
Dear Editor and Reviewers,  

  

Thank you for the comments to help improve the quality of the paper. We have revised the manuscript to 

address your comments and a detailed response to each comment is provided in this file. The comments are 

in regular font and the responses are in red. 

 

RC1, Anonymous Referee #3 

 

Reviewer suggestion: Accept 

 

The authors presented a novel technique to improve air quality predictions that can be utilized for health 

effect studies in China. A WRF/CMAQ modeling pair has been employed to simulate air quality for 2013 

using four different anthropogenic emissions inventories that are publically available. The emissions 

inventories included the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for 

China by the School of Environment of Tsinghua University (SOE), the Emissions Database for Global 

Atmospheric Research (EDGAR) and the Regional Emission inventory in Asia version 2 (REAS2). The 

entire year was simulated independently using four different anthropogenic emissions inventories along with 

the same biogenic emissions processed by MEGAN at a 36-km horizontal resolution to encompass entire 

China, South Asia and parts of East Asian countries. The model performance was evaluated using observed 

data available from 422 sites across 60 cities throughout China. In general, the WRF/CMAQ pair predicted 

ozone (O3) and particulate matter (PM2.5) concentrations within the standards for model performance 

criteria, however, significant difference also exist depending on location, and time of the year. In order to 

calculate ensemble concentrations, predicted pollutant concentrations from each set of model run were 

linearly combined in such a way to minimize the sum of the squared errors between ensemble concentrations 

and observations from all 60 cities of interest in the study. The statistics such as the mean fractional bias 

(MFB) and mean fractional errors (MFE) of the predicted ensemble annual PM2.5 seem to improve in all 60 

cities compared to statistics for individual emissions inventories. Similarly, performance statistics for 

ensemble concentrations also improved for hourly, daily, and annual concentrations of O3 for all 60 cities in 

China. 

 

I believe the authors have correctly identified one of the major problems with accurate air quality 

predictions, i.e. lack of accurate emissions inventories particularly available to public in China. In order to 

overcome such issue the authors have come up with an ensemble approach. Although ensemble averaging of 

predicted concentrations is a common approach in literature, the approach described in the current study is 

unique. I believe the manuscript has enough scientific merits to be accepted and published in the ACPD. I, 

however, have the following suggestions that the authors may consider: 

 

1. There is no need for such details in the title. The authors may consider changing the title to “Ensemble 

prediction of air quality using the WRF/CMAQ modeling system for health effects studies in China”. 

Response: We accepted the reviewer’s suggestion and changed the title to “Ensemble prediction of air 

quality using the WRF/CMAQ modeling system for health effects studies in China” 

 

2. There are minor grammatical mistakes that authors can fix in the later versions of the manuscript. This is 

just a suggestion in advance. 



Response: We went through the manuscript carefully for several times and corrected the typos, mistakes, and 

grammar errors. 

 

3. Table S1: It is better to define seasons rather than providing the names of the months for each emissions 

inventory. 

Response: We provided season names instead of months in the revised file. 

 

4. Ammonia emissions seem to have the highest unexplained variability, how would it change the prediction 

of PM2.5 mass concentrations, if the standard deviation were likely to be lower? 

Response: Ammonia emissions have high variability among different inventories, reflecting high 

uncertainties in the current estimation for ammonia emission in China. Source apportionment studies have 

shown that ammonia emissions account for over 10% of PM2.5 total mass in China (Shi et al., 2017). The 

difference in modeled PM2.5 concentrations using different inventories is partially due to the ammonia 

emissions. In addition, since it also affects the formation of secondary nitrate and sulfate, large variations in 

NH3 emission could potentially have large impacts on PM2.5. More consistent PM2.5 predictions would be 

expected if the difference of ammonia emissions in different inventories was smaller. No changes were made 

to the manuscript. 

 

5. What is the property of the weighting factor in the ensemble concentration calculation? How is it affected 

by the sample size? 

Response: The weight factor w is set to in the range of [0, 1] with w=0 represents no influence of the 

individual simulation on the ensemble prediction, and w=1 indicates that concentrations of the individual 

simulation are fully accounted in the ensemble prediction. The weighting factors for the ensemble 

predictions are based on minimizing the overall difference in the ensemble predictions with observations. By 

increasing the sample size (i.e. number of cities with observations) and their spatial coverages, the capability 

of each individual simulation to reproduce the magnitude and spatial variation of the PM2.5 concentrations 

can be more accurately represented, and thus the weighting factors can better represent the actual strength of 

each inventory in predicting regional concentrations.  

Above discussion was added in Section 2.5. 

 

RC2, Anonymous Referee #4 

General Comment 

The authors showed an inclusive validation about the ability of CMAQ model to simulate the air pollutants 

(O3 and PM2.5) in China with using four different EI data in recent year (2013). They used the widely-used 

statistical indices for the validation and observations which covered wide areas in China. An ensemble 

method to obtain better prediction of air pollutants in China was proposed which is the main part of this 

paper. This paper is well within the scope of this journal, however, I noticed several issues in this paper 

which cannot be passed over to be published. I suggested that the authors should consider the following 

comments: two major and several specific comments. 

 

Major Comment 1: 

My biggest concern is the lack of carefulness in the manuscript. Several typos, mistakes in table and 

figure, and the insufficient explanations can be found which make the manuscript difficult to read and 

greatly damage the value of this paper. I pointed out some of those points in the specific comment below, 



and I strongly suggest that the authors consider those comments and should carefully and thoroughly 

check the manuscript again before revised submission. 

Response: Thanks for pointing out the typos and mistakes. We have checked the manuscript carefully and 

made correction to the typos and mistakes in the revised manuscript. The changes can be found in the 

manuscript with changes marked. 

 

Major Comment 2: 

The authors set a goal of this paper on proposing a method for using the model simulation to health 

impact study and so the authors put “for health effect study” in the title. However, it was not clear which 

part of the manuscript was particularly dedicated for the health effect study. I concerned if the indices of 

air pollutants used in the manuscript: daily, monthly, and annual means, 1hourly and 8hourly O3, are 

appropriate for this purpose. I think more sentences is necessary to discuss the validity of those indices 

to be used for the health impact research, if they want to claim it as, at least, a part of heath effect study. 

Response: This study is part of a project to investigate the long-term health impacts of the severe outdoor air 

pollution in China. This is the first part of the series study aiming to provide more accurate air pollution 

exposure assessment for health analysis. The predicted air pollution fields then will be used in a number of 

epidemiology studies. Actually, the first such analysis using the annual ensemble PM2.5 predictions to 

investigate the premature mortality attributable to various sources of PM2.5 in China and the responses of 

premature mortality to the PM2.5 reduction objectives in different regions of China was recently accepted for 

publication in Environmental Science & Technology (Hu et al., 2017). A few studies are undergoing to 

analyze the correlations between air pollutants and certain health outcomes in China using the ensemble 

predictions of gaseous pollutants, PM mass and compositions. 

 

A few epidemiology groups expressed their interest of using the ensemble predictions of PM2.5 and O3 from 

this study for short-term health effect studies in China. Therefore, we also evaluated the performance of daily 

and monthly ensemble predictions for both PM2.5 and 1h- and 8h- O3 in this manuscript so that it can provide 

a validation for future applications for such dataset. 

 

We added a brief discussion on the current and future applications of our dataset for health effect studies in 

China at the end of Section 3.3. 

 

Specific Comments:  

- Model description: There was no descriptions about the model domain. Figure S1 can be moved from 

the supplement to the manuscript since the abbreviation for the different regions in China were 

frequently used in the manuscript.  

Response: We moved Figure S1 from the supplement to the manuscript. 

 

- E1-E4: How did you treat the observation from 422 sites? Are these data once averaged out to form the 

city average for each of 60 cities, and then calculate the statistical indices (MNB, MNE, MFB, MFE)? 

Please make it clearly described in the manuscript. 

Response: Yes, the city averages were firstly calculated by averaging the observations in all the sites located 

in that city, and then the statistical indices were calculated based on the city averages. We added above 

information in the revised manuscript. 

 



- L249-251: It is better to briefly describe the reason why different statistical indices are used for O3 and 

PM2.5. 

Response: In air quality modeling studies, it has been common to use MNB and MNE to evaluate the model 

performance for O3, and use MFB and MFE to evaluate the model performance for PM2.5. And accordingly 

the MNB and MNE criteria and goals have been set for O3, and MFB and MFE criteria and goals for PM2.5. 

We added above information in the revised manuscript. 

 

- E6: A brief explanation of the method to minimize the function Q is necessary.  

Response: The linear least square solver ‘lsqlin’ in matlab was used to minimize the function Q. This 

information was added in the revised manuscript. 

 

- Table 1: Are these statistical indices calculated using annual mean? not clearly described. 

Response: The original statistics in Table 1 were calculated using hourly average concentrations. We clearly 

added this information in the table caption. 

 

- L286-288: The description here is inconsistent with Figure1. Is this sentence correct? 

Response: The description here is about the ‘overall’ performance, i.e., the average indices over the entire 

modeling period and over the entire regions of China. Figure 1 shows the performance in different months 

and regions. Therefore, there seems some difference, but we double checked the numbers, they are correct.  

 

- L295: Why were January and February omitted? 

Response: The national air quality monitoring network started publishing ambient air quality observations 

since March 2013. Therefore, no observations were available for January and February in 2013. 

 

- L300-301: I couldn’t understand the meaning of this sentence. Are there any typo or mistake? 

Response: We corrected the sentence to “O3 predicted using MEIC, EDGAR, and REAS2 meets the 

performance criteria in most regions except for the YRD by MEIC and the PRD by EDGAR.” 

 

- L302-304: It is difficult to see what this sentence said from in Figure 1. 

Response: We modified and expanded the sentence to be clearer: “CO and NO2 are under-predicted in all 

regions, with the largest under-predictions in NW and Other. This pattern is similar among the results with all 

inventories. SO2 is generally under-predicted in all regions, but over-predicted in the Sichuan Basin (SCB) 

by all inventories. SO2 is also over-predicted by EDGAR in the PRD region. SO2 in Northeast (NE) is 

substantially under-predicted by MEIC and REAS2. In general, model performance in the more developed 

regions such as YRD, NCP, and PRD are relatively better, compared to NW and Other regions.” 

 

- Figure 2: The explanation to properly see this figure is highly insufficient. What does the x-axis stand for? 

Is it the absolute concentration of observation or simulation? Furthermore, “goal” and “criteria” in Figure 2 

should be explained somewhere in the manuscript. Otherwise the readers cannot take the messages properly 

from this figure. 

Response: The x-axis shows the observed PM2.5 and PM10 concentrations. We added definitions of “goal” 

and “criteria” in the figure caption of Figure 3 in the revised manuscript (Figure 2 in the original 

manuscript):  

“The model performance goals represent the level of accuracy that is considered to be close to the best a 



model can be expected to achieve, and the model performance criteria represent the level of accuracy that is 

considered to be acceptable for modeling applications.” 

 

- L311: typo?, a period -> comma? 

Response: corrected. 

 

- Figure 3: Are these indices (O3-1h, -8h) maximum 1h- or 8h- mean concentration in a day (=daily 

maximum 1h or 8h-mean O3)? If so, should be more clearly stated.  

Response: We added the definitions for O3-1h (daily maximum 1h O3) and O3-8h (daily maximum 8h mean 

O3) in the figure caption. 

 

- L327-328: I don’t think so. There were large differences between SOE and MEIC over the oceanic area east 

of China. 

Response: The O3 difference between SOE and MEIC is generally less than 1ppb over the oceanic area east 

of China, indicated by the ‘green’ color (the color scheme is shown in the bottom of the figure). To be more 

accurate, we added the “(the difference is generally less than 1ppb)” in the sentence. 

 

- L344: typo?, South Asia -> Southeast Asia 

Response: We corrected it to Southeast Asia. 

 

- L354 & L361: What is NCY? 

Response: We corrected it to NCP. 

 

- L362 typo?, YRD -> PRD?  

Response: We corrected it to PRD. 

 

- Table2: This is too detailed information. It can be moved to supplement. 

Response: We moved Table 2 to the supplemental materials as Table S2 

 

- L410-412: Why are the values referred here as the MFB of individual simulation (-0.25– -0.16) different 

from those appeared in Table 1 (-0.32 – -0.21)? If the definitions are different for both, it should be clearly 

written in the manuscript. I really confused here. 

Response: Following the discussion of annual average concentration in Table 2, the values in L410-412 refer 

to the MFB and MFE calculated using the annual averages. The MFB and MFE values in Table 1 were 

calculated using the hourly averages. We clearly clarify the calculation of the values in the paragraph. 

 

- L412-413 Something wrong with English. 

Response: We corrected “and” to “any” in the sentence. 

 

- L413-415: Same as the two comments above, why are the values of MNB of individual simulation (0.06 – 

0.19) different from those appeared in Table 5? 

Response: Again, the values in L413-415 were calculated using annual averages, while the values in Table 5 

were calculated using the daily averages. We clearly clarify the calculation of the values in the paragraph. 

 



- Table 3: The authors showed that the weighting factor of each EI can vary for different averaging time. in 

general, EDGAR and REAS have large weight for daily and monthly, and the other two Chinese EI were 

weighted large for annual time scale. I encouraged the authors to discuss more on the interpretation of it. 

Response: The weighting factors in different averaging times were determined by the model performance. 

The model performance in different averaging times was affected by the total emission rates, temporal 

profiles (which assigned the annual total emission rates into different months/days). The results probably 

indicate the annual total emission rates of MEIC and SOE were accurate but the temporal profiles were not 

as good as the ones in EDGAR and REAS. 

 

We added above discussion in the revised manuscript. 

 

- Table 4: This is also too detailed information. If you only want to say how many cities out of 60 can 

improve their prediction with ensemble and do not intend to describe its regional differences, this table can 

be moved to supplement and it is enough to briefly describe the result in the manuscript. 

Response: We moved Table 4 to the supplemental materials as Table S3 and only brief description was kept 

in the manuscript. 

 

- Table 5: This table showed that the weighting factor can vary large depending on the region. Table 3 

demonstrated the factor also change for different averaging time scale. And the factor may be different for 

the different year. The purpose of this study is proposing an ensemble method for obtaining the better air 

pollutants concentration data for health effect estimation, from this point of view, how do the authors think 

the best way to calculate the weighting factor in China? Need some more sentences on it. 

Response: Even though the weighted factors vary depending on the regions, averaging times and different 

years, the ensemble method that we proposed in this study is to minimize the difference between predictions 

and observations and can be applied in different regions with different averaging time scales, and for any 

years. The ensemble analysis is a post-process method to improve the agreement between predictions and 

observations in any averaging time scales, as shown in the manuscript. The way to calculate the weighting 

factors depends on the objectives of specific studies. But in general, more observation data used in the 

calculation, more accurate the ensemble prediction would be. 

 

We added above discussion in the revised manuscript. 

 

 

RC3, Anonymous Referee #3 

 

Reviewer suggestion: Accept after revision 

 

General comments: 

This study is somewhat comprehensive; the modeled output has been compared with observations 

adequately. I think there is enough scientific merit in the manuscript, and so I would recommend it be 

accepted after minor revision. I encourage the authors to pay attention to the following comments: 

 

Major comments: 

 



The manuscript needs to be carefully revised. In general, there are places where it is difficult to follow what 

the authors are trying to convey to the readers. It suffers from lack of flow, perhaps, because of typos, wrong 

expressions, and many grammatical mistakes. The authors may consider to pay more attention to the 

construction of sentences and read the manuscript carefully to avoid typos. The results section is well 

described; however, I would request the authors to use short sentences to avoid getting the readers lose their 

track of what was said in the beginning of a sentence. 

Response: We have read the manuscript carefully and made correction to the typos and mistakes in the 

revised manuscript. We revised a few long sentences and used short sentences in the revised manuscript. 

 

Specific comments: 

 

1. P3L58: The first sentence of the manuscript is inaccurate. Correct English is “China has been suffering 

from ….” The authors may also want to rewrite it. 

Response: In the first round of revision for ACPD, we have revised this sentence to “Large population in 

China has been exposed to severe air pollution….”. 

 

2. P3L64-65: …threatens public health in this country (Which country is this?). I am guessing the authors 

wanted to say …threatens public health in China. 

Response: We corrected the sentence to “threatens public health in China”. 

 

3. P3L69: What are “central monitor” measurements? Please do not assume the readers will have an idea 

about it. It would be better if the authors explain it in a nutshell. 

Response: we added an explanation of “Ambient air quality is usually measured at monitoring sites and used 

to represent the exposure of population in the surrounding areas of the sites”. 

 

4. P3L77: Omit “the” in front of meteorological fields. 

Response: Corrected. 

 

5. P3L86-87: ..large uncertainties remain. Correct: …large uncertainties still remain. 

Response: Corrected. 

 

6. P3L89-90: ..,and the efficiency of emissions controls and their fractional penetrations into the industries. 

The authors got me lost here. Please make it clear about the intent of this sentence. It is hard to get the 

meaning out it. 

Response: We deleted “and their fractional penetrations into the industries” from the sentence to avoid 

confusion. 

 

7. P5L150: It has been showed that these…, correct present particle is “shown”. 

Response: Corrected. 

 

8. P5L171-172: I see that the description of the techniques for emission estimates are somewhat referred for 

reading, but I would urge the authors to describe the “technology-based uncontrolled” and “penetrations of 

control technologies” terms in some plain language so that the readers have some understanding of these 

terms without having to look into the referenced materials. 



Response: “technology-based” and “uncontrolled” are two separate description words for emission factors, 

the former means the emission factors are different for different facilities using different technologies with 

same fuels. Uncontrolled means before control since the control effects were added later.  “penetrations of 

control technologies” means the fraction of pollutant not collected, in comparison to efficiency.  

We have added “and” between “technology-based” and “uncontrolled” and “fractions of pollutants not 

collected” after “penetrations” in parentheses. 

 

9. P5L187-188: The S1 Table contains the emissions summary for a “typical workday” in season? What 

about the weekend? How does the weekend emissions vary from a weekday? 

Response: This table is to show the differences between inventories. Weekly factors we used to apply the 

emission to workday and weekend day are certain, which gives the ratios of workday to weekend day of 

1.3-1.5. Thus, all inventories will have lower values in weekend day and the relative differences among 

different inventories do not change. We added explanation to the caption.  

 

10. P6L212: Reference needed for MEGANv2.1 biogenic emissions processor. 

Response: A reference was added for MEGANv2.1 (Guenther et al., 2012). 

 

11. P6L218: “In-line” is a one word. Correct it in the manuscript. 

Response: Corrected. 

 

12. P6L222: Reference for WRFv3.6.1 is needed. 

Response: A reference was added for WRFv3.6.1 (Skamarock et al., 2008). 

 

13. P6L232: Maybe it will be a good idea, if the authors summarize boundary concentrations for major 

species and put them in a table in the supplemental. 

Response: The boundary concentrations for a given species vary in locations (latitude, longitude, and 

altitude). It is impossible to summarize them in a table. We clearly stated in the manuscript that the initial and 

boundary conditions were generated using the CMAQ default profiles.  

 

14. P9L325: REAS2 predicted O3-hr values are lower….. Needs attention, comparative sentence missing 

“than”. 

Response: We added “than MEIC” in the sentence. 

 

15. P15: The authors may consider using unabbreviated forms of the performance matrices so that the 

readers can follow easily in the conclusion section as these are defined way earlier in the manuscript. 

Response: We appreciated the reviewer’s suggestion. In our previous experience, we have been advised to 

keep abbreviations in the conclusion to avoid duplicate definitions. Since the performance matrices have 

been discussed multiple times in the results section, we feel it is appropriate to keep the abbreviations in the 

conclusion section. But we are willing to change to use the full names if the editor also think it is necessary. 

 

RC4, Anonymous Referee #2 

This paper concerns a study of the performance of forecasts of air pollution in China, with focus on a large 

number of sites. The description of the methods and results is comprehensive. The results suggest that the 

method has potential to forecast air quality conditions in China and, likely, elsewhere. The paper should thus 



be of interest to the air quality scientific community. 

 

However, as it stands the paper is not suitable for publication in ACP. There are two reasons for this (I note 

another reviewer identifies these reasons too): (i) The writing of the paper needs improving, the English 

needs to be checked; (ii) I cannot see much detail of how the study links to health concerns, even though 

health is in the title of the paper. There is discussion about the application to health issues in the conclusions, 

but this is cursory and has to come earlier in the paper. The authors should address these two points before 

publication of the paper in ACP. Furthermore, the authors should address a number of specific issues (not 

exhaustive), mainly concerning clarification of the text, examples of which I detail below. 

 

Response: Thanks for the comments and suggestion.  

(i) We are sorry about the gramma errors as we are eager to introduce the study. We have read the manuscript 

carefully and made correction to the typos and mistakes in the revised manuscript. We also revised a few 

long sentences and used short sentences in the revised manuscript. 

 

(ii) This study is part of a project to investigate the long-term health impacts of the severe outdoor air 

pollution in China. This is the first part of the series study aiming to provide more accurate air pollution 

exposure assessment for the health analysis. The predicted air pollution fields then will be used in a number 

of epidemiology studies. The first such analysis used the annual PM2.5 ensemble predictions to investigate 

the premature mortality attributable to various sources of PM2.5 in China and the responses of premature 

mortality to the PM2.5 reduction objectives in different regions of China. The paper has been accepted for 

publication in Environmental Science & Technology (Hu et al., 2017). A few studies are undergoing to 

analyze the correlations between air pollutants and certain health outcomes in China using the ensemble 

predictions of gaseous pollutants, PM mass and compositions. 

 

A few epidemiology groups also expressed their interest of using the ensemble predictions of PM2.5 and O3 

for some short-term health effect studies in China.  Thus, we are confident to the applications of the products 

from this study. 

 

We added a brief discussion on the current and future applications of our dataset for health effect studies in 

China at the end of Section 3.3. We also carefully addressed the specific issues the reviewers listed below to 

improve the manuscript. 

 

Specific comments 

 

L. 135: Indicate here what you will discuss in each section of the paper. 

Response: We added a brief description of the structure of the paper in the end of the Introduction section. 

 

L. 349: It would be helpful to remind the reader of the location of the stations, instead of just using the 

acronym. 

Response: We moved Figure S1 from the supplemental materials to the main context, so that the readers can 

understand the locations of the regions. 

 

Table 3: Should the weights add up to 1? They do not for, e.g., for the annual case. 



Response: From the mathematical point of view, it is not necessary to constrain the weighting factors or the 

sum of weighting factors. We choose to limit each weighting factor in the range of [0,1] to ensure that 

ensemble predictions maintain positivity and do not grow to large unrealistic values in the entire domain. 

Enforcing a unit constrain on the sum of the weighting factors further limits the overall ensemble prediction 

to be within the range of individual simulations. However, this could unnecessary limit the capability of the 

ensemble for regions where higher ensemble values can lead to smaller overall error. Thus, such a constraint 

was not applied in this study.  

 

 

Table 4: Could authors condense the information? For example, at how many stations is the ensemble 

prediction better or worse? 

Response: We moved Table 4 to the supplemental materials as Table S3. We have briefly summarized the 

information in the manuscript in section 3.3: “The results show that the ensemble predictions are better than 

those with EDGAR, MEIC, REAS2 and SOE at 36, 37, 32 and 40 cities for PM2.5, and 39, 39, 43, and 38 

cities for O3-1h, respectively. The ensemble predictions are better than ≥ 2 of the individual predictions at 

45 and 41 cities for PM2.5 and O3-1h, respectively.” 

 

 

Figure 2: The authors need to explain more in the caption what the lines represent. For example, there are 

two solid and dotted lines in the panels – do they represent a standard deviation about a mean? 

Response: The solid and dotted lines in the panels are the model performance criteria and goals, as indicated 

in the key caption. We added the definitions of “criteria” and “goal” in the manuscript and the figure caption 

of Figure 3 in the revised manuscript (Figure 2 in the original manuscript):  

“The model performance goals represent the level of accuracy that is considered to be close to the best a 

model can be expected to achieve, and the model performance criteria represent the level of accuracy that is 

considered to be acceptable for modeling applications.” 

 

Figure 3: Indicate in the caption what the horizontal and vertical panels represent. Same for figures 4, 5 and 

7. 

Response: We added descriptions about the horizontal and vertical panels in the figure captions for Figures 4, 

5, and 6 in the revised manuscript (Figures 3, 4, and 5 in the original manuscript). Figure 7 in the original 

manuscript (Figure 8 in the revised manuscript) illustrates the concentrations of PM2.5 and its components. 

Each panel is labeled with the species name, so no explanation was added for it. 
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Abstract 24 
 25 

Accurate exposure estimates are required for health effects analyses of severe air pollution in 26 

China. Chemical transport models (CTMs) are widely used tools to provide detailed information 27 

of spatial distribution, chemical composition, particle size fractions, and source origins of air 28 

pollutants. The accuracy of CTMs’ air quality predictions in China is largely affected by the 29 

uncertainties of public available emission inventories. The Community Multi-scale Air Quality 30 

model (CMAQ) model with meteorological inputs from the Weather Research and Forecasting 31 

model (WRF) model were used in this study to simulate air quality pollutants in China in 2013. 32 

Four sets of simulations were conducted with four different anthropogenic emission inventories, 33 

including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for 34 

China by School of Environment at Tsinghua University (SOE), the Emissions Database for 35 

Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 36 

(REAS2). Model performance was evaluated against available observation data from 422 sites in 37 

60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally 38 

meet the model performance criteria of model performance, but performance difference exists in 39 

different pollutants and different regions among the inventories. Ensemble predictions were 40 

calculated by linearly combining the results from different inventories under the constraint that 41 

of minimized to minimize the sum of the squared errors between the ensemble results and the 42 

observations from all the cities was minimized. The ensemble annual concentrations show 43 

improved agreement with observations in most cities. The mean fractional bias (MFB) and mean 44 

fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are -0.11 and 0.24, 45 

respectively, which are better than the MFB (-0.25 – -0.16) and MFE (0.26 – 0.31) of individual 46 

simulations. The ensemble annual daily maximum 1-hour peak O3 (O3-1h) concentrations are 47 

also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 48 

0.14, compared to MNB of 0.06 – 0.19 and MNE of 0.16 – 0.22 of the individual predictions. 49 

The ensemble predictions agree better with observations with daily, monthly, and annual 50 

averaging times in all regions of China for both PM2.5 and O3-1h. The study demonstrates that 51 

ensemble predictions by combining predictions from individual emission inventories can 52 

improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study 53 

is the first ensemble model study in China using multiple emission inventories and the results are 54 

publicly available for future health effects studies. 55 

 56 

Key words: chemical transport model; emission inventory; ensemble; China; PM2.5  57 
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1. Introduction 58 

 59 

LargeA significant portion of the population in China has been exposed to severe air pollution in 60 

recent decades as the consequence of intensive energy use without efficient control measures. 61 

Based on ambient air pollution data published by the China National Environmental Monitoring 62 

Center (CNEMC), most of the major cities are in violation of the Chinese Ambient Air Quality 63 

Standards gGrade II standard (35 μg m-3) for annual average particulate matter with diameter of 64 

2.5 μm or less (PM2.5) (Zhang and Cao, 2015;Wang et al., 2014b), with a mean population 65 

weighted PM2.5 concentration of over 60 μg m-3 during 2013-2014. Long-term exposure to such 66 

high levels of PM2.5 greatly threatens public health in this countryChina. Recent studies have 67 

suggested that approximately more than one million premature deaths can be attributed to 68 

outdoor air pollution each year in China (Lelieveld et al., 2015;Liu et al., 2016;Hu et al., 2017a). 69 

 70 

Accurate exposure estimates are required in health effects studies. Ambient air quality is usually 71 

measured at monitoring sites Central monitor measurements are usually and used to represent the 72 

in exposure of population in the surrounding areas of the sitesassessment., but However, a 73 

routine central monitoring network in China has just been built upestablished fromsince 2013, 74 

and is still limited in spatial coverage and lack of detailed information of the chemical 75 

composition, PM size fractions, and source origins of air pollutants. Chemical transport models 76 

(CTMs) have been widely used in health effects studies to overcome the limitations in central 77 

monitor measurements for exposure estimates (Philip et al., 2014;Lelieveld et al., 2015;Liu et al., 78 

2016;Laurent et al., 2016a;Laurent et al., 2016b;Ostro et al., 2015). However, the accuracy of  79 

CTMs the predictions from CTMs is largely affected by the accuracies of the emission 80 

inventories (Wang et al., 2010), the meteorological fields (Hu et al., 2010), and numerical 81 

solutions to the equations that describe various atmospheric processes (Hu et al., 2006;Yu et al., 82 

2005). Emission inventories are indispensable tools for a wide range of environmental activities 83 

from management of chemicals to the prevention of air pollution. Several emission inventories 84 

have been created forto cover China. Different emission inventories focus on specific 85 

geographical regions in the urban, regional (Zhao et al., 2012;Zhang et al., 2008), national or 86 

continental (Zhang et al., 2009;Kurokawa et al., 2013) scales; and/or focus on pollutants from 87 

individual (Su et al., 2011;Ou et al., 2015) and specific sectors (Zhao et al., 2008;Xu et al., 2017). 88 

 89 

Despite the great efforts in improving the accuracy of emission inventories in China, large 90 

uncertainties still remain. Generally, the emissions of pollutants are estimated as the product of 91 

activity levels (such as industrial production or energy consumption), unabated emission factors 92 

(i.e. mass of emitted pollutant per unit activity level), and the efficiency of emission controls and 93 

their fractional penetrations into the industries. Large uncertainties are associated with activity 94 

levels, emission source fractions, and emission factors (Akimoto et al., 2006;Lei et al., 2011a). 95 

The uncertainties are especially significant for some pollutants, such as ammonia (NH3) and 96 

volatile organic compounds (VOCs). For example, it is shown that for a Pearl River Delta (PRD) 97 

inventory in 2006, SO2 emission has low uncertainties of -16%~21% from power plant sources 98 

quantified by Monte Carlo simulations. However,, while NOx has medium to high uncertainties 99 

of -55%~150% and VOC, CO, and PM have even higher uncertainties (Zheng et al., 2009). For 100 

an inventory for the Yangtze River Delta (YRD) region, the overall uncertainties for CO, SO2, 101 

NOx, PM10, PM2.5, VOCs, and NH3 emissions are ±47.1 %, ±19.1 %, ±27.7 %, ±117.4 %, 102 

±167.6 %, ±133.4 %, and ±112.8 %, respectively (Huang et al., 2011). A comprehensive 103 
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quantification study by Zhao et al. (2011) using Monte Carlo simulations showed that the 104 

uncertainties of Chinese emissions of SO2, NOx, PM2.5, BC, and OC in 2005 are −14%∼13%, 105 

−13%∼37%, −17%∼54%, −25%∼136%, and −40%∼121%, respectively.  106 

 107 

The uncertainties in emission inventories are carried into CTMs simulations, leading to biases in 108 

air quality predictions, which need to be carefully evaluated to identify the useful information 109 

that can be used in for health effects studies (Hu et al., 2016b;Hu et al., 2014c;Hu et al., 110 

2014b;Hu et al., 2015b;Tao et al., 2014). An evaluation of one-year air pollutants predictions 111 

using the Weather Research and Forecasting (WRF) / Community Multi-scale Air Quality 112 

(CMAQ) modeling system with the Multi-resolution Emission Inventory for China (MEIC) has 113 

been reported (Hu et al., 2016a). The model predictions of O3 and PM2.5 generally agree with 114 

ambient measured concentrations, but the model performance varies in different regions and 115 

seasons. In some regions, such as the northwest of China, the model significantly under-116 

predicted PM2.5 concentrations.  117 

 118 

The technique of ensemble is often used to reduce uncertainties in model predictions by 119 

combining multiple sets of predictions. This technique has been widely used in the climate 120 

predictions (Murphy et al., 2004;Tebaldi and Knutti, 2007), and recently adopted in air quality 121 

predictions (Delle Monache et al., 2006;Huijnen et al., 2010). A recent study has compared a few 122 

anthropogenic emission inventories in China during 2000-2008 (Saikawa et al., 2016), but 123 

detailed evaluation of air quality model results based on these inventories for over an extended 124 

time period have not been performed. The methods to utilize the strength of different emission 125 

inventories to get improved air quality predictions for China have not been reported in the 126 

literature. The aim of this study is to create an improved set of air quality predictions in China by 127 

using an ensemble technique. First, four sets of one-year air quality predictions were conducted 128 

with the WRF/CMAQ modeling system with four different anthropogenic emission inventories 129 

for China for the entire year ofin 2013. In addition to MEIC, the three other emission inventories 130 

are the Emissions Database for Global Atmospheric Research (EDGAR), Regional Emission 131 

inventory in Asia version 2 (REAS2), and Emission Inventory for China developed by School of 132 

Environment at Tsinghua University (SOE). The model performance on PM2.5 and O3 133 

concentrations in 2013 with different emission inventories was then evaluated against available 134 

observation data in 60 cities in China. The differences among air quality predictions were also 135 

compared and identified. Finally, an ensemble technique was developed to minimize the bias of 136 

model predictions and to create improved exposure predictions. To the authors’ best knowledge, 137 

this is the first ensemble model study in China using multiple emission inventories. The 138 

ensemble predictions of this study are available for public health effects analyses. 139 

 140 

This paper is organized as follows. The CMAQ model, emissions and other inputs for the model, 141 

observational datasets used for model performance evaluation, and the method for ensemble 142 

calculation are described in Section 2. Section 3 discusses the model performance on gaseous 143 

and particulate pollutants simulated with four emission inventories, as well as the performance of 144 

the ensemble predictions in different regions/cities and with different averaging times. ThenAt 145 

last, the major findings are summarized in the Conclusion section. 146 
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2. Method 147 

2.1 Model description 148 

 149 

In this study, the applied CMAQ model is based on CMAQ v5.0.1 with changes to improve the 150 

model’s performance in predicting secondary organic and inorganic aerosols. The details of these 151 

changes could been found in previous studies (Hu et al., 2016a;Hu et al., 2017b) and the 152 

references therein, therefore only a brief description is summarized here and more details can be 153 

found in the cited publications and the references therein. The gas phase photochemical 154 

mechanism SARPC-11 was modified to better treat isoprene oxidation chemistry (Ying et al., 155 

2015;Hu et al., 2017b). Formation of secondary organic aerosol (SOA) from reactive uptake of 156 

dicarbonyls, methacrylic acid epoxide, and isoprene epoxydiol through surface pathway (Li et al., 157 

2015;Ying et al., 2015) was added. Corrected SOA yields due to vapor wall-loss (Zhang et al., 158 

2014) were adopted. Formation of secondary nitrate and sulfate through heterogeneous reactions 159 

of NO2 and SO2 on particle surface (Ying et al., 2014) were was also incorporated. It has been 160 

showed shown that these modifications improved the model performance on secondary inorganic 161 

and organic PM2.5 components. 162 
 163 

2.2 Anthropogenic emissions 164 

 165 

The CMAQ model was applied to China withand surrounding countries in East Asia using the 166 

horizontal resolution of 36-km. The modeling domain is shown in Figure 1. The anthropogenic 167 

emissions are from four different inventories: MEIC, SOE, EDGAR, and REAS2. MEIC was 168 

developed by a research group in Tsinghua University (http://www.meicmodel.org). Compared 169 

with other inventories for China, e.g. INTEX-B (Zhang et al., 2009) or TRACE-P (Streets et al., 170 

2003), the major improvements include a unit-based inventory for power plants (Wang et al., 171 

2012) and cement plants (Lei et al., 2011b), a county-level high-resolution vehicle inventory 172 

(Zheng et al., 2014), and a novel NMVOC speciation approach (Li et al., 2014). The VOCs were 173 

speciated to the SAPRC-07 mechanism. As the detailed species to model species mapping of the 174 

SAPRC-11 mechanism is essentially the same as the SAPRC-07 mechanism (Carter and Heo, 175 

2012), the speciated VOC emissions in the MEIC inventory were directly used in the simulation.   176 

 177 

The SOE emission inventory was developed using an emission factor method (Wang et al., 178 

2011;Zhao et al., 2013). The sectorial emissions in different provinces were calculated based on 179 

activity data, technology-based and uncontrolled emissions factors, and penetrations (fractions of 180 

pollutants not collected) of control technologies. Elemental carbon (EC) and organic carbon 181 

(OC) emissions were calculated based on PM2.5 emissions and their ratios to PM2.5. The sectorial 182 

activity data and technology distribution were obtained using an energy demand modeling 183 

approach with various Chinese statistics and technology reports. More details, including the 184 

spatio-temporal distributions and speciation of NMVOC emissions, can be found in previous 185 

publications (Zhao et al., 2013;Wang et al., 2011;Bin et al., 2013). Since MEIC and SOE 186 

emission inventories only cover China, emissions from outside China countries and regions were 187 

based on REAS2 (Kurokawa et al., 2013). 188 

 189 

The version 4.2 of EDGAR emission (http://edgar.jrc.ec.europa.eu/overview.php?v=42) has a 190 

spatial resolution of 0.1o×0.1o. The EDGAR inventory contains annual emissions from different 191 

sectors based on IPCC designations. REAS2 has a spatial resolution of 0.25˚ ×0.25˚ for the entire 192 

http://edgar.jrc.ec.europa.eu/overview.php?v=42
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Asia. The inventory contains monthly emissions of pollutants from different source categories. 193 

Saikawa et al. (2016) compared the major features of different anthropogenic emission 194 

inventories for China. Detailed information regarding these inventories can be found in the 195 

publications presenting them. Table S1 shows the total emissions of major pollutants within 196 

China in a typical workday of each season. In general, large differences exist among different 197 

inventories for China. MEIC has the highest CO emissions in January winter while REAS2 has 198 

the highest in other three seasons. MEIC has the highest NOx emissions while REAS2 has the 199 

highest emissions of VOCs in all monthsseasons. EDGAR predicts the highest SO2 emissions, 200 

which are approximately a factor of two higher than those estimated by SOE. SOE has highest 201 

NH3 emissions while EDGAR has much lower NH3 emissions than the other three. EDGAR also 202 

has lowest EC and OC emissions, but the total PM2.5 emissions are the highest. Standard 203 

deviations (SD) indicate that January winter has the largest uncertainties for all species except 204 

SO2 and NH3. January Winter has the smallest SO2 uncertainties while July summer has the 205 

largest NH3 uncertainties. 206 

 207 

All the emissions inventories were processed with an in-house program and re-gridded into the 208 

36-km resolution CMAQ domain when necessary. Representative speciation profiles based on 209 

the SPECIATE 4.3 database maintained by U.S. EPA were applied to split NMVOC of EDGAR 210 

and REAS2 into SAPRC-11 mechanism.  and PM2.5 of all inventories was split also speciated 211 

into AERO6 species using profiles from the SPECIATE 4.3 database. Monthly emissions were 212 

temporally allocated into hourly files using temporal allocation profiles from previous studies 213 

(Chinkin et al., 2003; Olivier et al., 2003; Wang et al., 2010a). More details regarding EDGAR 214 

can be found in Wang et al. (2014a), while those for REAS2 can be found in Qiao et al. (2015). 215 

 216 

2.3 Other inputs 217 

 218 

The Model for Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 was used to 219 

generated biogenic emissions (Guenther et al., 2012). The 8-day Moderate Resolution Imaging 220 

Spectroradiometer (MODIS) leaf area index (LAI) product (MOD15A2) and the plant function 221 

type (PFT) files used in the Global Community Land Model (CLM 3.0) were applied to generate 222 

inputs to MEGAN. The readers are referred to Qiao et al. (2015) for more information. Open 223 

biomass burning emissions were generated using a satellite observation based fire inventory 224 

developed by NCAR (Wiedinmyer et al., 2011). The dust emission module was updated to be 225 

compatible with the 20-category MODIS land use data (Hu et al., 2015a) for in-line dust 226 

emission processing and sea salt emissions were also generated during CMAQ simulations. 227 

 228 

The meteorological inputs were generated using WRF v3.6.1 (Skamarock et al., 2008). The 229 

initial and boundary conditions to WRF were downloaded from the NCEP FNL Operational 230 

Model Global Tropospheric Analyses dataset. WRF configurations details can be found in Zhang 231 

et al. (2012). WRF performance has been evaluated by comparing predicted 2m above surface 232 

temperature and relative humidity, and 10m wind speed and wind direction with all available 233 

observational data at ~1200 stations from the National Climate Data Center (NCDC). The model 234 

performance is generally acceptable and detailed evaluation results can be found in a previous 235 

study (Hu et al., 2016a). 236 

 237 
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The initial and boundary conditions representing relatively clean tropospheric concentrations 238 

were generated using CMAQ default profiles.  239 
 240 

2.4 Model evaluation  241 

 242 

Model predictions with the four emission inventories were evaluated against available 243 

observation data in China. Hourly observations of PM2.5, PM10, O3, CO, SO2, and NO2 from 244 

March to December 2013 at 422 stations in 60 cities were obtained from CNEMC 245 

(http://113.108.142.147:20035/emcpublish/) butas no observations were available for January 246 

and FeburaryFebruary. Observations at multiple sites in one city were averaged to calculate the 247 

average concentrations of the city. Detailed quality control of the data can be found in previous 248 

studies (Hu et al., 2016a;Hu et al., 2014a;Wang et al., 2014b). Statistical matrix of mean 249 

normalized bias (MNB), mean normalized error (MNE), mean fractional bias (MFB) and mean 250 

fractional error (MFE) were calculated using the Equations (E1)-(E4): 251 
 252 
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where mC  and oC  are the predicted and observed city average concentrations, respectively, and 257 

N is the total number of observation data. MNB and MNE are commonly used in evaluation of 258 

model performance of O3, and MFB and MFE are commonly used in evaluation of model 259 

performance of PM2.5 (Tao et al., 2014). The U.S. EPA previously recommended O3 model 260 

performance criteria of within ± 0.15 for MNB and less than 0.30 for MNE (as shown in Figure 1) 261 

and PM model performance criteria of within ± 0.60 for MFB and less than 0.75 for MFE (EPA, 262 

2001b). Figure 2 includes the criteria and goals for PM as a function of PM concentration, as 263 

suggested by Boylan and Russell (2006), which have been widely used in model evaluation. 264 
 265 

2.5 Ensemble predictions 266 

 267 

The four sets of predictions with different inventories were combined linearly to calculate the 268 

ensemble predictions, as shown in Equation (E5): 269 

, ,

1

m

m

N
pred ens pred m

m

C w C


                                                             (E5) 270 

where 𝐶𝑝𝑟𝑒𝑑,𝑒𝑛𝑠 is the ensemble predictions, 𝐶𝑝𝑟𝑒𝑑,𝑚 is the predicted concentration from the mth 271 

simulation, Nm is the number of simulations in the ensemble (Nm=4), and mw is the weighting 272 

http://113.108.142.147:20035/emcpublish/
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factor of the mth simulation. The weighting factor for each set of predictions was determined by 273 

minimizing the objective function Q as shown in Equation (6): 274 

  275 
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where 𝐶𝑖
𝑜𝑏𝑠 is the observed PM2.5 or O3 concentration at the ith city, Ncity is the total number of 276 

cities with observation (N=60), 𝐶𝑖
𝑝𝑟𝑒𝑑,𝑚

 is the predicted concentration at the ith city from the mth 277 

simulation, and Nm is the number of simulations in the ensemble (Nm=4), ). The weight factor 278 

and wm’s of the mth simulationare weighting factors  to be determined under the constraints that 279 

0<w<1is within the range of [0, 1], with w=0 represents no influence of the individual simulation 280 

on the ensemble prediction, and w=1 indicates that concentrations of the individual simulation 281 

are fully accounted in the ensemble prediction. The observations data were the same as used in 282 

the model evaluation. Ensemble predictions were performed for PM2.5 and O3 in this study. A 283 

MATLAB program was developed to solve above equation and determine the weighting factors 284 

using the linear least square solver “lsqlin”. 285 
 286 

3. Results 287 

3.1 Model performance on gaseous and particulate pollutants 288 

 289 

Table 1 summarizes the overall model performance on O3, CO, NO2, SO2, PM2.5, and PM10 with 290 

different inventories using the averaged observations in 60 cities in 2013. The U.S. EPA 291 

previously recommended O3 model performance criteria of within ± 0.15 for MNB and less than 292 

0.30 for MNE (as shown in Figure 1) and PM model performance criteria of within ± 0.60 for 293 

MFB and less than 0.75 for MFE (EPA, 2001b). Figure 2 includes the criteria and goals for PM 294 

as a function of PM concentration, as suggested by Boylan and Russell (2006), which have been 295 

widely used in model evaluation. Model performance meets the O3 criteria for all inventories. O3 296 

from SOE are 7.2 parts per billion (ppb) lower than the mean observed concentration while the 297 

under-predictions of the other three inventories are less than 2 ppb. CO, NO2, and SO2 are under-298 

predicted by all inventories, indicating potential uncertainties in the inventories. CO predictions 299 

from three inventories (SOE inventory does not include CO) are substantially lower than 300 

observations, with the best performance (lowest MNB and MNE) from REAS2. NO2 overall 301 

performance is similar to CO; . hHowever, MEIC and SOE yield the lowest MNB, and EDGAR 302 

yields the highest. SO2 performance is better than CO and NO2, and MEIC and SOE yield the 303 

lowest MNB, while MNE values of the four inventories are very similar. PM2.5 and PM10 304 

predictions using all inventories meet the performance criteria with similar MFB and MFE 305 

values. REAS2 generally yields slightly better PM2.5 and PM10 performance, but all inventories 306 

under-predict the concentrations generally. 307 

 308 

The difference in model performance with the four inventories also varies seasonally and 309 

spatially. Figure 12 shows the comparison of model performance for hourly gaseous species (O3, 310 

CO, NO2, and SO2) in each month from March to December 2013. The MNB values of O3 in 311 

most months are within the criteria for all inventories except for SOE, which under-predicts O3 312 

concentrations. March has the worst performance for all inventories with MNE values larger than 313 

0.4 for MEIC, SOE, and EDGAR. No significant performance difference among different 314 
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inventories in different months is found, but large difference exists in various regions of China 315 

(see the definition of regions of China in Figure S1). O3 predicted using MEIC, EDGARSOE, 316 

and REAS2 meets the performance criteria in most regions except for the YRD region by MEIC 317 

and PRD by EDGAR. O3 predicted using SOE only meets the criteria in Northwest (NW) and 318 

other region (Other) of China. For CO, and NO2, are under-predicted in all regions, with the 319 

largest under-predictions in NW and Other. This pattern is similar among the results with all 320 

inventories. and SO2 is generally under-predicted in all regions except, but over-predicted in the 321 

Sichuan Basin (SCB) by all inventories. SO2 is also over-predicted by EDGAR in the PRD 322 

region. SO2 in Northeast (NE) is substantially under-predicted by MEIC and REAS2., mIn 323 

general, model performance in the less more developed regions such as YRD, NCP, and PRD are 324 

relatively better, compared to NW and Other regions central (CNT), NW, and Other regions is 325 

worse compared to more developed regions.  326 

 327 

Figure 23 illustrates the PM2.5 and PM10 performance statistics of MFB and MFE as a function of 328 

absolute concentrations in different months of 2013 and in different regions. PM2.5 predictions 329 

based on each inventory are within the performance goal of MFB and between the goal and 330 

criteria of MFE in all months. There is no significant difference among inventories. Half of 331 

monthly averaged PM10 MFB values fall within the goal while the rest are between the goal and 332 

criteria. MFE values of PM10 are all between the goal and criteria. From the regional perspective., 333 

PM2.5 performance in NE by SOE is out of the MFB criteria, while that in Sichuan Basin (SCB) 334 

by MEIC, SOE, and REAS2 are out of the MFE criteria. MFB values of PM10 at all regions meet 335 

the criteria except NW, where which is largely affecteddue to under-estimation of  by windblown 336 

dust emissions in NW.  337 

 338 

3.2 Spatial variations in predicted gaseous and particulate pollutants 339 

 340 

Figure 3 4 shows the spatial distribution of annual averaged gas species, daily maximum 1-hour 341 

peak O3 (O3-1h), and 8-hour menan O3 (O3-8h), NO2, and SO2 predicted by MEIC and 342 

differences between SOE, EDGAR, and REAS2 to MEIC. MEIC predicted predicts annual O3-343 

1h concentrations are ~60ppb in most parts of China with the highest values of ~70ppb in SCB. 344 

SOE predicts lower O3-1h values for all the domainthan MEIC, with about 5 ppb differences in 345 

the SCB, central China (CNT), and North China Plain (NCP) regions and 2-3 ppb differences in 346 

other regions. EDGAR also predicts 2-3 ppb lower O3-1h in most regions than MEIC but its O3-347 

1h predictions in the Tibet Plateau, NCP and ocean regions are 2-3 ppb higher than MEIC 348 

predictions. REAS2 predicted O3-1h values are lower than those of MEIC for scattered areas in 349 

the NE, NW, and CNT regions and other regions experience slightly higher O3-1h. MEIC, SOE, 350 

and REAS2 have similar results out of China (the difference is generally less than 1 ppb) since 351 

the simulations used same emissions for those regions. O3-8h shows similar spatial distributions 352 

as O3-1h among inventories with slightly less differences. NO2 concentrations are 10-15ppb in 353 

developed areas of the NCP and YRD regions, and greater than 5 ppb at other urban areas as 354 

predicted by MEIC. SOE predicts 2-3 ppb lower NO2 concentrations in most areas except the 355 

vast NW region. EDGAR predicts lower NO2 (more than 5 ppb difference) in urban areas of the 356 

NCP and YRD areas but higher concentrations in the entire west part of China by approximately 357 

1-2 ppb. REAS2 has the closest NO2 with MEIC as the 1-2 ppb underestimation and 358 

overestimation are almost evenly distributed in the whole country. SO2 concentrations are up to 359 

20ppb in the NCP, CNT, and SCB regions while are less than 5 ppb in other regions. SOE 360 
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mostly predicts 2-3 ppb lower SO2 in the east half of China with the largest difference of -10 ppb 361 

in the CNT region. EDGAR and REAS2 had very similar difference with MEIC, i.e., more than 362 

5 ppb higher concentrations in the NCP and YRD, ~2 ppb higher concentrations in the PRD, 2-3 363 

ppb lower concentrations in the NE and up to 5 ppb lower concentrations in the CEN and SCB. 364 

 365 

Figure 45 shows the seasonal distribution of PM2.5 total mass predicted by MEIC and differences 366 

between SOE, EDGAR, and REAS2 to MEIC. In the spring, MEIC predicted PM2.5 367 

concentrations are ~50 µg m-3 in east and south parts of China, and Southeast Asia has the 368 

highest value of ~100 µg m-3. SOE predicts 5-10 µg m-3 lower PM2.5 in north China and < 5 µg 369 

m-3 higher values in south China and along the coastline. EDGAR predicts >20 µg m-3 lower 370 

values in NCP and ~10 µg m-3 lower values in NE, CNT, and SCB, but up to 20 µg m-3 higher 371 

values in PRD. REAS2 predicts higher PM2.5 values in most parts of China except under-372 

predictions in NE and SCB. The over-predictions in YRD and NCP were are up to 20-30 µg m-3. 373 

In summer, the high PM2.5 regions are much smaller compared to spring with ~50 µg m-3 ppb 374 

concentrations in NCP, north part of YRD and SCB and 20-30 µg m-3 in other parts. Generally, 375 

SOE predicts <10 µg m-3 lower values in most regions. EDGAR predicts lower values in NCP 376 

and SCB and 5-10 µg m-3 higher values in south part. REAS2 almost predicts higher values in all 377 

the regions except some scattered areas in NCYP, YRD, and SCB. 378 

 379 

In fall, PM2.5 concentrations are larger than 50 µg m-3 in most regions except NW and are ~100 380 

µg m-3 in part of NCP, CNT, and SCB. SOE predicted values are lower in north part and higher 381 

in south part. EDGAR predicts up to 30 µg m-3 lower values in NCP and SCB while up to 20 µg 382 

m-3 higher values in YRD. REAS2 again estimates close values to MEIC with less than 5 µg m-3 383 

differences in most regions and up to 20 µg m-3 higher values in scattered areas in YRD and SCB. 384 

In winter, MEIC predicted PM2.5 concentrations are up to 200 µg m-3 in NCYP, CNT, YRD, and 385 

SCB, while PYRD has concentrations of ~50 µg m-3. SOE severely underestimates by 30 µg m-3 386 

in all regions with high PM2.5 concentrations and only coast areas experience <10 µg m-3 higher 387 

values. EDGAR also predicts 30 µg m-3 lower PM2.5 concentrations in NE, NCP, CNT, and SCB, 388 

but the YRD region has 20 µg m-3 higher values. The regions with lower values by REAS2 389 

compared to MEIC are much smaller but are at the same regions of NE, NCP, CNT and SCB, 390 

similar to EDGAR but with much smaller areas. SOE predicts higher PM2.5 in Sthe south parts of 391 

YRD and NCP have higher PM2.5 values than MEIC. 392 

 393 

Figure 56 shows the annual averaged concentrations of PM2.5 components predicted by MEIC 394 

and the differences between other inventories with MEIC. Annual averaged particulate sulfate 395 

(SO4
2-) concentrations are 20-25 µg m-3 in NCP, CNT, and SCB, and about 10 µg m-3 in other 396 

regions in the southeast China. SOE predicts ~10 µg m-3 lower values in high concentration areas 397 

and 2-3 µg m-3 lower in other areas. EDGAR predicts ~5 µg m-3 higher SO4
2- in southeast China 398 

and 2-3 µg m-3 lower values in SCB. REAS2 predicted SO4
2- are generally 2-3 µg m-3 lower than 399 

that of MEIC in areas except the coastal areas. MEIC predicts the highest particulate nitrate 400 

(NO3
-) concentrations of up to 30 µg m-3 in NCP and YRD and values in other regions are 5-10 401 

µg m-3 except the northwest China. SOE predicts <5 µg m-3 lower values in the high 402 

concentrations areas and ~2 µg m-3 higher values in coastal areas. EDGAR uniformly predicts 403 

lower NO3
- values than MEIC with the largest different of 10 µg m-3. REAS2 has similar results 404 

to SOE. Particulate ammonium (NH4
+) concentrations predicted by MEIC have a peak of 15 µg 405 
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m-3 and are mostly less than 10 µg m-3 in the east and south parts of China. SOE predicts slightly 406 

lower values except for coastal areas in PRD, where 1-2 µg m-3 higher values are observed.  407 

 408 

Elemental carbon (EC) concentrations are generally low compared to other components as 409 

predicted by MEIC. The highest values are less than 10 µg m-3 in NCP, CNT and SCB. All other 410 

three inventories predicted 1-2 µg m-3 lower EC values throughout the country. Primary organic 411 

aerosol (POA) predicted by MEIC are 20-30 µg m-3 in NCP, CNT and SCB, and are ~10 µg m-3 412 

in other areas in east and south parts of China. SOE predicts up to 5 µg m-3 higher values in most 413 

areas with scattered places with ~2 µg m-3 lower values compared to MEIC. EDGAR and 414 

REAS2 predict up to ~10 µg m-3 lower values except for coastal areas. SOA concentrations are 415 

low in north part of China and up to 10 µg m-3 in the whole east and south parts. All three other 416 

inventories predict ~2 µg m-3 lower SOA values compared to MEIC. For other implicit 417 

components (OTHER), the highest concentrations are ~15 µg m-3 in NW and NCP, while other 418 

regions have lower than 5 µg m-3 concentrations. In NW, the major sources of OTHER are 419 

windblown dust online generated by CMAQ simulations, thus almost no differences are 420 

observed among inventories. SOE and EDGAR predict lower OTHER vales in north part (~2 µg 421 

m-3) and slightly higher values in south and east parts (~5 µg m-3). REAS2 predicts higher 422 

OTHER values in the whole east part uniformly with up to 10 µg m-3 differences in NCP, YRD, 423 

and SCB regions. 424 

 425 

Additional comparisons of model predictions in different regions and some major cities in China 426 

are shown in Figures S21-S54 in the Supplemental Material. 427 

 428 

3.3 Ensemble predictions 429 

 430 

Above analyses indicate that model performance with different inventories varies on different 431 

pollutants and in different regions. Table S2 shows the observed annual average concentrations 432 

of PM2.5 in the 60 cities and the predictions from the four inventories as well as the weighted 433 

ensemble predictions. The weighting factors for predictions using MEIC, REAS2, SOE and 434 

EDGAR are 0.31, 0.36, 0.24 and 0.20, respectively (Table 32). The ensemble predictions greatly 435 

reduce MFB with a value of -0.11, compared to the MFB values of -0.25 – -0.16 using the annual 436 

average concentrations in the individual simulations. Also, the ensemble predictions have an 437 

MFE value of 0.24, lower than anyd MFE values of 0.26 – 0.31 in any individual simulations 438 

(Figure 67). The ensemble predictions of annual O3-1h have the MNB and MNE of 0.03 and 439 

0.14, improved from MNB of 0.06 – 0.19 and MNE of 0.16 – 0.22 in the individual predictions, 440 

respectively. 441 

 442 

To further evaluate the ability of the ensemble method in improving predictions at locations 443 

where observational data are not available, ensemble predictions were made using a data 444 

withholding method. For each city, the observations at the other 59 cities were used to determine 445 

the weighting factors in E6 and the ensemble prediction at the city was calculated. Performance 446 

of the ensemble predictions at the city was calculated using the withheld observations to evaluate 447 

the performance. The evaluation process was repeated for each of the 60 cities and the 448 

performance was compared to that with individual inventories (shown in Table S34). The results 449 

show that the ensemble predictions are better than those with EDGAR, MEIC, REAS2 and SOE 450 

at 36, 37, 32 and 40 cities for PM2.5, and 39, 39, 43, and 38 cities for O3-1h, respectively. The 451 
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ensemble predictions are better than ≥ 2 of the individual predictions at 45 and 41 cities for 452 

PM2.5 and O3-1h, respectively. Out of the 15 cities that the ensemble PM2.5 is only better than 453 

one or none of the individual predictions, 10 cities have MFB within ±0.25 and MFE less than 454 

0.25. Out of the 19 cities that the ensemble O3-1h is only better than one or none of the 455 

individual predictions, 14 cities still have MNB within ±0.2 and MNE less than 0.2. The results 456 

demonstrate that the ensemble can improve the predictions even at locations with no 457 

observational data available.  458 

 459 

Previous studies have revealed that CTMs predictions agree more when averaging over longer 460 

times (i.e., annual vs. monthly vs. daily averages) (Hu et al., 2014b;Hu et al., 2015b). Ensemble 461 

predictions were also calculated with daily and monthly averages for PM2.5, in addition to the 462 

calculation with annual averages discussed above. The weighting factors and the performance of 463 

ensemble predictions are shown in Table 32 and Figure 67, respectively. The weighting factors 464 

vary largely with the averaging times, suggesting that the prediction optimization need to be 465 

conducted separately when using different time averages. The ensemble predictions improve the 466 

agreement with observations in all averaging time cases, with lower MNB and MNE than any of 467 

the individual predictions. In general, EDGAR and REAS have large weights for daily and 468 

monthly ensemble calculations, and MEIC and SOWE have large weights for annual ensemble 469 

calculations. This result indicates that the annual total emission rates of MEIC and SOE are 470 

likely accurate but the temporal profiles to allocate the annual total emissions rates to specific 471 

day/hours need to be improved. 472 

 473 

Table 35 shows the ensemble prediction performance on PM2.5 and O3-1h in different regions of 474 

China using the daily average observations and daily average predictions with individual 475 

inventories. The weighting factors vary greatly among regions, reflecting that substantial 476 

difference in the spatial distributions of PM2.5 and O3 when using different inventories. The 477 

MNB and MNE values of ensemble predictions are reduced in all regions for both pollutants, 478 

suggesting the ensemble predictions improve the accuracy and can be better used in further 479 

health effects studies. The similar findings are also found with the monthly average observations 480 

and predictions (shown in Table S43). 481 

 482 

Figure 87 shows spatial distributions of PM2.5 and its components from the ensemble predictions 483 

using the weighting factors of annual averages. The ensemble of PM2.5 components were 484 

calculated using the same weighting factors for PM2.5. Over 80 µg m-3 annual average PM2.5 485 

concentrations are estimated in NCP, CNT, YRD and SCB regions in 2013. Secondary inorganic 486 

aerosols (SO4
2-, NO3

-, and NH4
+) account for approximately half of PM2.5, and exhibit similar 487 

spatial patterns. Carbonaceous aerosols (EC, POA, and SOA) account for about 30%, but POA 488 

and SOA have quite different spatial distributions. High POA concentrations are mainly 489 

distributed in NCP, CNT and SCB, while high SOA concentrations are found in the south part of 490 

China. By considering the spatial distributions of population and ensemble PM2.5, the population-491 

weighted annual averaged PM2.5 concentration in China in 2013 is 59.5 µg m-3, which is higher 492 

than the estimated value of 54.8 µg m-3 by Brauer et al. (2016). 493 

 494 

The products of the current study can be further applied in health effects studies. The first such 495 

analysis used the annual PM2.5 ensemble predictions to assessFor example, the spatial 496 

distribution of excess mortality due to adult (> 30 years old) ischemic heart disease (IHD), 497 
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cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer 498 

(LC) in China caused by PM2.5 exposure (Hu et al., 2017a). Any health studies requiring human 499 

exposure information to different pollutants would benefit from this study. Even though the 500 

weighted factors vary depending on the regions, averaging times and different study years, the 501 

ensemble method proposed in this study is to minimize the difference between predictions and 502 

observations and can be applied in different studies. The way to calculate the weighting factors 503 

depends on the objectives of specific studies. But in general, more observation data used in the 504 

calculation, more accurate the ensemble prediction would be. 505 

 506 

4. Conclusion 507 
 508 

In this study, air quality predictions in China in 2013 were conducted using the WRF/CMAQ 509 

modeling system with anthropogenic emissions from four inventories including MEIC, SOE, 510 

EDGAR, and REAS2. Model performance with the four inventories was evaluated by comparing 511 

with available observation data from 422 sites in 60 cities in China. Model predictions of hourly 512 

O3 and PM2.5 with the four inventories generally meet the model performance criteria, but that 513 

model performance with different inventories varies on different pollutants and in different 514 

regions. To improve the overall agreement of the predicted concentrations with observations, 515 

ensemble predictions were calculated by linearly combining the predictions from different 516 

inventories. The ensemble annual concentrations show improved agreement with observations 517 

for both PM2.5 and O3-1h. The MFB and MFE of the ensemble predictions of PM2.5 at the 60 518 

cities are -0.11 and 0.24, respectively, which are better than the MFB (-0.25 – -0.16) and MFE 519 

(0.26 – 0.31) of any individual simulations. The ensemble predictions of annual O3-1h have the 520 

MNB and MNE of 0.03 and 0.14, improved from MNB (0.06 – 0.19) and MNE (0.16 – 0.22) in 521 

individual predictions. The ensemble predictions with data withholding method at each city show 522 

better performance than the predictions with individual inventories at most cities, demonstrating 523 

the ability of the ensemble in improving the predictions at locations where observational data are 524 

not available. The ensemble predictions agree better with observations with daily, monthly, and 525 

annual averaging times in all regions of China. The study demonstrates that ensemble predictions 526 

by combining predictions from individual emission inventories can improve the accuracy in the 527 

concentration estimation and the spatial distributions of air pollutants. The products of the 528 

current study can be further applied in health effects studies. For example, the spatial distribution 529 

of excess mortality due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular 530 

disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) in China 531 

caused by PM2.5 exposure (Hu et al., 2017a). Any health studies requiring human exposure 532 

information to different pollutants would benefit from this study. The data presented in the paper 533 

is available for downloading via requests. 534 
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Table 1. Overall model performance of gas and PM species in 2013 using different inventories. 

Obs is observation, MFB is mean fractional bias, MFE is mean fractional error, MNB is mean 

normalized bias, and MNE is mean normalized error. The indices arewere calculated with hourly 

observations and predictions. 

  
Prediction MFB MFE MNB MNE 

 
Mean Obs: 51.70 ppb 

     

 
MEIC 49.83 -0.08 0.35 0.02 0.33 

O3 SOE 44.51 -0.2 0.38 -0.09 0.32 

 
EDGAR 49.82 -0.04 0.28 0.03 0.28 

 
REAS2 51.17 -0.04 0.33 0.05 0.33 

 Mean Obs: 0.96 ppm      

 
MEIC 0.31 -0.92 0.96 -0.57 0.63 

CO SOE / / / / / 

 
EDGAR 0.23 -1.12 1.16 -0.66 0.73 

 
REAS2 0.42 -0.72 0.82 -0.41 0.59 

 
Mean Obs: 21.45 ppb 

     

 
MEIC 10.12 -0.79 0.93 -0.41 0.66 

NO2 SOE 11.59 -0.65 0.81 -0.33 0.61 

 
EDGAR 6.82 -1.02 1.07 -0.6 0.67 

 
REAS2 9.3 -0.81 0.92 -0.46 0.63 

 
Mean Obs: 17.21 ppb      

 
MEIC 12.5 -0.51 0.87 0.01 0.87 

SO2 SOE 12.76 -0.44 0.83 0.06 0.86 

 
EDGAR 15.86 -0.16 0.73 0.31 0.88 

 
REAS2 15.15 -0.23 0.74 0.23 0.86 

 
Mean Obs: 70.01 µg m-3      

 
MEIC 56.39 -0.32 0.64 -0.02 0.63 

PM2.5 SOE 59.77 -0.24 0.61 0.09 0.67 

 
EDGAR 52.59 -0.3 0.59 -0.05 0.56 

 
REAS2 60.35 -0.21 0.59 0.08 0.63 

 
Mean Obs: 118.61 µg m-3      

 
MEIC 62.7 -0.63 0.79 -0.32 0.61 

PM10 SOE 63.32 -0.6 0.76 -0.3 0.6 

 
EDGAR 55.76 -0.67 0.78 -0.38 0.58 

 
REAS2 71.41 -0.49 0.7 -0.21 0.59 
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Table 2. Predicted annual average PM2.5 concentrations at 60 cities using different anthropogenic 

emission inventory, and weighted ensemble based on linear combination of the four simulations, 

along with observed concentrations. Units are µg m-3. 

City MEIC SOE EDGAR REAS2 ENSEMBLE Observation 

Shijiazhuang 86.3 94.2 73.3 104.2 102.1 148.5 

Baoding 113.4 79.5 78.1 115.1 111.9 127.9 

Handan 97.9 89.7 89.7 135.2 119.0 127.8 

Hengshui 103.2 87.9 88.5 113.3 112.3 120.6 

Tangshan 84.8 90.6 52.8 80.7 88.2 114.2 

Jinan 96.3 95.0 86.6 119.0 113.5 114.0 

Langfang 93.5 72.6 70.6 82.2 90.7 113.8 

Xi'an 70.9 87.5 69.6 66.1 81.4 104.2 

Zhengzhou 107.5 90.5 92.9 105.4 112.3 102.4 

Tianjin 84.0 73.8 84.4 95.9 95.7 95.6 

Cangzhou 90.6 73.2 67.8 87.4 91.3 93.6 

Beijing 62.2 59.2 77.3 71.6 75.2 90.1 

Wuhan 94.4 98.5 102.9 89.9 106.7 94.0 

Chengdu 52.9 67.8 50.0 52.6 62.0 86.3 

Wulumuqi 22.0 39.1 20.1 32.4 32.1 85.2 

Hefei 86.6 84.4 74.9 88.5 94.5 84.9 

Huai'an 72.4 65.7 66.1 75.8 79.3 80.8 

Changsha 87.9 109.8 70.7 82.2 98.0 79.1 

Wuxi 64.6 65.6 63.6 74.3 75.7 75.8 

Harbin 59.4 150.6 58.6 47.2 84.1 75.7 

Nanjing 79.1 79.5 88.9 94.8 96.1 75.3 

Xuzhou 100.6 85.8 101.3 102.3 109.6 74.9 

Taiyuan 64.5 67.8 61.0 78.1 77.0 74.2 

Huzhou 52.8 57.8 63.5 68.2 67.9 73.5 

Shenyang 97.3 101.5 75.0 111.6 110.3 72.7 

Yangzhou 74.7 67.2 71.5 78.9 82.5 71.1 

Suqian 78.1 66.0 69.1 81.9 83.9 70.7 

Nantong 77.1 58.8 60.9 70.0 75.9 70.2 

Changchun 60.5 55.2 44.3 49.7 59.2 69.2 

Nanchang 53.6 82.6 61.6 114.9 90.4 69.1 

Jinhua 34.2 39.5 45.2 45.6 45.8 69.0 

Lianyungang 66.5 55.0 56.6 66.7 69.6 68.0 

Lanzhou 22.9 18.0 28.6 24.1 26.0 67.1 

Suzhou 58.2 74.1 69.6 86.0 81.2 67.1 

Jiaxing 60.2 59.9 66.4 70.0 71.9 66.9 

Quzhou 31.0 34.3 39.5 38.4 39.8 66.5 

Shaoxing 47.1 54.0 58.3 59.9 61.2 66.4 

Hangzhou 47.2 58.8 63.0 64.6 65.0 66.1 

Qinhuangdao 65.5 50.4 39.6 53.9 60.2 65.2 

Chongqing 89.2 90.5 80.5 88.5 98.0 63.9 

Xining 11.2 11.2 16.3 13.6 14.4 63.2 

Qingdao 66.0 62.8 59.5 66.6 71.9 61.7 
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Shanghai 51.4 50.0 65.2 61.8 63.6 60.7 

Huhehaote 27.5 20.1 18.6 21.5 25.0 59.1 

Wenzhou 26.1 33.2 45.3 47.0 42.3 56.5 

Nanning 37.0 43.4 45.0 43.8 47.0 54.7 

Taizhou 71.3 62.3 66.7 72.1 76.8 53.0 

Guangzhou 31.2 46.2 58.1 35.3 45.4 52.2 

Chengde 40.0 35.1 35.0 49.7 46.0 51.5 

Dalian 41.5 46.1 34.4 52.9 50.1 50.7 

Guiyang 48.9 60.9 46.2 50.8 57.7 49.4 

Lishui 26.2 30.7 37.4 36.9 36.5 47.9 

Yinchuan 18.7 27.0 18.6 19.9 23.3 43.7 

Shenzhen 23.0 32.8 45.2 24.4 33.1 39.7 

Zhuhai 24.0 32.2 47.9 31.4 36.3 37.9 

Kunming 29.4 32.8 28.0 31.8 34.3 35.5 

Fuzhou 22.6 30.8 44.0 27.1 33.2 33.2 

Zhoushan 24.4 24.1 26.8 29.3 29.4 32.1 

Lasa 3.0 3.4 3.8 3.6 3.9 26.0 

Haikou 21.2 28.2 29.9 24.8 28.4 25.6 
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Table 32. The weighting factors (w) of each inventory in the ensemble predictions of PM2.5 when 

using daily, monthly, or annual averages in the objective function (E5). 

 

  Daily Monthly Annual 

MEIC 0.07  0.13  0.31  

SOE 0.14  0.16  0.24  

EDGAR 0.38  0.23  0.20  

REAS2 0.49  0.63  0.36  
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Table 4. Comparison of the data-withholding ensemble prediction of PM2.5 and O3-1h at each 

city with predictions of individual inventories. The ensemble predictions at each city are 

calculated by using the data in the other 59 cities (i.e., withholding the data at that city) to 

determine the ensemble weighting factors. Symbol ‘×’ indicates the ensemble prediction 

performance is better than the performance of a specific inventory (i.e., both MFB (MNB) and 

MFE (MNE) values are smaller for PM2.5 (O3-1h)); otherwise symbol ‘-’ indicates the ensemble 

prediction performance is worse. 

 

 

PM2.5 

 

O3-1h 

City MEIC SOE EDGAR REAS2 

 

MEIC SOE EDGAR REAS2 

Shijiazhuang × × × - 

 

× × × × 

Baoding - × × - 

 

- - - × 

Handan × × × - 

 

× × × × 

Hengshui × × × - 

 

- - - - 

Tangshan - - × × 

 

- × - - 

Jinan × × × × 

 

- - - - 

Langfang - × × × 

 

× × × × 

Xi'an × - × × 

 

× × × × 

Zhenzhou - × - - 

 

× - × × 

Tianjing × × × × 

 

- × - - 

Wuhan - - - - 

 

× × × × 

Cangzhou × × × × 

 

- × - - 

Beijing × × - × 

 

× × × × 

Chendu × - × × 

 

- - - - 

Wulumuqi × - × - 

 

× - × × 

Hefei - - × - 

 

× - × × 

Huai'an × × × × 

 

- - - - 

Changsha - × - - 

 

× × × × 

Wuxi × × × × 

 

- - - - 

Harbin - × - × 

 

× × × × 

Nanjing - - - - 

 

× × × × 

Xuzhou - - - - 

 

- - - - 

Taiyuan × × × × 

 

- - - × 

Huzhou × × × - 

 

× × × × 

Shenyang - - - - 

 

× × × × 

Yangzhou - - - - 

 

× × × × 

Suqian - - - - 

 

× × × × 

Nantong × × × - 

 

× × × × 

Changchun - × × × 

 

- - - - 
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Nanchang - - - × 

 

× × × × 

Jinghua × × × - 

 

× × × × 

Lianyungang - × × - 

 

× - × × 

Lanzhou × × - × 

 

× × × × 

Suzhou - - - × 

 

- × - × 

Jiaxing × × - - 

 

× - × × 

Quzhou × × - × 

 

× × × × 

Shaoxing × × × × 

 

- - - - 

Hangzhou × × × × 

 

× × × × 

Qinghuangdao - × × × 

 

× × × × 

Chongqing - - - - 

 

× × × × 

Xining × × - × 

 

- - - - 

Qingdao - - - - 

 

× × × × 

Shanghai × × × - 

 

× × × × 

Huhehaote - × × × 

 

× × × × 

Wenzhou × × - - 

 

× × × × 

Nanning × × × × 

 

- - - - 

Taizhou - - - - 

 

- × - × 

Guangzhou × - - × 

 

× - × × 

Chende × × × - 

 

- - - - 

Dalian × × × × 

 

- - - - 

Guiyang - × - - 

 

- - - - 

Lishui × × - - 

 

× × × × 

Yinchuan × - × × 

 

× × × × 

Shenzhen × - - × 

 

× × × × 

Zhuhai × × × × 

 

× × × × 

Kunming × × × × 

 

- - - - 

Fuzhou × × × × 

 

× × × × 

Zhoushan × × × × 

 

× × × × 

Lasa × × × × 

 

× × × × 

Haikou × - × -   × × × × 
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Table 53. Performance of daily PM2.5 (MFB and MFE) and O3-1h (MNB and MNE) in different regions of China based on individual 

inventories and the ensemble. The weighting factors (w) used to calculate the ensemble of each region are also included.  
 

  Region   MEIC       SOE       EDGAR       REAS2     ENSEMBLE 

   (# of Cities)  w MFB MFE   w MFB MFE   w MFB MFE   w MFB MFE   MFB MFE 

  NE (4) 0.16  -0.23  0.44   0.21  0.38  0.68  
 

0.20  -0.30  0.43  
 

0.43  -0.12  0.43  
 

-0.08  0.42  

  NCP (14) 0.00  -0.30  0.47   0.52  -0.34  0.46  
 

0.14  -0.40  0.51  
 

0.56  -0.20  0.41  
 

-0.12  0.40  

  NW (6) 0.00  -0.87  0.90   0.20  -0.80  0.84  
 

0.59  -0.85  0.87  
 

1.00  -0.81  0.83  
 

-0.49  0.66  

PM2.5 YRD (20) 0.05  -0.29  0.45   0.00  -0.27  0.43  
 

0.61  -0.23  0.40  
 

0.35  -0.13  0.40  
 

-0.18  0.38  

  CNT (5) 0.09  -0.10  0.46   0.18  -0.05  0.41  
 

0.50  -0.27  0.40  
 

0.22  0.09  0.44  
 

-0.14  0.37  

  SCB (2) 0.00  0.10  0.48   0.64  0.23  0.48  
 

0.00  -0.10  0.39  
 

0.08  0.07  0.43  
 

-0.15  0.40  

  SOUTH (9) 0.10  -0.35  0.51   0.00  -0.18  0.41  
 

0.59  -0.07  0.45  
 

0.30  -0.25  0.44  
 

-0.16  0.41  

  CHINA (60) 0.07  -0.34  0.52   0.14  -0.26  0.50  
 

0.38  -0.33  0.49  
 

0.49  -0.22  0.46  
 

-0.20  0.45  

    w MNB MNE   w MNB MNE   w MNB MNE   w MNB MNE   MNB MNE 

  NE 0.09  0.44  0.50    0.00  0.16  0.34    0.45  0.41  0.47    0.27  0.42  0.48    0.14  0.31  

  NCP 0.29  0.33  0.47    0.12  0.23  0.44    0.06  0.46  0.59    0.42  0.47  0.56    0.25  0.43  

  NW 0.00  0.65  0.72    0.82  0.54  0.62    0.00  0.70  0.77    0.00  0.68  0.74    0.25  0.46  

O3-1h YRD 0.00  0.20  0.41    0.53  0.14  0.38    0.00  0.25  0.45    0.45  0.27  0.44    0.17  0.39  

  CNT 0.27  0.27  0.47    0.18  0.16  0.43    0.10  0.35  0.53    0.36  0.35  0.52    0.18  0.42  

  SCB 0.44  0.59  0.68    0.14  0.42  0.58    0.28  0.59  0.70    0.00  0.60  0.72    0.33  0.53  

  SOUTH 0.84  0.39  0.50    0.00  0.29  0.46    0.00  0.38  0.51    0.00  0.42  0.53    0.16  0.37  

  CHINA 0.19  0.34  0.49    0.20  0.23  0.44    0.00  0.39  0.54    0.51  0.41  0.53    0.21  0.42  
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Figure 1. The WRF/CMAQ modeling domain and the regions in China. The dots represent the 

60 cities where observational data are available for ensemble analysis.  
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Figure 12. Performance of predicted O3, CO, NO2, and SO2 for different months (top two rows) 

and regions based on simulations with individual inventories. The blue dashed lines on the O3 

plots are +/-0.15 for MNB and 0.3 for MNE as suggested by U. S. EPA (2001a). Changes of 

colors show the months from March to December in top two rows, while show regions from 

NCP to Other in the bottom two rows. The same for Figure 2.  
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Figure 23. Performance of predicted PM2.5 and PM10 for different months (a-d) and regions (e-h) 

based on simulations with individual inventories. The x-axis is the observed concentrations. The 

model performance criteria (solid black lines) and goals (dash blue lines) are suggested by Byun 

and Russell (2006). The model performance goals represent the level of accuracy that is 

considered to be close to the best a model can be expected to achieve, and the model 

performance criteria represent the level of accuracy that is considered to be acceptable for 

modeling applications.  
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Figure 34. Spatial difference of model predicted annual averaged gas species concentrations (in 

the horizontal panels) with different inventories (in the vertical panels). Units are ppb. The color 

bars of the first column are different to better show the spatial distribution of different species. 

White indicates zero while blue, green, yellow and red means concentrations from low to high. 

The color bar for the other three columns are same, white indicates zero, blue and green mean 

values less than zero while yellow, purple and red mean values larger than zero. O3-1h represents 

daily maximum 1h O3 and O3-8h represents daily maximum 8h mean O3. 
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Figure 45. Spatial difference of model predicted seasonal averaged PM2.5 concentrations  (in the 

horizontal panels) with different inventories (in the vertical panels). Units are µg m-3. In the first 

column, white indicates zero while blue, green, yellow and red means concentrations from low to 

high. The color bar for the other three columns are same, white indicates zero, blue and green 

mean values less than zero while yellow, purple and red mean values larger than zero. The same 

for Figure 56. 
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Figure 56. Spatial difference of model predicted annual PM2.5 components  (in the horizontal 

panels) with different inventories (in the vertical panels). Units are µg m-3.   
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Figure 76. MFB and MFE of predicted PM2.5 for with an averaging time of 24 hours, 1 month, 

and 1 year based on the individual inventories and the ensemble.  
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Figure 78. Spatial distributions of PM2.5 and its components in the ensemble predictions. Units 

are µg m-3. The scales of the panels are different. White indicates zero while blue, green, yellow 

and red means concentrations from low to high. 
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