Supplement of

Measurement of scattering and absorption properties of dust aerosol

in a Gobi farmland region of northwest China-a potential

 anthropogenic influenceJianrong Bi, Jianping Huang, Jinsen Shi, Zhiyuan Hu, Tian Zhou, Guolong Zhang, Zhongwei Huang, Xin Wang, and Hongchun Jin

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Correspondence to: Jianping Huang (hjp@lzu.edu.cn)

Figure S1. A variety of agricultural cultivations in Dunhuang farmland (40.492 ${ }^{\circ} \mathrm{N}, 94.955^{\circ} \mathrm{E}$, altitude: 1061 m) prior to the growing season (i.e. from 1 April to 10 May, 2012), producing massive soil dust in the source and downwind regions. (a) The deployment of SACOL's Mobile Facility (SMF) and its adjacent bare farmlands. A tractor was plowing in the nearby farmland on 12 April 2012. (b) Land planning at the afternoon on 20 April, 2012, for the furrow-irrigated land preparation. (c) A ploughing tractor generated a great amount of tiny soil particles into the
atmosphere at the forenoon on 2 May, 2012. (d) An open-cabin tractor was laying plastic mulch nearby the SMF at the afternoon on 6 May, 2012. (e) Land disking for planting at the afternoon on 6 May, 2012. (f) The crops in Dunhuang farmland (nearby SMF) gradually become green on 14 May, 2012, indicating the coming of growth season.

Figure S2. Diurnal variations of 10 -second average relative humidity ($\mathrm{RH}, \%$) under completely clear-sky conditions (14 May, 29 May, and 9 June) and dust events (30 April and 10 June) in Dunhuang farmland. The RH and other meteorological variables were observed by a weather transmitter (Model WXT-520, Vaisala, Finland).

