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General response 

We thank both referees for their thorough consideration and constructive feedback. As a result of 

the review process, we have made a significant effort to improve semantics regarding methods, 

models and algorithms. In the revised version of the manuscript we have replaced the particle 

filtering method by a Hamiltonian Monte Carlo (HMC) approach to sample the full posterior 

distribution, conditioned on the full data vector as is required, rather than just the data up to time t, 

as in the particle filter. HMC is well documented in the literature, and as such, the length section on 

the particle filter has been significantly reduced. We re-did the sampling algorithm from scratch, re-

ran everything and re-made all relevant plots. In practice, we found that the new results are broadly 

similar to the particle filtering results and none of the key findings are changed. We now refer to the 

composite constructed using Gaussian-mixture likelihood and transition prior, with SVD uncertainty 

estimates, as the BAyeSian Integrated and Consolidated (BASIC) composite. 

We note that there are some differences that you should be made aware of compared to the 

previous version. These include:  

- the time-dependent error bars are much tighter, and much closer to Gaussian than before; this is 

good because the DLM analysis will better represent the data with Gaussian errors included; 

- the problem we found (in only a few limited regions) following Pinatubo has gone and BASIC 

performs well during this period, given the data supplied to the process; 

- there is a longer section in the appendix that encompasses requests for information on the 

Gaussian-mixture likelihood construction (in BASIC), and the parameter estimation (in the DLM); 

- Northern and southern hemispheres in the profiles were actually the wrong way around; given the 

symmetry between hemispheres, the conclusions do not change. 

We reply to all comments below, with referee comments in black, and our responses in blue. 

 

Daan Hubert (Referee) 

Received and published on 20 April 2017 

2. Minor comments 

• l.142, p.5: There is still a few % diurnal component between 1-5 hPa which will alias into the long-

term trend for uncorrected measurements from instruments on drifting orbits. Please clarify that 

diurnal variations are not entirely avoided, only those with largest magnitude above the stratopause. 

Added “; note, however, that some diurnal variability exists down to 5 hPa.” at the end of the 

sentence. 

• l.172-177, p.7: I doubt an uninformed reader will grasp the message in "[. . .] SBUV-MER considers 

only one data set at a time [. . .], while SBUV-MOD averages overlapping data to combine them [. . 

.]". A slightly more verbose description of the SBUV-MER merging approach may make the difference 

with that of SBUVMOD clearer. 

This paragraph has been rewritten and now states: “The two SBUV-composites built in two different 

ways: SBUV-MER uses overlapping timeseries (shading in Fig. 1) to calculate offsets (calibration 



biases) and differences in seasonal and diurnal variation, but only a single dataset is used without 

averaging overlapping periods; SBUV-MOD also accounts for offsets, but then overlapping data are 

averaged. SBUV-MOD relies on the instrument to instrument calibration done at the wavelength 

level within the version 8.6 algorithm for absolute calibration (i.e. no additional offsets are applied 

before averaging).” 

• l.222-223, p.9: Not all occultation instruments retrieve O3 number density on altitude levels, only 

the UV-VIS instruments do so (SAGE-II). IR occultation missions (HALOE, ACE-FTS) retrieve O3 volume 

mixing ratio, some even on pressure levels. Please correct this statement. 

This now reads as: “Occultation satellites measure ozone by looking at the disk of the rising or setting 

Sun though the atmosphere (SAGE-II uses the UV and visible, while e.g. HALOE and ACE-FTS use infra-

red wavelengths); this makes their vertical profile resolution higher, but at the expense of only 

observing 15 profiles per day.” 

• l.352-362, p.13: What’s the rationale for the factor 2 increase, and how sensitive are the Particle 

Filter results to this choice? Over what timescale is the uncertainty expanded? Just the month 

following the change or is it smeared out over a number of months? 

The answer is not so simple, as it depends on the number of datasets available, how much in 

agreement they are, and how long the increased uncertainty is applied for; the decision is in part 

subjective. An example at 4.6 hPa and 0-10oN is provided below to help explain; it contains the four 

composites (colours), BASIC composite result (i.e. uncertainties increased by a factor of x2; black) 

and BASIC with uncertainties not increased (x1, grey), increased by a factor of x5 (black, dashed) and 

by x10 (grey, dotted); also shown is the delta-O3 relative to BASIC (middle plots) and the standard 

deviation (bottom plots) in BASIC (grey/black hues) along with the absolute difference between the 

BASIC(x2) and the composites (colours). If all four composites are available then the increased 

uncertainty will not have much effect when a single month is being considered (e.g. a change in 

instrument) as can be seen at months when vertical lines appear in the plots, but this is not the case 

if only two were present (not shown). Also, a discontinuity is not guaranteed for single instrument 

changes, though one is clear at the first red-vertical line in the right, middle plot - the presence of 

two other datasets here prohibits a jump forming in BASIC regardless of the increased uncertainty 

(factor) applied. 

The effect of enhancing uncertainties is much clearer for periods when an extend enhanced-

uncertainty is enforced (where the black filled rectangles appear in the upper two plots). It is clear in 

the left plots that not applying an enhancement to the uncertainty in SBUV-MER (yellow) leads to a 

rapid deviation following the Mt. Pinatubo eruption and a blowing up of the uncertainty for the 

period SBUV-MER is divergent from the SWOOSH/GOZCARDS group; we have been told (J. Wild, 

private communication) that SBUV should not be considered during this period, and the data in the 

SAGE-based composites were cleaned for artefacts related to high sulfate-levels. In the latter period 

(right plots), the uncertainty is increased for the pair of SBUV-composites because of the known drift. 

Not enforcing this introduces a small positive drift that is transferred to the composite from the drift 

in the SBUV-composites (i.e. it is not fully removed). 



Increasing the uncertainty enhancement to a factor of five or ten, generally makes little change to 

the BASIC result from a factor of two, but there are some instances when it leads to strongly 

following GOZCARDS and SWOOSH (e.g. in the right plot), which may not be appropriate, but in 

general this last only a few months before returning to the x2 level. Thus, we remain conservative by 

applying a factor of x2 only, such that most of the large deviations are accounted for but without 

applying an enhancement that is so large (e.g., x10). 

• l.368-369, p.13: How prohibitive is the assumption of uncorrelated measurement errors for the 

joint-likelihood function? The bottom row of Fig. 4 clearly demonstrates the correlation of the 

uncertainties in time and between composites. 

The uncertainties derived from the SVDs are not true error estimates, but are an uncertainty related 

to the deviation of the composite from the pack. Thus, artefacts in a single composite are mainly 

encoded within the uncertainty of that single composite, while deviations in both composites within 

a pair will be encoded into all the composite uncertainties, meaning they are correlated to some 

degree, so it is fair to say that there is some correlation in the SVD uncertainties. However, this is 

different to the uncertainties that increase together in all composites as a result of increased 

uncertainty simply due to their seasonal dependence, or from the true instrument (shot) ‘noise’ 

which is certainly uncorrelated between instruments. When the same instruments are used in 

multiple composites, then the uncertainties are repeated in both composites (and therefore inflated 

overall) and should be enhanced to reflect their double use, though this is not straightforward to 

achieve – we have now made this clear in the manuscript.  



To keep this fair in the PF composite, we restricted our analysis to two pairs based on approximately 

the same instruments to avoid it, but it may lead to slightly tighter confidence intervals in the PF 

composite than would reflect essentially two fully-independent datasets. 

• l.377-379, p.14: Assuming that β = 10% of the observations need a blow-up of their uncertainty by γ 

= 100 is quite harsh. I would expect smaller values for β and especially for γ, whose effect would be 

to reduce the tails of likelihood. But perhaps your choice is more of a worst-case scenario? How 

sensitive is the Particle Filter outcome to the choice of γ and β? 

We now include an additional figure (below) in the appendix with brief explanation in the caption 

and subsection (entitle “Effect of the Box-Tiao equation”) linked to the main part of the manuscript 

discussion on this equation. The effect can be quite significant given the choice. In the Figure we 

show 25 plots (5 values of g=gamma combined with 5 values of b=beta). In this plot we imagine an 

idealized scenario of 4 data points at -1.5, -1, +1, and +1.5, all with an uncertainty of sigma=0.2.  

It is clear that for either low values of g, and/or low values of b, we get the expected result assuming 

all data is independent (which is what the dotted line in all plots), but this is inadequate as the pdf 

(dotted line/black thick line) does not represent any of the data and is in a region of lowest 

probability. For large values of b AND g (top right) we end not believing any of the data points at all 

(i.e. we enhance sigma^2 by a factor of gamma^2) with any affect from the second (separation) term 

(1-b)*exp[…] killed off by b~1; clearly this state is also incorrect. As the aim is to essentially enhanced 

regions where data agree, and kill off outliers, the preferred region of interest is for intermediate 

values of b (0.1-0.9) and g>10. From this, we choose b=0.1 and g = 100 as this appears to reflect well 

the desired separation into a multimodal pdf that represents two independent sets of data (e.g. blue 

and red/yellow groups).  



 

In terms of its effect on the particle filter timeseries, when combined with a prior expectation, this 

can lead to the expected timeseries following one pair after it has become clear that jump/offset has 

occurred, whereas low g or low b leads to getting an average of all the composites with a bias 

introduced by the prior. 

• l.403-413, p.15: It should be mentioned here that no transitions were used when an instrument 

changed. This relevant information is now hidden in the caption of Fig. 5. 

We have added “; data in a composite where instruments change in not included at this stage” in the 

text shortly after the first mention of this figure. 

• l.440, p.15: I had to wait for 43 lines to find out how large N is. I would mention this already from 

the start and come back to its motivation at the end of the section. 

Added: “we generate N (= 10,000) particles”. 

• l.962, p.38: I don’t see months 20-30 as a second exception, they are just a result of the offset of all 

four composites in month 50.  

We have removed “except around months 20-30”. 

• l.973-974, p.39: This phrase confused me, do you mean that the vertical resolution of SBUV 

degrades at lower altitudes? Perhaps you canted to say "This difference in vertical resolution 

becomes more important at lower altitudes."? 

Yes, and we have replaced that part of the sentence with your clearer formulation, thank you. 

• l.441-442, p.17: You praised the benefit of using a non-Gaussian likelihood (sum of Gaussians) in 

Sect. 3.2, so it is confusing to read about Gaussian composite likelihoods here. My eye cannot 

distinguish the likelihoods in Fig. 6 from Gaussian distributions (which also touches on the topic in a 

previous comment about β and γ), the former should be more heavy-tailed. I would just drop the "as 

Gaussian distributions". 

Done. 

• l.45-462, p.17: I found these couple of phrases (ending with "Fig. 6c.") of little value for the paper, 

as they essentially give a technical explanation of the resampling procedure. Or did I miss something? 

We have changed “In this way, particles with higher weights are resampled more frequently and thus 

the posterior distribution represents the prior multiplied by the likelihood, i.e. the posterior in Fig. 

6c.” to simply read “In this way, particles with higher weights are resampled more frequently.” 

• Fig. 6, p.18: You may want to point somewhere in the paper to the outlying GOZCARDS likelihood in 

panel (j) which has a clear impact on the 99% credible region. I found this a nice illustration of the 

multi-modal joint likelihood. 

This is a nice suggestion, which we have incorporated into the text. We have added at the end of the 

description of this Figure: “It is worth pointing out that 99% credible region of the posterior in Fig. 6j 

clearly deviates from a Gaussian distribution, caused by the deviation of GOZCARDS from the group, 

and is a real-data example of the multi-modal joint likelihood formed from using Box-Tiao (equation 

1)”. 

• l.536-539, p.20: Is the transition prior of PF(SAGE) bootstrapped from the transitions of the two 

SAGE-composites rather than from the four composites? 



Yes. To make this clear we have added the bold text: “But, it is also possible to only use information 

from either the SBUV-pair (`PF(SBUV)') or SAGE-pair (`PF(SAGE)') of composites (with SVD 

uncertainties constructed using only the respective pairs of data), …” 

• l.553-554, p.20: This phrase is strange, perhaps part of it is missing. How can local time of equator 

crossings be near-polar to attain near-global coverage? 

We agree this was not clear. We have added the bold text to clarify: “Ideally, the local time at 

equator crossings should be the same each orbit, and the orbit should be near-polar to attain near-

global coverage.” 

• l.589, p.23: OSIRIS is a limb-viewing instrument, so should not be mentioned here. 

We have removed this error. 

• l.606, p.23 (and elsewhere): The notion of "trend" carries various meanings in the community. 

Personally, I preserve "trend" for any long-term component that can not be attributed to known 

atmospheric processes or to known measurement artefacts. I advocate the phrasing "drift" or 

"artificial trend" in the latter case, which is much less confusing than blending it in with actual 

geophysical signal. 

We agree. In multiple places throughout the manuscript we have revised the use of trend and limited 

it to only referring to the long-term ‘real’ change in the background ozone not accounted for in the 

quasi-periodic regressors. 

• Sect. 4.3: How did you go from the time series in 10 degree latitude zones to regression results over 

30 degree wider latitude belts? Average the time series, then regress? Please explain this briefly in 

the manuscript. 

To the end of the first paragraph of section 4.3, we added: “These integrated latitude bands were 

formed by averaging the area/latitude-weighted 10o, with the 30-40o band receiving half the weight 

of the equivalent full band; the resultant timeseries were then analysed.” Interestingly, we found 

very similar results taking the approach of considering each band separately and then averaging the 

profiles and adding variance in quadrature. 

• l.752-754, p.28: Do you (or Laine et al) have an explanation for this instability? If you don’t, perhaps 

mention that this deserves further investigation. This feature is striking and should be better 

understood. 

No, and this was of serious concern to us too. It is exactly why we mentioned in section A4 that “A 

more thorough assessment of the DLM with respect to MLR will be made in a forthcoming 

publication.” It is something we are in the process of evaluating. As that sentence is tucked away in 

the appendix, we have added “and requires investigation in a future publication to understand.” to 

the end of the sentence mentioning it. 

• Fig. A2, p.34: Specify the latitude range unless the Figure is for the entire data set at 1 hPa. 

The original figure was for 0-10N, but we have changed this to 20S-20N. Actually, SBUV observations 

are pressure independent. Also, the y-axis title was incorrect, as the square-root of the number of 

observations were shown, which has been corrected. 

• l.894, p.34: Add units to "small drifts of 0.5%". I know many people refer to 0.5% per year (or 5% 

per decade) as small, but they actually mean small compared to the stability of the data records. It is 

definitely not small compared to the actual trend being targeted, so this is a very unhappy phrasing 



in my opinion. Same comment for "[...] SAGE and HALOE agree to within 5% in terms [...]", what is 

the unit? 

You are quite right. For the first we have added ‘yr-1’ as the units for the drift. We have removed the 

second part of the sentence: the five percent in terms of temporal stability came explicitly from 

Froidevaux et al., 2015, but we could not find this explicitly mentioned in the reference, so we have 

modified the text based on your recommendation in the next point, below. We have changed the 

text to read: “We note that small drifts of ~0.5%yr-1 do exist between HALOE, SAGE II and Aura/MLS 

(Nair et al., 2012; Kirgis et al., 2013), and Nazaryan and McCormick (2005) and Hubert et al. (2016) 

suggest that most the datasets used in GOZCARDS have good stability.” 

• l.895, p.35: Hubert et al. (2016) is the first official report of a significant drift of 5% per decade of 

HALOE relative to sonde and lidar. Previous studies are consistent with this negative drift, but the 

results were not significant. I suggest to nuance your statement slightly: "[...], Nazaryan and 

McCormick (2005) and Hubert et al. (2016) suggest that MOST datasets used in GOZCARDS have 

good stability." 

See previous comment. 

• Algorithm 1 (Step 3), p.36: See earlier comment, the composite likelihoods are not Gaussian 

according to Eq. 3. 

We remove ‘Gaussian’ from this sentence. 

• Algorithm 1 (Step 4), p.36: See earlier comment, isn’t this just a technical description of 

implementation? I would summarise this to one phrase. 

Yes, this is aimed at being a technical description so that others can code up this should they wish. 

We would prefer to keep it technical since this is the most complicated step to understand in the 

algorithm. 

• l.950, p.37: The word "original" is somewhat ambiguous here; it could mean the real, observed 

time series or the fit (with/without Gaussian noise?) to that time series. I find the phrasing 

"undamaged" time series better here (also used as label in Fig. A4b).  

We agree the terminology is clearer with ‘undamaged’ and have changed all occurrences related to 

this. 

 

3 Technical corrections 

• l.125, p.4: The Penckwitt et al. paper was (and will likely) not (be) published. Please double-check 

this with G. Bodeker, one of the authors. Alternatively, Tummon et al. (2015) probably remains the 

best reference for this data set, as it has a concise summary of the merging method, satellite 

instruments and data versions. 

Changed to Tummon et al., 2015. 

• l.181-182, p.8: Not sure where the "this" refers to in "[. . .]; this describes the updated version [. . 

.]". 

Changed to “which is an” and made changes to grammar before and after; it refers to the SBUV-MER 

change to only use NOAA-9 between 1994 and 1997. 

• l.207, p.8: Reference to Fig. 2b, should be to Fig. 2c. 



Done 

• Fig.3, p.9: It is hard to discern blue from black markers/lines in print. Perhaps this Figure will benefit 

from a deviation of the colour scheme used in the rest of the paper. 

Done; colours changed to red/pink hue. 

• l.233, p.10: Replace "SAGE-II-based instruments" by "SAGE-II". 

Done 

• l.283-286, p.11: The section references are incorrect. 

Done 

• l.378, p.14: Smaller values of β encode more faith in individual observations rather than less, no? 

Yes, you are correct. This has been changed. 

• l.390, p.15: "compositeS". 

Done 

• l.435, p.17: Remove "(Algorithm 1)" following "the preparation step". 

Done 

• l.672, p.25: "deseasonAlised". 

Done 

• l.730-731, p.27: A "negative decrease" is, strictly speaking, an increase. Could be replaced by "[...], 

and insignificant decreases at [...]". 

Agreed; we replaced this with “and negative but insignificant trend at lower altitudes”. 

• l.873, p.34: The colon messes up the citation. Which of Frith and DeLand (perhaps both) 

recommends that NOAA-9 should not be used? 

Done; specifically it was DeLand. 

• l.878, p.34: Remove duplicate "to" in "[...] tending to to cancel [...]". 

Done 

• l.895, p.35: Hubert et al. (2015) became Hubert et al. (2016) in the meantime. 

Done 

• l.914, p.35: Add a reference to Algorithm 1 on the next page, so this section is not empty. 

Done 

• l.937, p.36: Typo in "sectioN". 

Done 

• Fig. A4, p.38: Fix the legend label for "DLM" in the bottom panel. 

Done 

• Fig. A5, p.39: Fix labels in caption, should be (a) and (b) instead of (b) and (c). 



Done 

• l.975, p.39: Add a space before reference to Bhartia et al. 

Done 

• l.1168-1174, p.45: Update reference to AMT version of manuscript. 

Done 

 

 

Marko Laine (Referee) 

Received and published on 20 April 2017 

The PF method is presented like a model, but in fact it is a numerical algorithm 

For example 

line 17: "Particle filtering and DLM", 

line 20: "The particle filter results", 

line 779: "using a particle filter", 

line 804 "the particle filter as a method". 

In my opinion, the distinction between a model for data and a numerical algorithm should be made 

more clear. You should first describe the model (your dynamical mixture-Gaussian model as a 

Bayesian hierarchical model) behind the data merge and then the numerical Monte Carlo filtering 

algorithm (PF/SIR) for actually estimating the merged data set. 

PF (or SIR) is a numerical method of computing a certain Monte Carlo estimate of a posterior 

(predictive) distribution in a dynamical model. You propagate an ensemble ensemble of possible 

model states (time series realizations) by a model (here the assumed month-to-month seasonal 

change and known deficiencies) to produce prior ensemble for the next state, which is then weighted 

by the likelihood function defined by the observed satellite composites. This will form a sample of 

the posterior uncertainty of the merged series given the observation up to the current time point. In 

effect this is a non-linear, non-Gaussian generalization of a Kalman filter. 

You could contrast this to DLM or MLR "methods". DLM (and MLR, too) is a model for the processes 

and the system generating the observations (see below for a general state space description. DLM is 

a structural state space model that constructs a time series from basic building blocks, like trend, 

seasonality and proxies. For DLM one can use Kalman filter and smoother as an estimation 

algorithms. For MLR you can use the least squares algorithm for estimation, but other algorithms are 

available, as well. 

We agree that the semantics regarding methods, models and algorithms needed cleaning up. In the 

updated version we refer to the composite constructed using Gaussian-mixture likelihood and 

transition prior, with SVD uncertainty estimates, as the BAyeSian Integrated and Consolidated 

(BASIC) composite, and refer elsewhere to specific methods and algorithms appropriately. 

 

SVD for uncertainty estimates 

A similar comment is valid for the SVD "method" for construction of uncertainty estimates for the 

individual composites. SVD is an algorithm for a certain matrix decomposition. For the uncertainty 



analysis, you will have a some kind of model based on principle components and then you use the 

SVD algorithm for estimating the components. Is there any references the "SVD" approach used? I 

think the approach would need more motivation. You could write a model for the sources of 

uncertainties for each composite, having a common source and other sources that might be 

instrument specific. Then you could estimate these by principle components. As an example, a model 

for composite di would be di = PiT = p1iT1 + p2iT2 + p3iT3 + p4iT4, where T are the principle 

components and p are the corresponding loadings. Then use it to build a model for variance 

components of a composite d_i, as var(di) = ..., that would include the composite uncertainty as one 

of the components. 

We have updated the discussion of the uncertainty estimation in Section 3.1 to give more clarity 

about the role of the SVD (essentially as a numerical method to implement PCA) and also to more 

fully explain our heuristic error estimation. There are references to use of SVD, but none we are 

aware of in the form we have put forward here. There are no references for this method itself, but 

we have done empirical tests to show that it produces sensible results for reasonably discrepant 

data-sets such as those being analysed here. That said, we explicitly state that more work is needed 

on this aspect of the overall data analysis problem and we fully expect to attempt this in future 

papers. 

Filter vs. smoother 

You should motivate why "filtering" is adequate for the data merge and no "smoothing" is needed. A 

filter calculates p(yt |{dt}) for each t = 1 : T, but not p(yt |{d1:T }) nor the joint distribution p(y1:T 

|{d1:T }). The latter are what are estimated by Kalman smoother in DLM calculations for a linear state 

space model. 

Additional question: could PF be replaced by suitable weighted average of the composites, that just 

takes into account the prior information about problems in the individual series? In DLM and MLR 

you will need to assume Gaussian uncertainty, so the PF results need to be summarized as mean and 

standard deviation.  

What are the benefits of PF over some simpler (non-Monte Carlo) averaging method? 

Thanks for pointing this out. You are correct that the particle filtering algorithm samples from the 

posterior distribution of the true time series conditioned on the data "up to that point", rather than 

the full data vector, and conditioning on the full data vector would require a subsequent smoothing 

step. The smoothing step comes with some considerable technical difficulties - to get around this 

whole issue, in the new version we have abandoned the particle filtering method completely and 

resorted to Hamiltonian Monte Carlo (HMC) sampling to sample the full posterior distribution, 

conditioned on the full data vector as is required. HMC is well suited to ultra-high dimensional 

sampling problems and is well documented in the literature. We re-coded the sampling algorithm 

from scratch, re-ran everything and re-made all relevant plots. In practice, we found that the new 

results (now correctly conditioned on the full data vector) are broadly similar to the particle filtering 

results and none of the key findings are changed. Nonetheless we thank you again for pointing this 

out and the new approach is now correct and more robust. 

Regarding to what extent our method is akin to performing a weighted-average of the composites: 

for sure, some of the data-artefacts will be reduced/removed by taking an inverse-variance weighted 

mean, and for a lot less effort. However, use of the (fat-tailed) Gaussian-mixture likelihood combined 

with the month-to-month transition prior allows our approach to identify where certain data are 

corrupted without a priori knowledge of specific issues — these (many) cases cannot be captured by 

simply averaging. We also provide non-Gaussian uncertainties; it’s true that DLM/MLR assumes 



Gaussian errors, but we encourage extension of these tools to allow for non-Gaussian uncertainties 

and/or marginalization over a full systematics model - this is a first step on a long road to a more 

principled approach to trend analysis from ozone data. 

About MCMC 

I would like to see some MCMC results for the DLM analysis. You are using uniform priors for the 

variance parameters (line 689). Do these parameter identify, especially, if you assume unconstrained 

smoothness for the trend?  

How do the AR parameters identify?  

You use uniform [−1, 1] for the AR parameter, but do you consider negative autoregression as a 

realistic model for an ozone observation time series?  

You could include some plots of the posterior distributions. 

Thanks for raising these issues. Over the course of the work we experimented with different prior 

assumptions for the DLM. We found that in some cases leaving the “smoothness of the trend” 

parameter \sigma_trend unconstrained leads to a wiggly “trend" that captures all of the variability 

(with enough burn-in), and in the most recent version we use a half-Gaussian prior on \sigma_trend 

with variance 5e-4. The other parameters are left with improper uniform priors, and the AR 

correlation coefficient prior is updated to being uniform on [0, 1] rather than [-1, 1]— we agree that 

negative AR correlations are difficult to justify physically (although the strictly positive prior made 

little/no different in practice). In tests on simulated data we find that all hyper-parameters identify 

well under these priors - we have included new plots of the parameter posteriors in the appendix. 

General state space model approach 

I suggest that you describe the merge and trend analyses as a general hierarchical state space model. 

In both merging the data and in the DLM analysis you are dealing with a dynamical state space 

model. A general framework to describe the statistical model is by a hierarchical description, with a 

process model for the model state dynamics, a parameter model for model (nuisance) parameters 

and a data model for the likelihood. The Bayes formula would provide the posterior estimate from 

the individual conditional components as (see [1,2,3]): 

[process, parameters|data] ∝ [data|process,parameters][process|parameters][parameters] 

Filtering and smoothing algorithms can be used to estimate various marginal and conditional 

posterior distributions. The nuisance parameter could be integrated out by MCMC, for example. 

For ozone data merge the process model includes the month-to-month variability and external 

events like volcanos, trends etc. The observation processes could describe the instrument effects. 

Lastly, there is the prior distributions for model parameters. The whole will in effect be a hierarchical 

Bayesian model to describe and estimate the state together with the parameters. This could provide 

a common framework for both merging and analysing. 

We agree that the merge and trend analyses should really be done simultaneously in a single 

Bayesian hierarchical model (BHM). We have an on-going project where we are developing a 

sophisticated BHM for analyzing ozone data from scratch, going back to the original instrument 

records and modeling systematics explicitly rather than attempting to merge already-merged 

composites. However, this is well beyond the scope of the current paper, although it is a first step 

that resolves some of the key data-issues and is a coarse approximation to the full BHM approach. 



A related issue that some readers have raised is concern over “using the data twice” — once to 

construct the transition prior (and uncertainty estimates) and once again in the main analysis (i.e. 

posterior sampling). Estimating the prior hyper-parameters and uncertainties a priori and fixing them 

can really be seen as approximation to the full BHM solution. 

To cover these issues, we’ve added a section titled “BASIC as an approximation to a Bayesian 

hierarchical state-space model” where we briefly describe the full BHM approach and make explicit 

the fact that pre-computing the transition prior and uncertainties is an approximation to the BHM 

approach, which is good in the fortuitous case where those pre-computed quantities are strongly 

constrained by the data and do not strongly co-vary with the parameters of interest. 

[1 ] L. M. Berliner. Physical-statistical modeling in geophysics. Journal of Geophysical Research: 

Atmospheres, 108(D24):8776, 2003. doi: 10.1029/2002JD002865. 

[2 ] C. K. Wikle and M. B. Hooten. A general science-based framework for dynamical spatio-temporal 

models. TEST, 19(3):417–451, 2010. doi: 10.1007/s11749-010-0209-z. 

[3 ] N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. Wiley, 2011. 

Other comments 

line 385, equation (2): I do not see how the parameters γ and β give rise to bimodality for an 

individual composite as the mean is the same d^c_t for both modes. It probably will make the tails of 

the likelihood heavier than for a standard Gaussian likelihood.  

The heavier tails of the likelihoods for individual data points leads to enhanced bi-modality when 

these likelihoods are multiplied together. See the new Figure. A3 and comment/response to reviewer 

1 where the figure has been included there too. 

line 460: The PF distribution is said not to be Gaussian but in DLM and MLR you need Gaussian 

uncertainty. Is this a problem for the trend analysis? 

A “most principled” and optimal trend analysis will consider full non-Gaussian uncertainties. We are 

in the process of developing extensions to DLM that can deal with non-linear models and non-

Gaussian likelihoods - however, this is well beyond the scope of this work. It’s difficult to assess 

quantitatively to what extent the Gaussian assumption biases the trend analysis without knowing the 

“right answer” accounting for non-Gaussian errors. However, we feel that the impact of non-

Gaussian errors is one of a large number of remaining deficiencies in trend analyses performed in the 

community, such as the linear-model assumption, fixed regressor phases etc. It is very likely not the 

biggest evil in this basket of remaining issues.  

line 801: "using the same instrument dataset more than once". The transition prior is inferred from 

the same observations that are used in the model, so the data is used twice. Also, the uncertainty is 

inferred from the same data by SVD. Maybe this is ok here, but it violates the Bayesian assumptions. 

See discussion above under “General state-space model approach” — pre-estimation of the 

transition prior and uncertainties can be thought of as an approximation to the full Bayesian 

hierarchical model. We leave the full hierarchical treatment to future work. 

Can you elaborate more the claim that PF method can resolve the problems in data merging? Do you 

claim that PF is capable to extract the background truth behind different biased estimates. Or does it 

just make the "error bars" larger, so that the trend analysis is not affected by instrument artefacts? 

The heavy-tailed Gaussian-mixture likelihood combined with the transition prior is able to identify 

where one or more datasets are biased, and result in a posterior whose mean is un/less-biased 



without necessarily ballooning the error bar. This can be seen from the fact that the product of 

Gaussian-mixture likelihoods can result in a multi-model joint-likelihood where the widths of the 

individual modes are not expanded as much as for a product of normal Gaussians. If the 

multiplication of the transition prior then excludes one of these modes, the resulting posterior 

effectively rejects the data in the excluded mode and what is left does not necessarily have an 

inflated uncertainty. 

I agree that construction of a merged data set is of interest in itself. For trend analysis one could start 

from individual observations. You could discuss the possibility of a general data fusion approach that 

assimilates all the different composites or individual retrievals to a common time series model. You 

might still be able to use linear model, but with carefully designed (linear) observation operator, that 

would account for the instrument artefacts. Or use some non-linear generalization of DLM. 

As discussed earlier, we completely agree that this is the way forward and have an exciting on-going 

project concerned with exactly this problem, but we feel it’s beyond the scope of the current paper. 

Conclusion 

I can recommend the article to be published, if the author formulate the modelling approach for 

merging and uncertainty estimation a little more consistently, motivate the adequacy of the filter in 

the data merge and the use of SVD for the uncertainty variance components, and describe the 

MCMC results for DLM. 


