

1 **Measurement of scattering and absorption properties of dust aerosol**
2 **in a Gobi farmland region of northwest China—a potential**
3 **anthropogenic influence**

4 Jianrong Bi, Jianping Huang, Jinsen Shi, Zhiyuan Hu, Tian Zhou, Guolong Zhang,
5 Zhongwei Huang, Xin Wang, and Hongchun Jin

6

7 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of
8 Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

9

10 *Correspondence to:* Jianping Huang (hjp@lzu.edu.cn)

11

12 **Abstract.** We conducted a comprehensive field campaign on exploring the optical
13 characteristics of mineral dust in Dunhuang farmland nearby the Gobi deserts of
14 northwest China during spring of 2012. The day-to-day and diurnal variations of dust
15 aerosol showed prominent features throughout the experiment, primarily attributable
16 to frequent dust events and local anthropogenic emissions. The overall average mass
17 concentration of the particulate matter with an aerodynamic diameter less than 10 μm
18 (PM_{10}), light scattering coefficient ($\sigma_{\text{sp},670}$), absorption coefficient ($\sigma_{\text{ap},670}$), and
19 single-scattering albedo (SSA_{670}) were $113\pm169 \mu\text{gm}^{-3}$, $53.3\pm74.8 \text{ Mm}^{-1}$, 3.2 ± 2.4
20 Mm^{-1} , and 0.913 ± 0.05 , which were comparable to the background levels in southern
21 United States, but smaller than that in the eastern and other northwestern China. The
22 anthropogenic dust produced by agricultural cultivations (e.g., land planning, plowing,
23 and disking) exerted a significant superimposed effect on high dust concentrations in
24 Dunhuang farmland prior to the growing season (i.e. from 1 April to 10 May). Strong
25 south valley wind and vertical mixing in daytime scavenged the pollution and weak
26 northeast mountain wind and stable inversion layer at night favorably accumulated the
27 air pollutants near the surface. In the afternoon (13:00–18:00 LT, local time), mean
28 SSA_{670} was 0.945 ± 0.04 that was predominant by dust particles, whereas finer

29 particles and lower SSA_{670} values ($\sim 0.90\text{--}0.92$) were measured at night, suggesting
30 the potential influence by the mixed dust-pollutants. During a typical biomass burning
31 event on 4 April 2012, $\sigma_{\text{ap},670}$ increased from $\sim 2.0 \text{ Mm}^{-1}$ to 4.75 Mm^{-1} and SSA_{670}
32 changed from ~ 0.90 to ~ 0.83 , implying remarkable modification of aerosol absorptive
33 properties induced by human activities. The findings of this study would help to
34 advance an in-depth understanding of the interaction among dust aerosol, atmospheric
35 chemistry, and climate change in desert source region.

36

37 **1. Introduction**

38 Asian mineral dust (also known as dust aerosol) in the atmosphere is deemed to
39 exert a profound impact on air quality and climate change. It can perturb the energy
40 budget of the Earth system directly through scattering and absorption of solar and
41 terrestrial radiation (Huang et al., 2009, 2014; Ge et al., 2010; Li et al., 2016) and
42 indirectly by altering cloud microphysical processes and related hydrological cycle
43 (Rosenfeld et al., 2001; J. Huang et al., 2005, 2006, 2010; Yin and Chen, 2007; W.
44 Wang et al., 2010; Creamean et al., 2013; Wu et al., 2016), as well as modifying snow
45 and ice surface albedo (Aoki et al., 2006; Huang et al., 2011; Wang et al., 2013; Qian
46 et al., 2014). In addition, alkaline mineral dust carries abundant organic matters and
47 iron ions deposited on the surface of earth, and hence affects biomass productivity in
48 the North Pacific Ocean and relevant atmosphere-ocean carbon exchange, which
49 plays a pivotal role in the global biogeochemical cycle and carbon cycle (Cao et al.,
50 2005; Jickells et al., 2005; Maher et al., 2010; Shao et al., 2011).

51 The Taklimakan Desert in northwestern China and Gobi Deserts in southern
52 Mongolia and northern China are widely regarded as two major active centers of dust
53 storms in East Asia (Sun et al., 2001; Zhao et al., 2006; Wang et al., 2008; Ge et al.,
54 2016). These extensive arid and desert zones frequently generate a great deal of tiny
55 soil particles every spring that are uplifted and entrained into the free atmosphere
56 layer via cold frontal cyclones (Zhang et al., 1997; Aoki et al., 2005; Kai et al., 2008;
57 J. Huang et al., 2009, 2010, 2014). Affected by mid-latitude prevailing westerlies,

58 these dust particles can transport long distances on a subcontinental scale, even sweep
59 across the remote Pacific Ocean and occasionally arrive at the west coast of North
60 America during the peak seasons of strong dust storms (Zhao et al., 2006; Uno et al.,
61 2009, 2011). They then have a far-reaching influence on climatic and environmental
62 changes both regionally and globally. Until now, there have been a large number of
63 intensive field experiments (e.g., ACE-Asia, ADEC, PACDEX, EAST-AIRC) and
64 ground-based aerosol monitoring networks (e.g., AERONET, SKYNET, CARSNET)
65 for probing the Asian mineral dust (Holben et al., 1998; Huebert et al., 2003;
66 Nakajima et al., 2003; Takamura et al., 2004; Eck et al., 2005; Mikami et al., 2006;
67 Huang et al., 2008a; Che et al., 2009, 2015; Li et al., 2011), which is crucial to aid in
68 thoroughly understanding the climatic effects of dust aerosols over East Asian domain.
69 Nevertheless, due to poorly sampled over desert source areas of northwest China, the
70 light scattering and absorption properties of mineral dusts in this region are far
71 inadequate and urgently need to be further surveyed.

72 The Intergovernmental Panel on Climate Change (IPCC, 2013) reported that the
73 symbol and magnitude of the radiative forcing of mineral dust is greatly reliant on the
74 accurate and reliable knowledge of aerosol total loading, microphysical and chemical
75 characteristics, as well as its spatiotemporal distribution. The current consensus is that
76 nearly pure dust aerosol in the globe has relatively low light-absorption, with
77 single-scattering albedo of $\sim 0.96\text{--}0.99$ (Dubovik et al., 2002; Anderson et al., 2003;
78 Uchiyama et al., 2005; Bi et al., 2014, 2016), which depends principally on the
79 fraction and mixing ways of ferric iron oxides (i.e. hematite and goethite) in dust
80 (Sokolik and Toon, 1999; Lafon et al., 2004, 2006). However, the coexistences of
81 both mineral dust and other types of aerosols originated from diverse human activities
82 (e.g., coal combustion, mobile source emissions, and biomass burning) are ubiquitous
83 in the real atmosphere, which increases the complexity and variability to aerosol key
84 parameters (Arimoto et al., 2004; Xu et al., 2004; Wang et al., 2015). When the lofted
85 dust plumes in desert source areas are traveled eastward across the polluted regions,
86 they commonly mix with anthropogenic pollutants and enhance heterogeneous
87 chemical reactions with other reactive gas species, and then may remarkably alter

88 their chemical and microphysical properties (Arimoto et al., 2006; Li and Shao et al.,
89 2009; Nie et al., 2014). It is well documented that the mineral dust might have already
90 mixed with polluted aerosols in near dust source regions of northwest China (i.e.
91 Inner Mongolian Gobi desert), besides the mixing processes on the transport pathway
92 (K. Huang et al., 2010). Xu et al. (2004) indicated that both dust aerosol and local
93 pollution sources coexisted in Yulin nearby the Mu Us desert of northwest China
94 during April 2001, which produced a significant influence on aerosol properties in the
95 region. Likewise, Li et al. (2010) analyzed trace gases and aerosols observed at
96 Zhangye (39.082°N, 100.276° E, 1460 m above MSL), a rural site within the Hexi
97 Corridor in northwest China during spring 2008, and uncovered that the mixing
98 between mineral dust and anthropogenic air pollutants can be omnipresent in this area,
99 including at nighttime or during severe dust events. It implies that prior to moving out
100 from the source region, dust particles were likely in connection with pollutants. For
101 the sparsely populated and lesser anthropogenic affected desert source regions in
102 northwest China (e.g., the Taklimakan Desert and its adjacent areas), the interaction
103 between local pollutions and mineral dust is deserved to explore in depth. This is of
104 prime importance to ascertain the relative contributions of two different aerosol
105 sources in atmospheric chemistry and regional climate change.

106 To advance a better understanding of the drought processes and dust-relevant
107 climatic impacts in northwest China (Huang et al., 2008b; Bi et al., 2011; G. Wang et
108 al., 2010), the Semi-Arid Climate and Environment Observatory of Lanzhou
109 University (henceforth referred to as SACOL, <http://climate.lzu.edu.cn/english/>)
110 carried out a comprehensive field campaign in Dunhuang during spring of 2012.
111 Dunhuang is situated at the westernmost fringe of Hexi Corridor in Gansu province,
112 close to the eastern edge of Kumtag Desert and about 450 km in the downwind zone
113 of Taklimakan Desert. It is an important town of the ancient Silk Road and the
114 transportation junction to the ancient western region, central Asia and Europe, which
115 has become a world-famous tourist city with a residential population of 200,000. The
116 agriculture and tourism are the dominant economic industries in Dunhuang. An array
117 of ground-based remote sensing and in situ instruments were set up during the

118 intensive period, which sought to investigate the aerosol key properties and its
119 climatic effect on regional scale (Bi et al., 2014). This study especially aims at
120 exploring the light scattering and absorption characteristics of mineral dust and
121 elucidates a potential anthropogenic influence. In the following, we first introduce the
122 site information and integrated measurements in Section 2. The primary results and
123 discussion are described in Sect. 3. The concluding remarks are given in Sect. 4 and
124 followed by the data availability in Sect. 5.

125 **2. Site and instrumentation**

126 **2.1. Site information**

127 SACOL's Mobile Facility (SMF) was deployed at Dunhuang farmland (40.492° N,
128 94.955° E, 1061 m above MSL) from 1 April to 12 June 2012. The site is a tiny
129 isolated oasis encompassed by east-west oriented Gobi desert and arid zones in
130 northwest China, with the Mingsha Shan (Echoing-Sand Mountain, elevation: ~ 1650
131 m) and Sanwei Mountain (elevation: ~ 1360 m) to the southwest, and the Beishan
132 Mountain (elevation: ~ 2580 m) to the north (Ma et al., 2013). The underlying surface
133 is typically covered with Gobi desert and saline-alkali land, and the principal
134 vegetation types consist of extremely sparse *Alhagi*. Dunhuang farmland is an
135 important agricultural base in Gobi desert, mainly planting hami melon and cotton.
136 There are not any significant manmade pollution sources (e.g., large-scale industries
137 or coal-fired power plants) around the monitoring station. The southwest-northeast
138 oriented National Highway 215 is about 400 m away from the west of the site (Figure
139 1a). The nearest Xihu township (with total population of 13,800) is approximately 7
140 km to the north of Dunhuang farmland, along with some scattered villages stretching
141 from west to east. Meanwhile, the station is located in the northeast of Dunhuang city
142 (~ 45 km), at the west of Guazhou country (~ 70 km), and at the southwest of Liuyuan
143 town (~ 80 km). In general, the major anthropogenic emission sources at Dunhuang
144 farmland likely include coal combustion from domestic heating and cooking, mobile
145 sources emissions from vehicle exhaust gas, and biomass burning from crop residue
146 and traditional ritual activities, which are ordinarily considered to be a puny

147 contribution to the mineral dust in present-day climate models. The climate pattern
148 here is characterized as extreme drought but with a moderate temperature during the
149 whole sampling period (temperature: $18.3\pm8.1^{\circ}\text{C}$, relative humidity, RH: $21.9\pm16.5\%$,
150 mean \pm standard deviation). Thereby the dust storms frequently take place in this
151 region from spring to early summer. Figure 1(b) shows the overall mean UV aerosol
152 index (AI) from 1 April to 12 June 2012 obtained from the Ozone Monitoring
153 Instrument (OMI) absorbing aerosol products (Torres et al., 2007). The AI dataset is a
154 very good indicator for mapping the distribution of absorbing aerosols (mainly black
155 carbon and dust). The distributions of high AI values (>0.7) are well consistent with
156 the dust-dominated geomorphological features in arid and semiarid regions (i.e.
157 Taklimakan Desert and Gobi deserts). It is very obvious that Dunhuang (marked with
158 a pentagram) is also situated at the primary dust belt of northwest China, as presented
159 in Figure 1b.

160 **2.2. Aerosol measurements**

161 An aerosol integrated observing system is installed in the laboratory of SMF and
162 utilized to continuously measure aerosol optical properties and size distribution in the
163 field. Prior to the experiment, the in-situ aerosol instruments and broadband
164 radiometers were newly purchased and calibrated by the manufacturers (Bi et al.,
165 2014). Table 1 summarizes the basic specification, measured variables, and accuracy
166 of surface-based instruments deployed at Dunhuang farmland throughout the
167 experiment. We shall describe sequentially as below.

168 An ambient particulate monitor (Model RP1400a, Rupprecht and Patashnick
169 Corp.) can collect the in situ mass concentration of the particulate matter with an
170 aerodynamic diameter less than $10\text{ }\mu\text{m}$ (PM_{10}) based on Tapered Element Oscillating
171 Microbalance (TEOM) technique. The measurement range and accuracy of PM_{10}
172 concentration levels are normally $0\text{--}5\text{ gm}^{-3}$ and $0.1\text{ }\mu\text{gm}^{-3}$, respectively. The heating
173 temperature ($\sim50^{\circ}\text{C}$) of the sampling tube may cause a partial loss of volatile and
174 semivolatile aerosol compounds and hence bring about a negative signal. In this study,
175 we eliminate all the negative values of PM_{10} concentrations, which account for less
176 than 1% of total data points.

177 An integrating nephelometer (Model 3563, TSI Inc.) is designed to simultaneously
178 measure the total scattering coefficients (σ_{sp}) and hemispheric backscattering
179 coefficients (σ_{bsp}) of aerosol particles at three wavelengths of 450, 550, and 700 nm,
180 with the σ_{sp} detection limits of 0.44, 0.17, and 0.26 Mm^{-1} ($1\ Mm^{-1}=10^{-6}\ m^{-1}$),
181 respectively (signal-to-noise ratio of 2) (Anderson et al., 1996). To quantify the
182 instrument drift and improve accuracy, we periodically perform the routine calibration
183 using air and high-purity CO_2 gases. Furthermore, the truncation errors of
184 near-forward scattering (i.e. nonideal angular effects) are corrected according to the
185 method of Anderson and Ogren (1998). The observed ambient RH values are mostly
186 smaller than 40% throughout the entire period. It is well-documented that RH-induced
187 the variations in aerosol light scattering coefficients are minimized under a low
188 sampling stream RH of 10–40% (Covert et al., 1972). In this paper, we computed the
189 scattering Ångström exponent at 450–700 nm (SAE 450/700 nm) from σ_{sp} at 450 nm
190 and σ_{sp} at 700 nm by utilizing a log-linear fitting algorithm. And thus σ_{sp} at 670 nm
191 ($\sigma_{sp,670}$) was logarithmic interpolated between $\sigma_{sp,450}$ and $\sigma_{sp,700}$.

192 A multi-angle absorption photometer (MAAP Model 5012, Thermo Electron
193 Corp.) is capable of observing the aerosol light absorption coefficient at 670 nm
194 ($\sigma_{ap,670}$) by filter based methods without requirement of post-measurement data
195 correction or parallel-measured aerosol light-scattering coefficients (Petzold et al.,
196 2002). The instrument detects an emitted light at 670 nm in the forward and back
197 hemisphere of airborne aerosols deposited on a fiber filter, which is used to improve
198 multiple scattering effects in the aerosol optical properties via a radiative transfer
199 scheme (Petzold et al., 2002, 2005). The sample flow rate is 1000 L/h, with flow error
200 of < 1%. We made use of a specific absorption efficiency at 670 nm of $6.5\pm0.5\ m^2 g^{-1}$
201 to estimate black carbon (BC) concentration from $\sigma_{ap,670}$ as recommended by Petzold
202 et al. (2002).

203 An Aerodynamic Particle Sizer (APS) spectrometer (Model 3321, TSI Inc.) can
204 continuously provide the real-time, high-resolution aerosol size distribution with
205 aerodynamic diameters from 0.5 to 20 μm range (52 channels). When extreme dust
206 episodes outbreak, an aerosol diluter (Model 3302A, TSI Inc.) is operated in series

207 with APS to reduce particle concentrations in high-concentration aerosols, which
208 offers a representative sampling that meets the input requirements of the APS
209 spectrometer. All the mentioned-above aerosol datasets were acquired at 5-minute and
210 hourly averages, and reported for sampling volumes under standard air conditions (i.e.,
211 1013.25 hPa and 20 °C).

212 **2.3. Other ground-based measurements**

213 A Micro-Pulse Lidar (Model MPL-4, Sigma Space Corp., U.S.A.) is a compact
214 and unattended apparatus for providing continuous data information of extinction
215 coefficient and depolarization ratio profiles of aerosols and clouds (Welton et al.,
216 2000). The MPL-4 emits a laser beam at 527 nm wavelength from a Nd:YLF pulsed
217 laser diode and receives the attenuated backscattering intensity and depolarized
218 signals from aerosol particles or cloud droplets with a 30-meter vertical resolution and
219 a 1-minute average interval. And we can acquire the accurate backscattering profile
220 by means of a series of corrections (e.g., dead time, background signal, afterpulse,
221 overlap, and range-corrected) according to the standard methods (Campbell et al.,
222 2002). The detailed data acquisition and retrieval algorithms of the lidar system can
223 be referred to the publications of Campbell et al. (2002) and Z. Huang et al. (2010).

224 A weather transmitter (Model WXT-520, Vaisala, Finland) is set up on the top of
225 the SMF trailer and recorded the air temperature (T in °C), relative humidity (RH),
226 ambient pressure (P, unit: hPa), wind speed and wind direction at 10 seconds interval.
227 In this article, we calculated the 5-minute and hourly averages from the raw data.

228 A dozen of state-of-the-art broadband radiometers were installed in a row on a
229 standard horizontal platform (~4 m above the surface) where the field of view was
230 unobstructed in all directions (Bi et al., 2014). The direct normal irradiance and
231 diffuse irradiance were independently measured by an incident pyrheliometer (Model
232 NIP, Eppley Lab.) and by a ventilated and shaded pyranometer (Model PSP, Eppley
233 Lab.), which were mounted on a two-axis automatic sun tracker (Model 2AP,
234 Kipp&Zonen). The global irradiance (0.285–2.8 μm) and downward longwave
235 irradiance (3.5–50 μm) were respectively gathered from a ventilated PSP pyranometer
236 and a ventilated and shaded pyrgeometer (Model PIR, Eppley Lab.). All irradiance

237 quantities were stored in a Campbell data logger with 1-minute resolution.
238 Additionally, a Total Sky Imager (Model TSI-880, YES Inc.) provides high-resolution
239 sky pictures every one minute during the daytime, which can detect and identify the
240 important weather conditions, such as dust storm, smoky pollution, rainy day, cloudy
241 or cloudless days.

242 **2.4. MERRA reanalysis products**

243 The MERRA (Modern–Era Retrospective Analysis for Research and Applications)
244 reanalysis assimilates a variety of conventional observations (i.e. temperature,
245 pressure, height, wind components) from surface weather stations, balloons, aircraft,
246 ships, buoys, and satellites from 1980 to the present, which is primarily committed to
247 improve upon the hydrologic cycle and energy budget for the science community
248 (Rienecker et al., 2011). In this paper, we took advantage of the 6-hourly average
249 wind fields at 500 hPa and 850 hPa levels from the MERRA reanalysis products.

250 **3. Results and discussion**

251 **3.1 Aerosol optical properties**

252 The aerosol single-scattering albedo (SSA) at 670 nm is defined as the ratio of the
253 light scattering coefficient ($\sigma_{sp,670}$) to the total extinction coefficient (the sum of $\sigma_{sp,670}$
254 and $\sigma_{ap,670}$). The SSA reflects the absorptive ability of aerosol particle and is a key
255 quantity in determining the sign (warming or cooling) of aerosol radiative forcing for
256 a certain underlying surface (Hansen et al., 1997; Ramanathan et al., 2001).

257 Figure 2 delineates the time series of hourly average PM_{10} mass concentration,
258 aerosol optical properties and size distribution at Dunhuang farmland during the
259 whole period. The overall mean, standard deviation, median, and different percentiles
260 of aerosol optical properties are also tabulated in Table 2. Aerosol optical features
261 exhibit dramatic day-to-day variations at Dunhuang. It is apparent that aerosol
262 loadings in April and early May are systematically higher than that in late May and
263 June, which agrees well with the results of columnar aerosol optical depths derived
264 from sky radiometer (Bi et al., 2014). This is chiefly attributed to the invading mineral
265 particulates from the frequent occurrences of intense dust storms in spring season.

266 The highly unstable synoptic cyclones (i.e. Mongolian cyclone) are regularly hovering
267 about the northern China and Mongolia in springtime, which trigger high-frequency
268 strong surface winds (Sun et al., 2001; Shao et al., 2011). The rising temperature in
269 this season leads to the melting of frozen soil and snow cover, leaving behind a loose
270 land surface and abundant bare soil sources, therefore affords a favorable condition
271 for dust storms. In addition, the contributions of local dust emissions couldn't be
272 ignored. We have clearly recorded that there were numerous agricultural cultivated
273 operations (e.g., land planning, plowing, and disking) throughout the Dunhuang
274 farmland district from 1 April to 10 May, which produced a great amount of
275 agricultural soil particles under strong winds, and thus had a significant superimposed
276 effect on elevated dust loading in the source and downwind regions prior to the
277 growing season. Figure S1 also presents visual photos of a variety of agricultural
278 cultivations in Dunhuang farmland before the planting period, which supplies direct
279 and powerful evidences for supporting our results. Those dust aerosols originated
280 from disturbed soils induced by human activities are interpreted as anthropogenic dust
281 (Tegen and Fung, 1995). Recently, some investigators estimated that anthropogenic
282 dust could account for approximately 25% of the global dust load (Ginoux et al., 2012;
283 Huang et al., 2015), and more than 53% of the anthropogenic sources mostly came
284 from semi-arid and semi-wet zones (Huang et al., 2015; Guan et al., 2016).
285 Nonetheless, it still remains a challenging task to distinguish between the natural and
286 anthropogenic fractions of mineral dust by employing a onefold technology, for
287 instance, laboratory analysis, in situ measurements, model simulations, active and
288 passive remote sensing methods (e.g., multichannel lidar, sun/sky radiometer), which
289 should be combined together (Bi et al., 2016). The overall mean PM_{10} concentration
290 was $113 \pm 169 \mu\text{gm}^{-3}$ (mean \pm standard deviation), which is $\sim 39\%$ lower than the
291 $184.1 \pm 212 \mu\text{gm}^{-3}$ average level in Dunhuang (40.1°N , 94.6°E , 1139 m) during the
292 spring of 2004 (Yan, 2007), and $\sim 26\%$ smaller than the value of $153 \pm 230 \mu\text{gm}^{-3}$
293 measured at Zhangye (39.082°N , 100.276°E , 1460 m) during spring of 2008 (Li et
294 al., 2010). Wang et al. (2015) obtained a total average PM_{10} concentration of 172 ± 180
295 μgm^{-3} at SACOL during late spring of 2007 (from 25 April to 25 June). And the mean

296 PM₁₀ levels at Hunshan Dake sandland in northern China during spring of 2001
297 varied between 226 and 522 μgm^{-3} (Cheng et al., 2005).

298 The hourly average aerosol light scattering coefficient at 670 nm ($\sigma_{\text{sp},670}$) was
299 $53.3 \pm 74.8 \text{ Mm}^{-1}$. The big standard deviations of PM₁₀ and σ_{sp} are possibly associated
300 with the injection of dust particles during the intense dust storms. Our result was
301 about a factor of 3 lower than the σ_{sp} at 500 nm in mentioned-above other sites over
302 northern China (i.e., $126 \pm 90 \text{ Mm}^{-1}$ for Dunhuang, $159 \pm 191 \text{ Mm}^{-1}$ for Zhangye,
303 $164 \pm 89 \text{ Mm}^{-1}$ for SACOL). Despite relatively small magnitude, the aerosol light
304 absorption coefficient at 670 nm ($\sigma_{\text{ap},670}$) also presented pronounced variations, with
305 an average value and a maximum of $3.2 \pm 2.4 \text{ Mm}^{-1}$ and 25.0 Mm^{-1} , respectively. This
306 result was a factor of 2 smaller than Yulin ($6 \pm 11 \text{ Mm}^{-1}$) nearby Mu Us desert in
307 northwest China (Xu et al., 2004), and a factor of 5~7 far less than that at Shangdianzi
308 rural site ($17.5 \pm 13.4 \text{ Mm}^{-1}$) in northern China (Yan et al., 2008) and Lin'an site (~ 23
309 Mm^{-1}) in southern China (Xu et al., 2002). The mean light scattering and absorption
310 coefficients in this study are comparable to the background levels ($\sim 46.9 \pm 16.9$ and
311 $2.5 \pm 1.1 \text{ Mm}^{-1}$) in Southern Great Plain of U.S.A (Delene and Ogren, 2002). This
312 suggests that extremely low levels of light absorption and scattering substances are
313 widely distributed throughout the Dunhuang region during the spring of 2012.
314 Therefore, a little perturbation stemmed from human activities (e.g., agricultural
315 cultivation, coal combustion from domestic heating and cooking, and biomass burning)
316 would undoubtedly exert a considerable impact on the light absorption property.

317 A few of strong dust episodes (4, 21–22, and 30 April, 1–3, 8–11, and 20 May, 4
318 and 10 June, corresponding to DOY 95, 112–113, 121, 122–125, 129–132, 141, 156,
319 and 162) could remarkably elevate the hourly average values of PM₁₀, σ_{sp} , σ_{ap} , and
320 aerosol size distribution (see Figure 2). During these dust events, the hourly PM₁₀
321 concentrations generally exceeded $1000 \mu\text{gm}^{-3}$ and even approached $2000 \mu\text{gm}^{-3}$,
322 which were tenfold greater than the overall mean level. The hourly σ_{sp} were more
323 than 400 Mm^{-1} or even close to 800 Mm^{-1} , and the corresponding σ_{ap} varied between
324 10 Mm^{-1} and 25 Mm^{-1} . Moreover, the peak values of aerosol number size distribution
325 concentrated in the particle diameters of 1–3 μm , which was consonant with the result

326 from remote sensing (Bi et al., 2014, 2016).

327 Figure 3 depicts the time evolutions of MPL normalized relative backscatter and
328 depolarization ratio at Dunhuang farmland from 1 April to 12 June 2012. The
329 depolarization ratio (δ) is a useful indication to discriminate between spherical
330 particles (δ of ~ 0 –0.1) and nonspherical particles (mainly dust aerosol, $\delta > 0.2$), since
331 it is very sensitive to the nonsphericity of scattering particle (Kobayashi et al., 1985;
332 Murayama et al., 1999; Shimizu et al., 2004; Huang et al., 2015). From Figure 3, we
333 can distinctly see that there was always a dense dust layer appeared at a height below
334 4 km during the whole experiment, with the peak value centered on 1.0–1.5 km,
335 which was above the planetary boundary layer (PBL). And the δ values commonly
336 reached above 0.3 ($> \sim 0.3$ –0.5) during the heavy dust events and varied between 0
337 and 0.1 under clear-sky conditions (e.g., 6–7 April, 14–15 and 29 May, 9 June).

338 **3.2 Diurnal variations**

339 Figure 4 illustrates the diurnal variations of wind vector (ms^{-1}), air temperature (T
340 in $^{\circ}\text{C}$), RH (%), PM_{10} (μgm^{-3}), $\sigma_{\text{sp},670}$ (Mm^{-1}), $\sigma_{\text{ap},670}$ (Mm^{-1}), aerosol number size
341 distribution (dN/dlogD in cm^{-3}), SAE at 450–700 nm, and SSA at 670 nm in
342 Dunhuang farmland from 1 April to 12 June 2012. Note that the APS spectrometer
343 was operated from 30 May to 12 June. A discernible wind vector was shown in the
344 diurnal variation, in other words, strong southwest wind and south wind dominated in
345 the daytime, from 11:00 to 24:00 LT (local time), and transformed into the weak
346 northeast wind prevailed from the midnight to the following morning of 10:00 LT.
347 The prominent phenomenon can be roughly interpreted by classical mountain-valley
348 wind circulation, which was primarily generated by the diurnal differences of
349 temperature between the mountain slope and the valley floor. During the daytime, the
350 huge Beishan Mountain slope heats up by the solar radiation more rapidly than the
351 valley floor, which causes convection above the mountain slope. The compensating
352 airflow is consequently directed toward the mountain slope, inducing upslope
353 southerly wind, or the valley wind, which usually peaks near midday and gradually
354 disappears after sunset. Conversely, at night, radiative cooling of the mountain slope
355 is more quickly than the valley floor, inducing the mountain wind, which generally

356 reaches maximum strength just before sunrise (Arya, 1999). Throughout the
357 experiment, air temperature displayed a large diurnal variation (with the diurnal
358 difference of $\delta T \sim 26$ °C) and RH always kept below 40% for the whole day. It is very
359 clear that the minimal T and maximal RH arose at around 06:00–07:00 LT, and the
360 maximal T and minimal RH occurred at about 16:00 LT, which represented an
361 energetic vertical turbulent motion in daytime and a stable radiative temperature
362 inversion during nighttime.

363 The aerosol optical parameters also exhibited striking diurnal variations, which
364 were closely related to the local meteorological elements. During the daytime
365 (10:00–18:00 LT), the PM_{10} concentration remained high level (~ 57 – $65 \mu\text{gm}^{-3}$) and
366 increased sharply from 19:00 LT and reached a maximum of $84.2 \mu\text{gm}^{-3}$ at 20:00 LT.
367 The PM_{10} began to decrease from 21:00 LT to the next morning. A low level (~ 40 – 46
368 μgm^{-3}) kept in the midnight (00:00–05:00 LT) and rose gradually from 06:00 LT and
369 attained a secondary peak value of $55.7 \mu\text{gm}^{-3}$ at 07:00 LT. The aerosol light
370 scattering ($\sigma_{\text{sp},670}$) presented a similar pattern with PM_{10} , but the maximal value (~ 42
371 Mm^{-1}) appeared at 13:00 LT, with the other two secondary peak values occurred at
372 20:00 ($\sim 34.1 \text{ Mm}^{-1}$) and 07:00 LT ($\sim 27.3 \text{ Mm}^{-1}$). The high levels of PM_{10} and σ_{sp}
373 during the daytime were primarily attributable to strong south wind from Gobi region
374 and local dust emissions. By contrast, aerosol light absorption coefficient ($\sigma_{\text{ap},670}$)
375 showed a more pronounced diurnal feature, which was well proved to be majorly
376 controlled by anthropogenic emissions (Li et al., 2010). The diurnal σ_{ap} always stayed
377 at a low level ($\sim 2.0 \text{ Mm}^{-1}$) from 13:00–18:00 LT, and also reached a maximum of 3.3
378 Mm^{-1} at 20:00 LT. Subsequently, σ_{ap} dramatically reduced from midnight and
379 preserved at a low value of about 2.2 Mm^{-1} from 02:00–04:00 LT, and remained a
380 steadily high level of ~ 2.7 – 2.9 Mm^{-1} from 05:00–10:00 LT. It was probably explained
381 as follows. The influences of local anthropogenic pollutants were commonly small in
382 the afternoon, because the strong southerly wind from Gobi deserts and powerful
383 daytime vertical convection mixing efficiently dilute local air pollutants. Whereas
384 weak northeast wind and stable temperature inversion at night facilitate the
385 accumulation of pollutants within the PBL, hence nighttime levels were normally

386 larger. Increasing human activities (e.g., domestic cooking, traffic emissions for
387 transportation and agriculture) in the early morning might also be responsible for the
388 morning peaks in the aerosol absorption coefficient. The σ_{ap} maximum at 20:00 LT
389 was presumably influenced by the mixture of mineral dust and anthropogenic
390 pollutants. This conclusion could be partly supported by the diurnal variation of SAE
391 at 450–700 nm (Figure 4), which showed high SAE values (~0.5–0.6) appeared at
392 02:00–10:00 LT and low SAE (~0.2–0.3) occurred on 13:00–22:00 LT. Generally,
393 large SAE around 0.6 represents small particles (e.g., urban-polluted aerosol or soot)
394 and low SAE less than 0.3 or negative value corresponds to coarse-dominated large
395 size particles (e.g., dust or sea salt) (Anderson et al., 2003).

396 Furthermore, aerosol number size distribution exhibited a noticeable supermicron
397 particles dominated in the entire day, probably linked to the predominant dust aerosol
398 in daytime and local anthropogenic emissions at nighttime. In this study, we
399 postulated that the aerosol light extinction at shortwave waveband is completely
400 caused by those particles with aerodynamic diameters of 10 μm or less. And the mass
401 scattering efficiency is designated as the ratio of σ_{sp} to PM_{10} concentration. Therefore,
402 the mass scattering efficiency for PM_{10} aerosols was about $0.67 \text{ m}^2\text{g}^{-1}$ in the afternoon
403 and $\sim 0.77 \text{ m}^2\text{g}^{-1}$ in the morning (~0.25 for heavy dust events, and ~0.70 for the whole
404 period). Our results were slightly less than $\sim 1.05 \text{ m}^2\text{g}^{-1}$ in Dunhuang during spring of
405 2004 (Yan, 2007). Similarly, the mass absorption efficiency was $\sim 0.017 \text{ m}^2\text{g}^{-1}$ under
406 heavy dust episodes and $\sim 0.08 \text{ m}^2\text{g}^{-1}$ in the morning, which was coincident with the
407 laboratory analytical result of natural desert aerosol at 660 nm (~0.01–0.02 m^2g^{-1}) in
408 Ulan Buh desert ($39^{\circ}26'\text{N}$, $105^{\circ}40'\text{E}$) of northern China (Alfaro et al., 2004). These
409 diurnal variations of the mass scattering and absorption efficiencies likely reflect the
410 changes in aerosol chemical composition. The SSA at 670 nm displayed distinct
411 differences between daytime and nighttime (Figure 4), and the two minimal values at
412 07:00 LT (~0.90) and 20:00 LT (~0.921) were consistent with the aforementioned
413 $\sigma_{ap,670}$ diurnal feature. The peak values of SSA (0.945 ± 0.04) for dominant dust
414 particles in the afternoon agreed well with other field campaigns in Zhangye
415 (0.95 ± 0.02 , Li et al., 2010) and Yulin (0.95 ± 0.04 , Xu et al., 2004). The daily low SSA

416 (0.90–0.92) or overall mean of 0.913 ± 0.055 at Dunhuang was still bigger than that in
417 both urban (0.81, Bergin et al., 2001) and rural regions (0.81–0.85, Li et al., 2007)
418 adjacent to Beijing, presumably ascribed to dust particles at night. Yan et al. (2008)
419 conducted two-year long field measurements at Shangdianzi Global Atmosphere
420 Watch (GAW) rural site in northern China (~150 km from Beijing) and estimated a
421 mean SSA of 0.88 ± 0.05 , but their data contained summer when aerosol scattering
422 coefficients may be strengthened by hygroscopic growth and secondary chemical
423 process.

424 The wind rose plots give a further insight into the linkages between the
425 meteorological factors and pollutants, as described in Figure 5. In the morning
426 (06:00–09:00 LT), a marked northeast wind was prevalent and wind speed was mostly
427 less than 4 ms^{-1} , which revealed that emissions were primarily descended from nearby
428 farmlands and rural residences (Figure 5a). Although a prominent northwest wind
429 mainly occurred in the evening hours (19:00–22:00 LT), the east wind and southwest
430 wind also appeared, which indicated that anthropogenic pollutions came from both
431 local sources and a relatively large region along the valley (Figure 5b). And Figure 5c
432 showed the predominant winds were northeast and southwest winds in Dunhuang area,
433 with the maximal hourly-averaged wind speed exceeding 10 ms^{-1} . It was very distinct
434 that the southwest and northwest winds created higher levels of PM_{10} mass
435 concentration ($>250 \text{ } \mu\text{gm}^{-3}$), aerosol light scattering coefficient ($\sigma_{\text{sp}} > 150 \text{ Mm}^{-1}$) and
436 absorption coefficient ($\sigma_{\text{ap}} > 8 \text{ Mm}^{-1}$), whereas northeast wind generated slightly
437 smaller concentrations of PM_{10} ($\sim 50\text{--}100 \text{ } \mu\text{gm}^{-3}$), σ_{sp} ($\sim 30\text{--}60 \text{ Mm}^{-1}$) and σ_{ap} ($\sim 2\text{--}4 \text{ Mm}^{-1}$). This was possibly implied that southwest and northwest winds may bring
438 about dust particles and northeast wind may transport the air pollutants.
439

440 **3.3 Local anthropogenic emission sources**

441 As mentioned above, crop residue burning and agricultural cultivated operations
442 before the growing season could produce local emission source proximity to the study
443 area. And sporadic straw burning was indeed to happen throughout the Dunhuang
444 farmland from 1 April to 10 May 2012, which was the major source of black carbon
445 surrounding the site. To clarify the potential anthropogenic influence on aerosol

446 optical properties in desert region, we investigated a typical biomass burning event.

447 Figure 6 outlines the time series of 5-minute average wind vector (ms^{-1}), PM_{10}
448 (μgm^{-3}), σ_{sp} at 450, 550, and 700 nm (Mm^{-1}), SAE (450–550, 550–700, and 450–700
449 nm), $\sigma_{\text{ap},670}$ (Mm^{-1}), and SSA at 670 nm during a typical Tomb-sweeping Day on 4
450 April 2012. Tomb-sweeping Day is a Chinese traditional festival for sacrifice rites, in
451 commemoration of the dead ancestors. To pay homage to loved ones, the people
452 burned a lot of joss sticks, candles, and paper offerings, and set off firecrackers in that
453 day throughout the China, which would emit a great amount of air pollutants, such as,
454 biomass burning aerosol, sulfur dioxide, organic matter, and fugitive dust. From
455 Figure 6a, slight and variable winds (with wind speed $<4 \text{ ms}^{-1}$) mainly came from
456 northeasterly from 00:00 to 12:00 LT, and abruptly changed into weak southeast wind
457 and south wind, finally, gradually intensified southwest wind ($>10 \text{ ms}^{-1}$) were
458 predominant and triggered a severe dust storm from 15:00 LT to the midnight. Prior to
459 the occurrence of dust episode, the aerosol optical characteristics varied stably, but a
460 moderate increase was evident during 08:00 to 10:00 LT. For instance, PM_{10}
461 concentration gradually increased from background level $\sim 30 \mu\text{gm}^{-3}$ to a maximum of
462 $62.5 \mu\text{gm}^{-3}$ at about 09:00 LT, $\sigma_{\text{sp},550}$ from $\sim 15 \text{ Mm}^{-1}$ to 49.6 Mm^{-1} , and $\sigma_{\text{ap},670}$ from
463 $\sim 2.0 \text{ Mm}^{-1}$ to 4.75 Mm^{-1} . It is ascribed to the contribution of biomass burning in the
464 process of ritual activities during Tomb-sweeping Day. The SAE value at 450–700 nm
465 remained invariant (~ 0.50) before 08:00 LT and sharply rose to a maximal value of
466 0.87 at 09:00 LT, afterwards gently reduced to around 0.4, which indicated that the
467 fine-mode particles (i.e. black carbon or soot) were dominated from 08:00 to 10:00 LT.
468 And the SAEs at various wavelengths systematically decreased from 0.4 at 15:00 LT
469 to -0.25 at midnight, suggesting the dust-dominant coarse-mode particles were
470 prevailed. Meanwhile, the lidar depolarization ratio (δ) also further verified the
471 existence of small size soot particle. The δ value preserved steadily at 0.15–0.20
472 during 08:00 to 10:00 LT, and rapidly attained above 0.3 from 15:00 LT and even
473 approached 0.50 at intense dust storm (see Fig. 3). The diurnal variation of SSA_{670}
474 showed a more prominent feature, as illustrated in Figure 6f. The SSA_{670} values kept
475 between 0.88 and 0.92 during 00:00 to 07:00 LT, and dramatically reduced to a

476 minimum of ~0.83 at 08:30–09:00 LT, then rose to 0.925, confirming the very striking
477 impacts by light absorbing substances. After 15:00 LT, the SSA₆₇₀ gradually increased
478 and reached up to about 0.96 during dust storms occurred. Bi et al. (2014) have
479 demonstrated that dust aerosols shortwave radiative forcing (ARF) at the top of the
480 atmosphere (TOA) was warming effect when SSA₅₀₀ was less than 0.85, but was
481 cooling effect when SSA₅₀₀ was greater than 0.85 for Dunhuang Gobi desert area with
482 high surface albedo. Thereby such significant anthropogenic influence would clearly
483 modify the microphysical and chemical properties of dust aerosols and eventually
484 exert remarkable impacts on environmental quality and climatic forcing of dust
485 particle on both local and regional scales.

486 **3.4 Dust cases study**

487 In this section, we particularly explored the absorptive and optical characteristics
488 of mineral dust during several typical dust cases and discussed its influence on Earth's
489 radiation balance. Figure 7 provides the wind fields at 500 hPa and 850 hPa levels
490 during three heavy dust events, based on MERRA reanalysis products. Note that
491 Dunhuang farmland is marked with a red pentagram and the white areas at 850 hPa
492 represent the missing values. It is evident that East Asian region was governed by the
493 powerful and stable westerlies at 500 hPa height on 30 April and 1 May 2012,
494 whereas two very strong synoptic cyclones at 500 hPa upper atmosphere hovered
495 about the Mongolia and Kazakhstan respectively on 10 June 2012, matching up with
496 corresponding cyclone systems appeared at the 850 hPa level. Although there were
497 missing data in most northwest China, extremely intense northeast wind and east wind
498 ($> 10 \text{ ms}^{-1}$) at 850 hPa level were prevailed over the northern territory of Xinjiang
499 Uygur Autonomous Region during the selected dust storms, where was close to the
500 Dunhuang site. This could be well confirmed by the simultaneous observations of
501 wind speed and wind direction nearby the surface at Dunhuang farmland, as
502 delineated in Figure 8(a). The measured strong northeast and east winds were always
503 dominated in Dunhuang and 5-min average wind speed attained above 10 ms^{-1} during
504 intense dust episodes. The selected three dust processes regularly lasted for several
505 hours during daytime (e.g., from 10:00 to 18:00 LT) and the dust event on 1 April

506 could be persistent to the midnight, which contributed massive dust particles into the
507 atmosphere.

508 There were no measurements of aerosol scattering coefficient (σ_{sp}) on 10 June due
509 to equipment failure. From Figure 8, we could know that PM_{10} concentrations usually
510 exceeded $400 \mu\text{gm}^{-3}$ and even reached up to $1000 \mu\text{gm}^{-3}$ during the heavy dust storms,
511 and corresponding $\sigma_{sp,550}$ and $\sigma_{ap,670}$ values were generally more than 100 Mm^{-1} and 5 Mm^{-1} ,
512 respectively, or approached 350 Mm^{-1} and 15 Mm^{-1} in our cases. It is worthy
513 note that even though pure dust aerosol possesses relatively low light-absorption
514 ability (with mass absorption efficiency at 660 nm of $\sim 0.01\text{--}0.02 \text{ m}^2\text{g}^{-1}$), the injection
515 of plentiful mineral particles from dust episodes led to considerably high values of
516 $\sigma_{ap,670}$. And the SAEs at diverse wavelengths commonly kept at 0.50 or more during
517 non-dust conditions, while corresponding values dramatically reduced to $-0.25\text{--}0$
518 under heavy dust cases, which is taken for granted. The SSA_{670} also exhibited
519 apparent diurnal variations in Figure 8(f). The SSA_{670} values regularly preserved
520 between 0.88 and 0.92 at nighttime or non-dust weather, and gradually increased to a
521 maximum of $\sim 0.96\text{--}0.98$ during strong dust processes, which were close to the
522 measured value of $\sim 0.97\text{--}0.99$ for nearly pure Asian dust particles (Anderson et al.,
523 2003; Bi et al., 2016). These abundant mineral particles in desert source regions were
524 very likely mixed with local air pollutants especially at night, when the anthropogenic
525 pollutions favorably built up within the PBL. Moreover, airborne dust particles
526 ordinarily traveled long distances to downstream areas via synoptic cyclones, which
527 would deteriorate the ambient air quality and affected atmospheric chemistry and
528 climate change on regional scale.

529 Figure 9 describes the column-integrated aerosol optical depth (AOD) at five
530 wavelengths (400, 500, 675, 870, and 1018 nm) versus Ångström exponent (α) at
531 400–870 nm on two completely clear-sky days (14 May and 9 June) and two typical
532 dusty days (30 April and 10 June), which were acquired from sky radiometer (Model
533 POM-01, PREDE Co. Ltd.). The sky radiometer can measure the direct solar
534 irradiances and sky diffuse radiances at narrow spectral wavebands during daytime
535 with 10-minute interval. And the columnar aerosol optical properties under cloudless

536 conditions were retrieved from sophisticated inversion algorithms (Nakajima et al.,
537 1996). Note that the cloud contaminated datasets have been eliminated by means of a
538 series of cloud screening procedures developed by Khatri and Takamura (2009). From
539 Figure 9, all AOD values under clear-sky days kept very stable variations throughout
540 the day and ranged from 0.02 to 0.12, which were comparable to the clean
541 background levels in the central Tibetan Plateau (Xia et al., 2011) and Badain Jaran
542 Desert (Bi et al., 2013). And the corresponding Ångström exponent α on 14 May and
543 9 June were greater than 0.6, indicating extremely low aerosol loading. In contrast,
544 the AODs under dust events (30 April and 10 June) displayed pronounced diurnal
545 variations and all AOD values were larger than 0.30 (with maximum of 0.60), and α
546 varied between 0.10 and 0.25, representing high dust concentration levels. These
547 elevated dust particles in the atmosphere would readjust the energy distributions of
548 solar radiative fluxes at the surface.

549 Based on aforementioned measurements of total sky imager, micro-pulse lidar and
550 sky radiometer, we identified three completely clear-sky days (14 May, 29 May, and 9
551 June) and two “clean” dusty days (30 April and 10 June). The “clean” dusty days in
552 this study were denoted as the dust storms weather without the influence of clouds.
553 This afforded us a good opportunity to elucidate the potential impacts of dust events
554 on radiation balance at the ground. Figure 10 draws the 1-minute average solar direct
555 normal radiation, sky diffuse radiation, total shortwave radiation, and downward
556 long-wave radiation fluxes under the selected five days, which were derived from the
557 high-precision broadband radiometers as described in section 2.3. All radiative
558 quantities presented smooth diurnal variations under clear-sky cases (14 May, 29 May,
559 and 9 June). The airborne dust particles impeded the sunlight to the ground through
560 scattering and absorbing solar radiation, for instance, they could significantly reduced
561 the surface direct radiative fluxes in daytime about $200\text{--}350\text{ Wm}^{-2}$ (Figure 10a),
562 whereas considerably increased the surface diffuse radiative fluxes up to $\sim 150\text{--}300\text{ Wm}^{-2}$
563 (Figure 10b). As a result, the overall attenuation effect on total shortwave
564 radiative fluxes varied between -150 and -50 Wm^{-2} . The incoming solar energy
565 absorbed by dust particles would heat the atmospheric dust layer (Bi et al., 2014) that

566 likely played a profound role in the structure of atmospheric boundary layer and cloud
567 microphysical process (J. Huang et al., 2006, 2010; Li et al., 2016). The downward
568 longwave radiation (DLW) at the surface was majorly reliant on the clouds, water
569 vapor, CO₂, and other greenhouse gases (Wang and Dickinson, 2013). In general, the
570 presence of clouds in the atmosphere would fluctuate drastically the diurnal variation
571 of DLW. And the smooth changes of DLW under both clear-sky and dusty days in
572 Figure 10d revealed the robustness of the cloud screening method used in this paper.
573 Figure 10d displays that the DLW values under dusty cases were always greater than
574 that in clear-sky cases, with the total average differences of +40~+60 Wm⁻². The
575 warming dust layer could enhance the surface DLW, hence the dust particles should
576 contribute a large percentages to the increased DLW, but not all. This is because the
577 potential water vapor in the atmosphere could substantially affect the DLW variations.
578 For instance, the DLW on 9 June were distinctly larger than that in other cloudless
579 cases (i.e., 14 and 29 May) and the dusty case of 30 April. It is partly attributable to
580 the higher RH values on 9 June than that in other days, as shown in Figure S2.

581 **4. Concluding remarks**

582 In this article, we surveyed the optical features and size distribution of dust
583 aerosol in a Gobi farmland region of northwest China from 1 April to 12 June 2012,
584 and uncovered a potential anthropogenic influence. The overall average PM₁₀ mass
585 concentration, light scattering coefficient ($\sigma_{sp,670}$), absorption coefficient ($\sigma_{ap,670}$), and
586 single-scattering albedo (SSA₆₇₀) throughout the experiment were $113\pm169 \mu\text{gm}^{-3}$,
587 $53.3\pm74.8 \text{ Mm}^{-1}$, $3.2\pm2.4 \text{ Mm}^{-1}$, and 0.913 ± 0.05 , which were comparable to the
588 background levels in southern United States, but lower than that in the eastern and
589 other northwestern China. Frequent dust storms could markedly elevate dust loading
590 and dominated the temporal evolution of airborne aerosol in Dunhuang region. The
591 hourly average PM₁₀, $\sigma_{sp,670}$, and $\sigma_{ap,670}$ reached up to $2000 \mu\text{gm}^{-3}$, 800 Mm^{-1} , and 25
592 Mm^{-1} during the severe dust events that were tenfold greater than the total mean
593 values, along with the particle size concentrated in diameters of 1–3 μm . Meanwhile,
594 the correspondingly high SSA₆₇₀ (~0.96 –0.98) and depolarization ratio (δ of ~0.3 –0.5),

595 and low SAE (-0.25~0) values adequately verified the presence of coarse-mode
596 mineral dust, resulting in significantly reducing the solar direct radiation (~200–350
597 Wm^{-2}) and increasing diffuse radiation (~150–300 Wm^{-2}) at the surface, and hence
598 affecting the regional climate.

599 Owing to relatively low aerosol levels observed in Dunhuang, any slightly
600 anthropogenic perturbation would induce a substantial influence on the aerosol
601 physicochemical property. The so-called anthropogenic dust produced by agricultural
602 cultivating operations (e.g., land planning, plowing, and disking) brought a significant
603 superimposed effect on high dust concentrations in Dunhuang farmland prior to the
604 growing season, when the underlying surface was primarily covered with bare soils.
605 This to some extent could be interpreted the drastic changes of aerosol loadings in
606 April and early May. In contrast, the local pollutant emissions mainly affected the
607 absorptive characteristics of dust aerosol especially at night, when the anthropogenic
608 pollutants favorably accumulated within the PBL and likely mixed with abundant
609 mineral dust in the atmosphere. Therefore, the diurnal variations of $\sigma_{\text{ap},670}$ and SSA_{670}
610 exhibited prominent features, both of which have got two peak values at night and in
611 the early morning. For instance, $\sim 3.3 \text{ Mm}^{-1}$ at 20:00 LT and $\sim 2.9 \text{ Mm}^{-1}$ at 08:00 LT
612 for $\sigma_{\text{ap},670}$ were much more than the low level of $\sim 2.0 \text{ Mm}^{-1}$ in the afternoon, which
613 was attributed to the influence of anthropogenic emissions. And the mean SSA_{670} of
614 predominant dust particles in the afternoon (13:00–18:00 LT) was 0.945 ± 0.04 that
615 was evidently greater than the mixed dust-pollutants dominated SSA_{670} of ~ 0.90 at
616 07:00 LT and ~ 0.92 at 20:00 LT.

617 The findings of this study directly demonstrated that mineral dust in Dunhuang
618 farmland was substantially affected by anthropogenic pollutants, which would help to
619 promote a further insight into the interaction among dust aerosol, atmospheric
620 chemistry, and regional climate in desert source region. However, the potentially
621 anthropogenic influences on dust aerosol in Dunhuang showed far smaller than that
622 measured in eastern China, which was expected for the remote desert areas with
623 sparsely population and lesser human activities. Recently, Huang et al. (2016)
624 indicated that most of the drylands in the world were fragile and susceptible to climate

625 change and human activities and would be subject to the acceleration of drought
626 expansion by the end of twenty-first century. Under the possible scenario, it is very
627 critical to make clear the relative contributions of natural and anthropogenic forcing
628 factors on global climate change, such as, natural dust and anthropogenic dust, which
629 calls for further investigating through a lot more observations and technologies.

630 **5. Data availability**

631 All ground-based aerosol datasets used in this paper are available via contacting
632 Jianrong Bi (bijr@lzu.edu.cn).

633

634 *Acknowledgements.* This work was jointly supported by the Foundation for Innovative
635 Research Groups of the National Natural Science Foundation of China (41521004), the National
636 Natural Science Foundation of China (41575015 and 41405113), the Fundamental Research Funds
637 for the Central Universities lzujbky-2015-4 and lzujbky-2016-k01, and the China 111 Project (No.
638 B 13045). The authors would like to express special thanks to David S. Covert for guiding the
639 in-situ aerosol measurements. We thank the OMI and MERRA teams for supplying the satellite
640 data and reanalysis products used in this study. We also appreciate all anonymous reviewers for
641 their insightful and valuable comments.

642

643 **References**

644 Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., and Maillé, M.: Iron oxides and
645 light absorption by pure desert dust: An experimental study, *J. Geophys. Res.*, 109, D08208,
646 doi:10.1029/2003JD004374, 2004.

647 Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P.,
648 Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N.
649 A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength total
650 scatter-backscatter nephelometer, *J. Atmos. Oceanic Technol.*, 13: 967–986, 1996.

651 Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563
652 Integrating Nephelometer, *Aerosol Sci. Technol.*, 29, 57–69, doi:10.1080/02786829808965551,
653 1998.

654 Anderson, T. L., Masonis, S. J., Covert, D. S., Ahlquist, N. C., Howell, S. G., Clarke, A. D., and
655 McNaughton, C. S.: Variability of aerosol optical properties derived from in situ aircraft
656 measurements during ACE-Asia, *J. Geophys. Res.*, 108(D23), 8647,
657 doi:10.1029/2002JD003247, 2003.

658 Aoki, I., Kurosaki, Y., Osada, R., Sato, T., and Kimura, F.: Dust storms generated by mesoscale
659 cold fronts in the Tarim Basin, Northwest China, *Geophys. Res. Lett.*, 32, L06807,
660 doi:10.1029/2004GL021776, 2005.

661 Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.:
662 Atmospheric aerosol deposition on snow surfaces and its effect on albedo, *SOLA*, 2, 13–16,
663 doi:10.2151/sola.2006–004, 2006.

664 Arimoto, R., Zhang, X. Y., Huebert, B. J., Kang, C. H., Savoie, D. L., Prospero, J. M., Sage, S. K.,
665 Schloesslin, C. A., Khaing, H. M., and Oh, S. N.: Chemical composition of atmospheric
666 aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia, *J. Geophys. Res.*,
667 109, D19S04, doi:10.1029/2003JD004323, 2004.

668 Arimoto, R., Kim, Y. J., Kim, Y. P., Quinn, P. K., Bates, T. S., Anderson, T. L., Gong, S., Uno, I.,
669 Chin, M., Huebert, B. J., Clarke, A. D., Shinozuka, Y., Weber, R. J., Anderson, J. R., Guazzotti,
670 S. A., Sullivan, R. C., Sodeman, D. A., Prather, K. A., and Sokolik, I. N.: Characterization of
671 Asian dust during ACE-Asia, *Global Planet. Change*, 52, 23–56,
672 doi:10.1016/j.gloplacha.2006.02.013, 2006.

673 Arya, S. P.: *Air Pollution Meteorology and Dispersion*, 310 pp., Oxford University Press, New
674 York, 1999.

675 Bergin, M. H., Cass, G. R., Xu, J., Fang, C., Zeng, L. M., Yu, T., Salmon, L. G., Kiang, C. S., Tang,
676 X. Y., Zhang, Y. H., and Chameides, W. L.: Aerosol radiative, physical, and chemical properties
677 in Beijing during June 1999, *J. Geophys. Res.*, 106(D16), 17969–17980, doi:
678 10.1029/2001JD900073, 2001.

679 Bi, J., Huang, J., Fu, Q., Wang, X., Shi, J., Zhang, W., Huang, Z., and Zhang B.: Toward
680 characterization of the aerosol optical properties over Loess Plateau of Northwestern China, *J.*
681 *Quant. Spectrosc. Radiat. Transfer.*, 112, 346–360, doi:10.1016/j.jqsrt.2010.09.006, 2011.

682 Bi, J., Huang, J., Fu, Q., Ge, J., Shi, J., Zhou, T., and Zhang, W.: Field measurement of clear-sky
683 solar irradiance in Badain Jaran Desert of Northwestern China, *J. Quant. Spectrosc. Radiat.*

684 Transf., 122, 194–207, doi:10.1016/j.jqsrt.2012.07.025, 2013.

685 Bi, J., Shi, J., Xie, Y., Liu, Y., Takamura, T., and Khatri, P.: Dust aerosol characteristics and
686 shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012, J.
687 Meteor. Soc. Jpn, Ser. II, 92A, 33–56, DOI:10.2151/jmsj.2014–A03, 2014.

688 Bi, J., Huang, J., Holben, B., and Zhang, G.: Comparison of key absorption and optical properties
689 between pure and transported anthropogenic dust over East and Central Asia, Atmos. Chem.
690 Phys., 16, 15501–15516, doi:10.5194/acp–16–15501–2016, 2016.

691 Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott, V.
692 S., and Hwang, I. H.: Full-Time, eye-safe cloud and aerosol lidar observation at Atmospheric
693 Radiation Measurement program sites: Instruments and data processing, J. Atmos. Oceanic
694 Technol., 19, 431–442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2, 2002.

695 Cao, J. J., Lee, S. C., Zhang, X. Y., Chow, J. C., An, Z. S., Ho, K. F., Watson, J. G., Fung, K.,
696 Wang, Y. Q., and Shen, Z. X.: Characterization of airborne carbonate over a site on Asian dust
697 source regions during 2002 spring and its climatic and environmental significance, J. Geophys.
698 Res., 110, D03203, doi:10.1029/2004JD005244, 2005.

699 Che, H., Zhang, X. Y., Chen, H. B., Damiri, B., Goloub, P., Li, Z., Zhang, X., Wei, Y., Zhou, H.,
700 Dong, F., Li, D., and Zhou, T.: Instrument calibration and aerosol optical depth validation of the
701 China Aerosol Remote Sensing Network, J. Geophys. Res., 114, D03206,
702 doi:10.1029/2008JD011030, 2009.

703 Che, H., Zhang, X.–Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X.–C., Wang,
704 H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu,
705 J., Chen, Q., and Shi, G.: Ground–based aerosol climatology of China: aerosol optical depths
706 from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, Atmos. Chem.
707 Phys., 15, 7619–7652, doi:10.5194/acp–15–7619–2015, 2015.

708 Cheng, T., Lu, D., Wang, G., and Xu, Y.: Chemical characteristics of Asian dust aerosol from
709 Hunshan Dake Sandland in Northern China, Atmos. Environ., 39, 2903–2911,
710 doi:10.1016/j.atmosenv.2004.12.045, 2005.

711 Covert, D. S., Charlson, R. J., and Ahlquist, N. C.: A study of the relationship of chemical
712 composition and humidity to light scattering by aerosols, J. Appl. Meteo., 11: 968–976, 1972.

713 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A.

714 B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., and Prather, K. A.: Dust and
715 biological aerosols from the Sahara and Asia influence precipitation in the western U.S.,
716 *Science*, 339, 1572–1578, doi:10.1126/science.1227279, 2013.

717 Delene, D. and Ogren, J. A.: Variability of aerosol optical properties at four North American
718 surface monitoring sites, *J. Atmos. Sci.*, 59(6), 1135–1150,
719 doi:10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2, 2002.

720 Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and
721 Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in
722 worldwide locations, *J. Atmos. Sci.*, 59, 590–608, 2002.

723 Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., Chatenet, B., Gomes,
724 L., Zhang, X.-Y., Tsay, S.-C., Ji, Q., Giles, D., and Slutsker, I.: Columnar aerosol optical
725 properties at AERONET sites in central eastern Asia and aerosol transport to the tropical
726 mid-Pacific, *J. Geophys. Res.*, 110, D06202, doi:10.1029/2004JD005274, 2005.

727 Ge, J., Su, J., Ackerman, T. P., Fu, Q., Huang, J., and Shi, J.: Dust aerosol optical properties
728 retrieval and radiative forcing over northwest China during the 2008 China–U.S. joint field
729 experiment, *J. Geophys. Res.*, 115, D00K12, doi:10.1029/2009JD013263, 2010.

730 Ge, J., Liu, H., Huang, J., and Fu, Q.: Taklimakan Desert nocturnal low-level jet: climatology and
731 dust activity, *Atmos. Chem. Phys.*, 16, 7773–7783, doi:10.5194/acp-16-7773-2016, 2016.

732 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of
733 anthropogenic and natural sources and their emission rates based on MODIS Deep Blue aerosol
734 products, *Rev. Geophys.*, 50, RG3005, doi:10.1029/2012RG000388, 2012.

735 Guan, X., Huang, J., Zhang, Y., Xie, Y., and Liu, J.: The relationship between anthropogenic dust
736 and population over global semi-arid regions, *Atmos. Chem. Phys.*, 16, 5159–5169,
737 doi:10.5194/acp-16-5159-2016, 2016.

738 Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, *J. Geophys. Res.*, 102,
739 6831–6864, 1997.

740 Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A.,
741 Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, F., and Smirnov, A., AERONET—A
742 federated instrument network and data archive for aerosol characterization, *Remote Sens.*
743 *Environ.*, 66, 1–16, 1998.

744 Huang, J., Minnis, P., Lin, B., Yi, Y., Khaiyer, M. M., Arduini, R. F., Fan, A., and Mace, G. G.:
745 Advanced retrievals of multilayered cloud properties using multispectral measurements, *J.*
746 *Geophys. Res.*, 110, D15S18, doi:10.1029/2004JD005101, 2005.

747 Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and Ayers, J. K.: Satellite-based
748 assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia,
749 *Geophys. Res. Lett.*, 33, L19802, doi:10.1029/2006GL026561, 2006.

750 Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhang, Q., Yi, Y., and Ayers, J. K.: Long-range
751 transport and vertical structure of Asian dust from CALIPSO and surface measurements during
752 PACDEX, *J. Geophys. Res.*, 113, D23212, doi:10.1029/2008JD010620, 2008a.

753 Huang, J., Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z., Yang, S., Zhang, B.,
754 Wang, G., Feng, G., Yuan, J., Zhang, L., Zuo, H., Wang, S., Fu, C., and Chou, J.: An overview of
755 the semi-arid climate and environment research observatory over the Loess Plateau, *Adv.*
756 *Atmos. Sci.*, 25, 906–921, doi:10.1007/s00376-008-0906-7, 2008b.

757 Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan dust
758 aerosol radiative heating derived from CALIPSO observations using the Fu–Liou radiation
759 model with CERES constraints, *Atmos. Chem. Phys.*, 9, 4011–4021,
760 doi:10.5194/acp-9-4011-2009, 2009.

761 Huang, J., Minnis, P., Yan, H., Yi, Y., Chen, B., Zhang, L., and Ayers, J. K.: Dust aerosol effect on
762 semi-arid climate over Northwest China detected from A–Train satellite measurements, *Atmos.*
763 *Chem. Phys.*, 10, 6863–6872, doi:10.5194/acp-10-6863-2010, 2010.

764 Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R., Ye, H., and Warren, S. G.: Dust and black
765 carbon in seasonal snow across northern China, *Bull. Amer. Meteor. Soc.*, 92, 175–181,
766 doi:10.1175/2010BAMS3064.1, 2011.

767 Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East
768 Asian arid and semiarid regions, *J. Geophys. Res.*, 119, 11398–11416,
769 doi:10.1002/2014JD021796, 2014.

770 Huang, J. P., Liu, J. J., Chen, B., and Nasiri, S. L.: Detection of anthropogenic dust using
771 CALIPSO lidar measurements, *Atmos. Chem. Phys.*, 15, 11653–11665,
772 doi:10.5194/acp-15-11653-2015, 2015.

773 Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate

774 change, *Nature Clim. Change*, 6(2), 166–171, doi:10.1038/nclimate2837, 2016.

775 Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin, Y., and Fu, J. S.: Mixing of Asian dust with
776 pollution aerosol and the transformation of aerosol components during the dust storm over
777 China in spring 2007, *J. Geophys. Res.*, 115, D00K13, doi:10.1029/2009JD013145, 2010.

778 Huang, Z., Huang, J., Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S.-C., and Shi, J.: Dust
779 aerosol vertical structure measurements using three MPL lidars during 2008 China–U.S. joint
780 dust field experiment, *J. Geophys. Res.*, 115, D00K15, doi:10.1029/2009JD013273, 2010.

781 Huebert, B. J., Bates, T., Russell, P. B., Shi, G., Kim, Y. J., Kawamura, K., Carmichael, G., and
782 Nakajima, T.: An overview of ACE–Asia: Strategies for quantifying the relationships between
783 Asian aerosols and their climatic impacts, *J. Geophys. Res.*, 108(D23), 8633,
784 doi:10.1029/2003JD003550, 2003.

785 Intergovernmental Panel on Climate Change (IPCC): *Climate Change 2013: The Physical Science
786 Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
787 Panel on Climate Change*, edited by Stocker, T. F., D. Qin, G. –K. Plattner, M. Tignor, S. K.
788 Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley. Cambridge University Press,
789 Cambridge, United Kingdom and New York, NY, USA, 1535 pp, 2013.

790 Jickells, T., An, Z., Andersen, K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce,
791 R., Hunter, K., Kawahata, H., Kubilay, N., laRoche, J., Liss, P., Mahowald, N., Prospero, J.,
792 Ridgwell, A., Tegen, I., and Torres, R.: Global iron connections between desert dust, ocean
793 biogeochemistry, and climate, *Science*, 308, 67–71, doi:10.1126/science.1105959, 2005.

794 Kai, K., Nagata, Y., Tsunematsu, N., Matsumura, T., Kim, H.-S., Matsumoto, T., Hu, S., Zhou, H.,
795 Abo, M., and Nagai, T.: The structure of the dust layer over the Taklimakan Desert during the
796 dust storm in April 2002 as observed using a depolarization lidar, *J. Meteor. Soc. Jpn*, 86(1),
797 1–16, doi:10.2151/jmsj.86.1, 2008.

798 Khatri, P. and Takamura, T.: An algorithm to screen cloud-affected data for sky radiometer data
799 analysis, *J. Meteor. Soc. Jpn*, 87, 189–204, doi:10.2151/jmsj.87.189, 2009.

800 Kobayashi, A., Hayashida, S., Okada, K., and Iwasaka, Y.: Measurements of the polarization
801 properties of Kosa (Asian Dust storm) particles by a Laser Radar in spring 1983, *J. Meteor. Soc.
802 Jpn.*, 63, 144–149, 1985.

803 Lafon, S., Rajot, J.-L., Alfaro, S. C., and Gaudichet, A.: Quantification of iron oxides in desert

804 aerosol, *Atmos. Environ.*, 38, 1211–1218, 2004.

805 Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., and Guadichet, A.: Characterization of iron
806 oxides in mineral dust aerosols: Implications for light absorption, *J. Geophys. Res.*, 111,
807 D21207, doi:10.1029/2005JD007016, 2006.

808 Li, C., Marufu, L. T., Dickerson, R. R., Li, Z., Wen, T., Wang, Y., Wang, P., Chen, H., and Stehr, J.
809 W.: In situ measurements of trace gases and aerosol optical properties at a rural site in northern
810 China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment
811 2005, *J. Geophys. Res.*, 112, D22S04, doi:10.1029/2006JD007592, 2007.

812 Li, C., Tsay, S.-C., Fu, J. S., Dickerson, R. R., Ji, Q., Bell, S. W., Gao, Y., Zhang, W., Huang, J., Li,
813 Z., and Chen, H.: Anthropogenic air pollution observed near dust source regions in
814 northwestern China during springtime 2008, *J. Geophys. Res.*, 115, D00K22,
815 doi:10.1029/2009JD013659, 2010.

816 Li, W. J. and Shao, L. Y.: Observation of nitrate coatings on atmospheric mineral dust particles,
817 *Atmos. Chem. Phys.*, 9, 1863–1871, doi:10.5194/acp-9-1863-2009, 2009.

818 Li, Z., Li, C., Chen, H., Tsay, S.-C., Holben, B., Huang, J., Li, B., Maring, H., Qian, Y., Shi, G.,
819 Xia, X., Yin, Y., Zheng, Y., and Zhuang, G.: East Asian Studies of Tropospheric Aerosols and
820 their Impact on Regional Climate (EAST–AIRC): An overview, *J. Geophys. Res.*, 116, D00K34,
821 doi:10.1029/2010JD015257, 2011.

822 Li, Z., Lau, W. K.-M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J.,
823 Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S.-S.,
824 Gribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H.,
825 Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon
826 climate interactions over Asia, *Rev. Geophys.*, 54, doi:10.1002/2015RG000500, 2016.

827 Ma, J., He, J., Qi, S., Zhu, G., Zhao, W., Edmunds, W. M., and Zhao, Y.: Groundwater recharge
828 and evolution in the Dunhuang Basin, northwestern China, *Appl. Geochem.*, 28, 19–31,
829 doi:10.1016/j.apgeochem.2012.10.007, 2013.

830 Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y.: Global
831 connections between aeolian dust, climate and ocean biogeochemistry at the present day and at
832 the last glacial maximum, *Earth–Sci. Rev.*, 99 (1–2), pp. 61–97,
833 doi:10.1016/j.earscirev.2009.12.001, 2010.

834 Mikami, M., Shi, G. Y., Uno, I., Yabuki, S., Iwasaka, Y., Yasui, M., Aoki, T., Tanaka, T. Y.,
835 Kuroasaki, Y., Masuda, K., Uchiyama, A., Matsuki, A., Sakai, T., Takemi, T., Nakawo, M., Seino,
836 N., Ishizuka, M., Satake, S., Fujita, K., Hara, Y., Kai, K., Kanayama, S., Hayashi, M., Du, M.,
837 Kanai, Y., Yamada, Y., Zhang, X. Y., Shen, Z., Zhou, H., Abe, Q., Nagai, T., Tsutsumi, Y., Chiba,
838 M., and Suzuki, J.: Aeolian dust experiment on climate impact: An overview of Japan–China
839 joint project ADEC, *Global Planet. Change*, 52, 142–172, doi:10.1016/j.gloplacha.2006.03.001,
840 2006.

841 Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., and Miura, K.: Application of lidar
842 depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt
843 particles, *J. Geophys. Res.*, 104, 31781–31792, 1999.

844 Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., and Holben, B.: Use of sky brightness
845 measurements from ground for remote sensing of particulate polydispersions, *Appl. Opt.*,
846 35(15), 2672–2686, doi:10.1364/AO.35.002672, 1996.

847 Nakajima, T., Sekiguchi, M., Takemura, T., Uno, I., Higurashi, A., Kim, D., Sohn, B. J., Oh, S.
848 –N., Nakajima, T. Y., Ohta, S., Okada, I., Takamura, T., and Kawamoto, K.: Significance of
849 direct and indirect radiative forcings of aerosols in the East China Sea region, *J. Geophys. Res.*,
850 108(D23), 8658, doi:10.1029/2002JD003261, 2003.

851 Nie, W., Ding, A., Wang, T., Kerminen, V.-M., George, C., Xue, L., Wang, W., Zhang, Q., Petäjä,
852 T., Qi, X., Gao, X., Wang, X., Yang, X., Fu, C., and Kulmala, M.: Polluted dust promotes new
853 particle formation and growth, *Sci. Rep.*, 4: 6634, DOI:10.1038/srep06634, 2014.

854 Petzold, A., Kramer, H., and Schönlinner, M.: Continuous measurement of atmospheric black
855 carbon using a multi – angle absorption photometer, *Environ. Sci. Poll. Res.*, 4: 78–82, 2002.

856 Petzold, A., Schloesser, H., Sheridan, P. J., Arnott, W. P., Ogren, J. A., and Virkkula A.: Evaluation
857 of multiangle absorption photometry for measuring aerosol light absorption, *Aerosol Sci. Tech.*,
858 39:1, 40–51, doi:10.1080/027868290901945, 2005.

859 Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K.-M., Ming, J., Wang, H., Wang,
860 M., Warren, S. G., and Zhang, R.: Light-absorbing particles in snow and ice: Measurement and
861 modeling of climatic and hydrological impact, *Adv. Atmos. Sci.*, 32, 64–91,
862 doi:10.1007/s00376-014-0010-0, 2014.

863 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the

864 hydrological cycle, *Science*, 294, 2119–2124, doi:10.1126/science.1064034, 2001.

865 Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G.,
866 Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A.
867 da, Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
868 Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
869 MERRA: NASA’s Modern–Era Retrospective Analysis for Research and Applications, *J.
870 Climate*, 24, 3624–3648. doi: 10.1175/JCLI-D-11-00015.1, 2011.

871 Rosenfeld, D., Rudich, Y., and Lahav, R.: Desert dust suppressing precipitation: A possible
872 desertification feedback loop, *Proc. Natl. Acad. Sci. U.S.A.*, 98, 5975–5980, 2001.

873 Shao, Y., Wyrwoll, K.–H., Chappel, A., Huang, J., Lin, Z., McTainsh, G., Mikami, M., Tanaka, T.,
874 Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system science, *Aeolian
875 Res.*, 2, 181–204, 2011.

876 Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K.,
877 Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust and other aerosol by
878 polarization lidars in China and Japan during ACE-Asia, *J. Geophys. Res.*, 109, D19S17,
879 doi:10.1029/2002JD003253, 2004.

880 Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical composition into models of the
881 radiative properties of mineral aerosol from UV to IR wavelengths, *J. Geophys. Res.*, 104, D8,
882 9423–9444, 1999.

883 Sun, J., Zhang, M., and Liu, T.: Spatial and temporal characteristics of dust storms in China and its
884 surrounding regions, 1960–1990: Relations to source area and climate, *J. Geophys. Res.*,
885 106(D10), 10325–10333, doi:10.1029/2000JD900665, 2001.

886 Takamura, T., Nakajima, T., and SKYNET community group: Overview of SKYNET and its
887 Activities, *Opt. Puray Apl.*, 37, 3303–3308, 2004.

888 Tegen, I. and Fung, I.: Contribution to the atmospheric mineral aerosol load from land surface
889 modification, *J. Geophys. Res.*, 100, 18707–18726, doi:10.1029/95JD02051, 1995.

890 Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., and
891 Levelt, P.: Aerosols and surface UV products from Ozone Monitoring Instrument observations:
892 An overview, *J. Geophys. Res.*, 112, D24S47, doi:10.1029/2007JD008809, 2007.

893 Uchiyama, A., Yamazaki, A., Togawa, H., Asano, J., and Shi, G.–Y.: Single scattering albedo of

894 Aeolian dust as inferred from sky–radiometer and in situ ground–based measurement, SOLA,
895 Vol. 1, pp. 209–212, doi:10.2151/sola.2005–054, 2005.

896 Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z.,
897 Hara, Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, *Nature*
898 *Geosci.*, 2, 557–560, doi:10.1038/NGEO583, 2009.

899 Uno, I., Eguchi, K., Yumimoto, K., Liu, Z., Hara, Y., Sugimoto, N., Shimizu, A., and Takemura, T.:
900 Large Asian dust layers continuously reached North America in April 2010, *Atmos. Chem.*
901 *Phys.*, 11, 7333–7341, 2011.

902 Wang, G., Huang, J., Guo, W., Zuo, J., Wang, J., Bi, J., Huang, Z., and Shi, J.: Observation
903 analysis of land–atmosphere interactions over the Loess Plateau of northwest China, *J. Geophys.*
904 *Res.*, 115, D00K17, doi:10.1029/2009JD013372, 2010.

905 Wang, K., and Dickinson, R. E.: Global atmospheric downward longwave radiation at the surface
906 from ground-based observations, satellite retrievals, and reanalyses, *Rev. Geophys.*, 51,
907 150–185, doi:10.1002/rog.20009, 2013.

908 Wang, W., Huang, J., Minnis, P., Hu, Y., Li, J., Huang, Z., Ayers, J. K., and Wang, T.: Dusty cloud
909 properties and radiative forcing over dust source and downwind regions derived from A–Train
910 data during the Pacific Dust Experiment, *J. Geophys. Res.*, 115, D00H35,
911 doi:10.1029/2010JD014109, 2010.

912 Wang, X., Huang, J., Ji, M., and Higuchi, K.: Variability of East Asia dust events and their
913 long–term trend, *Atmos. Environ.*, 42, 13, 3156–3165, doi:10.1016/j.atmosenv.2007.07.046,
914 2008.

915 Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other light–absorbing impurities in
916 snow across Northern China, *J. Geophys. Res.*, 118, 1471–1492, doi:10.1029/2012JD018291,
917 2013.

918 Wang, X., Pu, W., Shi, J., Bi, J., Zhou, T., Zhang, X., and Ren, Y.: A comparison of the physical
919 and optical properties of anthropogenic air pollutants and mineral dust over Northwest China, *J.*
920 *Meteorol. Res.*, 29, 180–200, doi:10.1007/s13351–015–4092–0, 2015.

921 Welton, E. J., Voss, K. J., Gordon, H. R., Maring, H., Smirnov, A., Holben, B., Schmid, B.,
922 Livingston, J. M., Russell, P. B., Durkee, P. A., Formenti, P., and Andreae, M. O.: Ground-based
923 lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons

924 with other ground-based and airborne measurements, *Tellus B*, 52, 636–651,
925 doi:10.1034/j.1600-0889.2000.00025.x, 2000.

926 Wu, G. X., Li, Z. Q., Fu, C. B., Zhang, X. Y., Zhang, R. Y., Zhang, R. H., Zhou, T. J., Li, J. P., Li, J.
927 D., Zhou, D. G., Wu, L., Zhou, L. T., He, B., and Huang, R. H.: Advances in studying
928 interactions between aerosols and monsoon in China, *Sci. China Earth Sci.*, 59: 1,
929 doi:10.1007/s11430-015-5198-z, 2016.

930 Xia, X., Zong, X., Cong, Z., Chen, H., Kang, S., and Wang, P.: Baseline continental aerosol over
931 the central Tibetan plateau and a case study of aerosol transport from South Asia, *Atmos.*
932 *Environ.*, 45, 7370–7378, doi:10.1016/j.atmosenv.2011.07.067, 2011.

933 Xu, J., Bergin, M. H., Yu, X., Liu, G., Zhao, J., Marrico, C. M., and Baumann, K.: Measurement of
934 aerosol chemical, physical, and radiative properties in the Yangtze delta region of China, *Atmos.*
935 *Environ.*, 36, 161–173, doi:10.1016/S1352-2310(01)00455-1, 2002.

936 Xu, J., Bergin, M. H., Greenwald, R., Schauer, J. J., Shafer, M. M., Jaffrezo, J. L., and Aymoz, G.:
937 Aerosol chemical, physical, and radiative characteristics near a desert source region of
938 northwest China during ACE-Asia, *J. Geophys. Res.*, 109, D19S03,
939 doi:10.1029/2003JD004239, 2004.

940 Yan, H.: Aerosol scattering properties in northern China, *Atmos. Environ.*, 41, 6916–6922,
941 doi:10.1016/j.atmosenv.2007.04.052, 2007.

942 Yan, P., Tang, J., Huang, J., Mao, J. T., Zhou, X. J., Liu, Q., Wang, Z. F., and Zhou, H. G.: The
943 measurement of aerosol optical properties at a rural site in Northern China, *Atmos. Chem. Phys.*,
944 8, 2229–2242, doi:10.5194/acp-8-2229-2008, 2008.

945 Yin, Y. and Chen, L.: The effects of heating by transported dust layers on cloud and precipitation:
946 a numerical study, *Atmos. Chem. Phys.*, 7, 3497–3505, doi:10.5194/acp-7-3497-2007, 2007.

947 Zhang, X., Arimoto, R., and An, Z.: Dust emission from Chinese desert sources linked to
948 variations in atmospheric circulation, *J. Geophys. Res.*, 102, D23, 28041–28047,
949 doi:10.1029/97JD02300, 1997.

950 Zhao, T. L., Gong, S. L., Zhang, X. Y., Blanchet, J. –P., McKendry, I. G., and Zhou, Z. J.: A
951 simulated climatology of Asian Dust aerosol and its Trans-Pacific transport. Part I: Mean
952 climate and validation, *J. Climate*, 19, 88–103, doi: 10.1175/JCLI3605.1, 2006.

954 **Figure captions**

955
956
957 **Table 1.** The main aerosol observing and other ground-based instruments deployed at Dunhuang
958 farmland during spring of 2012.

Measured variables	Model, Manufacturer	Accuracy
PM ₁₀ concentration	Ambient particulate monitor (RP1400a), R&P Corp.	0.1 μgm^{-3}
Aerosol scattering coefficient	Integrating nephelometer (TSI 3563), TSI Inc. 450, 550, and 700 nm	0.44, 0.17, and 0.26 Mm^{-1}
Aerosol absorption coefficient	Multi-angle absorption photometer (MAAP 5012), Thermo	0.66 Mm^{-1}
Aerosol size distribution	Aerodynamic particle sizer (APS 3321), TSI Inc., 0.5~20 μm	0.001 cm^{-3}
Aerosol-attenuated backscatter profile	Micro-pulse lidar (MPL-4), Sigma Space Corp.	Spatial resolution: ~30 m
Meteorological elements	Weather transmitter (WXT-520), Vaisala, Ta, RH, P, u, WD	Ta: $\pm 0.3^\circ\text{C}$, RH: 0.1%, P: 0.1 hPa, u: 0.1 ms^{-1} , WD: 1°
Global and diffuse radiation	Pyranometer (PSP ^{a,b}), Eppley Lab., 0.285~2.8 μm	Global: 8.46, diffuse: 8.48 $\mu\text{VW}^{-1}\text{m}^{-2}$
Direct radiation	Pyrheliometer (NIP ^b), Eppley Lab., 0.285~2.8 μm	8.38 $\mu\text{VW}^{-1}\text{m}^{-2}$
Downward long wave radiation	Pyrgeometer (PIR ^{a,b}), Eppley Lab., 3.5~50 μm	2.98 $\mu\text{VW}^{-1}\text{m}^{-2}$
24-bit color JPEG image	Total Sky Imager (TSI880), YES Inc., 352×288 pixel	Sampling rate: 1 minute

959 ^aThe instrument is equipped with the Eppley ventilation system (VEN).

960 ^bThe instrument is mounted on a two-axis automatic sun tracker (Model 2AP, Kipp&Zonen).

961
962
963 **Table 2.** Statistical summary of hourly average aerosol optical properties measured during
964 intensive observation period^a

Variable	Mean	Std ^b	Median	10 th percentile	25 th percentile	75 th percentile	90 th percentile
PM ₁₀ (μgm^{-3})	113	169	54	17	29	111	300
σ_{sp} (Mm^{-1})	53.3	74.8	28.3	11.2	16.0	55.8	123.5
σ_{ap} (Mm^{-1})	3.20	2.40	2.50	1.27	1.69	3.90	5.94
SSA (670 nm)	0.913	0.055	0.923	0.850	0.892	0.949	0.967
SAE (450/700 nm)	0.45	0.45	0.42	-0.1	0.1	0.73	0.99

965 ^aAll aerosol data reported for volumes under 1013.25 hPa and 20 °C.

966 ^bStd denotes the standard deviation.

967

968

969

970

971

972

973

974
975
976
977
978

979
980
981 **Figure 1.** (a) The Dunhuang farmland site (40.492°N , 94.955°E , altitude: 1061 m) labeled with a
982 pentagram and its surrounding region. (b) OMI (Ozone Monitoring Instrument, 2004) mean UV
983 aerosol index from 1 April to 12 June 2012. The site is located in the downwind region of the
984 Taklimakan Desert and frequently outbreaks dust storms.
985
986
987
988
989
990
991
992
993
994
995
996
997
998

999
1000 **Figure 2.** Time series of hourly average (a) PM_{10} mass concentration in μgm^{-3} , (b)
1001 aerosol absorption coefficient at 670 nm, (c) aerosol scattering coefficient at 670 nm, and
1002 (d) aerosol size distribution in cm^{-3} at Dunhuang farmland during the whole sampling period.
1003
1004

1005
1006 **Figure 3.** Time evolutions of the MPL normalized relative backscatter intensity (top panel) and
1007 depolarization ratio (bottom panel) at Dunhuang farmland from 1 April to 12 June 2012.
1008
1009
1010
1011
1012
1013

1014

1015

1016

1017

Figure 4. The diurnal variations of (first row, left to right) wind vector (ms^{-1}), air temperature (T in $^{\circ}\text{C}$), relative humidity (RH in %), (second row, left to right) PM_{10} concentration (μgm^{-3}), aerosol scattering coefficient at 670 nm ($\sigma_{\text{sp},670}$ in Mm^{-1}), aerosol absorption coefficient at 670 nm ($\sigma_{\text{ap},670}$ in Mm^{-1}), (third row, left to right) scattering Ångström exponent at 450–700 nm (SAE 450/700 nm), aerosol single-scattering albedo at 670 nm (SSA_{670}), and aerosol size distribution (dN/dlogD in cm^{-3}) in Dunhuang site from 1 April to 12 June 2012 (30 May to 12 June for aerosol size distribution). Median values (red square) are shown to give a more apparent diurnal feature than mean values, which could be affected by several strong dust episodes. The 25th (blue diamond) and 75th (green triangle) percentiles for each hour of the day are also displayed.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

Figure 5. Wind rose plots for (a) morning hour (06:00–09:00 LT), (b) evening hour (19:00–22:00 LT), and (c) all hours; shade represents wind speed (ms^{-1}). Wind roses for all hours, with shade representing levels of (d) PM_{10} concentration (μgm^{-3}), (e) aerosol scattering coefficient at 670 nm (σ_{sp} in Mm^{-1}), and (f) aerosol absorption coefficient at 670 nm (σ_{ap} in Mm^{-1}).

1044

1045

1046

1047

1048

1049

1050

Figure 6. Time series of (a) wind vector (ms^{-1}), (b) PM_{10} concentration (μgm^{-3}), (c) aerosol scattering coefficient (σ_{sp} in Mm^{-1}) at 450 nm (red), 550 nm (green), and 700 nm (blue), (d) scattering Ångström exponent (SAE) at 450–550 nm (red), 550–700 nm (green), and 450–700 nm (blue), (e) aerosol absorption coefficient at 670 nm (σ_{ap} in Mm^{-1}), and (f) single-albedo albedo at 670 nm (SSA_{670}) during a typical Tomb-sweeping Day on 4 April 2012, which implies a potential anthropogenic influence on aerosol optical properties. All data points are obtained from 5-minute average values.

Figure 7. The wind fields (black arrows) at 500 hPa (left panel) and 850 hPa (right panel) levels during three heavy dust events on 30 April (top), 1 May (middle), and 10 June (bottom) 2012, based on MERRA reanalysis data. Note that the Dunhuang farmland is marked with a red pentagram and the white regions at 850 hPa are on behalf of the missing values.

1090
1091
1092
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

Figure 8. The same as Figure 6, except for (a) wind speed (ms^{-1}) and wind direction ($^{\circ}$) during three heavy dust events on 30 April, 1 May, and 10 June 2012. There were no measurements of aerosol scattering coefficient (σ_{sp} in Mm^{-1}) on 10 June due to equipment failure.

1106
1107 **Figure 9.** Time evolutions of aerosol optical depth (AOD) at five wavelengths (400, 500, 675, 870,
1108 and 1018 nm) versus Ångström exponent (α) at 400–870 nm on (a) 14 May, (b) 9 June, (c) 30
1109 April, and (d) 10 June 2012. Note that Figures 9(a)–9(b) are adopted from *Bi et al.* (2014) with an
1110 addition of the Ångström exponent plot in the original publication.

1113
1114 **Figure 10.** Diurnal variations of ground-based measurements of 1-minute average (a) direct, (b)
1115 diffuse, and (c) global irradiances, and (d) downward long wave irradiance under completely
1116 clear-sky conditions (14 May, 29 May, and 9 June) and dust events (30 April and 10 June).