
Reply	to	reviewer	1	
 
We	would	like	to	thank	the	reviewer	for	their	time,	especially	since	this	is	a	long	
paper,	and	useful	&	considerate	comments.	Their	comments	are	repeated	below	
in	italic,	followed	by	our	answers.	
 
My only truly general remark would be that the work got chopped up into too many 
(3) papers, leading to some repetition but also requiring the reader to have at hand 
the other papers, and actually making parts of the previous papers, less than a year 
old, somewhat obsolete.  
 
These	papers	bring	out	different	aspects	of	sampling	issues,	for	a	variety	of	observing	
systems	and	observables.	While	there	is	a	thematic	overlap,	we	feel	the	overlap	is	small	
content-wise:	

• S16a	concerns	spatial	sampling,	in	a	model	evaluation	context.	It	uses	regional	
model	data	and	assumes	highly	localised	observations.	It	really	is	a	study	of	
sampling	errors	for	continuously	measuring	(in-situ)	ground-sites	or	incidental	
flight	campaigns.	It	shows	that	different	observations	can	lead	to	very	different	
sampling	errors.	It	includes	a	lot	of	sensitivity	studies	for	different	strategies	in	
comparing	a	global	model	to	the	observations.	

• S16b	concerns	temporal	sampling,	in	a	model	evaluation	context.	It	used	global	
model	data	and	real	remotely	sensed	observations.	It	compared	sampling	errors	
to	actual	model	errors	and	showed	them	to	be	of	similar	magnitude.	It	also	
showed	that	models	compared	better	with	real	observations	after	temporal	
collocation.	It	showed	that	the	sampling	error	for	visual	remote	sensing	data	
would	depend	on	longitude	when	using	daily	model	data.	

• The	current	study	concerns	spatio-temporal	sampling	in	a	general	sense.	It	uses	
regional	model	data	and	a	separate	model	for	(idealised)	observational	spatio-
temporal	sampling.	It	allows	the	study	of	sampling	issues	in	satellite	L3	data	(not	
possible	with	S16a	or	S16b)	and	provides	realistic	estimates	for	representation	
errors	after	temporal	collocation	(again	not	possible	with	S16a	or	S16b).	

	

The	paragraph	describing	S16a	and	S16b	(p	2	line	20-28,	in	the	introduction)	has	been	
rewritten	to	clarify	this.	
 
 
Specific concerns/suggestions 
 
The title needs to be more specific clarifying that this paper is about aerosols. The 
scope of the results presented here does not warrant the current title. 
 
The reviewer is correct in suggesting that the magnitude of representation errors may 
be very different for observations that we have not considered. Our literature study 
suggests that compared to aerosol observations, representation errors in e.g. ozone, 
solar surface radiation or water vapour column are relatively small (we are not saying 
they are insignificant!). Although we only consider aerosol measurements, it should 
be noted these are very diverse in nature and often the result of very different 
processes (see also S16a).  Consequently, we believe that our paper holds interest for 
other fields: 1) it provides a paradigm for studying these errors (we have not 
encountered the combined issue of spatio-temporal sampling in the literature before); 
2) it shows how representation errors depend on sampling strategies and averaging 



procedures. We find it hard to believe that this will be fundamentally different for 
other observables.  
 
The nature of ACP and the content of the abstract make the limitations in our paper 
quite clear, but a title should also be used to advertise a particular topic. We suggest 
to keep the title as it is. 
 
Even though this paper is about aerosols the introduction could/should touch more 
broadly upon the literature that exists in other atmospheric domains also outside the 
assimilation context. 
 
We were not aware of the work on representation in ozone measurements. The Nappo 
report can no longer be found in the BAMS archive (presumably this is a summary 
only), and our university library staff could not obtain a copy of the full report. While 
we have not been able to obtain the Nappo et al. report, the other papers mentioned by 
the reviewer will be referenced.  
 
We also suggest Lin et al. 2015 GRL “Revisiting	the	evidence	of	increasing	
springtime	ozone	mixing	ratios	in	the	free	troposphere	over	Western	North	
America” and Boersma et al. 2016 GMD “Representativeness	errors	in	comparing	
chemistry	transport	and	chemistry	climate	models	with	satellite	UV-Vis	
tropospheric	column	retrievals” to add to the paragraph describing representation 
studies in climate variables, surface radiation, SST and water vapour measurements. 
 
Even	though	some	references	are	provided	in	the	introduction	to	empirical	

estimates	of	aerosol	spatio-temporal	variability	and	some	caveats	are	given	in	the	

conclusions,	it	would	be	good	to	have	a	paragraph	providing	some	quantitative	

information	on	the	known/expected	variability	within	a	model	pixel,	i.e.	variability	

at	scales	smaller	than	10km	and	1hour.	This	is	in	particular	relevant	to	assess	the	

completeness	of	the	error	estimates	for	in	situ	measurements.	

	

Unfortunately,	we	don’t	know	of	any	beyond	what	we	already	mention	(e.g.	
Anderson	et	al	2003).	Since	most	atmospheric	variables	show	a	power	law	
distribution	when	performing	a	Fourier	analysis	in	space	and	time	(see	also	Fig	
3,	S16b),	we	suggest	that	variability	below	10	km	and	1	hour	will	typically	be	
smaller	than	that	above	10	km	and	1	hour.	Undoubtedly	exceptions	will	exist.	
	
Technical	comments	
	
Section	2.1,1st	sentence	seems	redundant	(basically	saying	that	the	simulated	fields	

are	those	that	were	simulated)	

	

The	sentence	reads:	“The	simulated	fields	examined	in	this	paper	are,	for	
obvious	reasons,	all	observables”.	It	is	a	slightly	trivial	sentence	but	simulated	
fields	are	not	necessarily	observable.		
	

Section 2, more general: are the hourly data hourly averages or hourly snapshots? 
 
They are snapshots, except for the precipitation which are accumulated fields. This 
will be added to Sect 2. 



 
Page	5,line	10	(about	the	observational	sampling):	in	reality,	the	observations	

don’t	occur	exactly	on	the	x,y,t	of	the	model.	Does	that	matter,	and	if	not,	why	not?	

	

This	is	an	unavoidable	simplification.	If	the	high-resolution	runs	were	at	100	m	
instead	of	10	km,	we	would	be	able	to	position	in-situ	observations	even	more	
accurately	compared	to	the	larger	area.	However,	given	the	large	size	of	the	
represented	area	(210	by	210	km2),	we	expect	an	error	of	at	most	10	km	in	the	
location	of	an	observation	to	be	negligible	in	impact.	See	also	our	answer	to	the	
reviewer’s	third	specific	suggestion	and	the	expected	variation	at	10km	scales.	
	
Page 5, line 14: temporal collocation can of course also be used when comparing 
different measurement (e.g. in situ versus satellite, so not only in observation-model 
comparisons), so the scope of these results is wider than is portrayed in the paper. 
 
Indeed. This is why we tried to avoid mention of model evaluation in the current 
paper. (Note that the previous paper was titled: “Will a perfect model agree with 
perfect observations? The impact of spatial sampling”). The representation issue is 
also (or even doubly) important when comparing different observational datasets. 
	
Section3, more general: why only look at temporal collocation and not spatial 
collocation? Clouds could also be dealt with using spatial masks instead of temporal 
collocation. For orography, a spatial mask would be the only solution. 
 
Possibly we misunderstand the question but if that were possible, wouldn’t 
representation errors (after collocation) be zero by definition? We have assumed that 
the represented area has a fixed size & shape, either because it represents a model 
gridbox or because of operational considerations (it is possible to identify regions 
where the field values strongly correlate with the observations, e.g. Piersanti et al. 
APR 2015. But those regions will vary from day to day and location to location, 
making this approach unpractical). Note that even the influence of orography is not 
clear cut, as usually wind-flows combine with orography to cause the representation 
issues.  
 
Page 7, section 3.4, 1st sentence: Fig. 6 is the first box-whisker plot, not Fig.7 
	
Corrected.	
	
Page	8,	section	4,	1st	sentence:	Maybe	add	“only”	to	the	beginning	of	the	sentence:	

	“Only	the	EMEP...”			
	
Agreed.	
	
Section	4	(and	subsequent,	more	general):	why	this	particular	choice	of	

210x210km2?		Most	current	gridded	data	sets,	whether	from	satellite	or	model,	

have	better		resolution	than	that.			

	

It	shows	our	interest	in	model	evaluation	(most	state-of-the-art	global	aerosol	
models	still	run	at	fairly	low	resolutions).	A	typical	T63	grid	translates	into	a	210	



by	210	km2	box	at	the	equator.		Note	that	we	have	included	analysis	of	
representation	errors	for	smaller	areas	(and	see	also	S16b	for	more	detail	on	
this),	in	particular	110	by	110	km2	(1	by	1	degree	at	the	equator).	
	
Page	8,	line	9:	explain	why	day-light	AOT	is	lower	than	average	AOT,	if	known.			

	

Average	day-light	AOT	is	only	slightly	smaller	than	night-time	AOT	(few	%)	for	
unknown	reasons.	However,	average	clear-sky	AOT	is	decidedly	smaller	than	
cloudy	AOT	(mostly	due	to	increased	humidity	in	the	cloudy	column).	Day-light	
is	mentioned	in	because	it	is	one	of	two	conditions	for	valid	observations.	We	
have	replaced	‘clear-sky	day-light	AOT’	with	‘observable	AOT’	and	added	an	
explanation.	
	
Page	8,	line	21:	how	come?	Please	explain	briefly.			

	

We	assume	the	reviewer	would	like	to	know	why	EMEP	shows	smaller	
representation	errors	than	WRF-Chem.	We	discuss	this	in	S16a	in	some	detail.	
Briefly,	it	is	impossible	to	say	why	without	a	separate	study	into	why	EMEP	and	
WRF-Chem	differ	in	the	first	place.		We	noted	that	magnitudes	and	spatial	
patterns	agreed	nicely,	giving	us	confidence	in	the	use	of	these	models.	
	

Section	5:	again,	why	210x210?	

	

See	before.			
	

Page	8,	line	29-30:	is	it	known	why	cloudy	AOT	is	larger	than	clear-sky	AOT	for	

these		regions?			

	

Please	see	explanation	before	(the	question	regarding	page	8,	line	9).	
	

Page	9,	line	12.	Although	you	make	it	explicit	later	in	the	paper	(in	section	5.3),	I	

think		it	would	be	good	to	state	earlier	on	that	the	strong	effect	of	temporal	

sampling/the		huge	gains	with	temporal	collocation,	are	all	about	clouds.			

	

This	is	true	for	ground-sites,	polar	orbiting	satellites	with	short	repeat	cycles	or	
geo-stationary	satellites.	But	for	polar-orbiting	satellites	with	long	repeat	cycles	
(e.g.	LIDAR),	the	operational	cycle	(revisit	time)	is	far	more	important.		
	

Page	9,	line	14:	satellites	->	satellite			

	

Corrected.	
	

Page	9,	line	19:	you	point	out	the	similar	errors	between	a	ground-site	and	a	

satellite		sounder	with	a	repeat	cycle	of	1	day.	That	may	be	true	for	the	average	size	

of	the	errors,	but	the	spatio-temporal	pattern	of	those	errors	should	be	vastly	

different,	no?	The	paper	contains	lots	of	box-whisker	plots	summarizing	the	

statistical	properties	of	the	representation	errors.	It	would	perhaps	be	nice	to	see	

some	more	maps	(like	Figs	3	and	4)	to	be	able	to	judge	the	spatial	patterns	of	the	

representation	errors.	This	is	to	be	seen	as	just	a	suggestion:	if	the	authors	don’t	see	



value	in	that,	they	can	perhaps	just	include	a	statement	to	explain	why	no	further	

maps	are	shown.			

	

The	spatial	pattern	of	those	representation	errors	is	somewhat	different	but	not	
too	much.	One	of	our	conclusions	is	that	monthly	data	like	L3	suffers	mostly	from	
temporal	sampling	issues	(no	observations	at	night	time	or	cloudy	skies).	This	
will	be	fairly	similar	for	a	ground-site	and	a	satellite.	We	show	results	for	
Oklahoma	below:	
	
	

	

	
	

We	suggest	to	add	one	of	these	figures	to	the	paper,	because	they	show	that	
although	overall	statistics	(box-whisker	plots)	seem	unbiased,	strong	bias	may	
exist	in	separate	parts	of	the	region.		
	

	Page	9,	line	32:	due	to	->	obtained	after	temporal			

	

Agreed.	
	

Page	12,	line	16:	please	explain	somewhere	what	N10	is.			

	

This	is	now	explained	in	Sect.	2.1:	“N10	and	N50,	number	densities	for	particles	
with	diameters	exceeding	10	resp.	50	nm”	
	

Page	14,	line	4-5	(Section	9.2).	You	state:	“The	number	of	observations	used	in	

	constructing	monthly	averages	cannot	be	used	to	control	representation	errors”.	I	

don’t	understand	where	this	conclusion	comes	from	(which	probably	indicates	I	

misunderstood	something	earlier	on).	I	can	hardly	believe	this	to	be	correct:	surely	

a	monthly	average	based	on	a	measurement	every	day	of	the	month	will	lead	to	a	

better	estimate	of	the	monthly	mean	than	an	average	based	on	just	1	

measurement?			

	

While	we	agree	with	the	reviewer’s	point	point,	we	wanted	to	study	



representation	errors	in	the	context	of	realistically	achievable	number	of	
observations.	The	reviewer’s	example	is	fairly	abstract	as	both	cases	seldom	
occur.	
	

The	relevant	figure	is	Fig.	8	that	shows	monthly	representation	errors	for	
ground-sites	as	a	function	of	required	temporal	coverage.		Actual	temporal	
coverage	(or	the	number	of	observations)	will	always	be	higher	and	is	shown	by	
the	black	dotted	line	(right	axis).	The	brown	line	(left	axis)	represents	
representation	errors	when	data	are	not	collocated	(which	is	what	our	statement	
was	about).	Note	that	an	increased	number	of	observations	may	reduce	
representation	errors,	as	is	shown	for	Japan.	However,	for	Oklahoma	(and	most	
other	regions)	this	error	hardly	changes	with	the	number	of	observations.	A	
combination	of	strong	temporal	variation	throughout	the	day,	and	different	
spatial	sampling	of	the	ground-site	and	represented	area	prevents	an	increasing	
number	of	observations	to	reduce	representation	errors.		
	
Strictly	speaking	our	statement	should	have	read	“Using	a	minimum	required	
number	of	observations	cannot	be	relied	upon	to	control	representation	errors.”	
The	text	will	be	changed.	
	



	 
Reply	to	reviewer	2	
	
We	would	like	to	thank	the	reviewer	for	their	time,	especially	since	this	is	a	long	paper,	
and	useful	&	considerate	comments.	Their	comments	are	repeated	below	in	italic,	
followed	by	our	answers.	
	
	
General	comments	
		
However,	some	of	the	findings	have	been	presented	already	in	the	previous	papers	S16a	
and	S16b.	
	
These	papers	bring	out	different	aspects	of	sampling	issues,	for	a	variety	of	observing	
systems	and	observables.	While	there	is	a	thematic	overlap,	we	feel	the	overlap	is	small	
content-wise:	

• S16a	concerns	spatial	sampling,	in	a	model	evaluation	context.	It	uses	regional	
model	data	and	assumes	highly	localised	observations.	It	really	is	a	study	of	
sampling	errors	for	continuously	measuring	(in-situ)	ground-sites	or	incidental	
flight	campaigns.	It	shows	that	different	observations	can	lead	to	very	different	
sampling	errors.	It	includes	a	lot	of	sensitivity	studies	for	different	strategies	in	
comparing	a	global	model	to	the	observations.	

• S16b	concerns	temporal	sampling,	in	a	model	evaluation	context.	It	used	global	
model	data	and	real	remotely	sensed	observations.	It	compared	sampling	errors	
to	actual	model	errors	and	showed	them	to	be	of	similar	magnitude.	It	also	
showed	that	models	compared	better	with	real	observations	after	temporal	
collocation.	It	showed	that	the	sampling	error	for	VIS	remote	sensing	data	would	
depend	on	longitude	when	using	daily	model	data.	

• The	current	study	concerns	spatio-temporal	sampling	in	a	general	sense.	It	uses	
regional	model	data	and	a	separate	model	for	the	idealised	observational	spatio-
temporal	sampling.	It	allows	the	study	of	sampling	issues	in	satellite	L3	data	(not	
possible	with	S16a	or	S16b)	and	provides	realistic	estimates	for	representation	
errors	after	temporal	collocation	(again	not	possible	with	S16a	or	S16b).	

	
The	paragraph	describing	S16a	and	S16b	(p	2	line	20-28,	in	the	introduction)	has	been	
rewritten	to	clarify	this.	
	
Minor/specific	comments	
	
	
	Introduction:	I	would	suggest	to	add	a	reference	related	to	representation	errors	in	ozone	
observations,	e.g.,	Sofieva,	V.	F.,	Kalakoski,	N.,	Päivärinta,	S.-M.,	Tamminen,	J.,	Laine,	M.,	
and	Froidevaux,	L.:	On	sampling	uncertainty	of	satellite	ozone	profile	measurements,	Atmos.	
Meas.	Tech.,	7,	1891-1900,	doi:10.5194/amt-7-1891-2014,	2014.		
	
This	is	an	interesting	paper	that	the	other	reviewer	suggested	as	well.	We	were	not	familiar	
with	it	but	have	now	added	it	to	the	introduction.	
	
Page	3,	Section	2.1:	Please	explain	N10/N50	and	introduce	“BC”	as	abbreviation	for	black	
carbon	(used	later	on	in	the	paper).		
	
Agreed.	



	
Sections	3.2	-	3.5:	I	would	suggest	to	merge	the	description	of	the	different	figures	into	one	
subsection.		
	
We	agree	the	page	layout	does	look	a	bit	awkward,	but	the	benefit	(we	hope)	of	the	
subsections	is	that	readers	will	be	able	to	quickly	look	up	the	description	relevant	to	a	
particular	graph.	We	suggest	to	not	change	this.	
	
Page	8,	lines	9/10:	Why	is	clear	sky	day-light	AOT	lower	than	average	AOT?		
	
Average	day-light	AOT	is	only	slightly	smaller	than	night-time	AOT	(few	%)	for	
unknown	reasons.	However,	average	clear-sky	AOT	is	decidedly	smaller	than	cloudy	
AOT	(mostly	due	to	increased	humidity	in	the	cloudy	column).	Day-light	is	mentioned	
in	because	it	is	one	of	two	conditions	for	valid	observations.	We	have	replaced	
‘clear-sky	day-light	AOT’	with	‘observable	AOT’	and	added	an	explanation	
	
Page	11,	Sec.	6.2:	Are	the	numbers	the	errors	due	to	“purely	spatial	sampling”?		
	
Indeed.	Our	assumption	is	that	such	in-situ	ground-sites	measure	continuously,	at	least	for	
the	duration	of	a	day.	Consequently,	daily	representation	errors	are	purely	due	to	spatial	
sampling.	
	
Page	14,	Sec.	9.3:	Please	add	a	comment	here	that	you	find	similar	results	for	polar	orbiting	
satellites	and	geostationary	satellites.	At	least	for	me	this	was	a	bit	surprising	as	I	expected	
lower	errors	for	the	geostationary	satellite	observations	due	to	multiple	views	per	day	
(instead	of	one	measurement	per	day	for	the	LEO).		
	
Agreed.	
	
While	this	result	seems	counter-intuitive,	it	is	a	consequence	of	1)	temporal	variation	
throughout	the	day	that	even	the	GEO	sensor	can	not	observe;	2)	cloud	masking	over	210	by	
210	km2	that	prevents	observation	of	the	entire	area	by	the	GEO	sensor.	These	two	causes	
contribute	in	roughly	equal	measure	to	the	final	representation	error	for	geostationary	
sensors	that	can	only	observe	during	the	day.		
	
Although	we	do	not	mention	this	in	the	paper,	we	considered	the	case	of	a	physically	
impossible	observing	system:	a	geostationary	satellite	that	can	observe	during	both	day	and	
night.	For	areas	without	(!)	clouds,	daily	representation	errors	are	indeed	zero	as	expected.		
	
Page	15,	line	30:	Not	sure	whether	I	can	follow	conclusion	3).	Could	you	please	add	an	
explanation	here.	Like	referee	#1	(her/his	comment	no.	18)	I	think	that	estimates	of	the	
monthly	mean	will	improve	with	increasing	number	of	observations.		
	
While	we	agree	with	the	reviewer’s	point,	we	wanted	to	study	representation	
errors	in	the	context	of	realistically	achievable	number	of	observations.	
Reviewer’s	#1	example	is	fairly	abstract	as	both	cases	seldom	occur.	
	
The	relevant	figure	is	Fig.	8	which	shows	monthly	representation	errors	for	
ground-sites	as	a	function	of	required	temporal	coverage.		Actual	temporal	
coverage	(or	the	number	of	observations)	will	always	be	higher	and	is	shown	by	
the	black	dotted	line	(right	axis).	The	brown	line	(left	axis)	represents	



representation	errors	when	data	are	not	collocated	(which	is	what	our	statement	
was	about).	Note	that	an	increased	number	of	observations	may	reduce	
representation	errors,	as	is	shown	for	Japan.	However,	for	Oklahoma	(and	most	
other	regions)	this	error	hardly	changes	with	the	number	of	observations.	A	
combination	of	strong	temporal	variation	throughout	the	day,	and	different	
spatial	sampling	of	the	ground-site	and	represented	area	prevents	an	increasing	
number	of	observations	to	reduce	representation	errors.		
	
Strictly	speaking	our	statement	should	have	read	“Using	a	minimum	required	
number	of	observations	cannot	be	relied	upon	to	control	representation	errors.”	The	
text	will	be	changed.	
	
Page	16,	lines	7/8:	You	say	that	the	results	were	robust	across	the	regions,	but	what	about	
the	selected	months?	Did	you	analyze	the	natural	variability	of	the	observables	as	a	function	
of	month?	Do	you	think	that	the	selected	months	are	representative	for	the	whole	year	/	
other	years?	Errors	may	increase/decrease	significantly	if	natural	variability	is	different	for	
different	months.		
	
Errors	will	increase	or	decrease	with	variability	but	we	never	saw	a	significant	change	(for	
argument’s	sake	here	defined	as	a	changed	by	a	factor	3,	ie.	a	30%	error	becoming	a	10%	or	
90%	error).	Also,	“robust”	referred	to	the	second	part	of	the	previous	sentence	(“their	
behaviour	(e.g.	impact	from	sampling	or	collocation)”).	We	accept	there	will	be	changes	in	
exact	error	values.	We	have	rephrased	to	improve	clarity.		
	
Fig.	2:	I	find	it	difficult	to	identify	the	blue	line.	Is	it	possible	to	show	only	one	red	line	(e.g.,	
mean/median	+	std.dev.	of	all	observations	2000-2010)?	
	
This	figure	will	be	recreated,	with	the	blue	line	more	prominent.	
	
Technical	corrections	
	
P_a_g_e_	_2_2_,_	_F_i_g_._	_5_,_	_c_a_p_t_i_o_n_:_	_“2_1_0_	_x_	_2_1_0_	_k_m_”	_-_>_	
_“2_1_0_	_x_	_2_1_0_	_k_m_2_”	_	
	
P_a_g_e_	_2_5_,_	_F_i_g_._	_9_,_	_t_i_t_l_e_:_	_“o_b_s_:_	_2_1_0_	_x_	_1_0_	_k_m_2_”	
_-_>_	_“o_b_s_:_	_1_0_	_x_	_1_0_	_k_m_2_”	_	
	
P_a_g_e_	_3_1_,_	_F_i_g_._	_1_6_,_	_t_i_t_l_e_:_	_“o_b_s_:_	_1_0_	_x_	_2_1_0_	_k_m_2_”	
_-_>_	_“o_b_s_:_	_2_1_0_	_x_	_2_1_0_	_k_m_2_”	_	
	
P_a_g_e_	_3_4_,_	_F_i_g_._	_2_0_,_	_c_a_p_t_i_o_n_:_	_“P_M_2_5_”	_-_>_	
_“P_M_2_._5_”	_a_n_d_	_“k_m_”	_-_>_	_“k_m_2_”	_	
	
P_a_g_e_	_3_5_,_	_F_i_g_._	_2_1_,_	_c_a_p_t_i_o_n_:_	_“P_M_2_5_”	_-_>_	
_“P_M_2_._5_”	_a_n_d_	_“k_m_”	_-_>_	_“k_m_2_”	_	
	
P_a_g_e_	_3_6_,_	_F_i_g_._	_2_3_,_	_c_a_p_t_i_o_n_:_	_“k_m_”	_-_>_	_“k_m_2_”	_	
	
P_a_g_e_	_3_7_,_	_F_i_g_._	_2_4_,_	_c_a_p_t_i_o_n_:_	_“k_m_”	_-_>_	_“k_m_2_”	_	
	



Most	of	corrections	will	be	implemented	in	the	final	paper.	Note	that	in	Fig	16,	our	
caption	is	correct:	the	LIDAR	sweeps	out	a	narrow	transect	(curtain),	represented	by	a	
10	x	210	km2	area.		
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Abstract. The discontinuous spatio-temporal sampling of
observations has an impact when using them to construct
climatologies or evaluate models. Here we provide esti-
mates of this so-called representation error for a range of
time and length-scales (semi-annually down to sub-daily,5

300 to 50 km) and show that even after substantial aver-
aging of data significant representation errors may remain,
larger than typical measurement errors. Our study consid-
ers a variety of observations: ground-site remote sensing
or in-situ (PM2.5, black carbon mass or number concen-10

trations), satellite remote sensing with imagers or LIDARs
(extinction). We show that observational coverage (a mea-
sure of how dense the spatio-temporal sampling of the ob-
servations is) is not an effective metric to limit representa-
tion errors. Different strategies to construct monthly satel-15

lite L3 data are assessed and temporal averaging of spatially
aggregated observations (super-observations) is found to be
the best, although it still allows for significant representa-
tion errors. Temporal

:::::::
However,

::::::::
temporal collocation of data

(only possible in the context of evaluating model data with20

observations)
::::::
possible

::::::
when

:::::::::::
observations

:::
are

:::::::::
compared

::
to

:::::
model

::::
data

::
or

:::::
other

::::::::::::
observations),

::::::::
combined

:::::
with

:::::::
temporal

::::::::
averaging,

:
can be very effective at reducing representation

errorseven when spatial sampling issues remain (e. g. when
using ground-sites). .

:
We also show that ground-based and25

wide-swath imager satellite remote sensing data give rise
to similar representation errors although their observational
sampling is different. Finally, emission sources and orogra-
phy can lead to representation errors that are very hard to
reduce even with substantial temporal averaging.30

1 Introduction

The intermittent temporal sampling and limited field-of-view
of observations reduce their representativeness for the ac-
tual weather or climate system they are intended to explore
::::::::::::::::
(Nappo et al., 1982). Yet relatively little work has been done 35

on estimating these sampling impacts and how to mitigate
them. At the root of this issue lies the spatio-temporal vari-
ability of the natural system, but the large variety in sampling
strategies of observing systems adds significantly to the com-
plexity of the problem. A representation error can be used 40

to describe the ability of measurements to represent a larger
area over an arbitrary (but specified) length of time. If the
observations are used to evaluate models, these represented

areas would coincide with the model’s gridboxes.
Hakuba et al. (2014b, a) studied the spatial repre- 45

sentativeness of ground-sites for solar surface radiation
measurements and Bulgin et al. (2016) parametrised the
:::::
spatial

::
sampling uncertainty in gridded SST (sea sur-

face temperature) measurements (cloud masked) from
satellite. Climate statistics were shown to differ between 50

point data and gridded data in theoretical studies by
Cavanaugh and Shen (2015) and Director and Bornn
(2015).

:::::::
Sampling

::::::
issues

:::
in

:::::
trace

:::
gas

:::::::::::::
measurements

::::
from

:::::
either

:::::::
satellites

:::
or

::::::
ground

:::::::::
networks

::::
have

:::::
been

:::::::
studied

::
by

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Sofieva et al. (2014); Coldewey-Egbers et al. (2015); Lin et al. (2015) and55

::::::::::::::::::
Boersma et al. (2016).

:
Recently, Diedrich et al. (2016)

studied the impact of cloud-masking in water vapour mea-
surements from satellite and found a 25% lower monthly
global mean water vapour path.
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In this paper, we will focus on aerosol but our results can 60

be expected to have wider implications. Since the landmark
study by Anderson et al. (2003) we know aerosol varies over
hours and tens of km, see also Kovacs (2006); Santese et al.
(2007); Shinozuka and Redemann (2011); Schutgens et al.
(2013); Weigum et al. (2016). Aerosol studies are likely to5

show a very clear impact from spatio-temporal sampling.
Kaufman et al. (2000); Smirnov (2002) and Remer et al.

(2006) attempted to assess the impact of diurnal cycles
on the representativeness of satellite observations for daily
averages. Similarly, Sayer et al. (2010) and Geogdzhayev10

et al. (2014) estimated the impact of satellite sampling on
monthly and yearly regional averages. These studies showed
that significant differences might result from temporal sam-
pling alone. Levy et al. (2009) studied different algorithms
to create monthly MODIS (MODerate resolution Imaging15

Spectro-radiometer) gridded data (so-called L3) and showed
large differences might result. A major issue for Levy et al.
(2009) was the absence of an objective truth.

The term representation error (or representativity or repre-
sentativeness error) is often used in data assimilation where20

a growing body of research exists, e.g. Desroziers et al.
(2005); Waller et al. (2014); Hodyss and Nichols (2015); van
Leeuwen (2015); Waller et al. (2016). In data assimilation
the representation error concerns very short time scales: ob-
servations are compared against model data at specific times.25

In this paper we are also interested in representation errors af-
ter averaging over months or even years. Conceptually repre-
sentation errors in data assimilation have evolved to include
model errors due to poorly represented sub-grid processes.
In this paper, we are only concerned with the spatio-temporal30

representativeness of observations.
In two recent studies, we explored temporal and spa-

tial sampling issues using aerosol models as a truth. In
Schutgens et al. (2016a) (henceforth S16a) spatial sam-
pling issues for model

:::::
(when

:::::::::
evaluating

::::::
global

:::::::
models35

::::
with

:
grid-boxes of a few 100’s of kms)

:
were explored

on time-scales of hours to a month using high-resolution
model data.

::::
S16a

::
is
::

a
:::::

study
:::

of
::::::::::::

representation
::::::

errors
:::

for
::::::::::
continuously

:::::::::
measuring

::::::::
(in-situ)

::::::::::
ground-sites

:::
or

::::::::
incidental

::::
flight

::::::::::
campaigns.

::
It
::::::

shows
::::

that
::::::::
different

:::::::::::
observations

:::
can40

:::
lead

:::
to

:::::
very

::::::::
different

:::::::::::::
representation

::::::
errors.

::
It
::::::::

includes
::::::::
sensitivity

:::::::
studies

:::
for

:::::::
various

:::::::::
strategies

:::
in

:::::::::
comparing

::
a

:::::
global

:::::
model

::
to
:::
the

:::::::::::
observations.

:
In Schutgens et al. (2016b)

(henceforth S16b) temporal sampling issues were
::
are

:
ex-

plored on time-scales of days to a year using global model45

data and actual temporal sampling from
:::
real remote sensing

datasets. Major conclusions were: 1) representation errors
can be large and are often larger than measurement errors
and may be similar to model errors; 2) representation errors
can be reduced through spatio-temporal averaging under50

certain conditionsand not as much as is commonly implicitly
assumed; 3) representation errors vary greatly, depending
on the observing system and the observable

::::
S16b

::::::::
compares

:::::::::::
representation

:::::
errors

::
to
::::::
actual

:::::
model

:::::
errors

::::
and

::::
finds

::::
them

::
to

::
be

::
of

::::::
similar

:::::::::
magnitude.

::
It

:::::
shows

::::
that

::::::
models

:::::::
compare

:::::
better55

::::
with

:::
real

:::::::::::
observations

:::::
after

::::::::
temporal

::::::::::
collocation.

:::::
Also,

::
it

::::
finds

:::
that

:::
the

::::::::::::
representation

::::::
errors

::
for

::::::
visual

::::::
remote

::::::
sensing

:::
data

:::::::
depend

::
on

::::::::
longitude

:::::
when

:::::
using

::::
daily

::::::
model

::::
data. Both

intensive (e.g. single scattering albedo) and extensive (e.g.
aerosol optical depth) observables suffer from representative- 60

ness issues.
In S16a, we assumed that observations were made con-

tinuously in time. Clearly this is unrealistic for many and
in particular remote sensing observations (but it is often
a fair assumption for ground-site in-situ measurements). , 65

::::
while

:::
in

:::::
S16b

::::
we

::::::::
assumed

::::
that

::::
that

::::::
global

::::::
model

::::
data

:::
and

:::::::::::
observations

:::
had

::::
the

:::::
same

::::::
spatial

:::::
extent

::::
(the

:::::::
model’s

::::::::
grid-box).

:::::
Both

::::::::::
assumptions

::::
are

::::::::
idealistic

:::
and

:::::::
limited

:::
our

:::::::
analysis.

:
In the current paper, we will study the combined

impact of spatio-temporal sampling on representation er- 70

rors for a wide variety of observing systems (ground-site
in-situ, ground-site passive remote sensing, satellite passive
and active remote sensing) on a range of time-scales from
hourly to semi-annually. Firstly, this will yield more realistic
representation error estimates than were previously (S16a a& 75

S16b) possible; secondly, it elucidates
::::
This

::::::
allows

::
us

::
to

::::
study

:::
e.g.

::::::::
sampling

:::::
issues

::
in

:::::::
satellite

:::
L3

::::
data,

::
or

:::
the

:::::::::
magnitude

::
of

::::::::
remaining

::::::::::::
representation

:::::
errors

::::
after

::::::::
temporal

::::::::::
collocation.

:
It

:::
also

::::::
allows

::
us

:::
to

::::::::
elucidate the interplay of spatial and tem-

poral sampling in creating representation errors; thirdly, it 80

explores various strategies in reducing these representation
errors. In particular, we will show how temporal collocation
of model data with observations can reduce representation
errors in model evaluation. .

:

Section 2 describes the high-resolution model data and 85

how they were used to create simulated observations. Sec-
tion 3 explains how representation errors are calculated
from these data. Results for semi-annual averages (Sect. 4),
monthly averages (Sect. 5), daily averages (Sect. 6) and sub-
daily data (Sect. 7) follow. The impact of precipitation on 90

sampling issues is discussed in Sect. 8. An overview of
results per considered observing system

::
the

:::::::
lessons

::::::
learned

::
for

::::::::
different

:::::::::
observing

:::::::
systems is given in Sect. 9 and the

paper concludes with a summary (Sect. 10)
Note that Sect. 3.2 contains some general guidelines to in- 95

terpreting many of the figures and statistics that appear in this
paper.

2 The regional models

The same simulations as in S16a are used in the cur-
rent study and for details we refer to that paper. Briefly, 100

the models WRF-Chem (Grell et al., 2005; Fast et al.,
2006), EMEP/MSC-W (Simpson et al., 2012) and NICAM-
SPRINTARS (see Goto et al. (2015) and references therein)
were used to simulate common observables (aerosol opti-
cal thickness, extinction, PM2.5, black carbon mass con- 105

centration, number densities and cloud condensation nu-
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clei) on a 10 km grid with hourly resolution
:::::::::
(snapshots,

::::
only

::::::::::
precipitation

::::
data

:::
are

:::::::::::
accumulated). All models nudged

windspeeds to reanalysis meteorology and used emissions
with diurnal profiles where relevant. Fig. 1 shows the sim-
ulation regions, and Table 1 summarises the most important
information on these simulations.5

As precipitation is potentially a major cause of spatio-
temporal variability in aerosol, we evaluated the models
against GPCP (Global Precipitation Climatology Project,
Adler et al. (2003); Huffman et al. (2009)) 1-degree
daily combination v1.2 data (Huffman et al. (2001),10

see also http://precip.gsfc.nasa.gov/gpcp_daily_comb.html).
Histograms of daily precipitation in the models compare
quite well to these observations, see Fig. 2). At higher daily
precipitation, there is quite a bit of statistical noise due to the
low number of cases, as can be seen by comparing the ob-15

servation over W-Europe and Europe. The most notable dif-
ferences from the observations are found for Congo, where
the model tends to overestimate precipitation, and Ocean &
Japan, where the models tend to underestimate low precipi-
tation cases.20

2.1 Observable parameters

The simulated fields examined in this paper are, for obvi-
ous reasons, all observables, see Table 2. All of the models
provided AOT (Aerosol Optical Thickness), AE (Ångström
Exponent), SSA (Single Scattering Albedo), extinction and25

(dry) PM2.5, although WRF-Chem calculates AOT and ex-
tinction for 600 nm and EMEP and NICAM-SPRINTARS
for 550 nm. WRF-Chem MADE provided CCN (Cloud Con-
densation Nuclei) at varying degrees of super-saturation S.
Converting WRF-Chem output into observables of black car-30

bon concentration
::::
(BC)

:
or number densities

::::
(N10

::::
and

::::
N50,

::::::
number

::::::::
densities

:::
for

:::::::
particles

::::
with

:::::::::
diameters

:::::::::
exceeding

::
10

::::
resp.

::
50

::::
nm)

:
required some further assumptions that are de-

tailed in S16a.
The spatio-temporal sampling of real observations is deter-35

mined by their operational parameters and by adverse condi-
tions. For simplicity’s sake, we created a number of idealised
scenarios for different observing systems. Additional model
information like local times, cloud fraction and precipitation
were used to create spatio-temporal samplings for the obser-40

vations.
Ground-site in-situ measurements are assumed to occur at

all times, irrespective of conditions but constrained by op-
erational parameters, e.g. IMPROVE (Interagency Monitor-
ing of PROtected Visual Environments) measures only a full45

day every three days. Note that this is a best case scenario
and most ground-sites will suffer down-time due to main-
tenance or malfunction. In particular we assume that these
measurements will occur irrespective of precipitation since
this usually does not prevent measurements. Obviously, in-50

situ ground-sites only observe a small part (here 10 by 10
km) of the atmosphere near the surface.

Ground site remote sensing observations of AOT will oc-
cur during the day-light portion of each day (here 10 hours
straddling local noon), provided there are no clouds. These 55

ground-sites will observe only a small portion (10 by 10 km)
of an atmospheric column. Again, down-time due to mainte-
nance or malfunction is not considered.

Passive satellites measurements (imager data) on polar or-
biting satellites are assumed to occur once during a day at 60

local noon, provided there are no clouds. Imagers will have
swaths wide enough to allow aggregation of individual mea-
surements over the represented area. Due to its orbital param-
eters and swath width, these satellites will have repeat cycles
of 1, 2, 4 or 8 days. Imagers on geostationary satellites allow 65

measurements during the day-light portion of each day (10
hours straddling local noon).

Satellite LIDAR (LIght Detection And Ranging) measure-
ments observe a narrow north-south transect (see also S16a)
within the represented area once a day at local noon with a re- 70

peat cycle of 12 days. CALIOP (Cloud-Aerosol LIDAR with
Orthogonal Polarization) has a repeat cycle of 16 days but al-
lowing the LIDAR swath to revisit different parts of the same
210 by 210 km2 area brings the typical cycle down to about
12 days. As we do not consider measurement errors, it mat- 75

ters little if the LIDAR measurement is made during the day
or night. Down-time due to malfunction is not considered.

3 Simulating observational and global model data

This section briefly describes the main methodology used in
this paper. The high-resolution regional model data v can be 80

thought of as 3-dimensional data cube vxyt (either a column
or layer property) where x= 1 . . .nx and y = 1 . . .ny are in-
dices to the horizontal coordinates, and t= 1 . . .nt is an in-
dex to the time coordinate. As the model data has been trans-
formed to a regular grid, equations can conveniently be writ- 85

ten down with references to indices only. Using this data cube
vxyz , we will generate both a truth (an average over a wider
area that is to be represented) and a sampled but otherwise
noiseless (i.e. without measurement error) observation.

At a single time, the truth for a represented area can be 90

written as

Txyt =
1

(2Lx +1)(2Ly +1)

+L
xX

i=�L
x

+L
yX

j=�L
y

vx+i;y+j;t, (1)

where Lx and Ly define the half-lengths of the represented
area. A time average of this is given by

T̄xyt =
1

2Lt +1

+L
tX

k=�L
t

Tx;y;t+k, (2)

where (2Lt +1) defines the averaging period. Note that a
capital variable name denotes a spatial average and an over-
bar a temporal average.5
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In a very similar way, a spatio-temporal average of the ob-
servations may be written as

Ōxyt =

0

@
+l

tX

k=�l
t

+l
xX

i=�l
x

+l
yX

j=�l
y

fx+i;y+j;t+k

1

A
�1

⇥

+l
tX

k=�l
t

+l
xX

i=�l
x

+l
yX

j=�l
y

fx+i;y+j;t+k vx+i;y+j;t+k, (3)10

where lx, ly and lt serve a similar purpose as Lx,Ly and Lt.
The observational sampling fxyt is defined as:

fxyt =

(
0 if no observation present at x,y, t
1 if observation present at x,y, t.

(4)

Note that this is a very general formulation that can be used
to simulate both individual ground-sites and satellite mea-15

surements.
The relative spatio-temporal representation error in an ob-

servation for arbitary time and length-scales is now given by

✏̄xyt =
�
Ōxyt � T̄xyt

�
/T̄xyt. (5)20

When observations are used to evaluate models, it is pos-
sible to temporally collocate model data with observations.
We simulate this by constructing T̄xyt from a sub-sampled
number of Txyt and the resulting error will be called "repre-
sentation error with collocation".25

Note that it is possible to aggregate observations spatially
before temporally averaging them:

Oxyt =

0

@
+l

xX

i=�l
x

+l
yX

j=�l
y

fx+i;y+j;t

1

A
�1

⇥

+l
xX

i=�l
x

+l
yX

j=�l
y

fx+i;y+j;t vx+i;y+j;t . (6)30

This is sometimes called super-obbing and the resulting data
super-observations. Temporal averages can then be generated
from

Ōxyt =

 
+l

tX

k=�l
t

Gxy;t+k

!�1 +l
tX

k=�l
t

Gxy;t+kOxy;t+k , (7)

where Gxyt defines a sampling, much like fxyt. While fxyt35

will depend on retrieval conditions (e.g. cloudy or not), Gxyt

is an arbitrary choice (wether to accept a given Oxyt as a
valid super-observation). The resulting Ōxyt in Eq. 7 is sim-
ilar to many L3 products for satellite imagers.

Actually, the two expressions for Ōxyt may be related to40

alternative averages that were proposed by Levy et al. (2009)
for satellite L3 products. Their "Pixel Weighting" procedure

corresponds to Eq. 3, while procedures "Equal Day Weight-
ing" and "Threshold Equal Day Weighing" correspond to
Eq. 7. The difference between the latter two is in the con- 45

struction of Gxyt (requiring a minimum number of pixels for
a valid super-observation or not).

To conclude, we introduce three metrics of the abundance
of measurements that go into Ō as this will affect how well it
compares to the truth. The spatial coverage of a single super- 50

observation is

cspatxyt =
1

(2lx +1)⇥ (2ly +1)
⇥

+l
xX

i=�l
x

+l
yX

j=�l
y

fx+i;y+j;t . (8)

The temporal coverage of a time-averaged super-observation 55

is defined differently because many observations are made
not continuously but nevertheless regularly in time (e.g.
satellite overpass times):

ctemp
xyt =

+l
tX

k=�l
t

Gxy,t+k/

+l
tX

k=�l
t

G⇤
xy,t+k, (9)

where G⇤ is a sampling entirely defined by the observational 60

cycle of the observing system. This includes orbital and day-
light constraints but not cloudiness. Note that in real life,
these coverages are known and can be used to select observa-
tions; e.g. only aggregated satellite data with a required mini-
mum spatial coverage will be used to compare against model 65

results or only ground-sites with a required minimum tem-
poral coverage will be used to construct monthly averages.
(Henceforth we will refer to required coverage and drop the
word ’minimum’).

Each data cube vxyt will allow us to generate nT cases 70

of the truth T̄xyt,:::::::
because

::::
the

::::::::
simulated

:::::::
regions

:::
are

:::::
much

:::::
larger

::::
than

::
the

::::::::::
represented

:::::
areas. The number nO of possible

Ōxyt cases will be less, depending on both fxyt and Gxyt.
This leads to the definition of a case coverage nO/nT . Ide-
ally the case coverage is 100% which is possible even if fxyt 75

and Gxyt are not always 1 and indicates there are sufficient
observations to construct valid Ōxyt anywhere and anytime.

As explained in S16a, the first two days of the high-
resolution simulations and the outer part of the spatial do-
main where excluded from analysis to prevent boundary ef- 80

fects to impact our results.

3.1 Some terminology

Representation error will refer to the representativeness of an
observation (possibly aggregated over an area and averaged
over a time period) in describing the natural system. If ob- 85

servations are used to evaluate temporally collocated model
data, we will refer to a representation error with collocation.
We will consider two collocation methodologies: to the hour
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or to the day. In the first case, hourly model data is tempo-
rally collocated to the hour of the observation. In the second 90

case, daily model data is collocated to the day of the obser-
vation (and the observation itself is a daily average

:
,
::
to

:::
the

:::::
extent

:::
that

::
is
:::::::
possible).

3.2 Common characteristics of the figures in this paper

This paper contains many figures of representation error dis-5

tributions. Instead of repeating the same information in each
caption, some aspects of those figures are explained here.
We use the so-called parametric 7-number summary of the
2, 9, 25, 75, 91 and 98% quantiles q of the errors because,
for a normal distribution, these quantiles will be equally10

spaced. Any skewness or extended wings in a distribution
will be readily visible. In addition to quantiles, we will pro-
vide RMSD (root mean square differences) and RMSE (root
mean square errors, essentially RMSD after removing any
bias).15

3.3 Figures with grey shading

In Fig. 5 different shades of grey are used to denote these
interquantile ranges: light grey for q98�q2, medium grey for
the q91 � q9 and dark grey for q75 � q25. The solid blue line
represents the median error.20

3.4 Figures with box-whiskers

In Fig. 7
:
6, box-whisker plots are shown of the error distri-

butions for each of the regions. Different widths of the bars
are used to denote different inter-quantile ranges: narrow for
q98 � q2, medium for q91 � q9 and wide for q75 � q25. The25

black rectangle represents the median error and the black cir-
cle the mean error. On top of each bar, the RMSD is shown.
The colours of the bars refer to different experiments and are
explained in the caption of each separate figure. If a required
spatial or temporal coverage was used, this will be shown in30

the lower left and right corners of the figure. Case coverages
per region are shown just above the region names.

In Fig. 9 error distributions for two different experiments
are shown side-by-side (much like a violin plot), for each
region and usually as a function of an independent parameter35

(e.g. represented area size in this example). The values above
each box-whisker is the ratio of the right error distribution’s
RMSD to the left one’s.

3.5 Figures with line graphs

A very different figure is Fig. 8 where error statistics are sum-40

marised as a function of required spatial or temporal cov-
erage. The coloured lines represent RMSE (solid) and bias
(dashed) using the left-hand axis. The colours are identical
to the ones used in the box-whisker plots to help identify dif-
ferent experiments. The black lines use the right-hand axis45

and denote the case coverage (solid), and achieved spatial

(dashed) and temporal (dotted) coverage. The latter have of
course been averaged over all relevant cases.

4 Representativeness of semi-annual data

The
::::
Only

::
the

:
EMEP simulation, Table 1, allows us to explore 50

sampling issues in semi-annual data, assuming ground-sites
representing an area of 210⇥ 210 km2. Figure 3 shows rel-
ative representation errors in AOT and surface black carbon
:::
BC mass concentrations. The surface black carbon

:::
BC mea-

surements are continuous through the 6 months while the 55

AOT measurements are only made during day-time and
cloud-free conditions, see Sect. 2.1.

Representation errors in surface black carbon
:::
BC mea-

surements are clearly related to emissions sources (notice
major cities like Paris and Madrid) and orography (notice 60

the Alps, the Apennines and the Carpathian mountains). On
the other hand, representation errors in AOT are dominated
by temporal sampling and show a clear region-wide bias as
clear-sky day-light

:::::::::
observable AOT tends to be lower than

average AOT
::::::
(mostly

:::
due

:::
to

::::::::
increased

::::::::
humidity

::
in

::::::
cloudy 65

:::::::
columns). In both cases, representation errors can be several
10’s of percent. If the AOT measurements are used for model
evaluation, temporal collocation of model data to the obser-
vations (as advocated in S16b) is possible and the errors are
reduced significantly. In particular, the region-wide bias is 70

much reduced and the remaining error pattern is more simi-
lar to that for black carbon

:::
BC, see Fig. 4.

Table 3 shows representation errors for several ACTRIS
(Aerosol, Clouds & Trace gases Research Infra-Structure)
sites within the Europe domain, not just for long-term av- 75

erages but daily RMSD as well. Representation errors driven
by spatial sampling often benefit from temporal averaging
unlike errors due to temporal sampling. Collocation removes
the difference in temporal sampling and allows remaining
representation errors to be reduced through temporal aver- 80

aging. Note that sources and orography can create conditions
where temporal averaging is not very beneficial.

The impact of averaging period on spatial representation
(AOT is now assumed to be measured continuously) can be
seen in Fig. 5. This suggests that averaging over less than 10 85

hours or more than 1000 hours (6 weeks) has little impact on
spatial representation errors.

Note that in S16a we showed that the EMEP simulation
yielded smaller spatial representation errors than the WRF-
Chem simulation (although they agreed in magnitude and 90

spatial patterns).

5 Representativeness of monthly data

The following analysis was made for a represented area of
Lx = Ly = 210 km

::::::::
210⇥ 210

::::
km2, with exceptions noted.

All data were averaged over a month. 95
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5.1 Remote sensing ground-site

We start with the case of a remote sensing ground-site, see
Sect. 2.1. Figure 6 shows representation errors for different
regions as box-whisker plots. The figure shows that temporal
sampling significantly increases representation errors. Over
Ocean and Japan, that even lead

::::
leads

:
to region-wide biases.

Temporal sampling is dominated by cloudiness, and cloudy5

AOT (included in the area data) is larger than clear-sky AOT
for these regions.

When evaluating models, Fig. 7 shows that temporal col-
location of area data with the observations can substantially
reduce representation errors. Here we limited ourselves to lo-10

cations with at least 25% temporal coverage. Note that tem-
poral coverage is a 100% if each day during the month yields
10 hours of observations. Obviously, representation errors af-
ter collocation can never be smaller than purely spatial repre-
sentation errors. Interestingly, collocation to the day is much15

less beneficial than collocation to the hour, even after aver-
aging over a month.

Figure 8 shows various error estimates as a function of re-
quired temporal coverage for two regions that are typical. As
a rule, with increasing temporal coverage the case coverage20

will go down. This means that the number of ground-sites
supplying sufficient observations goes down. Representation
errors may go down (Japan) but it is also possible they re-
main constant (Oklahoma). For all regions, collocation to the
hour allows smaller representation errors at lower temporal25

coverage and higher case coverage than no collocation.
Representation errors are remarkably insensitive to the

size of the represented area, unless area data can be tempo-
rally collocated, see Fig. 9. This is unsurprising as we earlier
pointed out that temporal sampling dominates the represen-30

tation error.
:::::
Figure

:::
10

::::::
shows

::::::
maps

:::
of

:::
the

::::::::
monthly

::::::::::::
representation

:::::
errors.

::
It

:::::
shows

::::
that

:::::::
without

::::::::::
collocation,

::
or

::::
with

:::::::::
collocation

::
to

:::
the

:::
day,

::::::::::::
representation

::::::
errors

::::
may

:::::::
strongly

:::::::
correlate

::::
over

:
a
:::::
large

::::
part

::
of

:::
the

:::::::
region.

::::::::
Although

::::
Fig.

::
7
:::::::::
suggested

:::
that35

:::::::::::
representation

::::::
errors

::::::
without

::::::::::
collocation

:::::
were

:::::::
unbiased

:::
for

:::::::::
Oklahoma,

:::
this

::
is
:::::

only
:::::::
because

:::::
those

:::::
errors

:::
are

:::::::
positive

::
in

:::::
lower

:::
half

::
of

:::
the

::::::
region

:::
and

::::::::
negative

::
in

:::
the

:::::
upper

::::
part.

::::
With

:::::::::
collocation

::
to

:::
the

::::
hour

::
not

::::
only

:::
are

:::
the

::::::::::::
representation

:::::
errors

::::::
smaller

:::
but

:::::
they

::::::::
correlate

::::
over

:::::::
smaller

:::::::::
distances.

::::::
Hence40

:::::::::
collocation

::
to

:::
the

::::
hour

::::::
makes

::
it

::::
more

:::::
likely

::::
that

:::::::::
subsequent

:::::
spatial

:::::::::
averaging

:::::
(e.g.

:::::
over

::::::::
multiple

::::::::::::
ground-sites)

::::
will

:::::
further

::::::
reduce

::::::::::::
representation

::::::
errors.

5.2 Passive remote sensing measurements from polar
orbiting measurements45

Next we turn to polar-orbiting satellites
::::::
satellite

:
measure-

ments with repeat cycles of 1 or 8 days, see Sect. 2.1.
For now, we will assume that individual pixel measure-
ments are averaged together (i.e. no super-obbing), see Eq. 3.
Fig. 11 shows representation errors for different regions as50

box-whisker plots. Due to the aggregation of measurements,
purely spatial representation errors are zero. But the spatio-
temporal errors are substantial. Depending on the repeat cy-
cle, either cloudiness or the observational cycle is more im-
portant to these errors, although it is cloudiness that leads 55

to region-wide biases in the errors (see Ocean & Japan).
Note also the very similar spatio-temporal representation er-
rors, despite very different spatio-temporal sampling, for a
ground-site, Fig. 6, or a satellite with a repeat cycle of 1 day.

The strong impact of cloudiness on temporal sampling and 60

hence representation errors, shown both here and in the pre-
vious sub-section, suggests that area data calculated for clear
skies only would yield smaller representation errors. This in-
deed reduces the region- wide biases over Ocean and Japan
see for a 1 day repeat cycle, but the representation RMSE are 65

much the same. We will continue to calculate area data as a
total sky average.

Figure 12 shows the impact of temporal collocation.
Again, collocating area data to the hour yields smaller rep-
resentation errors than collocating to the day. For longer re- 70

peat cycles monthly representation errors after collocating
will be larger because there is less data to average out spa-
tial representation errors. Spatial and temporal coverage re-
quirements were set at 25%, implying that at

:::::::
meaning

:::
that

:
at
:::::
each

::
of

::
at least 25% of the represented area was observed 75

during
::::::::
overpasses

::
at
:::::
least 25% of the overpasses

:::::::::
represented

:::
area

::::
was

::::::::
observed.

Alternative methods exist to construct monthly ob-
servations, for example by temporally averaging super-
observations, see Eq. 7. This has a small but beneficial im- 80

pact on representation errors. Figure 13 shows representa-
tion errors when using super-observations, either straight as
in Eq. 7 or log-transformed before temporal averaging. Nei-
ther method is capable of achieving the small representation
errors due to

::::::
obtained

:::::
after

:::::::
temporal

:
collocation. 85

Adjusting required temporal coverage has a similar impact
as for ground-sites, see Figure 14. Case coverage (percent-
age of the region observed by the satellite) goes down as
temporal coverage increases. But there is no unequivocal im-
pact on representation errors: they may remain similar (e.g. 90

Oklahoma) or decrease (e.g. Japan). On the other hand, in-
creasing required spatial coverage has a detrimental effect
on representation errors. The reason is that increasing spa-
tial coverage is accompanied by reduced temporal coverage
which makes the observations less representative for the full 95

month. The obvious exception is representation errors with
collocation (to the hour) that decrease with increasing spa-
tial coverage. We conclude that generally coverage is not a
good measure for representation errors but spatial coverage
provides a good control on representation errors with collo- 100

cation to the hour.
Currently satellite super-observation products (L3) for

AOT are usually produced at 1o ⇥ 1o (110⇥ 110 km2 at the
equator). Using such a product to represent the natural sys-
tem at different spatial scales yields similar representation 105
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errors (as temporal sampling issues dominate), see Fig. 15.
But when using it to evaluate collocated model data, repre-
sentation errors can be expected to be smallest for 1o ⇥ 1o

model grid-boxes. Note that larger grid-boxes may be filled
in multiple super-observations, and so reduce representation
errors with collocation.

Finally, we return to the work by (Levy et al., 2009) as5

several of their strategies for calculating monthly L3 data
are easily evaluated in the context of our work (Sect. 3).
The aforementioned Fig. 13 shows that "Pixel Weighting"
(brown) generally allows larger representation errors than
"Equal Day Weighting" (dark blue). "Threshold Equal Day10

Weighting" is studied in Fig. 14 (dark blue line as function
of spatial coverage) and also shown to allow larger errors
than "Equal Day Weighting" (which is identical to "Thresh-
old Equal Day Weighting" with cspat > 0). Thus we conclude
that "Equal Day Weighting" is, from a spatio-temporal sam-15

pling perspective) the best choice. This will nevertheless al-
low monthly representation RMSD of 10 to 40%.

5.3 Passive remote sensing measurements from
geostationary satellites

Geostationary satellites with passive remote sensing instru-20

mentation allow for spatial aggregation of observations and
multiple measurements per day. Consequently sampling is-
sues are entirely dominated by cloudiness. Figure 16 shows
that even for an imager in geostationary orbit, monthly rep-
resentation errors are quite substantial. Actually, they are not25

that different from an imager on a polar orbiting satellite
(Fig. 12) with a 1 day repeat cycle or a ground-site (Fig. 7).
The reason is of-course that cloudiness is the main reason for
representativeness issues

::
(in

::::::::
monthly

:::::::
averages,

:::
for

::::::::
platforms

::::
with

::::
high

:::::
repeat

::::::::::
frequencies). Note that representation errors30

after collocation are substantially lower for the geostationary
imager than for a ground-site but again similar to those for
polar-orbiting imager.

5.4 LIDAR measurements from polar orbiting
satellites35

An idealised polar orbiting LIDAR, see Sect. 2.1, allows for
limited aggregation (along its track) but will have a long re-
peat cycle (here: 12 days). Figure 17 shows the resulting rep-
resentation errors with and without collocation. These errors
are large, even with collocation, and may preclude the use of40

satellite LIDAR data on monthly and 100 km scales. How-
ever, further averaging of temporally collocated data over
larger regions (say Europe or the Atlantic dust outflow re-
gion) is likely to reduce representation errors as they are of-
ten not strongly correlated over distances exceeding the size45

of the represented area (e.g. see Fig. 3 or Fig. 2 in S16a
::
10).

5.5 In-situ ground-sites

The IMPROVE network operates on a regular schedule of
measuring one day out of three. Figure 18 shows that this has
a relatively mild impact on representation errors. Still, errors 50

may increase two-fold and collocation will usually bring rep-
resentation errors down to the level of purely spatial errors.
Due to the observing cycle, it doesn’t matter whether this is
collocation to the hour or day. Similar results can be shown
for black carbon

:::
BC concentration or number density mea- 55

surements.

6 Representativeness of daily remote sensing data

The following analysis was made for a represented area of
Lx = Ly = 210 km

::::::::
210⇥ 210

::::
km2, with exceptions noted.

All data were averaged over a day. 60

6.1 Remote sensing data

Figure 19 shows daily representation errors for either
ground-sites or imagers on polar-orbiting satellites with a
repeat-cycle of 1 day. Spatial representation errors are quite
large for ground-sites but they are zero for the satellite. Yet 65

spatio-temporal representation errors (without collocation)
are very similar (although a bit smaller for the imager). Col-
location to the hour reduces representation errors, but more
so for the aggregated satellite observations. Actually, collo-
cation for ground-sites allows for still significant spatial sam- 70

pling issues in daily data.
Typical impacts of observational coverage are shown in

Fig. 20. For the ground-sites more stringent conditions on
temporal coverage of the observations are relatively ineffec-
tive, irrespective of collocation or not: the spatial sampling 75

issue always remains. In model evaluations, collocation to
the hour will allow representation errors in satellite data to
be arbitrarily reduced by specifying a spatial coverage re-
quirement. Note however that data availability

::::
case

:::::::
coverage

drops steadily as
::::::
required

::::::
spatial

:
coverage is increased. 80

The imager on a geo-stationary satellite again shows simi-
lar representation errors to the other observing systems with
the exception of W-Europe where an RMSD of 20% was
found, a significant improvement over ground-sites (37%)
and polar-orbiting satellites (29%). 85

6.2 In-situ ground-sites

In-situ ground-sites that observe continuously during the day
will have identical daily representation errors, with or with-
out collocation. Here we find daily representation RMSD for
PM2.5 to range from 7% (Ocean) to 100% (Congo) with most 90

values between 10 and 30%.; and for surface black carbon
:::
BC concentrations 40–100%.
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7 Improving representativeness for data at less than
daily time-scales

Sofar we have tacitly assumed that monthly or daily aver- 95

ages over the representative
:
a
:::::
larger

:
area are best represented

by monthly or daily observations. But at an hourly scale
areas may be better represented by longer time averages of
the observations, using wind advection to observe more than
the instruments instantaneous field-of-view. Here we will
average the represented area over an hour or a day, and see
what are the

::::::::
determine

:::
the

:
optimal averaging time-scales for5

the observations (from ground-sites) .
::::
when

::::
the

:::::::::
represented

:::
area

:::::::
consists

:::
of

::::::
hourly

::
or

:::::
daily

::::
data.

:::
In

:::::::::
particular,

::::::
slightly

:::::
longer

:::::::::
averaging

::::::::::
time-scales

:::
for

:::
the

:::::::::::
observations

::::::
allow

:
a

:::::
larger

::::
part

:::
of

:::
the

:::::::::::
atmosphere

:::
to

:::
be

::::::::
advected

:::::
over

:::
the

:::::::::::
measurement

:::
site

:::::::
possibly

:::::::
resulting

::
in

:::::::
smaller

:::::::::::
representation10

:::::
errors.

:
Remote sensing observations will be treated as unin-

terrupted by clouds or nighttime, to allow easier comparison
to in-situ measurements.

When considering represented areas at daily time-scales,
the optimal period for averaging observations (at which the15

representation RMSD is minimal) is
::::::
usually

::::::
slightly

:
more

than a day, see Fig. 21 and Table 4. However, using 24 hours
for averaging observations doesn’t result in significant in-
creases in representation error and justifies the analysis in
Sect.6.20

Figure 22 shows hourly representation errors as a function
of averaging period of surface PM2.5 observations. It is ob-
vious that hourly observations do not guarantee the smallest
representation error. Averaging the observations over several
hours results in substantially better representation. There is25

quite a bit
:
of

:
variety in optimal averaging period but it turns

out that 6 hours is a good recommendation, also for other ob-
servables, see Table 5. This optimal period is firstly the result
of a golden middle way: for both short and long periods large
representation errors due to spatial or temporal sampling is-30

sues may be expected. In between there is a fairly large range
of periods (including 6 hours) for which the representation
error is close to minimal.

In a few cases optimal averaging periods can be linked
to the time needed for aerosol to drift a distance similar to35

the extent of the represented area (so-called transit time), see
Fig. 23. But this was possible only for a few observables and
seldom for surface measurements (N10 at 2 km is the best ex-
ample we found). We surmise that turbulent flow and evolv-
ing aerosol make the link between transit times and optimal40

averaging periods rather tenuous.
At smaller representative areas of 110⇥110 km2, an aver-

aging period of 4 hours is recommended.

8 Impact of precipitation on representation errors for
in-situ measurements45

Due to its importance in removing aerosol from the atmo-
sphere, precipitation may be

:
is
:
expected to be a leading cause

of spatio-temporal variability in aerosol. In this section we
explore if it is feasible to control representation errors by se-
lecting observations for dry days only.50

Precipitation is measured either locally by directly mea-
suring the rain flux (e.g. rain buckets), or regionally through
remote sensing measurements (e.g. scanning rain radar). This
suggests two potential predictors for the impact of precipita-
tion on representation errors: 1) a local precipitation mea- 55

surement sited near the in-situ aerosol measurement can be
used to identify cases of strong precipitation; 2) regional
measurements can be used to identify cases where precip-
itation over the ground-site and the wider represented area
differ greatly. 60

Figure 24 shows a rather typical example of how daily rep-
resentation errors for in-situ measurements correlate with lo-
cal precipitation. It is obvious that the impact is not overly
large considering the already sizeable representation errors
at low precipitation. Most observables and regions show even 65

less dependence on precipitation. Over the Congo, higher lo-
cal precipitation actually leads to smaller representation er-
rors. The second predictor, the relative difference in precipi-
tation over the wider area and at the ground-site, shows even
less conclusive results. 70

Fig. 25 examines how monthly representation errors
change due to the discarding of observations with potentially
high representation errors (based on the aforementioned pre-
dictors). This has only a marginal impact and quite often
that impact is to increase representation errors, albeit slightly. 75

This happens because the temporal averaging over less data
leads to larger representation errors, similar to what we saw
for remote sensing observations. These results do not de-
pend on the chosen observable, region or (arbitrarily chosen)
threshold for the predictor. Only surface aerosol extinction 80

over Japan showed a small but beneficial impact on repre-
sentation errors due to filtering out high precipitation events.
Note that the area data were collocated to the hour with avail-
able observations before monthly averaging, to provide a best
case. 85

Concluding, our analyses suggest that no systematic ben-
eficial impact due to discarding cases of high precipitation
or strong spatial gradients in precipitation can be found. This
holds also at smaller sizes of the represented area (down to
50⇥ 50 km2). Studying movies of the evolving aerosol in 90

our simulations offers an explanation: precipitation is sel-
dom limited to the ground-site and the represented area will
be affected as well; also, precipitation does

:::
not necessarily

correlate with loss of aerosol as converging air motions near
updrafts or the sulfate production in associated cloud fields 95

may actually increase aerosol; finally, the spatio-temporal
distribution of emission sources combined with changing
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:::::::
turbulent

::
or

::::::::
shearing wind-fields are strong drivers of spatial

variability by themselves.

9 Lessons learned 100

While representation errors can be significant, they be-
have differently depending on whether spatial or temporal
sampling dominates the error. In case of spatial sampling,
representation errors can often be reduced through spatio-
temporal averaging (see also S16a). In the case of tempo-
ral sampling, representation errors are unlikely to be reduced
through such averaging (see also S16b). If observations are
used for model evaluation, it is possible to temporally collo-5

cate the model data with the observations, further reducing
:
;
:::::::::
subsequent

::::::::
temporal

::::::::
averaging

::::
then

:::::::
reduces representation

errors.
Typical representation RMSD errors and other numerical

results quoted below refer to a represented area of 210⇥21010

km2. For other area sizes, see S16a or this paper. For model
evaluation, we used a required spatial and/or temporal cover-
age of 25% and collocation to the hour.

To have observations optimally represent a larger area,
they will need to be averaged over time. While monthly area15

data is best represented by monthly observations, hourly area
data is better represented by observations averaged over 6
hours.

9.1 In-situ ground-sites

If such sites allow for continuous operation the measure-20

ments from these sites only suffer representation errors due to
spatial sampling. Temporal averaging may reduce such errors
but emissions sources and orography may cause a constant
component in representation error that can not be eliminated.
We found errors up to 40% in 6-months averages of surface25

black carbon
:::
BC

:
mass concentrations, Sect. 4. We suggest

vetting such observations for location.
For model evaluation: Averaging both model data and obser-
vations over multiple sites can be used to increase represen-
tativity (see also S16a).30

9.2 Passive remote sensing ground-sites

These observations suffer from both spatial and temporal
sampling issues and the latter is usually more important.
A representation error driven by temporal sampling is un-
likely to be reduced through temporal averaging, see Sect. 435

and also S16b. Further study is required to validate the
use of such observations to construct climatologies. The
:::::
Using

::
a

::::::::
minimum

::::::::
required

:
number of observations used

in constructing monthly averages cannot be used
::::::
cannot

::
be

:::::
relied

::::
upon

:
to control representation errors , see Sect 5.

:::
(see40

::::
Sect.

::
5)

::
or

::::
only

:::
has

::
a
:::::
weak

::::::
impact

:::
(see

:::::
Sect.

::
6).

:
Representa-

tion errors in AOT are typically 10–40% (monthly) and 20–
50% (daily).

For model evaluation: Collocating model data to the hour of
observations should be a first step to reduce representation er-45

rors. This also provides a control on such errors through the
number of available observations. The representation error
due to spatial sampling may be reduced by temporally aver-
aging the collocated data.

::
In

::::
this

::::
case,

::
a

::::::::
minimum

:::::::
required

::::::
number

::
of

:::::::::::
observations

:::
can

::
be

::::
used

::
to
:::::::
control

:::::::::::
representation50

:::::
errors.

:
Representation errors in AOT are typically 5–15%

(monthly) and 10–30% (daily). Collocation to the day of ob-
servation is sub-optimal; we found very similar representa-
tion errors as when no collocation is used , (see Sect. 5). See
also in S16b how collocation to the day creates a longitude 55

dependence in representation errors.

9.3 Passive remote sensing imagers on satellites

These observations suffer from both spatial and temporal
sampling issues but often allow spatial aggregation over the
represented area. Temporal sampling will dominate repre- 60

sentation errors and prove insensitive to temporal averaging,
see Sect. 4 and also S16b. Further study is required to vali-
date the use of such observations to construct climatologies.
The number of (super-)observations used in constructing
monthly averages cannot be used to control representation 65

errors, see Sect 5
:::::
Using

::
a
:::::::::

minimum
::::::::
required

:::::::
number

::
of

:::::::::::::::
super-observations

::::::
cannot

::
be

:::::
relied

:::::
upon

::
to

::::::
control

:::::::
monthly

:::::::::::
representation

::::::
errors

::::
(see

:::::
Sect.

::
5). For imagers on polar-

orbiting satellites, monthly representation errors in AOT
are typically 10–40% (repeat cycle: 1 day) and

:
or

:
35– 70

55% (repeat cycle: 8 days). Daily representation errors in
AOT are 25–40%.

::
For

:::::::
imagers

:::
on

::::::::::::
geo-stationary

::::::::
satellites,

:::::::::::
representation

::::::
errors

:::
are

::::::
similar

:::
to

::::
those

::::
for

:::::::::::
polar-orbiting

:::::::
satellites

::::
with

:
a
::
1
:::
day

::::::
repeat

:::::
cycle.

For model evaluation: temporal collocation of model 75

data to the hour of super-observations is the best strat-
egy. The collocation provides a control on representation
errors through the number of available observations and
in principle

::
In

:::::::::
principle,

::
the representation error due

to spatial sampling can be arbitrarily reduced before 80

temporally averaging the collocated data (although it may
entail discarding numerous useful data)

::::::
through

::
a
:::::::
required

::::::::
minimum

:::::::
spatial

:::::::::
coverage

:::
of

::::
the

:::::::::::::::::
super-observations.

Monthly representation errors
:::
can

::::
also

::
be

:::::::
reduced

:::::::
through

:
a
::::::::
minimum

:::::::
required

::::::::
temporal

::::::::
coverage.

::::
The

:::
flip

:::
side

::::
will

::
be 85

:
a
:::::
lower

::::
case

::::::::
coverage.

:::::::
Monthly

::::::::::::
representation

:::::
errors in AOT

are typically 5–15% (repeat cycle: 1 day) and
::
or 10–15% (re-

peat cycle: 8 days). Daily representation errors in AOT are
10–15%. This daily representation error is significantly lower
than that for ground-sites due to the spatial aggregation. As 90

in the case of remote sensing ground-site observations, collo-
cation to the day of observation is sub-optimal ,

:
(see Sect. 5

:
).
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9.4 Active remote sensing satellites

Due to their narrow swath, LIDAR observations from space
will have long repeat-cycles causing significant representa- 95

tion errors. Monthly representation errors in aerosol extinc-
tion are 70–160% with significantly skewed error distribu-
tions. Note that we only considered a single atmospheric
level near the top of the boundary layer in our very limited
study. 100

For model evaluation: monthly representation errors after
collocation to the hour were still 20–40%, although

::::
with one

region (Ocean) showed
:::::::
showing

:
errors of 140%. Further re-

duction of representation errors should be possible by aver-
aging all data over larger geographic regions.5

10 Conclusions

Measurements always have a discontinuous spatio-temporal
sampling, unlike the natural system they are trying to ob-
serve. As a consequence, actual daily, monthly and yearly av-
erages over areas may be very different from those based on10

the undersampled observations. This limits the information
present in observations and their usefulness in describing na-
ture and consequently the evaluation of

::
or

:::::::::
evaluating models.

In this paper, we have estimated these representation errors
using high-resolution models to generate an objective truth15

and synthetic observations for a slew of idealised observ-
ing systems (in-situ ground-sites, remote sensing ground-
sites, passive and active remote sensing satellites). For a wide
range of time-scales (hour-daily-monthly to semi-annually)
and length-scales (50 - 300 km), representation errors were20

shown to be significant, ranging from 10-100%.
In particular, we study typical aerosol observables like

AOT, PM2.5, black carbon mass
:::
BC

:
concentrations and

number concentrations for idealised observing systems that
capture the essence of real-life observing systems like25

AERONET (AErosol RObotic NETwork), SKYNET, IM-
PROVE, EMEP (European Monitoring & Evaluation Pro-
gramme), MODIS, AATSR (Advanced Along-Track Scan-
ning Radiometer), MISR (Multi-Angle Spectro-Radiometer)
and CALIOP. Typical length-scales at which we estimate30

representation errors (100’s of kms) are based on the grid-
resolution of the global models often used in our field.

Our study not only allows us to estimate representation er-
rors but also assess various ways in which to reduce them. In
particular, we were able to assess the usefulness of different35

methods to generate gridded satellite L3-data (Levy et al.,
2009). Our results suggest that the current practice of un-
conditional averaging of super-observations into a monthly
product is a good procedure but still allows for significant
monthly representation errors (10–40% at best). Small im-40

provements are possible if the super-observations are log-
transformed before averaging.

When using observations to evaluate models, it is possible
to temporally collocate model data with the observations and
we showed this to be a very efficient way to reduce repre-45

sentation errors, especially if this is followed up by tempo-
ral averaging. However, such collocation should use hourly
model data collocated to the hour of the observation. Cur-
rently, daily model data is often collocated to the day of the
observation and this is sub-optimal (and sometimes no better50

than no collocation). Also, collocation allows some control
on representation errors through the number of observations
used.

Some other interesting finds are: 1) to better represent
hourly data for a larger area, observations should be aver-55

aged over 6 hours (210 km2) or 4 hours (110 km2); 2) rep-
resentation errors for either remote-sensing ground sites or
imagers on polar-orbiting (1 day repeat cycle) or geostation-
ary satellites are very similar on daily and monthly scales,
despite very different sampling; 3) representation errors of- 60

ten depend counter-intuitively on observational coverage (the
number of observations used); 4) temporal sampling issues
clearly dominate representation errors in remote sensing data
on monthly scales and less clearly dominate on daily scales;
5) local precipitation does not appear to be a major cause of 65

representation errors, and vetting observations based on pre-
cipitation measurements does not improve representativity;
6) emission sources and orography can give rise to persistent
and significant representation errors.

Since we used simulations to assess representation errors, 70

our results depend on the quality of the numerical mod-
els. In (Schutgens et al., 2016b)

::::::::::::::::::::
(Schutgens et al., 2016a) we

showed that two different models estimated very similar rep-
resentation errors over the same region. A more fundamental
issue is that we only have simulations over 6 different regions 75

for a few months. Clearly this may not be representative
of the entire globe

::::::::
Obviously

:::
we

::::::
cannot

::::::
claim

:::
our

::::::
results

::
are

::::::::
universal. We surmise that magnitudes of representation

errors may be affected by this but their behaviour (e.g.
impact from sampling or collocation) need not be . Those 80

results were very robust across all
::::
error

::::::
values

::::
will

:::
be

:::::::
different

::
in

:::::
detail

:::
for

:::::
other

::::::
regions

::
or

:::::::
months

:::
but

::::
still

::
be

::
of

::::::
similar

:::::::::
magnitude.

::::
The

:::::::::
consistency

::::::
across

:::
our

:
6 regions and

more-over agree with common sense.
:
3
:::::::
models

::
in

:::
this

:::::
study,

:::
and

::::::::
similarly

::::
the

::::::::::
consistency

:::
of

::::::::
temporal

::::::::::::
representation 85

:::::
errors

::::::::
estimated

::
in

::::::::::::::::::::::
Schutgens et al. (2016b) for

::::::
global

:::::
model

::::
data,

::::::
support

::::
this.

:::
In

::::::::
particular,

:::
our

::::::::::
simulations

::::::::::
consistently

::::::
showed

::::
that

::::::::
increasing

::::::::
required

::::::
spatial

:::::::
coverage

:::
of

::::::
satellite

::::::::::
observations

:::::
leads

:::
to

::::::::::
decreasing

::::::::
temporal

::::::::
coverage

::::
and

::::::::
increasing

::::::::::::
representation

::::::
errors,

::::::
unless

::::::::::
collocation

::::
can

::
be 90

::::
used.

:

It is possible that the representation errors estimated in this
paper are under-estimates. As argued in S16a, 1) model vari-
ability tends to increase with increasing resolution, 2) at 10
km resolution, we can not resolve the fine-structure at the 95

scale of in-situ sampling volumes, 3) we use assumed tem-
poral profiles of our emission that do not capture day-to-day
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or week-to-week variations, and 4) our models offer only a
bulk abstraction of aerosol without all the detail nature has
to offer. At the same time, the use of regional models may 100

preclude proper simulation of pristine regions.

11 Code availability

Copies of the code used in our analysis are readily available
from the corresponding author.
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Figure 1. Three models were used in this study to simulate a variety
of aerosol fields. The regional names used to identify these simula-
tions are given in large font, while the models are denoted in small
font. MADE and GOCART refer to the WRF-Chem version used.
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Figure 2. Comparison of observed (GPCP) and modelled daily 1-
degree precipitation for specific months. The blue line represents
the model data (see Table 1), the red line the observations for indi-
vidual years (2000-2010).

Figure 3. Relative representation errors in AOT and surface black
carbon

::
BC

:
concentrations in 6-month averages. The black dots

show the locations of major ACTRIS measurement sites. Results
for a 10⇥ 10 km2 observation against a 210⇥ 210 km2 area.
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Figure 4. Relative representation errors in AOT in 6-month aver-
ages. The represented area data were temporally collocated to the
hour with the observations. The black dots show the locations of
major ACTRIS measurement sites. Results for a 10⇥ 10 km2 ob-
servation against a 210⇥ 210 km2 area.
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Figure 5. Relative spatial representation errors in AOT and surface
black carbon

:::
BC mass concentrations as a function of averaging

period. Both AOT and BC measurements were assumed to be con-
tinuous in time. Results for a 10⇥ 10 km2 observation against a
210⇥ 210 km

:
2
:
area. Further explanation in Sect. 3.2.
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Figure 6. Analysis of monthly representation errors for remote
sensing ground-sites: purely spatial sampling (grey), spatial sam-
pling and the observational cycle (green), spatial sampling and
cloudiness (orange), and finally full spatio-temporal sampling
(brown). Further explanation in Sect. 3.2.
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Figure 7. Monthly representation errors after collocation for remote
sensing ground-sites: purely spatial sampling (grey), no collocation
(brown), area data collocated to the day of observations (bright or-
ange), and area data collocated to the hour (red). The grey and
brown error estimates are similar to Fig. 6, except for a required
temporal coverage of 25%. Further explanation in Sect. 3.2.

0 10 20 30 40 50 60

−0.2

−0.1

0.0

0.1

0.2

AOT over Oklahoma (area: 210x210 km2; obs: 10x10 km2)

0 10 20 30 40 50 60
Req. obs. temporal coverage [%]

−0.2

−0.1

0.0

0.1

0.2

R
e

la
tiv

e
 e

rr
o

r

0

20

40

60

80

100

C
o

ve
ra

g
e

 [
%

]

0 10 20 30 40 50 60

−0.2

−0.1

0.0

0.1

0.2

AOT over Japan (area: 210x210 km2; obs: 10x10 km2)

0 10 20 30 40 50 60
Req. obs. temporal coverage [%]

−0.2

−0.1

0.0

0.1

0.2

R
e

la
tiv

e
 e

rr
o

r

0

20

40

60

80

100

C
o

ve
ra

g
e

 [
%

]

Figure 8. Monthly mean (dashed) and RMS (solid) of representa-
tion errors for remote sensing ground-sites as a function of required
temporal coverage: no collocation (brown), area data collocated to
the day of observations (bright orange), and area data collocated to
the hour (red). Further explanation in Sect. 3.2.
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Figure 9. Monthly representation errors for remote sensing ground-
sites at different area sizes: no collocation (different shades of
brown) and model data collocated to the hour (different shades of
red). Further explanation in Sect. 3.2.
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Figure 10.
::::::
Relative

:::::::
monthly

::::::::::
representation

:::::
errors

::
in

::::
AOT

::
for

:
a
::::::
remote

::::::
sensing

::::::::
ground-site

::::
over

::::::::
Oklahoma.

:::::
From

:::
left

:
to
:::::
right,

::
the

::::::::
following

:::::::
scenarios

::
are

:::::::::
considered:

::
1)

::::
only

:::::
spatial

:::::::
sampling

:::::::::
contributes

::
to

::
the

:::::::::::
representation

::::
error;

::
2)
::::

both
:::::::
temporal

:::
and

:::::
spatial

:::::::
sampling

:::::::::
contribute;

:
3)
::::

both
:::::::
temporal

:::
and

:::::
spatial

:::::::
sampling

::::::::
contribute

:::
but

:::
data

:::
are

:::::::
collocated

::
to
:::
the

:::
day;

::
4)

::::
both

:::::::
temporal

:::
and

:::::
spatial

:::::::
sampling

::::::::
contribute

::
but

::::
data

::
are

::::::::
collocated

::
to

:::
the

::::
hour.

:::::
Results

:::
for

:
a
::::::
10⇥ 10

::::
km2

:::::::::
observation

:::::
against

::
a

::::::::
210⇥ 210

:::
km2

::::
area.

:::
See

::::
also

:::
Fig.

::
7.

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (area: 210x210 km2; obs: 210x210 km2)

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e

la
tiv

e
 e

rr
o

r

W
−E

ur
op

e100%

0.00
0.09

0.14
0.20

Eur
op

e100%

0.00
0.05

0.08
0.11

O
kl
ah

om
a100%

0.00
0.13

0.16
0.25

C
on

go100%

0.00
0.06

0.10
0.14

O
ce

an100%

0.00
0.06

0.38
0.39

Ja
pa

n100%

0.00
0.08

0.31
0.33

        

        

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (area: 210x210 km2; obs: 210x210 km2)

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e

la
tiv

e
 e

rr
o

r

W
−E

ur
op

e100%

0.00
0.33

0.14
0.43

Eur
op

e100%

0.00
0.27

0.08
0.34

O
kl
ah

om
a100%

0.00
0.37

0.16
0.50

C
on

go100%

0.00
0.32

0.10
0.42

O
ce

an100%

0.00
0.41

0.38
0.48

Ja
pa

n100%

0.00
0.32

0.31
0.42

        

        

Figure 11. Analysis of monthly representation errors for an imager
on a polar-orbiting satellite: purely spatial sampling (grey; this er-
ror is zero by construction), spatial sampling and the observational
cycle (green), spatial sampling and cloudiness (orange), and finally
full spatio-temporal sampling (brown). The top panel is for an im-
ager with a repeat cycle of 1 day, the bottom panel for a repeat cycle
of 8 days. Further explanation in Sect. 3.2.



Nick Schutgens: Observational representativity 17

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (area: 210x210 km2; obs: 210x210 km2)

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e

la
tiv

e
 e

rr
o

r

W
−E

ur
op

e100%

0.00
0.22

0.13
0.04

Eur
op

e100%

0.00
0.12

0.08
0.03

O
kl
ah

om
a100%

0.00
0.27

0.16
0.04

C
on

go100%

0.00
0.17

0.08
0.03

O
ce

an 95%

0.00
0.41

0.23
0.08

Ja
pa

n100%

0.00
0.34

0.25
0.15

Req. t cov.:  25% Req. xy cov.:  25%

        

        

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (area: 210x210 km2; obs: 210x210 km2)

        
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e

la
tiv

e
 e

rr
o

r

W
−E

ur
op

e 98%

0.00
0.46

0.23
0.10

Eur
op

e 98%

0.00
0.36

0.14
0.08

O
kl
ah

om
a 99%

0.00
0.54

0.33
0.09

C
on

go 98%

0.00
0.48

0.14
0.06

O
ce

an 88%

0.00
0.50

0.33
0.12

Ja
pa

n 95%

0.00
0.44

0.26
0.16

Req. t cov.:  25% Req. xy cov.:  25%

        

        

Figure 12. Monthly representation errors for an imager on a polar-
orbiting satellite after collocation: purely spatial sampling (grey;
zero by construction), no collocation (brown), model data collo-
cated to the day of observations (bright orange), and finally model
data collocated to the hour (red). The grey and brown error estimates
are similar to Fig. 11, except for a required coverage of 25%. The
top panel is for an imager with a repeat cycle of 1 day, the bottom
panel for a repeat cycle of 8 days. Further explanation in Sect. 3.2.
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Figure 13. Monthly representation errors for an imager on a polar-
orbiting satellite due to different data treatments: no collocation
(brown), no collocation but using super-observations (dark blue),
no collocation but area data and super-observations log-transformed
(light blue), and area data collocated to the hour (red). The brown
and red error estimates are identical to Fig. 12, top panel. Results
for a repeat cycle of 1 day. Further explanation in Sect. 3.2.
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Figure 14. Monthly mean (dashed) and RMS (solid) of representation errors for an imager on a polar-orbiting satellite as a function of
required spatial or temporal coverage of the observations. Results are shown for no collocation (brown), no collocation but using super-
observations (dark blue), collocation to the day (orange), and finally model data collocated to the hour (red). Results for a repeat cycle of 1
day. Further explanation in Sect. 3.2.
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Figure 15. Monthly representation errors for an imager on a polar-
orbiting satellite at different area sizes but the observations ag-
gregated over 110⇥ 110 km2: no collocation (different shades of
brown) and model data collocated to the hour (different shades of
red). Results for a repeat cycle of 1 day. Further explanation in
Sect. 3.2.
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Figure 16. Monthly representation errors for an imager on a geosta-
tionary satellite after collocation: purely spatial sampling (grey), no
collocation (brown), area data collocated to the day of observations
(bright orange), and area data collocated to the hour (red). Further
explanation in Sect. 3.2.
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Figure 17. Monthly representation errors for a LIDAR on a polar-
orbiting satellite after collocation: purely spatial sampling (grey), no
collocation (brown), area data collocated to the day of observations
(bright orange), and area data collocated to the hour (red). Further
explanation in Sect. 3.2.
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Figure 18. Monthly representation errors for an in-situ ground-
site after collocation: purely spatial sampling (grey), no collocation
(brown), area data collocated to the day of observations (bright or-
ange), and area data collocated to the hour (red). Further explana-
tion in Sect. 3.2.
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Figure 19. Daily representation errors after collocation: purely spatial sampling (grey), no collocation (brown), and model data collocated to
the hour (red). The left panel is for a ground-site, the right panel for a satellite with a 1 day repeat cycle. Further explanation in Sect. 3.2.
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Figure 20. Daily representation errors for remote sensing instruments as a function of required coverage. Results shown for no collocation
(brown), and area data collocated to the hour (red). The left panel is for a ground-site, the right panel for an imager on a polar-orbiting
satellite with a 1 day repeat cycle. Further explanation in Sect. 3.2.
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Figure 21. Daily representation errors as a function of averaging pe-
riod �T used for surface PM25 observations. In the top-left corner,
the ratio of q98 � q2, q91 � q9 and q75 � q25 for �T = 0 to optimal
�T is given. Results for a 210⇥ 210 km

:
2 grid-box. Further expla-

nation in Sec. 3.2.
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Figure 22. Hourly representation errors as a function of averag-
ing period �T used for surface PM25 observations. In the top-left
corner, the ratio of q98 � q2, q91 � q9 and q75 � q25 for �T = 0 to
optimal �T is given. Results for a 210⇥210 km

:
2 grid-box. Further

explanation in Sec. 3.2
.
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Figure 23. Relative representation RSMD for N10 measurements
as a function of transit time over averaging period, for W-Europe
(red), Oklahoma (blue) and Congo (green). Further explanation in
Sec. 3.2.
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Figure 24. Impact on daily representation errors from precipitation.
The symbols use the left-hand axis (colours indicate relative differ-
ence in precipitation between observation and wider area), the grey
quantile boxes the right-hand axis. Results for a 210⇥ 210 km2

grid-box for Ocean.
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Figure 25. Impact on monthly representation errors from filtering
out precipitation events. Orange box-whiskers show errors when all
data is used, purple box-whiskers show errors when precipitation
events are discard (top: daily precipitation > 10 mm/d; bottom: daily
precipiation difference > 0.75). Only locations where this maximum
was exceeded at least once were used in the statistics. Results for a
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:
2
:
grid-box. Further explanation in Sect. 3.2.
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Table 1. Simulations analysed in this study

region size [km2] period model scheme comments

W-Europe 1280⇥ 1280 May 2008 WRF-Chem MADE 2-moments modal
Oklahoma 1190⇥ 1190 March 2007 WRF-Chem MADE 2-moments modal
Congo 2090⇥ 2090 March 2007 WRF-Chem MADE 2-moments modal
Ocean 1270⇥ 1270 March 2007 WRF-Chem GOCART mass bulk
Europe 4000⇥ 3100 January - June 2008 EMEP mass bulk
Japan 1500⇥ 1250 August 2007 NICAM SPRINTARS mass bulk

Table 2. Simulated observables

AOT AE SSA extinction PM2.5 BC conc. N10, N50 CCN

WRF-Chem MADE X X X X X X X X
WRF-Chem GOCART X X X X X
EMEP X X X X X X
NICAM-SPRINTARS X X X X X X

Table 3. Semi-annual relative representation errors for ACTRIS sites
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yy

tia
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im
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e

Pr
ei
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Pu
y

de
D

om
e

longitude -1.32 11.01 24.29 10.68 21.04 2.97
latitude 51.57 47.80 61.85 44.17 55.21 45.77
altitude [m] 60 985 181 2165 6 1465

daily surf. BC [%] 23.2 20.1 13.1 54.1 24.2 52.1
Jan-Jun surf. BC [%] -1.4 -9.9 -0.3 -53.7 -4.5 30.8

daily AOT [%] 23.2 27.7 28.7 38.0 29.1 27.6
6-month AOT [%] -27.9 -23.7 -38.0 -29.9 -34.8 -11.2

With collocation
daily AOT [%] 12.2 21.2 12.8 33.1 17.0 18.3
6-month AOT [%] -1.7 -8.9 -1.9 -25.4 -3.5 -6.2
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Table 4. Optimal averaging periods for ground-site measurements used to represent a 210⇥ 210 km2 area (daily). The colours indicate an
increase of representation RMSD representation by less than 5%, less than 10% or less than 20% when using the recommend

::::::::::
recommended

period of 24 hours instead.

W-Europe Oklahoma Congo Ocean Europe Japan

AOT 30 26 26 24 28 28
AE 32 26 28 24 28 30
SSA 32 26 28 30 30
PM2.5 28 26 26 24 28 30
surface extinction 28 26 26 24 28 30
extinction (h=2km) 30 26 26 24 28 28
surface BC conc 30 26 26 28 32
BC conc (h=2km) 28 26 26 30
surface N10 48 26 24
N10 (h=2km) 30 26 26
surface N50 34 26 26
N50 (h=2km) 28 26 26

Table 5. Optimal averaging periods for ground-site measurements used to represent a 210⇥ 210 km2 area (hourly). The colours indicate an
increase of representation RMSD representation by less than 5%, less than 10% or less than 20% when using the recommend

::::::::::
recommended

period of 6 hours instead.

W-Europe Oklahoma Congo Ocean Europe Japan

AOT 10 6 8 6 10 10
AE 10 6 8 6 10 14
SSA 10 8 8 8 14
PM2.5 6 6 6 4 10 12
surface extinction 4 4 6 4 8 10
extinction (h=2km) 8 4 6 4 8 10
surface BC conc 10 4 6 10 14
BC conc (h=2km) 6 8 8 12
surface N10 8 2 2
N10 (h=2km) 10 6 6
surface N50 8 6 6
N50 (h=2km) 8 4 8


