
ACPD

Interactive
comment

Printer-friendly version

Discussion paper

Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2017-163-AC2, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Interactive comment on “Experimental and
computational kinetics investigations for the
reactions of Cl atoms with series of unsaturated
ketones in gas phase” by Siripina Vijayakumar et
al.

Siripina Vijayakumar et al.

rajakumar@iitm.ac.in

Received and published: 19 July 2017
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We thank the reviewer for going through the manuscript entitled “Experimental and
computational kinetics investigations for the reactions of Cl atoms with unsaturated
ketones in gas phase” and for his/her constructive suggestions to improve the qual-
ity of the manuscript. We have incorporated all the suggestions and given expla-
nations to the queries in the revised manuscript (RMS) at appropriate places. The
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changes/additions in the revised manuscript are given in blue color for ready reference.
The complete rebuttal is given below.

GENERAL COMMENTS R2Q1. This manuscript reports relative rate experiments and
computations on the kinetics of Cl reacting with a series of unsaturated ketones as a
function of temperature. These compounds are of some interest and the reaction of
Cl with these compounds can contribute significantly to their loss under some atmo-
spheric conditions. The experiments (on two compounds) appear to be solid, although
additional details should be reported and the clarity improved. Also, there is no ex-
perimental rate constant data on the reference compounds at the higher temperatures
studied here. As a result, the absolute rate constants (as opposed the relative rate con-
stants) at those higher temperatures may not be reliable. Response: Several groups
have measured the rate coefficients of Cl atom reactions with many unsaturated hy-
drocarbons at room temperature (298K). However, temperature dependent rate coeffi-
cients are available only for 1-pentene (Coquet et al., 2000) and isoprene (Bedjanian
et al., 1998) in the temperature range of 233-320K. Also, the rate coefficients of these
reactions are close to the rate coefficients of the title reactions, which is a pre requisite
to use them as reference compounds in the relative rate method. Therefore, 1-pentene
and isoprene were used as reference compounds in the present investigation. As re-
viewer rightly pointed out, our present studies were carried out in the temperature range
of 298-363K whereas, the reference reaction’s rate coefficients are available in the tem-
perature range of 233-320K only. Therefore, technically the measured rate coefficients
in the higher temperature range (321-363K) may not be reliable. Recently, we have
measured the temperature dependent rate coefficients in the temperature range of 269-
363K for the reaction of Cl atoms with 1,3-butadiene (Vijayakumar et al., 2017). Now,
we have measured the temperature dependent rate coefficients (in the temperature
range of 298-363K) for the title reactions using 1,3-butadiene + Cl reaction as a third
reference reaction . The measured rate coefficients are given in Tables 1 and 2. From
these tables, it is clear that the rate coefficients obtained using all the three reference
compounds (1,3-butadiene, isoprene and 1-pentene) are very close to each other over

C2

https://www.atmos-chem-phys-discuss.net/
https://www.atmos-chem-phys-discuss.net/acp-2017-163/acp-2017-163-AC2-print.pdf
https://www.atmos-chem-phys-discuss.net/acp-2017-163
http://creativecommons.org/licenses/by/3.0/


ACPD

Interactive
comment

Printer-friendly version

Discussion paper

the studied temperature range within the experimental uncertainties. Therefore, the
obtained rate coefficients relative to 1,3-butadiene, isoprene and 1-pentene were aver-
aged at the respective temperatures. With this additional input, the rate coefficient data
obtained is reliable in the entire studied range of temperature. Vijayakumar, S., Rajaku-
mar, B. Experimental and theoretical investigations on the reaction of 1,3-butadiene
with Cl atom in the gas phase. J. Phys. Chem. A 121, 1976-1984, 2017. Table 1: Rel-
ative rate measurements for the reaction of Cl atoms with 4-hexen-3-one over the tem-
perature range of 298-363K at 760 Torr in N2 relative to 1,3-butadiene, isoprene and
1-pentene. T(K) Reference compound Bath gas (Torr of O2) Pressure in Torr (ksample/
kreference) ±2σ (ksample/ kreference) Average±2σ (k±2σ)×10-10 cm3molecule-1s-
1 (k±2σ)×10-10 cm3molecule-1s-1 Lit. (k±2σ)×10-10 (cm3molecule-1s-1) at 298K
298±2 1,3-butadiene N2 760 1.55±0.21 1.54±0.27 5.10±0.81 5.55±1.31 3.00±0.58
Blanco et al. 1.43±0.24 1.64±0.27 isoprene N2 760 1.63±0.15 1.61±0.14 5.84±0.80
1.62±0.11 1.60±0.13 1-pentene N2 760 1.12±0.12 1.21±0.19 5.71±0.62 1.09±0.13
1.33±0.10 1.33±0.10 isoprene N2 – O2 (20) 760 1.57±0.14 1.59±0.11 5.74±0.18
5.74±0.18 1.61±0.11 isoprene N2 600 1.58±0.09 1.55±0.10 5.61±0.25 5.61±0.25
1.53±0.13 isoprene N2 500 1.59±0.11 1.57±0.10 5.67±0.18 5.67±0.18 1.55±0.12
310±2 1,3-butadiene N2 760 1.49±0.12 1.50±0.13 4.67±0.06 4.20±0.47 1.51±0.16
isoprene N2 760 1.24±0.10 1.29±0.13 4.13±0.22 1.37±0.10 1.26±0.09 1-pentene
N2 760 0.93±0.01 0.89±0.07 3.82±0.38 0.86±0.06 330±2 1,3-butadiene N2 760
1.35±0.14 1.33±0.13 4.06±0.15 3.45±0.25 1.31±0.11 isoprene N2 760 1.24±0.10
1.15±0.13 3.36±0.20 1.13±0.09 1.09±0.08 1-pentene N2 760 0.79±0.04 0.80±0.07
2.95±0.07 0.81±0.04 350±2 1,3-butadiene N2 760 1.29±0.15 1.30±0.14 3.43±0.10
2. 89±0.28 1.32±0.12 isoprene N2 760 0.98±0.07 1.06±0.13 2.84±0.26 1.19±0.10
1.01±0.08 1-pentene N2 760 0.74±0.05 0.74±0.10 2.42±0.03 0.75±0.06 363±2 1,3-
butadiene N2 760 1.24±0.09 1.26±0.11 3.31±0.13 2.60±0.19 1.28±0.12 isoprene
N2 760 0.87±0.04 0.86±0.08 3.01±0.10 0.88±0.02 0.85±0.06 1-pentene N2 760
0.74±0.02 0.72±0.11 2.18±0.09 0.72±0.06 0.71±0.05 1,3-butadiene N2 – O2 (20)
760 1.30±0.11 1.28±0.11 3.38±0.10 3.38±0.10 1.27±0.09
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Table 2: Relative rate measurements for the reaction of Cl atoms with 5-hexen-2-one
over the temperature range of 298-363K with reference to 1,3-butadiene, isoprene and
1-pentene. T (K) Reference compound Bath gas (Torr of O2) Pressure in Torr (ksam-
ple/ kreference)±2σ (ksample/ kreference)Average±2σ (k±2σ)×10-10 (cm3molecule-
1s-1) (kAverage±2σ)×10-10 (cm3molecule-1s-1) Lit.k×10-10 (cm3molecule-1s-1) at
298K 298±2 1,3-butadiene N2 760 1.24±0.13 1.26±0.15 4.19±0.63 4.14±1.25
3.15±0.5 Blanco et al. 1.26±0.10 1.29±0.11 isoprene N2 760 1.18±0.09 1.09±0.20
3.95±0.97 1.14±0.10 0.97±0.16 1-pentene N2 760 0.87±0.09 0.91±0.16 4.27±0.38
0.95±0.08 0.91±0.08 isoprene N2 – O2 (20) 760 1.13 ±0.11 1.12±0.12 4.03±0.56
4.03±0.56 1.11±0.09 isoprene N2 600 1.15±0.12 1.17±0.13 4.21±0.61 4.21±0.61
1.19±0.10 isoprene N2 500 1.16±0.14 1.15±0.15 4.16±0.58 4.16±0.58 1.15±0.11
310±2 1,3-butadiene N2 760 1.14±0.12 1.13±0.13 3.51±0.06 3.68±0.30 1.12±0.10
isoprene N2 760 1.06±0.08 1.09±0.09 3.50±0.28 1.13±0.06 1-pentene N2 760
0.94±0.08 0.94±0.12 4.04±0.04 0.95±0.09 330±2 1,3-butadiene N2 760 1.11±0.13
1.10±0.16 3.37±0.03 3.20±0.15 1.10±0.12 isoprene N2 760 1.05±0.06 1.07±0.09
3.11±0.14 1.09±0.08 1-pentene N2 760 0.84±0.06 0.84±0.08 3.12±0.03 0.85±0.04
350±2 1,3-butadiene N2 760 1.02±0.14 1.04±0.16 2.73±0.13 2.91±0.25 1.06±0.09
isoprene N2 760 1.17±0.16 1.14±0.17 3.07±0.18 1.12±0.13 1-pentene N2 760
0.92±0.10 0.90±0.14 2.94±0.13 0.89±0.09 363±2 1,3-butadiene N2 760 1.05±0.12
1.08±0.17 2.86±0.18 2.70±0.31 1.09±0.09 1.12±0.11 isoprene N2 760 0.98±0.07
1.02±0.13 2.60±0.25 0.99±0.09 1.10±0.08 1-pentene N2 760 0.89±0.05 0.88±0.08
2.65±0.03 0.87±0.06 1,3-butadiene N2 – O2 (20) 760 1.11±0.09 1.09±0.10
2.88±0.10 2.88±0.10 1.08±0.07

R2Q2: The clarity and precision of the writing should be improved. The computational
chemistry calculations are not reliable. While it the authors could address issues with
the energeties obtained from quantum chemistry, it is probably not feasible to reliably
compute rate constants and branching ratios for the systems being studied here. I am
uncertain as to the importance of the two compounds being studied experimentally, and
the experiments only provide rate constants, not branching ratios. So the manuscript
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remaining after removing the computational parts probably does not belong in ACP. Re-
sponse: Both experimental and theoretical studies give a better understanding of the
chemical reactions which are occurring in the troposphere. Experimentally, one can
measure the global rate coefficient whereas theoretically, we can calculate the contri-
bution of each reaction site towards its global rate coefficient and also gives the essen-
tial information about the reaction mechanism. In the present investigation, branching
ratio calculations were performed using computationally obtained rate coefficients.

SPECIFIC COMMENTS ON EXPERIMENTS R2Q3. Secondary chemistry appears to
be a minor factor, but the reference compounds are sufficiently similar that they might
give rise to similar secondary chemistry. It would help to present a brief discussion
about WHY secondary chemistry is expected be minor. Just in case someone wants to
model the experiment, the manuscript should include the repetition rate of the 248 nm
lasers and its fluence (in mJ cm-2 pulse-1 rather than mJ pulse-1). For the same rea-
son, the initial concentration range of the test compounds and reference compounds
should be listed in the text. Response: As mentioned in section 2.1, we have per-
formed some preliminary tests before doing the experiments to check the influence of
the secondary chemistry on title reactions. The reaction mixture (test molecule, refer-
ence compound and the precursor for Cl atom) was kept for 6 hours in dark which is
more than the actual reaction time. The samples were analyzed in the GC at every
half-an-hour and verified for any significant loss of the reactants and no such influence
was observed. The sample mixture without the precursor (the test molecules and the
reference compounds) was irradiated at 248 nm for 5 minutes, to verify the loss of the
compounds due to direct photolysis. A maximum of 3 to 4% of the change in concen-
trations was observed, which indicates that neither the test molecules nor the reference
compounds were dissociated by photolysis. A good way of confirming the secondary
chemistry is via scavenging the radicals by adding oxygen. At room temperature and
at extreme temperatures, oxygen was added to the reaction mixture and obtained rate
coefficients are given in Tables 1 and 2. A maximum of 5% change was observed in the
rate coefficients, which shows the negligible influence of secondary reactions due to
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the radicals formed in the test reaction. The experiments were carried out with a repeti-
tion rate of 10 Hz at 248 nm wavelength and its fluence was maintained at 5-6 mJ cm-2
pulse-1. The typical concentrations of the reactant and reference compounds were
varied between (4-6)×1016 molecules cm-3 and that of oxalylchloride was maintained
between (4-6)×1017 molecules cm-3. This is added in the RMS.

R2Q4. An expanded version of Table 1 is needed that includes the initial concentration
of the reference compound. Also, results should be presented with experiments with
O2 present. Ideally, the Supplementary Material would include the measured concen-
tration of the test compounds and the reference compound at 1200, 1400, 1600, 1800
and 2000 pulses for each experiment. Response: The experiments which were per-
formed in presence of O2 are incorporated for the reactions of Cl atoms with 4-hexen-3-
one and 5-hexen-2-one in Tables 1 and 4 respectively in the RMS. The concentrations
of test molecules and the reference compounds measured using Gas Chromatography
(GC) at 1200, 1400, 1600, 1800 and 2000 pulses for every experiment are given in the
revised supplementary material.

R2Q5. The literature values of the rate constant for Cl + isoprene and Cl + 1-pentene
are only known up to 320K. There is no reason to expect Arrhenius behavior from
these reactions. Consequently, it is not appropriate to derive absolute rate constants
at these temperatures without highlighting the fact that rate constants for the reference
compounds are being extrapolated. Response: Rate coefficients for the reference re-
actions (Cl + 1-pentene and isoprene) are available only up to 320K. In the lack of
availability of the reference rate coefficients up to 363K, the extrapolated rate coeffi-
cients were used in the measurements. In addition, the measurements were carried
out using 1,3-butadiene as a third reference. Please refer to our response to R2Q1 of
this reviewer for complete description.

R2Q6. The value of [Cl] used to compute atmospheric lifetimes (in Table 10) is only
valid in a small part of the atmosphere. This should be noted. Response: To know the
importance of the Cl atom reactions, the atmospheric lifetimes of the test molecules
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were estimated with respect to their reactions with Cl atoms both in ambient conditions
(1.00×103 molecules cm-3, Singh et al., 1996) and marine boundary layer (1.30×105
molecules cm-3, Spicer et al., 1998). In ambient conditions the lifetimes of 4-hexen-
3-one, 5-hexen-2-one and 3-pentene-2-one are 8, 12 and 19 days respectively. In the
marine boundary layer the lifetimes of 4-hexen-3-one, 5-hexen-2-one and 3-pentene-2-
one are estimated as 3.5, 5.3 and 8.7 hours respectively. Since the Cl atom reactions
are important mainly in marine boundary layer and polluted urban areas where the Cl
atom concentration reaches 1.3×105 atoms cm-3, it was considered when compared
with other oxidants in the Table 10. This is added in the atmospheric implications
(section 3.8) of the RMS.

SPECIFIC COMMENTS ON CALCULATIONS R2Q7. The CCSD(T) energy calcula-
tions use a basis set that is far too small to be reliable. This is evident in many of the
reported values of the critical energies for hydrogen abstraction (they are far too high).
Could there also be a problem with unstable wavefunctions contributing to highener-
gies of these TSs? The small basis set could also (via basis set superposition error)
lead to TS energies for the addition reaction that are lower than the actual values. The
fact that the reported rate constants (dominated by addition) agree with experiment
is due to fortuitous cancellation of error. A basis set extrapolation scheme or com-
posite method is needed for accurate treatment of both types of TSs. Response: We
employed 6-311++G(d,p), cc-pvdz and aug-cc-pvdz basis sets for single point energy
calculations of the title reactions. The obtained rate coefficients with these basis sets
were over estimated when compared with the present experimental and reported rate
coefficients for the title reactions. Hence, 6-31+G(d,p) basis set was used for single
point calculations. One of the composite method is G3MP2 and the obtained rate
coefficients with G3MP2 are overestimated when compared with experimental and re-
ported rate coefficients for the title reactions. However, with other level of throes and
basis sets, we observed the Cl atom addition reactions are more dominant and showing
negative temperature dependence over the studied temperature range for all the title
reactions. We tried to optimize all the geometries with DFT and meta DFT methods
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such as B3LYP and M062X level of theories and were not successful in getting most
of the transition states. Having this technical difficulty, the rate coefficients obtained at
CCSD(T)/6-31+G(d, p)//MP2/6-311++G(d, p) level of theory were used to compared
with the experimental and reported rate coefficients.

R2Q8. The addition of Cl to the test compounds to form a reactive complex must have
a variational TS (in addition to the saddle point reported for the formation of a covalent
chlorine carbon bond). Strictly speaking, a 2-TS approach is needed to obtain the
rate constant in the high-pressure limit (see J. Phys. Chem. A, 2006, 110, pp 6960–
6970), but I would not insist on authors carrying out these calculations. The manuscript
implicitly assumes the addition reactions are in the high pressure limit at 1 atm over the
temperature range reported. This may be reasonable, but should be stated explicitly.
Response: We have checked the variational effects for all the three reactions and found
that these addition channels are not having variational effects. As the reviewer rightly
pointed out, we have measured the rate coefficients at the high pressure limits (1 atm.
Pressure of N2 and 298 to 363K). This is added in the RMS.

R2Q9. There is an issue with the computations that the authors won’t be able to over-
come: the general approach used here probably has limited applicability to Cl reaction
with molecules containing C=C double bonds. See the 2014 paper by A.G. Suits and
A. M. Mebel (DOI:10.1038/ncomms5064). This paper makes two major points relevant
here: a) H-abstraction from allylic sites proceeds without a barrier (3-penten-2-one and
4-hexen-3-one have allylic sites). b) There exists roaming paths connecting chlorine
adducts of the alkenes to HCl formation (potentially relevant to all three species stud-
ied in the manuscript under review). The results in this paper have been verified and
extended. The reaction paths described in (a) and (b) are important under the condi-
tions of the experiment, and (a) is important. Although those conditions are far different
than those in the atmosphere, another paper (DOI:10.1038/srep40105) suggests that
roaming paths leading to HCl are more important at thermal energies (meaning atmo-
spheric conditions) than the conditions of the Suits and Mebel paper. This conclusion
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The results found in this manuscript are not consistent with those of the Suits and
Mebel paper or subsequent computations. The roaming paths can only be treated by
running dynamics, and that is far outside the scope of this manuscript. As a result,
it appears that reliable kinetic insight cannot be obtained from the general approach
used in the present manuscript. For those who got lost in the gory details of the phys-
ical chemistry I just discussed, just know that the theoretical approach in the present
manuscript is, at least in part, inconsistent with obtaining the ∼17% branching per-
centage (at 298 K) found for H-abstraction in the reaction of Cl + isoprene (Bedjanian
et al., 1998, cited in the manuscript). Response: a) The allylic hydrogens are TS8,
TS9 and TS10; TS6 and TS7; TS6, TS7 and TS8 in 4-hexen-3-one, 5-hexen-2-one
and 3-penten-2-one respectively. These hydrogen abstractions from allylic sites are
thermodynamically feasible (c.f. Tables 6, 7 and 8) and kinetically (c.f. Table 11 and
Figures 12, 13 and 14) not favorable with low barrier heights, which are consistent with
our earlier results (Walvalkar et al., 2016 and Vijayakumar et al., 2017). b) The Cl
atom addition followed by HCl elimination (roaming path) would have effect on the de-
termination of the total rate coefficients of the title reactions. The HCl formation in the
reaction of Cl atom with isobutene via roaming mechanism was observed by Chen et
al. (DOI: 10.1038/srep40105) and experimental conditions was entirely different from
the present study. The roaming path approach is completely different study from the
present one.

Walavalkar, M. P., Vijayakumar, S., Sharma, A., Rajakumar B., Dhanya, S. Is H atom
abstraction important in the reaction of Cl with 1-alkenes? J. Phys. Chem. A 120,
4096-4107, 2016. Vijayakumar, S., Rajakumar, B. Experimental and theoretical in-
vestigations on the reaction of 1,3-butadiene with Cl atom in the gas phase. J. Phys.
Chem. A 121, 1976-1984, 2017.

R2Q10. As Anonymous Referee #1 points out, hindered rotor corrections to rate con-
stants may be important. Response: Hindered rotor (HR) calculations were performed
and compared with the present experimental and reported rate coefficients (given be-
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low). Rate coefficients obtained including HR corrections are almost equal to our ear-
lier theoretical calculations. As the reviewer rightly pointed, the discrepancy between
theoretical and the present experimental rate coefficients may be due to the errors in
pre-exponential factors and the errors in the estimation of barrier heights. As the rate
coefficient at a given temperature is the combination of both pre-exponential factor and
the activation energy, the difference can be attributed to the accuracy with which both
these factors are determined. The pre-exponential factor depends on how best the par-
tition functions of reactants and transition states are estimated, which in turn depends
on the vibrational frequencies obtained in the calculations. On another hand, the uncer-
tainties in the calculated energies of transition states can critically affect the calculated
rate coefficients. Lynch et al., 2001;Ali et al., 2016; and Ali et al., 2015 concluded that,
there would be an error of about 1.1 kcal mol-1 in the barrier height calculations at
the CCSD(T) level of theory with 6-31+G(d,p) basis set. The same level of theory and
the basis set were used in the present calculations. Therefore, given an uncertainty of
about 1 kcal mol-1 in the activation barrier, the theoretically calculated rate coefficients
are in reasonable agreement with the reported experimentally measured ones. This
discussion is added in the RMS.

Table: Comparison of the rate coefficients (cm3 molecule-1 s-1) for the reactions of
unsaturated ketones with Cl atoms at 298K. 4-hexen-3-one + Cl 5-hexen-2-one +
Cl 3-penten-2-one + Cl k Theory 3.66×10-10 5.56×10-10 2.4×10-10 k Theory with
HRcorrection 3.60×10-10 5.47×10-10 2.38×10-10 k Experimental (5.55±1.31)×10-
10 (4.14±1.25)×10-10 - k Blanco et al. (3.00±0.58)×10-10 (3.15±0.50)×10-10
(2.53±0.54)×10-10

Table: Comparison of the theoretically obtained rate coefficients (cm3 molecule-1 s-1)
for the reaction of Cl atoms with unsaturated ketones at CCSD(T)/6-31+G(d, p)//MP2/6-
311++G (d, p) level of theory over the temperature range of 275-400K. 4-hexen-3-
one + Cl 5-hexen-2-one + Cl 3-penten-2-one + Cl T (K) k Theory k Theory with HR
correction k Theory k Theory with HR correction k Theory k Theory with HR cor-
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rection 275 5.81×10-10 5.73×10-10 1.09×10-09 1.07×10-09 3.51×10-10 3.48×10-
10 298 3.66×10-10 3.60×10-10 5.56×10-10 5.47×10-10 2.40×10-10 2.38×10-
10 325 2.33×10-10 2.29×10-10 3.85×10-10 3.78×10-10 1.66×10-10 1.65×10-
10 350 1.64×10-10 1.62×10-10 2.44×10-10 2.40×10-10 1.26×10-10 1.24×10-10
375 1.22×10-10 1.20×10-10 1.57×10-10 1.54×10-10 9.89×10-11 9.79×10-11 400
9.49×10-11 9.35×10-11 1.00×10-10 9.83×10-11 8.07×10-11 7.99×10-11

Lynch, B. J. and Truhlar, D. G.: How well can hybrid density functional methods predict
transition state geometries and barrier heights? J. Phys. Chem. A 105, 2936-2941,
2001. Ali, M. A., Sonk, J. A. and Barker, J. R.: Predicted chemical activation rate con-
stants for HO2 + CH2NH: The dominant role of a hydrogen bonded pre-reactive com-
plex. J. Phys. Chem. A 120, 7060-7070, 2016. Ali, M.A. and Barker, J.R.: Comparison
of there isoelectronic multiple-well reaction systems: OH+CH2O, OH+CH2CH2, and
OH+CH2NH. J. Phys. Chem. A 119, 7578-7592, 2015.

TECHNICAL CORRECTIONS R2Q11. The GC temperature program and flow rate
should be specified (at least in the Supplementary Material). Response: The following
conditions were maintained during the GC analyses of the reaction mixtures. Inlet tem-
perature: 160oC Pressure: 24.05 PSI HP Plot Q Column flow: 1.96 ml min-1 Pressure:
24.05 PSI Oven temperature: 220 oC Run time: 6 minutes FID detector temperature:
240 oC The above information is given in the revised supplementary material.

R2Q12. On page 5 where the absence of loss of test and reference compounds was
verified in the dark and in the absence of oxalyl chloride, please specify the upper limit
to the loss (e.g., < 4%). Similarly, specify the upper limit to the change in rate constant
upon adding O2 (and the partial pressure of O2 used). Response: The sample mix-
ture without the precursor was irradiated at 248 nm for 5 minutes, to verify the loss of
the compounds due to direct photolysis and a maximum of 3 to 4% of the change in
concentrations was observed which indicates non-interference of the secondary chem-
istry on the title reactions. About 20 Torr of oxygen was added to the reaction mixture
(maintained at 760 Torr) and the experiments were carried out at room temperature and
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at extreme temperatures. The obtained rate coefficients are given in Tables 1 and 2.
Maximum 5% change was observed in the rate coefficients which shows the negligible
influence of secondary reactions due to the radicals formed in the test reaction. This is
added in the RMS. R2Q13. The sample of 4-hexen-3-one is listed as >90% trans. The
manuscript should specify whether the reported GC measurements were only of the
trans isomer. Also, the manuscript should specify the cis/trans composition of 4-hexen-
3-one as it appears in nature (if known). Every time the description of the calculations
identifies the test compounds, they should specify trans (e.g., “trans-4-hexen-3-one”
rather than “4-hexen-3-one”). 3b. Is the 5-hexen-2-one used in experiments all trans?
Response: 4-hexen-3-one exists in the form of trans (90%) and cis isomers (10%) in
nature. Hence, we have used trans-4-hexen-3-one in our experiments. 5-hexen-2-
one exists only in one conformation, which was used in present experiments. This is
incorporated in the RMS.

R2Q14. In the computational methodology, expand the acronyms CVT and SCT. The
partition function of the reactant does not depend on s, as stated here. VMEP should
be specified as a potential energy difference (corrected for zero-point energy). The
value of the reaction path degeneracy for each TS should be specified somewhere.
Response: Acronyms CVT and SCT are expanded in introduction as Canonical Vari-
ational Transition state theory (CVT) with Small Curvature Tunneling (SCT) and have
used as CVT and SCT throughout the text. The partition function of the reactant does
not depend on s. Hence, we have edited the sentence as “ÑĎR and QGT are the parti-
tion functions of generalized reactant and transition state respectively”. ‘s’ is a reaction
coordinate parameter that determines the location of the generalized transition dividing
surface. VMEP(s) is the potential along the reaction path at ‘s’ and the minimum en-
ergy pathways (MEP) was constructed with a gradient step size of 0.01. For all the title
reactions, all the transitions states are independent and the reaction path degeneracy
is one (σ=1). This is added in the RMS.

R2Q16. In Table 10, specify whether the experimental or theoretical rate constants
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used for Cl reactions with 4-hexen-3-one and 5-hexene-2-one. Also, add a second
digit to the lifetimes with respect to reaction with OH, and only use two significant
figures elsewhere. Response: To calculate the lifetimes of test molecules, we have
used present experimentally measured rate coefficients. The significant figures are
corrected in the RMS as suggested.

R2Q17. Caption to Table 11. These are “percentages” not “ratios”. Response: The
word “ratios” is replaced with “percentages” in the RMS.

R2Q18. Conformers: - Did the authors choose the conformers because they were the
minimum energy conformers? If so, what efforts were made to verify this? - Two of
the three test compounds are listed as having near-Cs symmetry, and probably should
be treated as having Cs symmetry. This means that there are fewer unique transi-
tion states than listed (e.g., for 4-hexen-3-one TSs 8-10 are only two unique TSs).
Response: We have optimized all the possible conformers during geometry optimiza-
tion. The lowest energy conformers were considered for rate coefficients calculations.
Whereas other possible conformers are more than 1.9 kcal mol-1 higher in energy than
the lowest energy conformers and therefore, it is unlikely to have significant contribution
to the reaction in the temperature range of our study. In methyl group of the 4-hexen-
3-one, three H-abstraction transition states (TS8-TS10) are there. Out of three, two
transition states are having the similar energies (c.f. Tables 6, 7 and 8). Although they
are having similar energies, we have considered all the transition states in the calcula-
tion of the total rate coefficients for all three reactions, as they are structurally different.
Therefore, it may not be helpful if the molecule is considered to have Cs symmetry.

R2Q19. Can Cl form a van der Waals complex with the ïĄřcloud of the carbonyl
groups? Response: There are possibilities for the formation of van der Waals com-
plexes for transition states TS2 and TS7 in case of reaction R1; TS2 and TS5 in case
of reaction R2; TS2 and TS5 in case of reaction R3. However, when we have opti-
mized all these structures, we did not observe any van der Waals complexes as the
bond lengths are greater than 3.5 Å between Cl and cloud of the carbonyl group.
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R2Q20. Both “test” and “sample” are used for the alkenones; please standardize ter-
minology Response: It was corrected and “test” was used throughout the RMS.

R2Q21. In Table 1, some of the error bars don’t make sense, e.g., bottom of page
21 (298 K): for 1,3 butadiene as a reference, the error bar on ktest/kref is 25%, but
the error bar on ktest is only 7%. for isoprene as a reference, the error on the three
individual values of ktest/kref is on the orderof 7-9%, and that should be reflected
in the average value of ktest/kref. for the final value of ktest averaged over multiple
reference compounds, the error bar should be closer to 1.0 than 0.4 (× 10-10 cm3
molecule-1 sec-1). Response: We have re calculated errors and a separate section
was included on error analysis in the RMS as mentioned below. “The uncertainties in
the temperature (within ±2K) and pressure (within ±1 Torr) in the reaction chamber
were very small and did not contribute significantly on the determination of the rate
coefficients. The elution of the test molecules and reference compounds in the GC are
precise and the uncertainty in concentrations was estimated to be less than 5%. For
each experiment, the obtained slopes (using linear least squares method) along with
the errors (95% confidence limit) are given in Tables 1 and 2. The uncertainties on the
weighted average slopes ((ksample/kreference)Average) are determined using the er-
ror propagation method according to the equation: ∆y/y = [[∆a/a]2+[∆b/b]2+. . ...]1/2,
where ∆y/y is the relative error on the average slope and [∆a/a], [∆b/b] are the rel-
ative errors on the individual slopes. The errors quoted for the rate coefficients also
include the quoted error in the rate coefficients for the reference reactions and are
calculated using the standard error propagation method which was used by several
groups (Blanco et al., 2009; Stoeffler et al., 2013; Peirone et al., 2014 and Dash et
al., 2015 ) according to the equation: ∆ktest = ktest ×[(∆kref/kref)2 + (∆(ktest/kref)/
(ktest/kref))2]1/2, where (∆kref/kref) and ∆(ktest/kref)/(ktest/kref) are the relative er-
rors on kref and ktest/kref, respectively. At every temperature, the uncertainties in
the averaged rate coefficients were calculated according to the equation: ∆kaverage
= kaverage × [[∆l/kl]2+[∆m/km]2+[∆n/kn]2]1/2, where ∆l, ∆m and ∆n, are the rel-
ative errors on the individual rate coefficients and kl, km and kn are individual rate
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coefficients. A major source of systematic errors in the determination of the title re-
action’s rate coefficients are from the absolute uncertainties in the rate coefficients of
the reference reactions. Blanco, M. B., Bejan, I., Barnes, I., Wiesen, P., Teruel, M.
A. Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl
methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmos.
Environ. 43, 5996–6002, 2009. Stoeffler, C., Joly, L., Durry, G., Cousin, J., Dumelie,
N., Bruyant, A., Roth, E., Chakir, A. Kinetic study of the reaction of chlorine atoms with
hydroxyacetone in gas-phase. Chem. Phys. Lett. 590, 221–226, 2013. Peirone, S.
A., Barrera, J. A., Taccone, R. A., Cometto, P. M., Lane, S. I. Relative rate coefficient
measurements of OH radical reactions with (Z)-2-hexen-1-ol and (E)-3-hexen-1-ol un-
der simulated atmospheric conditions. Atmos. Environ. 85, 92-98, 2014. Dash, M. R.,
Srinivasulu, G., Rajakumar, B. Experimental and computational investigation on the
gas phase reaction of p-cymene with Cl atoms. J. Phys. Chem. A 119, 559−570,
2015.

R2Q22. The Supporting Information is more complete than many, but it should also
include absolute energies at 0 K, zero-point energies, and (ideally) H and G at 298
K. Also add the CVT rate constant and tunneling corrections versus temperature for
each reaction path for all three test molecules. Response: Absolute energies at 0K,
zero-point energies and thermodynamic parameters such as enthalpies, Gibbs free
energies and entropies were given in the revised supporting information along with
CVT rate constants and tunneling corrections versus temperature for each reaction
path of each reaction.

R2Q23. The Introduction does not reflect a thorough understanding of atmospheric
chemistry and cites too few recent papers. Response: Now, we have added the below
given references, where the usage of laboratory studies on atmospheric chemistry
were described in detail. The descriptions include atmospherically relevant processes
which provides the fundamental information on climate change, urban air pollution,
stratospheric ozone depletion and ecosystem health. This is added in the RMS.
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Burkholder, J. B., Jonathan, P. D. A., Barnes, I., Roberts, J.M., Melamed, M. L., Am-
mann, M., Christopher, D.C., Annmarie, G.C., Lucy, J.C. and Crowley, J.N. et al. The
essential role for laboratory studies in atmospheric chemistry, Environ. Sci. Tech-
nol., 51, 2519-2528, 2017. Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; R.C,
C.; Crowley, J. N.; Day, D. A.; Donahue, N. M.; Fry, J. L.; al, F. Nitrate radicals and
biogenic volatile organic compounds: Oxidation, mechanisms and organic aerosol.
Atmos. Chem. Phys. 17, 2103-2162, 2017. Poschl, U.; Shiraiwa, M. Multiphase chem-
istry at the atmosphere-biosphere interface influencing climate and public health in the
anthropocene. Chem. Rev. 115, 4440−4475, 2015. West, J. J.; Cohen, A.; Dentener,
F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M. L.; Brauer, M.; Carmichael, G.;
Costa, D. L.; et al. What we breathe impacts our health: Improving understanding of
the link between air pollution and health. Environ. Sci. Technol. 50, 4895−4904, 2016.
Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A.; Drollette, B. D.;
Gordon, M.; Lee, P.; Liu, P.; et al. Oil sands operations as a large source of secondary
organic aerosols. Nature 534, 91−95, 2016. R2Q24. Page 6: use a lower case rather
than upper case kappa for tunneling corrections. Response: Now lower case Kappa is
used in the RMS.

R2Q25. The equations given for rate constants on page 6 have units of sec-1. Please
correct them. Response: corrected.

R2Q26. On page 7, the results of Bedjanian et al. were at low pressure, not atmo-
spheric pressure, although the rate constant was reported to be independent of pres-
sure. Response: It was corrected in the RMS as given below. Bedjanian et al. have
reported the temperature dependent rate coefficient for the reaction of isoprene with Cl
atom in the temperature range of 233-320K and at low pressure.

R2Q27. On page 7, lines 28 “10%” should be “16%” Response: Corrected.

Please also note the supplement to this comment:
https://www.atmos-chem-phys-discuss.net/acp-2017-163/acp-2017-163-AC2-
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supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-163,
2017.
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