally and 296 

spatially. Figure 2 shows the comparison of model performance for hourly gaseous species (O3, 297 

CO, NO2, and SO2) in each month from March to December 2013. The MNB values of O3 in 298 

most months are within the criteria for all inventories except for SOE, which under-predicts O3 299 

concentrations. March has the worst performance for all inventories with MNE values larger than 300 

0.4 for MEIC, SOE, and EDGAR. No significant performance difference among different 301 

inventories in different months is found, but large difference exists in various regions of China 302 

(see the definition of regions of China in Figure 1). O3 predicted using MEIC, EDGAR, and 303 

REAS2 meets the performance criteria in most regions except for YRD by MEIC and PRD by 304 

EDGAR. O3 predicted using SOE only meets the criteria in Northwest (NW) and other region 305 

(Other) of China. CO and NO2 are under-predicted in all regions, with the largest under-306 

predictions in NW and Other. This pattern is similar among the results with all inventories. SO2 307 

is generally under-predicted in all regions except, but over-predicted in the Sichuan Basin (SCB) 308 

by all inventories. SO2 is also over-predicted by EDGAR in the PRD region. SO2 in Northeast 309 

(NE) is substantially under-predicted by MEIC and REAS2. In general, model performance in 310 
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the more developed regions such as YRD, NCP, and PRD are relatively better, compared to NW 311 

and Other regions.  312 

 313 

Figure 3 illustrates the PM2.5 and PM10 performance statistics of MFB and MFE as a function of 314 

absolute concentrations in different months of 2013 and in different regions. PM2.5 predictions 315 

based on each inventory are within the performance goal of MFB and between the goal and 316 

criteria of MFE in all months. There is no significant difference among inventories. Half of 317 

monthly averaged PM10 MFB values fall within the goal while the rest are between the goal and 318 

criteria. MFE values of PM10 are all between the goal and criteria. From the regional perspective, 319 

PM2.5 performance in NE by SOE is out of the MFB criteria, while that in SCB by MEIC, SOE, 320 

and REAS2 are out of the MFE criteria. MFB values of PM10 at all regions meet the criteria 321 

except NW, due to under-estimation of windblown dust emissions in NW.  322 

 323 

3.2 Spatial variations in predicted gaseous and particulate pollutants 324 

 325 

Figure 4 shows the spatial distribution of annual averaged gas species, daily maximum 1-hour O3 326 

(O3-1h), and 8-hour mean O3 (O3-8h), NO2, and SO2 predicted by MEIC and differences between 327 

SOE, EDGAR, and REAS2 to MEIC. MEIC predicts annual O3-1h concentrations are ~60ppb in 328 

most parts of China with the highest values of ~70ppb in SCB. SOE predicts lower O3-1h values 329 

than MEIC, with about 5 ppb differences in the SCB, central China (CNT), and North China 330 

Plain (NCP) regions and 2-3 ppb differences in other regions. EDGAR also predicts 2-3 ppb 331 

lower O3-1h in most regions than MEIC but its O3-1h predictions in the Tibet Plateau, NCP and 332 

ocean regions are 2-3 ppb higher than MEIC predictions. REAS2 predicted O3-1h values are 333 

lower than MEIC for scattered areas in the NE, NW, and CNT regions and other regions 334 

experience slightly higher O3-1h. MEIC, SOE, and REAS2 have similar results out of China (the 335 

difference is generally less than 1 ppb) since the simulations used same emissions for those 336 

regions. O3-8h shows similar spatial distributions as O3-1h among inventories with slightly less 337 

differences. NO2 concentrations are 10-15ppb in developed areas of the NCP and YRD regions, 338 

and greater than 5 ppb at other urban areas as predicted by MEIC. SOE predicts 2-3 ppb lower 339 

NO2 concentrations in most areas except the vast NW region. EDGAR predicts lower NO2 (more 340 

than 5 ppb difference) in urban areas of the NCP and YRD areas but higher concentrations in the 341 

entire west part of China by approximately 1-2 ppb. REAS2 has the closest NO2 with MEIC as 342 

the 1-2 ppb underestimation and overestimation are almost evenly distributed in the whole 343 

country. SO2 concentrations are up to 20ppb in the NCP, CNT, and SCB regions while are less 344 

than 5 ppb in other regions. SOE mostly predicts 2-3 ppb lower SO2 in the east half of China 345 

with the largest difference of -10 ppb in the CNT region. EDGAR and REAS2 had very similar 346 

difference with MEIC, i.e., more than 5 ppb higher concentrations in the NCP and YRD, ~2 ppb 347 

higher concentrations in the PRD, 2-3 ppb lower concentrations in the NE and up to 5 ppb lower 348 

concentrations in the CEN and SCB. 349 

 350 

Figure 5 shows the seasonal distribution of PM2.5 total mass predicted by MEIC and differences 351 

between SOE, EDGAR, and REAS2 to MEIC. In spring, MEIC predicted PM2.5 concentrations 352 

are ~50 µg m-3 in east and south parts of China, and Southeast Asia has the highest value of ~100 353 

µg m-3. SOE predicts 5-10 µg m-3 lower PM2.5 in north China and < 5 µg m-3 higher values in 354 

south China and along the coastline. EDGAR predicts >20 µg m-3 lower values in NCP and ~10 355 

µg m-3 lower values in NE, CNT, and SCB, but up to 20 µg m-3 higher values in PRD. REAS2 356 
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predicts higher PM2.5 values in most parts of China except under-predictions in NE and SCB. 357 

The over-predictions in YRD and NCP are up to 20-30 µg m-3. In summer, the high PM2.5 358 

regions are much smaller compared to spring with ~50 µg m-3 ppb concentrations in NCP, north 359 

part of YRD and SCB and 20-30 µg m-3 in other parts. Generally, SOE predicts <10 µg m-3 360 

lower values in most regions. EDGAR predicts lower values in NCP and SCB and 5-10 µg m-3 361 

higher values in south part. REAS2 almost predicts higher values in all the regions except some 362 

scattered areas in NCP, YRD, and SCB. 363 

 364 

In fall, PM2.5 concentrations are larger than 50 µg m-3 in most regions except NW and are ~100 365 

µg m-3 in part of NCP, CNT, and SCB. SOE predicted values are lower in north part and higher 366 

in south part. EDGAR predicts up to 30 µg m-3 lower values in NCP and SCB while up to 20 µg 367 

m-3 higher values in YRD. REAS2 again estimates close values to MEIC with less than 5 µg m-3 368 

differences in most regions and up to 20 µg m-3 higher values in scattered areas in YRD and SCB. 369 

In winter, MEIC predicted PM2.5 concentrations are up to 200 µg m-3 in NCP, CNT, YRD, and 370 

SCB, while PRD has concentrations of ~50 µg m-3. SOE severely underestimates by 30 µg m-3 in 371 

all regions with high PM2.5 concentrations and only coast areas experience <10 µg m-3 higher 372 

values. EDGAR also predicts 30 µg m-3 lower PM2.5 concentrations in NE, NCP, CNT, and SCB, 373 

but the YRD region has 20 µg m-3 higher values. The regions with lower values by REAS2 374 

compared to MEIC are at the regions of NE, NCP, CNT and SCB, similar to EDGAR but with 375 

much smaller areas. SOE predicts higher PM2.5 in the south parts of YRD and NCP than MEIC. 376 

 377 

Figure 6 shows the annual averaged concentrations of PM2.5 components predicted by MEIC and 378 

the differences between other inventories with MEIC. Annual averaged particulate sulfate (SO4
2-) 379 

concentrations are 20-25 µg m-3 in NCP, CNT, and SCB, and about 10 µg m-3 in other regions in 380 

the southeast China. SOE predicts ~10 µg m-3 lower values in high concentration areas and 2-3 381 

µg m-3 lower in other areas. EDGAR predicts ~5 µg m-3 higher SO4
2- in southeast China and 2-3 382 

µg m-3 lower values in SCB. REAS2 predicted SO4
2- are generally 2-3 µg m-3 lower than that of 383 

MEIC in areas except the coastal areas. MEIC predicts the highest particulate nitrate (NO3
-) 384 

concentrations of up to 30 µg m-3 in NCP and YRD and values in other regions are 5-10 µg m-3 385 

except the northwest China. SOE predicts <5 µg m-3 lower values in the high concentrations 386 

areas and ~2 µg m-3 higher values in coastal areas. EDGAR uniformly predicts lower NO3
- 387 

values than MEIC with the largest different of 10 µg m-3. REAS2 has similar results to SOE. 388 

Particulate ammonium (NH4
+) concentrations predicted by MEIC have a peak of 15 µg m-3 and 389 

are mostly less than 10 µg m-3 in the east and south parts of China. SOE predicts slightly lower 390 

values except for coastal areas in PRD, where 1-2 µg m-3 higher values are observed.  391 

 392 

EC concentrations are generally low compared to other components as predicted by MEIC. The 393 

highest values are less than 10 µg m-3 in NCP, CNT and SCB. All other three inventories predict 394 

1-2 µg m-3 lower EC values throughout the country. Primary organic aerosol (POA) predicted by 395 

MEIC are 20-30 µg m-3 in NCP, CNT and SCB, and are ~10 µg m-3 in other areas in east and 396 

south parts of China. SOE predicts up to 5 µg m-3 higher values in most areas with scattered 397 

places with ~2 µg m-3 lower values compared to MEIC. EDGAR and REAS2 predict up to ~10 398 

µg m-3 lower values except for coastal areas. SOA concentrations are low in north part of China 399 

and up to 10 µg m-3 in the whole east and south parts. All three other inventories predict ~2 µg 400 

m-3 lower SOA values compared to MEIC. For other implicit components (OTHER), the highest 401 

concentrations are ~15 µg m-3 in NW and NCP, while other regions have lower than 5 µg m-3 402 
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concentrations. In NW, the major sources of OTHER are windblown dust online generated by 403 

CMAQ simulations, thus almost no differences are observed among inventories. SOE and 404 

EDGAR predict lower OTHER vales in north part (~2 µg m-3) and slightly higher values in south 405 

and east parts (~5 µg m-3). REAS2 predicts higher OTHER values in the whole east part 406 

uniformly with up to 10 µg m-3 differences in NCP, YRD, and SCB regions. 407 

 408 

Additional comparisons of model predictions in different regions and some major cities in China 409 

are shown in Figures S1-S4 in the Supplemental Material. 410 

 411 

3.3 Ensemble predictions 412 

 413 

Above analyses indicate that model performance with different inventories varies on different 414 

pollutants and in different regions. Table S2 shows the observed annual average concentrations 415 

of PM2.5 in the 60 cities and the predictions from the four inventories as well as the weighted 416 

ensemble predictions. The weighting factors for predictions using MEIC, REAS2, SOE and 417 

EDGAR are 0.31, 0.36, 0.24 and 0.20, respectively (Table 2). The ensemble predictions greatly 418 

reduce MFB with a value of -0.11, compared to the MFB values of -0.25 – -0.16 using the annual 419 

average concentrations in the individual simulations. Also, the ensemble predictions have an 420 

MFE value of 0.24, lower than any MFE values of 0.26 – 0.31 in individual simulations (Figure 421 

7). The ensemble predictions of annual O3-1h have the MNB and MNE of 0.03 and 0.14, 422 

improved from MNB of 0.06 – 0.19 and MNE of 0.16 – 0.22 in the individual predictions, 423 

respectively. 424 

 425 

To further evaluate the ability of the ensemble method in improving predictions at locations 426 

where observational data are not available, ensemble predictions were made using a data 427 

withholding method. For each city, the observations at the other 59 cities were used to determine 428 

the weighting factors in E6 and the ensemble prediction at the city was calculated. Performance 429 

of the ensemble predictions at the city was calculated using the withheld observations to evaluate 430 

the performance. The evaluation process was repeated for each of the 60 cities and the 431 

performance was compared to that with individual inventories (shown in Table S3). The results 432 

show that the ensemble predictions are better than those with EDGAR, MEIC, REAS2 and SOE 433 

at 36, 37, 32 and 40 cities for PM2.5, and 39, 39, 43, and 38 cities for O3-1h, respectively. The 434 

ensemble predictions are better than ≥ 2 of the individual predictions at 45 and 41 cities for 435 

PM2.5 and O3-1h, respectively. Out of the 15 cities that the ensemble PM2.5 is only better than 436 

one or none of the individual predictions, 10 cities have MFB within ±0.25 and MFE less than 437 

0.25. Out of the 19 cities that the ensemble O3-1h is only better than one or none of the 438 

individual predictions, 14 cities still have MNB within ±0.2 and MNE less than 0.2. The results 439 

demonstrate that the ensemble can improve the predictions even at locations with no 440 

observational data available.  441 

 442 

Previous studies have revealed that CTMs predictions agree more when averaging over longer 443 

times (i.e., annual vs. monthly vs. daily averages) (Hu et al., 2014b;Hu et al., 2015b). Ensemble 444 

predictions were also calculated with daily and monthly averages for PM2.5, in addition to the 445 

calculation with annual averages discussed above. The weighting factors and the performance of 446 

ensemble predictions are shown in Table 2 and Figure 7, respectively. The weighting factors 447 

vary largely with the averaging times, suggesting that the prediction optimization need to be 448 



12 

 

conducted separately when using different time averages. The ensemble predictions improve the 449 

agreement with observations in all averaging time cases, with lower MNB and MNE than any of 450 

the individual predictions. In general, EDGAR and REAS have large weights for daily and 451 

monthly ensemble calculations, and MEIC and SOE have large weights for annual ensemble 452 

calculations. This result indicates that the annual total emission rates of MEIC and SOE are 453 

likely accurate but the temporal profiles to allocate the annual total emissions rates to specific 454 

day/hours need to be improved. 455 

 456 

Table 3 shows the ensemble prediction performance on PM2.5 and O3-1h in different regions of 457 

China using the daily average observations and daily average predictions with individual 458 

inventories. The weighting factors vary greatly among regions, reflecting that substantial 459 

difference in the spatial distributions of PM2.5 and O3 when using different inventories. The 460 

MNB and MNE values of ensemble predictions are reduced in all regions for both pollutants, 461 

suggesting the ensemble predictions improve the accuracy and can be better used in further 462 

health effects studies. The similar findings are also found with the monthly average observations 463 

and predictions (shown in Table S4). 464 

 465 

Figure 8 shows spatial distributions of PM2.5 and its components from the ensemble predictions 466 

using the weighting factors of annual averages. The ensemble of PM2.5 components were 467 

calculated using the same weighting factors for PM2.5. Over 80 µg m-3 annual average PM2.5 468 

concentrations are estimated in NCP, CNT, YRD and SCB regions in 2013. Secondary inorganic 469 

aerosols (SO4
2-, NO3

-, and NH4
+) account for approximately half of PM2.5, and exhibit similar 470 

spatial patterns. Carbonaceous aerosols (EC, POA, and SOA) account for about 30%, but POA 471 

and SOA have quite different spatial distributions. High POA concentrations are mainly 472 

distributed in NCP, CNT and SCB, while high SOA concentrations are found in the south part of 473 

China. By considering the spatial distributions of population and ensemble PM2.5, the population-474 

weighted annual averaged PM2.5 concentration in China in 2013 is 59.5 µg m-3, which is higher 475 

than the estimated value of 54.8 µg m-3 by Brauer et al. (2016). 476 

 477 

The products of the current study can be further applied in health effects studies. The first such 478 

analysis used the annual PM2.5 ensemble predictions to assess the spatial distribution of excess 479 

mortality due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular disease 480 

(CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) in China caused by 481 

PM2.5 exposure (Hu et al., 2017a). Any health studies requiring human exposure information to 482 

different pollutants would benefit from this study. Even though the weighted factors vary 483 

depending on the regions, averaging times and different study years, the ensemble method 484 

proposed in this study is to minimize the difference between predictions and observations and 485 

can be applied in different studies. The way to calculate the weighting factors depends on the 486 

objectives of specific studies. But in general, more observation data used in the calculation, more 487 

accurate the ensemble prediction would be. 488 

 489 

4. Conclusion 490 
 491 

In this study, air quality predictions in China in 2013 were conducted using the WRF/CMAQ 492 

modeling system with anthropogenic emissions from four inventories including MEIC, SOE, 493 

EDGAR, and REAS2. Model performance with the four inventories was evaluated by comparing 494 
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with available observation data from 422 sites in 60 cities in China. Model predictions of hourly 495 

O3 and PM2.5 with the four inventories generally meet the model performance criteria, but that 496 

model performance with different inventories varies on different pollutants and in different 497 

regions. To improve the overall agreement of the predicted concentrations with observations, 498 

ensemble predictions were calculated by linearly combining the predictions from different 499 

inventories. The ensemble annual concentrations show improved agreement with observations 500 

for both PM2.5 and O3-1h. The MFB and MFE of the ensemble predictions of PM2.5 at the 60 501 

cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 – -0.16) and MFE 502 

(0.26 – 0.31) of any individual simulations. The ensemble predictions of annual O3-1h have the 503 

MNB and MNE of 0.03 and 0.14, improved from MNB (0.06 – 0.19) and MNE (0.16 – 0.22) in 504 

individual predictions. The ensemble predictions with data withholding method at each city show 505 

better performance than the predictions with individual inventories at most cities, demonstrating 506 

the ability of the ensemble in improving the predictions at locations where observational data are 507 

not available. The ensemble predictions agree better with observations with daily, monthly, and 508 

annual averaging times in all regions of China. The study demonstrates that ensemble predictions 509 

by combining predictions from individual emission inventories can improve the accuracy in the 510 

concentration estimation and the spatial distributions of air pollutants. The data presented in the 511 

paper is available for downloading via requests. 512 
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Table 1. Overall model performance of gas and PM species in 2013 using different inventories. 

Obs is observation, MFB is mean fractional bias, MFE is mean fractional error, MNB is mean 

normalized bias, and MNE is mean normalized error. The indices were calculated with hourly 

observations and predictions. 

  
Prediction MFB MFE MNB MNE 

 
Mean Obs: 51.70 ppb 

     

 
MEIC 49.83 -0.08 0.35 0.02 0.33 

O3 SOE 44.51 -0.2 0.38 -0.09 0.32 

 
EDGAR 49.82 -0.04 0.28 0.03 0.28 

 
REAS2 51.17 -0.04 0.33 0.05 0.33 

 Mean Obs: 0.96 ppm      

 
MEIC 0.31 -0.92 0.96 -0.57 0.63 

CO SOE / / / / / 

 
EDGAR 0.23 -1.12 1.16 -0.66 0.73 

 
REAS2 0.42 -0.72 0.82 -0.41 0.59 

 
Mean Obs: 21.45 ppb 

     

 
MEIC 10.12 -0.79 0.93 -0.41 0.66 

NO2 SOE 11.59 -0.65 0.81 -0.33 0.61 

 
EDGAR 6.82 -1.02 1.07 -0.6 0.67 

 
REAS2 9.3 -0.81 0.92 -0.46 0.63 

 
Mean Obs: 17.21 ppb      

 
MEIC 12.5 -0.51 0.87 0.01 0.87 

SO2 SOE 12.76 -0.44 0.83 0.06 0.86 

 
EDGAR 15.86 -0.16 0.73 0.31 0.88 

 
REAS2 15.15 -0.23 0.74 0.23 0.86 

 
Mean Obs: 70.01 µg m-3      

 
MEIC 56.39 -0.32 0.64 -0.02 0.63 

PM2.5 SOE 59.77 -0.24 0.61 0.09 0.67 

 
EDGAR 52.59 -0.3 0.59 -0.05 0.56 

 
REAS2 60.35 -0.21 0.59 0.08 0.63 

 
Mean Obs: 118.61 µg m-3      

 
MEIC 62.7 -0.63 0.79 -0.32 0.61 

PM10 SOE 63.32 -0.6 0.76 -0.3 0.6 

 
EDGAR 55.76 -0.67 0.78 -0.38 0.58 

 
REAS2 71.41 -0.49 0.7 -0.21 0.59 
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Table 2. The weighting factors (w) of each inventory in the ensemble predictions of PM2.5 when 

using daily, monthly, or annual averages in the objective function (E5). 

 

  Daily Monthly Annual 

MEIC 0.07  0.13  0.31  

SOE 0.14  0.16  0.24  

EDGAR 0.38  0.23  0.20  

REAS2 0.49  0.63  0.36  
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Table 3. Performance of daily PM2.5 (MFB and MFE) and O3-1h (MNB and MNE) in different regions of China based on individual inventories 

and the ensemble. The weighting factors (w) used to calculate the ensemble of each region are also included.  
 

  Region   MEIC       SOE       EDGAR       REAS2     ENSEMBLE 

   (# of Cities)  w MFB MFE   w MFB MFE   w MFB MFE   w MFB MFE   MFB MFE 

  NE (4) 0.16  -0.23  0.44   0.21  0.38  0.68  
 

0.20  -0.30  0.43  
 

0.43  -0.12  0.43  
 

-0.08  0.42  

  NCP (14) 0.00  -0.30  0.47   0.52  -0.34  0.46  
 

0.14  -0.40  0.51  
 

0.56  -0.20  0.41  
 

-0.12  0.40  

  NW (6) 0.00  -0.87  0.90   0.20  -0.80  0.84  
 

0.59  -0.85  0.87  
 

1.00  -0.81  0.83  
 

-0.49  0.66  

PM2.5 YRD (20) 0.05  -0.29  0.45   0.00  -0.27  0.43  
 

0.61  -0.23  0.40  
 

0.35  -0.13  0.40  
 

-0.18  0.38  

  CNT (5) 0.09  -0.10  0.46   0.18  -0.05  0.41  
 

0.50  -0.27  0.40  
 

0.22  0.09  0.44  
 

-0.14  0.37  

  SCB (2) 0.00  0.10  0.48   0.64  0.23  0.48  
 

0.00  -0.10  0.39  
 

0.08  0.07  0.43  
 

-0.15  0.40  

  SOUTH (9) 0.10  -0.35  0.51   0.00  -0.18  0.41  
 

0.59  -0.07  0.45  
 

0.30  -0.25  0.44  
 

-0.16  0.41  

  CHINA (60) 0.07  -0.34  0.52   0.14  -0.26  0.50  
 

0.38  -0.33  0.49  
 

0.49  -0.22  0.46  
 

-0.20  0.45  

    w MNB MNE   w MNB MNE   w MNB MNE   w MNB MNE   MNB MNE 

  NE 0.09  0.44  0.50    0.00  0.16  0.34    0.45  0.41  0.47    0.27  0.42  0.48    0.14  0.31  

  NCP 0.29  0.33  0.47    0.12  0.23  0.44    0.06  0.46  0.59    0.42  0.47  0.56    0.25  0.43  

  NW 0.00  0.65  0.72    0.82  0.54  0.62    0.00  0.70  0.77    0.00  0.68  0.74    0.25  0.46  

O3-1h YRD 0.00  0.20  0.41    0.53  0.14  0.38    0.00  0.25  0.45    0.45  0.27  0.44    0.17  0.39  

  CNT 0.27  0.27  0.47    0.18  0.16  0.43    0.10  0.35  0.53    0.36  0.35  0.52    0.18  0.42  

  SCB 0.44  0.59  0.68    0.14  0.42  0.58    0.28  0.59  0.70    0.00  0.60  0.72    0.33  0.53  

  SOUTH 0.84  0.39  0.50    0.00  0.29  0.46    0.00  0.38  0.51    0.00  0.42  0.53    0.16  0.37  

  CHINA 0.19  0.34  0.49    0.20  0.23  0.44    0.00  0.39  0.54    0.51  0.41  0.53    0.21  0.42  
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Figure 1. The WRF/CMAQ modeling domain and the regions in China. The dots represent the 

60 cities where observational data are available for ensemble analysis.  
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Figure 2. Performance of predicted O3, CO, NO2, and SO2 for different months (top two rows) 

and regions based on simulations with individual inventories. The blue dashed lines on the O3 

plots are +/-0.15 for MNB and 0.3 for MNE as suggested by U. S. EPA (2001a). Changes of 

colors show the months from March to December in top two rows, while show regions from 

NCP to Other in the bottom two rows. The same for Figure 2.  
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Figure 3. Performance of predicted PM2.5 and PM10 for different months (a-d) and regions (e-h) 

based on simulations with individual inventories. The x-axis is the observed concentrations. The 

model performance criteria (solid black lines) and goals (dash blue lines) are suggested by Byun 

and Russell (2006). The model performance goals represent the level of accuracy that is 

considered to be close to the best a model can be expected to achieve, and the model 

performance criteria represent the level of accuracy that is considered to be acceptable for 

modeling applications.  
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Figure 4. Spatial difference of model predicted annual averaged gas species concentrations (in 

the horizontal panels) with different inventories (in the vertical panels). Units are ppb. The color 

bars of the first column are different to better show the spatial distribution of different species. 

White indicates zero while blue, green, yellow and red means concentrations from low to high. 

The color bar for the other three columns are same, white indicates zero, blue and green mean 

values less than zero while yellow, purple and red mean values larger than zero. O3-1h represents 

daily maximum 1h O3 and O3-8h represents daily maximum 8h mean O3. 
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Figure 5. Spatial difference of model predicted seasonal averaged PM2.5 concentrations (in the 

horizontal panels) with different inventories (in the vertical panels). Units are µg m-3. In the first 

column, white indicates zero while blue, green, yellow and red means concentrations from low to 

high. The color bar for the other three columns are same, white indicates zero, blue and green 

mean values less than zero while yellow, purple and red mean values larger than zero. The same 

for Figure 6. 
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Figure 6. Spatial difference of model predicted annual PM2.5 components (in the horizontal 

panels) with different inventories (in the vertical panels). Units are µg m-3.   
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Figure 7. MFB and MFE of predicted PM2.5 for with an averaging time of 24 hours, 1 month, and 

1 year based on the individual inventories and the ensemble.  
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Figure 8. Spatial distributions of PM2.5 and its components in the ensemble predictions. Units are 

µg m-3. The scales of the panels are different. White indicates zero while blue, green, yellow and 

red means concentrations from low to high. 


