
We thank the referees for their comments, which helped improving the quality of our manuscript. A 

point by point response (in blue) to the reviewers’ comments (in black, italics) will follow. Changes in 

the text are indicated in in black.  

 

Anonymous Referee #1 

The manuscript presents the results obtained from the off-line analysis of filter samples collected at 9 
sites in central Europe with different exposure characteristics. The study is mainly focused on the 
identification of the different sources that contribute to the organic aerosol loadings using PMF 
analysis. The obtained results indicate that biomass burning is a major contributor to primary organic 
aerosol with 88% in the alpine valley and 43% north of the alpine crest. On the contrary, the sum of 
HOA, COA and BBOA contributes less at the sites north of the alpine crest than at the southern alpine 
valley. Secondary organic aerosol production is enhanced during summer due to the increased 
biogenic emissions with temperature. Finally, it is estimated that primary biological particles which 
cannot be resolved by PMF could contribute significantly to PM10 organic aerosol. 
 
The manuscript is very well written, coherent and easy to follow. A lot of effort has been put into the 
selection of the PMF solutions and the subsequent sensitivity analysis in order to provide the most 
sane and justified selection of factors, given the statistical nature of the analysis. This paper can be 
recommended for publication after some minor corrections listed below: 
 
1) As the title reads “Long-term chemical analysis and organic aerosol source apportionment..” I 
would expect a short description of the trends in the chemical species as well of the 9 sites. It would 
be helpful as in a subsequent section the correlation with ammonium and nitrates is mentioned.  
 
We have mentioned in the manuscript (page 3, lines 11-14) that two papers regarding the offline 
analysis of this dataset are planned. This section has been modified as follows: 
 
“… This paper focuses on the identification of the main factors influencing the OA concentrations at 
the different sites and the assessment of the associated uncertainties. In a second paper, we will 
investigate the site-to-site differences and general trends in the factor time series and their 
relationship with external parameters. …” 
 
In the corrected version of the manuscript we have added a discussion on the fraction of ammonium 
that can be attributed to nitrate and to sulfate, for different seasons. This section reads as follows 
(P13 L30-33): 
 
“… Here, we have used ammonium as a proxy for aged aerosols affected by anthropogenic 
emissions, as WOOA correlates better with ammonium than with nitrate sulfate. We note that in 
winter, when WOOA is highest, 56% of ammonium can be attributed to nitrate, whereas in summer 
ammonium sulfate dominates (97% of ammonium can be attributed to sulfate). Therefore, WOOA 
correlates more with nitrate (R2 =0.64) than sulfate (R2 =0.48).  …” 
 
2) The possibility that WOOA could partially originate from the oxidation of BBOA could also be 
mentioned. During BB events ammonium is in a significant excess compared to sulfate, and this could 
possibly explain the good correlation between WOOA and NH4

+.  
 
As we have mentioned above, the excess of ammonium compared to sulfate in winter is attributed 
to ammonium nitrate, which is thermodynamically more stable under lower temperatures and 



higher relative humidity. As both WOOA and nitrate originate from a similar process – i.e. oxidation 
of precursors during winter time – both species do correlate. However, we do not think that this 
correlation is sufficient evidence to support that WOOA could partially originate from the oxidation 
of BBOA. We indeed think that this is the case based on modelling results we have recently 
published (Ciarelli et al., 2017) and on the chemical analysis of the same samples on a molecular 
level, using ultra-high mass resolution spectrometric techniques. The latter results will be presented 
in an upcoming publication.  
 
Minor corrections: 
Abstract L21: … smaller than 10 µm from 9 stations …  
 
The text has been adapted to … smaller than 10 µm at 9 stations… 
 
“… We present offline-AMS measurements for particulate matter smaller than 10 µm at 9 stations in 
central Europe with different exposure characteristics for the entire year of 2013 (819 samples). …” 
 
P16, L26: … closely correlates with NH4+. 

The text has been corrected accordingly. 

“…WOOA, dominant SOA category during winter, closely correlates with NH4
+. …“  
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We thank the referees for their comments, which helped improving the quality of our manuscript. A 

point by point response (in blue) to the reviewers’ comments (in black, italics) will follow. Changes in 

the text are indicated in in black.  

P. Paatero (Referee) 

This work develops first a mathematical machinery whereby they attempt to formulate a small 
number of factor spectra (2 assumed "known" mass spectra plus 4 fitted mass spectra) whereby a 
large number (819) of mass spectra, measured in 9 locations in different times of the year, could be 
sucessfully fitted. In the second part, they perform a very large number of repetitions of the 
modeling, so that different details of the model are varied. From variation of the results, they deduce 
reliability estimates for the obtained spectral profiles and contribution time series.  
 
The mathematical operations are not adequately explained. It is impossible to know what they have 
done (and why) in different stages of the work. One of their key concepts is a constraining of F factor 
elements. Unfortunately, the defining equation (3) is so unclear (and possibly contains a typo) that I 
cannot even guess what they might mean by this equation. This review is limited to the first part of 
the work, modeling the measured mass spectra by a bilinear model. Although the second part is 
important, and has required a large amount of work, it cannot be analyzed in the time that would be 
available for such analysis. Thus I do not comment on the second part. I recommend that this 
manuscript should be published after the listed problems in mathematical presentation and 
elsewhere have been corrected. 
 
Problems in the mathematical presentation 
 
The fundamental principle of science is repeatability. Used methods should be defined clearly and in 
sufficient detail so that colleagues will be able (at least in principle) to repeat what was done by the 
authors. In the following, I discuss mathematics that have not been described in an understandable 
manner. In general, equations are the language of mathematics. Mathematical work should be 
described using equations. Verbal explanations may only help in understanding the equations, they 
cannot replace equations. In order to use equations, it is necessary to define symbols for various 
quantities. If necessary, use two-letter symbols.  
 
Consider typographic questions: The prime should be avoided. Complicated notation in subscripts or 
in superscripts is often very difficult to read. 
 
We have taken into account the reviewer comments, clarified the mathematical operations used and 
their purpose and added/modified mathematical equations when needed. In the following we 
respond to the different points raised by the reviewer and indicate the changes in the text we have 
made.  
 
P5 L9-11 (page 5, lines 9-11) 
.. by the estimated organic matter (OM) concentration, calculated as the product of the OC 
concentrations .. and the OM/OC ratios from the AMS measurements. 
Reading this verbal explanation, it is very hard to understand what was done. In fact, I would need to 
try to write the equations in order to understand. Please do this equation writing for the benefit of 
your readers! 
 
We have added an additional equation (now equation 3), to clarify the quantification operation. The 
text reads as follows: 
 



“… 

Input data and error matrices consisted of 202 organic ions. The organic fragments, x’i,j, obtained 

from offline AMS analyses do not directly represent ambient concentrations. Therefore, the signal of 

each fragment was converted to such an ambient concentration (xi,j in µg m-3), by multiplying the 

fraction of this signal with the estimated organic matter (OM) concentration. The latter was 

calculated as the product of the OC concentrations measured by the Sunset OC/EC analyzer and the 

OM/OC ratios from the offline AMS measurements (OM/OC)oAMS (Eq. 3). Note that such scaling does 

not change the outcome of Eq. 2 since both data and error matrices are scaled in the same manner 

and the fingerprints (fk,j) are not changed. 

 

𝑥𝑖,𝑗 =
𝑥′𝑖,𝑗

∑ 𝑥′𝑖,𝑗𝑖
∗ 𝑂𝐶 ∗ (𝑂𝑀 𝑂𝐶⁄ )𝑜𝐴𝑀𝑆        (3) 

…“ 

 
P5 EQ(3): I do not understand eq(3) at all.  
- what are f_kn and f’_kn (or is it f_kn’), what difference is there between them? 
- is there a typo in the equation? As shown, the equation appears impossible. 
This is a key detail in the manuscript as it describes constraints that perhaps have never been 
published in similar work. It must be described so that it is understandable. 
 
We do agree with the reviewer that the equation is misleading. The constraints were performed in 
the same way as in Canonaco et al. (2013) and the equation in the text was adapted to the one in 
the mentioned publication. The modified text reads as follows: 
 

“… The PMF algorithm was solved using the multilinear engine-2 (ME-2, Paatero, 1999). 

Normalization of the PMF solution during the iterative minimization process is disabled as 

implemented in SoFi (Canonaco et al., 2013). ME-2 enables an efficient exploration of the solution 

space by a priori constraining the fk,j elements within a certain range defined by the scalar a (0 ≤ a ≤ 

1) from a starting value fk,j′, such that the modelled fk,j in the solution satisfy Eq. 4: 

 

𝒇𝒌,𝒋 = 𝒇𝒌,𝒋
′ + 𝒂 ∗ 𝒇𝒌,𝒋

′           (4) 

fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting value 

in the solution.  …” 

 
What was included in matrix X, to be modeled by PMF. It remains unclear what information was 
contained in X. Section 2 lists a number of variables whose concentrations were measured. Were all 
these included in X, or were some of these included, or none of them? 
 



P5 L8-9 say: Input data and error matrices included 202 organic ions. Do you mean that input data 
consisted of 202 organic ions? The formulation you used may also be interpreted so that among 
other data, input data also included 202 organic ions. 
 
This sentence was indeed misleading. X consisted of 202 ions (variables) measured over n time 
points. The text has been adapted accordingly: 
 
“… Input data and error matrices consisted of 202 organic ions. ….” 
 
Also regarding matrix X: 
Input data ... were rescaled by the estimated organic matter (OM) concentration ... In PMF, one is 
allowed to rescale data rows in any way, provided that error rows are also scaled in the same 
manner. Thus your scaling is OK. However, it would help the reader a lot if you state briefly why to 
scale, what advantage was achieved by scaling. Your scaling (which does not change profile spectra 
in any way) is useful for plotting figure 9. On the other hand, your scaling influences (improves or 
worsens) correlations between factor values and marker concentrations. Please explain and/or 
correct. Note that this scaling does not change the computations performed according to Eq(4) in any 
way. 
 
The scaling procedure does not influence in any way the PMF calculations. However, as the offline 
AMS signals do not directly represent ambient concentrations the factors retrieved should be scaled 
to the real ambient concentrations, before any correlation with external markers and data 
interpretation is made. Thus the scaling could indirectly affect the result by influencing the solution 
selection. The scaling could be achieved before or after running the PMF (as it was mentioned 
correctly by the reviewer the scaling does not change the computations performed according to Eq. 
4). We have scaled the data before running PMF for computation reasons as in this way we do not 
need to scale the results obtained from every PMF solution repeatedly. The text related to this 
section has been adapted as follows: 
 
“… 

Input data and error matrices consisted of 202 organic ions. The organic fragments, x’i,j, obtained 

from offline AMS analyses do not directly represent ambient concentrations. Therefore, the signal of 

each fragment was converted to such an ambient concentration (xi,j in µg m-3), by multiplying the 

fraction of this signal with the estimated organic matter (OM) concentration. The latter was 

calculated as the product of the OC concentrations measured by the Sunset OC/EC analyzer and the 

OM/OC ratios from the offline AMS measurements (OM/OC)oAMS (Eq. 3). Note that such scaling does 

not change the outcome of Eq. 2 since both data and error matrices are scaled in the same manner 

and the fingerprints (fk,j) are not changed. 

 

𝑥𝑖,𝑗 =
𝑥′𝑖,𝑗

∑ 𝑥′𝑖,𝑗𝑖
∗ 𝑂𝐶 ∗ (𝑂𝑀 𝑂𝐶⁄ )𝑜𝐴𝑀𝑆        (3) 

 

…“ 

 
P5 L5-7 (input errors): 



> The input errors ... include ... the uncertainty related to ion counting statistics and ion-to-ion signal 
variability at the detector. 
I understand that you counted the ions. Then, ion-to-ion signal variability is *not* a source of 
uncertainty. If ion current is measured, instead of counting ions, then ion signal variablity *is* a 
source of error. Please correct or clarify.  
 
The AMS does not count ions, but rather an integrated signal (bit ns) that can be related to ion 
counts by means of a single ion calibration. Thus single ion signal variability is a source of uncertainty 
for PMF analysis, in addition to counting statistics. Both sources of errors are included in Allan et al. 
(2003, alpha and I, respectively). 

Allan, J. D., Jimenez, J. L., Williams, P. I.,Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and 

Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques 

of data interpretation and error analysis, J. Geophys. Res., 108, 4090, doi:10.1029/2002JD002358, 

2003. 

 
P5 L20-24 
describe a complicated method for filling knowledge gaps in the known/assumed fixed factor spectra 
("reference profiles") of HOA and COA. I am not fully convinced about the performance of this 
method. The "natural" alternative method is to leave the unknown elements in reference profiles 
(profiles of HOA and COA) as ordinary factor elements, to be fitted by ME-2 together with all 
"normal" non-fixed F factor elements, as explained in detail below. Please include this remark in the 
corrected ms, so that future colleagues are encouraged to follow the safer and simpler method 
instead of your complicated method.  
 
We added the following statement to the manuscript, based on the reviewer’s suggestions: 
 
“… Alternatively, such missing ions can be also treated as ordinary factor elements, to be fitted by 
ME-2 with all other ordinary factor elements. …” 
 
Using "constrained factors" based on known profiles of HOA and COA. This topic was very difficult to 
understand at first. It was not clear what is "constrained" by what. Now I assume that you mean the 
following: In all PMF runs, two constant F factors were used, i.e. two rows of factor F were defined as 
a-priori fixed, so that the values of these constant factors were set equal to previously known mass 
spectra of HOA and COA. Is this what you mean? – Using constant or constrained factors is not 
familiar to PMF users, not at all. Such unusual methodology must be carefully explained so that all 
readers have the possibility to understand what you have done. In particular, you should explain that 
using fixed factors is not the same as using inequalities in order to constrain factors to lie between 
upper and lower limits, set very close to each other. Also, you should go into technical details here, 
because it is possible to implement constant factors in two different ways in ME-2. You should guide 
your readers to the optimal usage. It is possible to use "constant factors" that reside in a different 
matrix, which is clumsy. The alternative is to keep all F factors in the same matrix but define that the 
elements in two first (say) rows of F are "locked", not allowed to change during the fitting process. 
These elements are set equal to the known profile values before initiating the fit. If there are gaps in 
the knowledge of HOA and COA, then those unknown elements in "locked" F rows should simply not 
be locked at all, so that they may obtain their best possible values during the fit.  
 
For a better readability we adapted the text to:  
 



“… fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting 

value in the solution. In all PMF runs (unless mentioned otherwise), we used the high resolution 

mass spectra for HOA and COA (cooking OA) from Crippa et al. (2013b) as constraints, i.e. two rows 

of 𝑓𝑘,𝑗 were set equal to the mass spectra of HOA and COA. Ions that were present in our datasets 

but not in the reference profiles for HOA and COA were inferred from published unit mass resolution 

(UMR) profiles (Ng et al., 2011 and Crippa et al., 2013c). For this purpose, the fraction of signal at a 

specific m/z in the UMR reference spectrum (fUMR,m/z) was compared to the fraction of signal of all 

ions at this m/z in the HR reference spectrum (fHR,m/z). The difference fUMR,m/z – fHR,m/z was used as 

entries in 𝑓𝑘,𝑗
′  for such missing ions. For these ions, an a-value of unity was set. For the other factors, 

the factor elements were fitted by ME-2. Alternatively, such missing ions can be also treated as 

ordinary factor elements, to be fitted by ME-2 with all other ordinary factor elements. 

…” 

 
Use of constant factors or constrained factors often causes so-called "normalization conflicts". How 
did you protect your bilinear model against normalization conflicts? This is another important detail 
that should be communicated to colleagues who might follow your example. 
 
We believe that the reviewer comment on normalization conflicts is referring to the normalization 
equations for the factor contribution present in the default ME-2 instruction file. If so, when calling 
ME-2 from SoFi, these normalization equations are disabled.  
 
We added this technical aspect to the manuscript (P5 L18-23): 
 
“… The Source Finder toolkit (SoFi v.4.9, Canonaco et al., 2013) for Igor Pro software package 
(Wavemetrics, Inc., Portland, OR, USA) was used to configure the PMF model and for post- analysis. 
The PMF algorithm was solved using the multilinear engine-2 (ME-2, Paatero, 1999). Normalization 
of the PMF solution during the iterative minimization process is disabled as implemented in SoFi 
(Canonaco et al., 2013). ME-2 enables an efficient exploration of the solution space by a priori 
constraining the fk,j elements within a certain range defined by the scalar a (0 ≤ a ≤ 1) from a starting 
value fk,j′, such that the modelled fk,j in the solution satisfy Eq. 4:  …” 
 
P7 L16-17 
> For each of the four PMF datasets, 2420 PMF runs were performed for 
> evaluating the sensitivity of the model to the chosen a-value and the seed. 
 
This statement mentions sensitivity of the model to random seed. The random seed determines the 
pseudorandom initial values of PMF fit. In plain language, this statement says that there were local 
solutions so that depending on seed, PMF iteration converged to different local solutions. 
Presumably, these solutions had comparable Q values because otherwise, Q values would be used for 
selecting between solutions. Now these different solutions are somehow pooled together and their 
presence is otherwise ignored. 
 
The presence of multiple solutions should be properly reported (e.g. how many of PMF runs had 
multiple solutions, how many different individual solutions per PMF run were obtained at most and 
on the average, are the solutions rotationally equivalent having identical residuals of fit, etc.) There 
are no fixed rules on what to do with multiple solutions. On one extreme, it has been suggested that 
scientists may at will pick the one solution they like most and ignore the others. At the other extreme, 



PMF modeling of such data may be considered failing if there are several local solutions with 
comparable Q values. 
 
For each of the four PMF datasets, 2420 PMF runs were performed for evaluating the sensitivity of 

the model to the chosen a-value and the seed. The quality of each of the 2420 PMF runs was 

individually assessed using the criteria lined out in Sec. 3.6. We assessed the environmental 

interpretability based on the correlation of factor time series and markers of the respective source. 

All solutions fulfilling these criteria are accepted and considered plausible. Using these criteria 331 

PMF runs were selected for PMFblock (for PMFzue,isol 230, for PMFzue,reps 99, and for PMF1filter/month 269). 

This information was added to the text. We found that 80% of the accepted solutions have an a-

value≤0.3 for HOA and an a-value≤0.5 for COA. The output HOA and COA factor profiles are 

therefore not significantly variable and very similar to the input profiles, indicating that similar 

solutions were selected. Furthermore, the yearly average factor concentrations of all selected 

PMFblock solutions after Rk correction are now shown for the case of Zurich as an illustration in Fig. 

S5. The distributions of each of the different factors do not show more than 1 distinct mode, 

indicating that we do not have several populations of solutions. This information was added to the 

supplementary. In a last step, all accepted solutions are pooled together. In Sec. 3.3, we added a 

remark linking to Sec. 3.6:  

The modified Sec. 3.6 reads: 
 

“… Monte Carlo simulations were performed and simulations for which res-OCi distributions were 

significantly different from 0 (Q25<0<Q75, details in SI) were discarded until 500 acceptable 

simulations were found. Thereby, 331 PMF runs were selected for PMFblock (230 for PMFzue,isol, 99 for 

PMFzue,reps, and 269 for PMF1filter/month). Median factor time series and recovery parameters from all 

retained simulations were then determined and the interquartile range (IQR) represents our best 

estimate of the uncertainties for the single PMF datasets. The Monte Carlo process was repeated for 

the four different PMF datasets described above and the resulting median time series of their 

estimated uncertainties were compared. The resulting uncertainty estimates and the method are 

described in Sec. 4.2.1. and in the SI. …” 

 The added information in the SI reads: 

“… 

Cumulative density functions for the a-values of HOA and COA are presented for the accepted 

solutions in Fig. S4. We found that 80% of the accepted solutions have an a-value≤0.3 for HOA and 

an a-value≤0.5 for COA. The output HOA and COA factor profiles are therefore not significantly 

variable and very similar to the input profiles, indicating that similar solutions were selected. 

Furthermore, the yearly average factor concentrations of all selected PMFblock solutions after Rk 

correction are shown for the case of Zurich as an illustration in Fig. S5. The distributions of each of 

the different factors do not show more than 1 distinct mode, indicating that we do not have several 

populations of solutions. 



 

Figure S4: Cumulative density functions of a-values for HOA and COA for the accepted solutions. 

The yearly average factor concentrations of all selected PMFblock solutions after Rk correction 

areshown for the case of Zurich as an illustration (Fig. S5). The distributions of each of the different 

factors do not show more than 1 distinct mode. 

 

Figure S5: Histograms of yearly average factor concentrations of all selected PMFblock solutions 

(after Rk correction).…” 

 
 
 
If DISP is used for uncertainty estimation of a case with several local solutions, one often obtains the 
outcome that the model is "Not Well Defined" or "NWD". I would not suggest what the authors 
should do with their many-solution cases in addition to discussing them. Whatever they opt to do, 
they should describe it: what was done and why. 
 
The procedure that we have adopted aims at assessing the sensitivity of the PMF to the constrained 
profiles (a-value), to the pseudo-random starting point (seed), to the measurement uncertainties (by 
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including repeated measurements from one of the sites) and to the input data/rotational ambiguity 
(bootstrap). We have discarded a number of solutions based on a set of criteria. The PMF runs 
satisfying these criteria were all considered as plausible and discussed in the manuscript. Differences 
amongst these solutions are used as an estimate of the combined uncertainties mentioned above. 
The process is described in Sec. 4.2.1. and in the Supplementary Information. We added the 
following sentence at the end of Sec. 3.6 linking to Sec. 4.2.1. 
 
”… The resulting uncertainty estimates and the method are described in Sec. 4.2.1. and in the SI. …” 

 
Section 3.3, sensitivity analysis 
I cannot comment more on this analysis because I do not understand what the a-values are and how 
they were used.  
 
We do agree with the reviewer that the equation is misleading. The constraints were performed in 
the same way as in Canonaco et al. (2013) and the equation in the text was adapted to the one in 
the mentioned publication. The modified text reads as follows: 
 

“… 

The PMF algorithm was solved using the multilinear engine-2 (ME-2, Paatero, 1999). Normalization 

of the PMF solution during the iterative minimization process is disabled as implemented in SoFi 

(Canonaco et al., 2013). ME-2 enables an efficient exploration of the solution space by a priori 

constraining the fk,j elements within a certain range defined by the scalar a (0 ≤ a ≤ 1) from a starting 

value fk,j′, such that the modelled fk,j in the solution satisfy Eq. 4: 

 

𝒇𝒌,𝒋 = 𝒇𝒌,𝒋
′ + 𝒂 ∗ 𝒇𝒌,𝒋

′           (4) 

fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting value 
in the solution.  
…” 
 
P6 L26-28 say: 
> Paatero et al. (2014) compare the effectiveness in estimating modelling errors using two different 
approaches: the displacement (DISP) and bootstrap analysis (BS), respectively. 
 
Here seems to be a terminological problem: in the quoted paper, Paatero et al. estimated the 
uncertainties of estimated F factor elements in the situation when no modelling errors are present. 
These F uncertainties depend mainly on random error in X and on rotational freedom of factor 
matrices G and F. It was specifically emphasized that the obtained uncertainties do not cover effects 
of modelling errors in the results. (Examples of modelling errors: non-constant factor profiles, wrong 
uncertainties assigned to data values.) Thus modelling errors were not estimated in the quoted 
paper.  
 
P6 L29: 

DISP involves running PMF several times using randomly perturbed factor profile elements of a 

reference solution 



In fact, DISP estimation does not involve any randomness at all. F factor elements are pertubed in a 
systematic fashion by DISP. Perhaps here is confusion with Monte Carlo methods where random 
perturbations may be applied. DISP is not Monte Carlo.  
 
We apologize for the terminological mistake. The respective part of the manuscript has been 
corrected. 
 
“… While this approach has been proven very effective in selecting a range of environmentally 

relevant solutions (Elser et al., 2016a, 2016b and Daellenbach et al., 2016), the resulting 

uncertainties may be underestimated. Paatero et al. (2014) compared the effectiveness in 

estimating uncertainties of factor elements using two different approaches: the displacement (DISP) 

and bootstrap analysis (BS). BS involves applying the model to input matrices consisting of a subset 

of the entire dataset. DISP involves running PMF several times using systematically perturbed factor 

profile elements of a reference solution, but allowing a defined difference in Q from the reference 

solution. Both approaches are computationally intensive, especially DISP. Because of such 

computational limitations the combination of BS and DISP was not feasible for the dataset presented 

here, especially in combination with a-value sensitivity tests. Therefore, we chose to perform 4 

sensitivity tests performing PMF runs using 4 different input datasets, presented in the following. 

These sensitivity tests allow conclusions on the stability of PMF analysis when reducing the temporal 

or spatial resolution as well as the influence of the measurement repeatability. 

 ..” 

 
In table (3), uncertainty estimates of percentage concentrations are not correctly computed.  
 
The overall uncertainties on the mass concentrations were estimated as the sum in quadrature of 
two error terms. The first relates to the variability in the yearly average mass concentrations for the 
different factors at the different sites calculated by changing the COA and HOA a-values using the 
PMFblock setting (where all data points are considered, σa). The second error term relates to the 
additional variability in the yearly average mass concentrations for the different factors at the 
different sites due to the change in the input matrix (PMFblock, PMFzue,isol, PMFzue,reps). As the latter 
was determined only for the case of Zurich, then the same additional relative error (σb) was assumed 
for the other sites. This is indeed only a best estimate of the errors. In the corrected version of the 
manuscript we clarify the way these errors were determined (in Caption to Tab. 3) and we do not 
show errors on the percentage concentrations.  
 
“…Table 1: Yearly average contribution and uncertainty of resolved factors for PMFblock run for the different sites 

and the average for all sites. The uncertainty is calculated based on the variability of the yearly averages from 

PMFblock and the variability between the sensitivity tests. …” 

 
 
 
Notation: 
In supplement, subscript "i" is used as a subscript of Q. It is not defined what "i" means here. Does it 
mean number of factors? If yes, then the symbol used for number of factors should be used. If i does 
not have a definable meaning, then it might be clearer to omit the subscript in this case. In general, 
systematic use of subscripts would be a help for the reader. E.g. use i only as the index of sample 
(time), j as index of column of X, k index of factor. For other quantities, select other symbols and 
define what they mean. 



 
The index i in this figure and the text was removed. 
 
In different places, factor elements are denoted as G_ik and as g_ik. This may confuse readers. 
Eventually they will recognize that this difference does not mean anything, but first they will waste 
time trying to understand. Either, select one notation (preferred), or, in the section "Notation" (to be 
written), specify that G_ik and g_ik mean the same, and also F_kj and f_kj mean the same.  
 
Gik was replaced by gik. 
 
Eq (2) is incorrect. If you wish to use matrix element notation, then summation over k must be 
indicated. If you wish to use vector-matrix notation, then its use should be defined, especially 
because many of your readers are not familiar with such notation. In vector-matrix notation, index k 
would not be visible. 
 
Equation 2 and the adjacent text have been corrected: 
 
“… 

Source apportionment of the organic aerosol is performed using positive matrix factorization (PMF, 

Paatero, 1994). PMF is a statistical un-mixing model explaining the variability of the organic mass 

spectral data (xi,j), as linear combinations of static factor profiles (fj,k) and their time-dependent 

contributions (gi,k), see Eq. 2 (where p is the number of factors). The index i represents a specific 

point in time, j an ion, and k a factor. The elements of the model residual matrix are termed ei,j. 

 

𝑥𝑖,𝑗 = ∑ 𝑔𝑖,𝑘  𝑓𝑘,𝑗
𝑝
𝑘=1 + 𝑒𝑖,𝑗        (2) 

…“ 

 
P5 L10: sunset –> Sunset OC/EC analyzer 

Has been corrected. 

P5 L21 
> Fitted ions in our datasets missing in the reference ... 
What do you mean by "fitted ions"? I do not understand this sentence. 
 
The sentence was rephrased to: 
 
“…Ions that were present in our datasets but not in the reference profiles for HOA and COA were 
inferred from published unit mass resolution (UMR) profiles (Ng et al., 2011 and Crippa et al., 
2013c). …” 
 
P7 L21: 
> The identity of HOA and COA were identified first as their mass spectra were initially constrained. 
 
Why do you need to identify HOA and COA? I would assume that they are on preselected rows of F, 
such as rows 1 and 2. No identification is needed for factors that are in known positions. What is 
wrong here? Am I understanding all this completely wrong? 



 
Yes, indeed HOA and COA are on preselected rows of F. The text has been adapted to: 
 
“… Since HOA and COA were initially constrained on preselected rows of F, they did not need to be 
identified. …” 
 
Supplement 
Figure SI.1 
shows ratios of obtained Q vs. expected Qexp. How were Qexp computed? Did you take into account 
that downweighted columns of X contribute very little to Qexp? How many downweighted columns 
were present?  
 
The results displayed in FigS1 refer to the distributions of Qi,j (median and quartiles and not to 
Q/Qexp. Qi,j is computed as: 
 

𝑄𝑖,𝑗 = (
𝑒𝑖,𝑗

𝑠𝑖,𝑗
)

2

 

 
We corrected the text and axis labels accordingly and refer only to Qi,j.  
 
In PMFblock, only 7 of 202 ions were downweighted by a factor 3. Therefore, the bias in Q between 
using the non-downweighted or the downweighted si,j is smaller than the variability in Q for the 
same set of solutions. Thus we do not think that this bias has an influence on the results, all the 
more since the absolute Q-values are not used in the solution selection. 
 
Obtained ratios Q/Qexp are of the order of 10 for 6 factors. This indicates that there are one or 
several significant modeling errors. It has been assumed among atmospheric scientists that a ratio of 
4, say, would not be significant, that it could be caused byrandom variations from the expected Q. 
This assumption is totally wrong. Such ratios (>1.5, say) always have a cause that preferably should 
be understood in a project where careful mathematical analysis is attempted. 
 
Possible causes of modeling errors are: underestimation of random errors in mass spectra, variation 
of factor profiles with time and between sites, systematic errors in preprocessing m/z spectra, and 
spurious sporadic local sources that cannot be modeled by PMF. An attempt should be made at 
understanding and discussing those errors, even if the effect to obtained results cannot be eliminated 
any more at this final stage. One useful diagnostic is to examine contributions to Q from different 
m/z values, from different times of day and days of week, and so on. 
 
Variation of factor profiles between sites: 
We have explicitly represented the average Qi,j per site and per season to examine the performance 
of the model and reasons behind the observed Qi,j values. As we have already pointed out in the 
manuscript the model does get the data at sites in the north better than at sites in the South during 
winter. We did attribute this difference to the variability in the wood burning source profiles, here 
represented by only one factor. Indeed, we do agree that additional reasons may result in the high 
Qi,j observed. These are discussed below.  
 
First, as pointed out above we do represent sources at all sites with a single profile and the 
examination of the site-to-site median Qi,j values do indicate a discrepancy in the model 
performance between sites in the north and south of the Alps. In comparison to PMFblock, the 
average Qi,j for Zurich is slightly reduced for the same number of factors when only including 1 site in 
PMF (PMFzue,isol, PMFzue,reps, average Qi,j 6). The difference between the site that is best explained and 



the site that is least explained is also approximately 6 (Fig. SI.1). Therefore, we do indeed attribute a 
significant part of the unexplained variability to variation in source profiles at different sites.  
 
Variation of factor profiles with season: 
We note that these differences can also occur because of representing SOA at different seasons with 
only two factors: For example the difference in Q values between the best explained season (April-
Mai-June) and the least well explained season (January-February-March) is approximately 4 (Fig. 
SI.1). A consistent difference between Q for week-days and weekends cannot be found (Fig. S2). 
 
Underestimation of random errors in mass spectra 
As mentioned in the manuscript, the samples from Zurich were measured at two instances, 5 
months apart. When performing PMF on either batch separately (PMFzue,isol and PMFzue,rep, 
respectively) their average Qi,j is comparable (Q=6). Therefore, there there does not seem to be a 
difference in the representation of random errors between these measurements.  
 
Systematic errors in preprocessing m/z spectra 
As we have mentioned in the manuscript the error matrix considers the detector counting statistics 
and the variation in the background. However, additional uncertainties can result from peak fitting 
of the high resolution AMS data (attribution of signal at a nominal mass to several ions). This 
procedure is affected by errors in the m/z calibration accuracy and precision and by the peak width. 
These errors are not currently taken into account, but may result in a significant underestimation of 
the measurement uncertainties especially for overlapping peaks, which may explain (at least 
partially) the high average Qi,j.  
 
In Fig. S3, we present the average Qi,j of individual ions. There is no clear dependence on the ion 
molecular weight and therefore, m/z. However, the average Qi,j for ions with a small mass defect 
(nominal mass – exact ion mass) is higher (~10) than for the other ions (~3). There are a lot of ions 
with small mass defects close to 0.03 a.m.u. in our dataset. This makes these peaks prone to overlap 
with other ions and thus their error subject to underestimation because this effect is not considered 
in the sij calculation.  
 
Sporadic local sources that cannot be modeled by PMF: 
The ion families CHN and especially CS show higher average Q than CH, CHO1, and CHOgt1. Since 
CH3SO2

+ shows an event-driven time series, at least the high Q related to CS ions could be related to 
the inability of PMF to resolve these events accurately. 
 
The corresponding section in the SI has been thoroughly reworked and reads now: 
 

“…  

Based on the input data for PMFblock, we evaluate the influence of the number of factors, p, on Qi,. 

For this experiment, both the traffic and cooking signatures were constrained using adapted 

reference profiles from Crippa et al. (2013b) as described in section III.1. Based on this evaluation, 

we chose to perform PMF using 6 factors. 

Qi,j is computed using the PMF residuals (eij) and the PMF input errors (si,j): 

𝑄𝑖,𝑗 = (
𝑒𝑖,𝑗

𝑠𝑖,𝑗
)

2

           (S1) 



 

 

Figure S1: Qi,j as a function of the number of factors for a reference experiment with all data used 

in PMF (9 sites, full year 2013, HOA and COA constrained with a=0.0 (b and d). Δ(median(Qi,j))max is 

evaluated for the different periods during the year 2013 (January-February-March, April-Mai-June, 

July-August-September, October-November-December) and for all sites (a and c). The grey line 

depicts the difference between the category (geographical or season) with the highest and the 

lowest median Qi,j. 

Fig. S1 shows Qi,j s as a function of the number of factors for different sites (b) and seasons (d) and 

the difference between the highest (a) and lowest (c) median to evaluate the maximal difference in 

the mathematical quality of the solutions. As expected, forcing PMF to explain the variability in the 

dataset only with the 2 constrained factors (p=2), results in very high median Qi,j . Δ(median(Qi,j))max 

shows the difference in  the median Qi,j between groups of points like sites or season. The smaller 

the Δ(median(Qi,j))max, the smaller are the differences in the mathematical quality of the PMF 

solution for the different seasons/sites. To explain the temporal and geographical variability at least 

5 factors are required. However, the difference between the site that is best explained and the site 

that is least explained is approximately 6 when using 5 or 6 factors. When increasing to 6 factors, 

also a factor explaining the variability of sulfur-containing organic ions (especially, CH3SO2
+) is 

resolved. Therefore, we opted to perform PMF using 6 factors. Using 6 factors, there is also no 

difference between the average Qi,j on week-days and weekend (Fig. S2). 

1

2

4

10

2

4

100

2

4

1000

m
e

d
ia

n
 a

n
d

 q
u

a
rt

ile
s
 o

f 
Q

i,
j

H
O
A

H
O
A
+C

O
A 3 4 5 6 7 8 9 10

number of factors

1

2

4

6

10

2

4

6

100


(m
e

d
ia

n
(Q

i,
j)
) m

a
x

 station north
 station south

 (median(Qi,j))max

a)

b)

1

2

4

10

2

4

100

2

4

1000

m
e

d
ia

n
 a

n
d

 q
u

a
rt

ile
s
 o

f 
Q

i,
j

H
O
A

H
O
A
+C

O
A 3 4 5 6 7 8 9 10

number of factors

1

2

4

6

10

2

4

6

100


(m

e
d

ia
n

(Q
i,
j)
) m

a
x

 (median(Qi,j))max

 January-February-March
 April-Mai-June
 July-August-September
 October-November-December

c)

d)



 
Figure S2: Qi,j as a function of the day of the week.  

However, for PMFblock also with 6 factors, the average Qi,j is clearly larger (7 only the Zurich data 

points) than the ideal value of 1, i.e. the PMF residuals are larger than the measurement 

uncertainties. In comparison to PMFblock, the average Qi,j for Zurich is slightly reduced for the same 

number of factors when only including 1 site in PMF (PMFzue,isol, PMFzue,reps, average Qi,j 6). In this 

study, we analyse yearly cycles and, thereby, assume constant factor profiles throughout the year 

which can contribute to Q>1.  

Another possible reason for Q>1 is an underestimation of the measurement uncertainty. A main 

contributor in high-resolution AMS data treatment (attribution of the signal at a nominal mass to 

several ions) stems from errors in the m/z calibration which could not be incorporated in the current 

data analysis. Recent studies demonstrate that for overlapping peaks (ions) the measurement 

uncertainties are strongly underestimated (Cubison et al., 2015; Corbin et al., 2015). For PMFblock 

using 6 factors, average Qi,j do not depend on m/z but rather on the ion family (Fig. S3): ions 

consisting of C, H, S, (and O) summarized under the name (CS) and ions consisting of C, H, N, (and O) 

summarized under the name CHN have a higher Qi,j than hydrocarbon ions (CH, only C and H) and 

oxygenated ions (CHOz=1 with 1 oxygen and CHO z>11 with more than 1 oxygen). Since the time series 

of CH3SO2
+ is event-driven, the high Qi,j of this ion hints to the fact that PMF is unable to accurately 

resolve all of these events.  

The average Qi,j for ions with a mass defect (nominal mass – exact ion mass) around 0.03 a.m.u. is 

higher than for the other ions (Fig S3). Mass defects in this range are most common in our dataset. 

This makes these peaks prone to overlap with other ions and thus their error prone to an 

underestimation because this effect is not considered in the sij calculation (described above).  
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Figure S3: a) Average Qi,j of ions in PMFblock as a function of their mass-to-charge ratio (m/z). The 

ions are color-coded with their composition (CH: ions consisting only of C and H; CHO1: ions 

consisting of C, H, and 1 O; CHOgt1: ions consisting of C, H, and more than 1 O; CHN: ions 

consisting of C, H, N, (and O); CS: ions consisting of C, H, S, (and O)). b) Average Qi,j of the ions in 

PMFblock as a function of their mass defect (exact mass – nominal mass) as well as a histogram of 

the number of ions with a certain mass defect. The mean Qi,j of the ion families is displayed 

separately. 

 

Cumulative density functions for the a-values of HOA and COA are presented for the accepted 

solutions in Fig. S4. We found that 80% of the accepted solutions have an a-value≤0.3 for HOA and 

an a-value≤0.5 for COA. The output HOA and COA factor profiles are therefore not significantly 

variable and very similar to the input profiles, indicating that similar solutions were selected. 

Furthermore, the yearly average factor concentrations of all selected PMFblock solutions after Rk 

correction are shown for the case of Zurich as an illustration in Fig. S5. The distributions of each of 
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the different factors do not show more than 1 distinct mode, indicating that we do not have several 

populations of solutions. 

 

Figure S4: Cumulative density functions of a-values for HOA and COA for the accepted solutions. 

 
The yearly average factor concentrations of all selected PMFblock solutions after Rk correction 

areshown for the case of Zurich as an illustration (Fig. S5). The distributions of each of the different 

factors do not show more than 1 distinct mode. 

 

Figure S5: Histograms of yearly average factor concentrations of all selected PMFblock solutions 

(after Rk correction). 

 
… “ 
 
Table SI.1 
Why is there a table for mass closure criteria (used for rejecting bad solutions) when all entries in this 
table are identical? The criteria seem to concern distribution of residuals of OC fitting. Is it really so 
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that the fit is rejected if 1st quartile point is negative and 3rd quartile point is positive? In other words, 
the fit is rejected if residuals are symmetrical around zero. Usually, such residuals would be 
considered desirable. 
 
Symmetrical residuals around 0 were considered desirable and solutions were accepted if the first 
quartile was smaller than 0 and the third quartile larger than 0. The title of the Table was changed 
to: 
 
“Table S1: set of acceptance criteria used. r is the correlation coefficient between a factor time 
series and the respective marker. Q25 is the 1st quartile and Q75 the 3rd quartile.” 
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We thank the referees for their comments, which helped improving the quality of our manuscript. A 

point by point response (in blue) to the reviewers’ comments (in black, italics) will follow. Changes in 

the text are indicated in in black.  

 

Anonymous Referee #3 

Comments on “Long-term chemical analysis and organic aerosol source apportionment at 9 sites in 
Central Europe: Source identification and uncertainty assessment” by Daellenbach et al. The 
manuscript presents new research which clearly fits within the scope of the journal. The text is well-
written and fairly easy to follow. Some of figures, however, compile several information and are not 
as straightforward to interpret (e.g. Figure 8) – please make sure to modify them (color axis, split into 
subplots, etc.) to improve readability. 
 
We removed the second axis (PBOA) in Figure 8 since the difference is only a scaling factor. We 
improved the readability of several figures. 
 
The technique described here is a follow-up of the characterization of OA measurements based on 

filter collections followed by water extraction and analysis by HR-AMS, previously published, being 

the novelty a large statistics from 9 sampling sites and, most importantly, PMF analysis of the OA 

spectrum from filters. Although the former is unquestionably of scientific interest, it is the latter that 

will allow others to apply the technique and indeed reach its goals as described in the introduction. 

At its current stage, the manuscript doesn’t fully achieve it. 

Major comments:  
* The description depth of the PMF applied to this very specific dataset doesn’t seem to be 
proportional to its level of development in regard to the widely used techniques. Please detail it 
more carefully.  
 
Based on the comments of reviewer 2 and 3 we have significantly adapted the parts related to the 
description of the PMF. We also highlighted more clearly the part of the model that is typically 
applied and the other parts that are developed within this work. For example, PMF is widely used, 
but the ME-2 implementation is not. Also, in the revised version of the manuscript, we do describe 
more clearly the steps we have adopted for the PMF solution selection.   
 
“… 

Source apportionment of the organic aerosol is performed using positive matrix factorization (PMF, 

Paatero, 1994). PMF is a statistical un-mixing model explaining the variability of the organic mass 

spectral data (xi,j), as linear combinations of static factor profiles (fj,k) and their time-dependent 

contributions (gi,k), see Eq. 2 (where p is the number of factors). The index i represents a specific 

point in time, j an ion, and k a factor. The elements of the model residual matrix are termed ei,j. 

 

𝑥𝑖,𝑗 = ∑ 𝑔𝑖,𝑘  𝑓𝑘,𝑗
𝑝
𝑘=1 + 𝑒𝑖,𝑗         

 (2) 

 



atrix, each filter sample was represented on average by 11 mass spectral repetitions to examine the 

influence of the AMS measurement repeatability on the PMF outputs. A preceding blank from 

nebulized ultrapure water was subtracted from each mass spectrum. The input errors si,j required for 

the weighted least-squares minimization by the model consist of the blank variability (σi,j) and the 

uncertainty related to ion counting statistics and ion-to-ion signal variability at the detector (δi,j Allan 

et al., 2003; Ulbrich et al., 2009). We applied a minimum error according to Ulbrich et al. (2009), and 

a down-weighting factor of 3 to all fragments with an average signal to noise lower than 2 (Ulbrich et 

al., 2009). Input data and error matrices consisted of 202 organic ions. The organic fragments, x’i,j, 

obtained from offline AMS analyses do not directly represent ambient concentrations. Therefore, 

the signal of each fragment was converted to such an ambient concentration (xi,j in µg m-3), by 

multiplying the fraction of this signal with the estimated organic matter (OM) concentration. The 

latter was calculated as the product of the OC concentrations measured by the Sunset OC/EC 

analyzer and the OM/OC ratios from the offline AMS measurements (OM/OC)oAMS (Eq. 3). Note that 

such scaling does not change the outcome of Eq. 2 since both data and error matrices are scaled in 

the same manner and the fingerprints (fk,j) are not changed. 

 

𝑥𝑖,𝑗 =
𝑥′𝑖,𝑗

∑ 𝑥′𝑖,𝑗𝑖
∗ 𝑂𝐶 ∗ (𝑂𝑀 𝑂𝐶⁄ )𝑜𝐴𝑀𝑆        (3) 

 

The Source Finder toolkit (SoFi v.4.9, Canonaco et al., 2013) for Igor Pro software package 

(Wavemetrics, Inc., Portland, OR, USA) was used to configure the PMF model and for post- analysis. 

The PMF algorithm was solved using the multilinear engine-2 (ME-2, Paatero, 1999). Normalization 

of the PMF solution during the iterative minimization process is disabled as implemented in SoFi 

(Canonaco et al., 2013). ME-2 enables an efficient exploration of the solution space by a priori 

constraining the fk,j elements within a certain range defined by the scalar a (0 ≤ a ≤ 1) from a starting 

value fk,j′, such that the modelled fk,j in the solution satisfy Eq. 4: 

𝒇𝒌,𝒋 = 𝒇𝒌,𝒋
′ + 𝒂 ∗ 𝒇𝒌,𝒋

′           (4) 

fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting value 

in the solution. In all PMF runs (unless mentioned otherwise), we used the high resolution mass 

spectra for HOA and COA (cooking OA) from Crippa et al. (2013b) as constraints, i.e. two rows of 𝑓𝑘,𝑗 

were set equal to the mass spectra of HOA and COA. Ions that were present in our datasets but not 

in the reference profiles for HOA and COA were inferred from published unit mass resolution (UMR) 

profiles (Ng et al., 2011 and Crippa et al., 2013c). For this purpose, the fraction of signal at a specific 

m/z in the UMR reference spectrum (fUMR,m/z) was compared to the fraction of signal of all ions at this 

m/z in the HR reference spectrum (fHR,m/z). The difference fUMR,m/z – fHR,m/z was used as entries in 𝑓𝑘,𝑗
′  

for such missing ions. For these ions, an a-value of unity was set. For the other factors, the factor 



elements were fitted by ME-2. Alternatively, such missing ions can be also treated as ordinary factor 

elements, to be fitted by ME-2 with all other ordinary factor elements. 

…” 
 
* Section 4.2.2 seems quite weak, three methods to estimate PBOA are presented, but no clear 
conclusion is given other than it underestimates based on previous literature. From my perspective 
this section doesn’t add too much to the manuscript and could easily be removed, however if the 
authors wish to keep it, please make sure to better constrain the methods into a valid scientific 
output. 
 
We believe that removing this section would be misleading and not sufficiently transparent and 
would hide the fact that SOOA might be overestimated due to the contribution of PBOA, which could 
not be separated by PMF. Our main objective is not quantifying PBOA, but rather its potential 
contribution to SOOA. Therefore, with the three approaches presented we attempt to estimate this 
PBOA contribution. These approaches suggest that PBOA would contribute between 0.3 and 1.0 give 
units, or 18-58% of SOOA during the warm season. In the revised version of the manuscript, we have 
clarified the aim of the section related to PBOA contribution estimation. This section reads as 
follows: 
 
“… Unresolved sources in PMF are an inherent uncertainty of source apportionment analyses. As 
Bozzetti et al. (2016) show, PBOA can present considerable contributions to OA in PM10 
(constituting a large part of coarse OA). In the present analysis, PBOA could not be separated by PMF 
(neither unconstrained nor using the mass spectral signature from Bozzetti et al., 2016). This inability 
might be caused by the low water-solubility and the absence of PM2.5 filters in the dataset. Since 
these coarse particles are only abundant in PM10 and not in PM2.5/PM1, the presence of both 
PM10 and PM2.5 samples, exhibiting a large gradient in PBOA, might allow an unambiguous 
separation of PBOA. The aim of this section is to estimate the influence of PBOA on the source 
apportionment results. A quantification of this fraction is, however, beyond the scope of this paper. 
In the following, we estimate the influence of PBOA in three alternative ways: …   
 
…” 
 
Minor comments: 
* Abstract. L.21: add the word “from” between µm and 9. 
 
As suggested by another reviewer, we added “at”. 
 
* Abstract. L.24: remove “which is” and add a comma before related. 
 
The text has been corrected. 
 
* P.2, L.31: Please remove “restricted to WSOA in”. 
 
The respective part has been removed. 
 
* P.12, L.10: Remove the word “here”. 
 
The word “here” was removed. 
 



* External gas-phase tracers (besides the use of NOx just to separate HOA, COA) could also add some 
information of the surrounding chemistry – for example, what is the ozone (over 24h, or just 
afternoon) in regard to SOOA and WOOA? And Ox? 
 

For Zurich, we added a comparison of SOOA concentrations to ozone and Ox (O3+NO2):  

“… 

In Figure S7, we compare the SOOA concentrations to ozone and Ox (O3+NO2) for Zurich. The SOOA 

concentrations follow best the temperature (Rs,SOOA,temp=0.65, Fig. S7.a) but show also some 

correlation to ozone Rs,SOOA,O3=0.33, Fig. S7.b) and Ox (Rs,SOOA,Ox=0.38, Fig. S7.c).     

 

Figure S7: SOOA concentrations compared to temperature, ozone, and Ox (O3+NO2) for Zurich. 

…” 
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We thank the referees for their comments, which helped improving the quality of our manuscript. A 

point by point response (in blue) to the reviewers’ comments (in black, italics) will follow. Changes in 

the text are indicated in in black.  

 

Anonymous Referee #4 

General comments: 
 
In this paper the concentrations of the six types of organic aerosol (OA) components (HOA, COA, 
BBOA, WOOA, SOOA, and SC-OA) over Switzerland are reported based on the off-line analysis of the 
water-soluble aerosol components in aerosol samples using an aerosol mass spectrometer (AMS). 
The characteristics of the retrieved OA components, e.g., the relative abundances and seasonality, 
are presented. Further, the uncertainty of the concentrations of the retrieved OA is discussed. The 
source identification of OA components based on long-term samplings at multiple locations is 
important, and the application of the aerosol mass spectrometry for the chemical analysis of aerosol 
samples collected on filters made it possible in this study. The contributions of the major sources of 
OA to the atmospheric concentrations in the studied area have been characterized well in view of 
location and seasonality. Although the results presented in this paper are highly valuable, this paper 
needs substantial improvement in terms of the presentation quality. The explanations for the 
statistical analyses are not fully comprehensive, and a part of them would be flawed. Further, the 
point of this study is not very clear because both the methodology of the analysis itself and the 
results based on it are presented and discussed. To make the point clearer, it may be better to move 
the discussion on the uncertainty based on the results in Figures 6 and 7 to the experimental section 
or the supplement. Other minor issues regarding the presentation quality include inadequate 
explanations, undefined abbreviations/symbols, and grammatical errors. For the reasons above, 
substantial improvement is required for the publication of this paper in its final form. More specific 
comments are listed below.  
 
Specific comments: 
Page 3, 1st paragraph: It may be better to explain more about previous source apportionment 
studies for organic aerosols using off-line AMS measurement techniques. The group of the first and 
corresponding authors reported two more studies, both of which were also for European sites 
(Bozzetti et al., 2017a, 2017b). There are also other source apportionment studies based on 
statistical analysis for the mass spectra obtained using off-line AMS techniques (Sun et al., 2011; 
Chen et al., 2016). Emphasis should be on which characteristics of atmospheric aerosols have not 
been studied tentatively even by the use the off-line AMS techniques.  
 
In the revised version of the manuscript, we have mentioned previous work that used a similar 
methodology to here. While Chen et al. (2016) have used factor analysis for the mass spectra 
obtained using off-line AMS techniques; their focus was on the identification of chromophores. 
Indeed, the studies by Bozzetti et al. (2017a, b) from our group use the same methodology for a 
similar purpose that is the determination of spatially resolved trends of OA sources. However, the 
sites studied and the challenges faced in the aforementioned studies are different from here. Here, 
as the sites are not homogeneous the main aim of the paper is providing a methodology to 
satisfactorily represent the OA by few factors, with a systematic and objective assessment of the 
results and the underlying uncertainties. 
 
This paragraph reads now:  
 



“… This approach allows the retroactive investigation of specific events, e.g. haze events in China 
(Huang et al., 2014) as well as AMS measurements of coarse mode aerosol (Bozzetti et al., 2016) and 
long-term source apportionment studies (Bozzetti, 2017b, 2017a). Such an approach was also used 
in recent studies for identifying the different types of water-soluble chromophores (Chen et al., 
2016). Additionally, such filters are routinely collected and are already available over multi-year 
periods at many air quality monitoring stations around the world for years/decades. …” 
 
Page 3, 2nd paragraph: The chemical analysis using the AMS was limited to the watersoluble 
component of organics in PM10, although the water-insoluble organic component was also taken 
into consideration in the source apportionment. This point should be addressed more explicitly.  
 
Indeed, the chemical analysis using the AMS was limited to the water soluble fraction. However, 
using factor-specific recoveries determined in Daellenbach et al. (2016), the contribution of the 
different factors to WSOC could be scaled to OC. This is described in detail in Section 2.5. 
 
Page 3, line 13: The site-to-site differences and time series are not explained in a specific part of this 
paper.  
 
This sentence was misleading. Detailed analysis of the site-to-site differences and time series will be 
presented in a second paper. The sentence has been adapted to: 
 

“…In a second paper, we will investigate the site-to-site differences and general trends in the factor 
time series and their relationship with external parameters. …” 
 
Page 4, lines 1-3: How were the mass spectra of the extracts from aerosol samples corrected for field 
blanks? Because the sensitivity of an AMS to aerosol components depends on the particle size, the 
signal intensity of organics should not be proportional to the organic mass flux from the nebulizer. 
For this reason, the assessment of the blank level is not straightforward. More explanation to this 
point is necessary. 
 
Between two samples we measured ultrapure water. The recorded signal was subtracted from the 
sample spectra. In a previous study, we showed that the organic blank measurements collected by 
ultrapure water nebulization provide a comparable blank estimate to the organic blanks determined 
from the nebulization of NH4NO3 (Bozzetti et al., 2017a). However, we also analyzed field blanks 
which were extracted and measured in the same way as the exposed samples. 
¨ 
We added accordingly a statement in the manuscript on P3 L30 –P4 L7: 
 
“… The measurement blank was determined before and after every filter sample. Each sample was 
recorded for 480 seconds (AMS V-mode, m/z 12-447), with a collection time for each spectrum of 30 
seconds. Ultrapure water was measured for 720 seconds. Once per day, ultrapure milliQ water was 
nebulized with a particle filter interposed between the nebulizer and the AMS, for the determination 
of the gas-phase contribution to the measured mass spectrum, which was then subtracted during 
analysis from both blanks and filter samples. The filters from Zurich were analysed twice with a time 
difference of approximately 5 months to assess the measurement repeatability. High resolution 
mass spectral analysis was performed for each m/z (mass to charge) in the range of 12- 115. The 
measurement blank was subtracted from the sample spectra. In a previous study, it has been shown 
that the measurement blank is comparable to the organic blanks obtained from the nebulization of 
NH4NO3 (Bozzetti et al. (2017a). The interference of NH4NO3 on the CO2

+ signal described by Pieber 
et al. (2016) was corrected as follows (Eq. 1): …” 
 



We have previously shown that the organic signal from the nebulization of MQ water is not 
statistically significantly different from the organic signals from the nebulization of NH4NO3 (Bozzetti 
et al. (2017a), which might potentially act as a carrier seed of contaminants. Therefore, we 
considered the MQ water to be an adequate representation of the measurement background. In 
addition to the measurement blanks, we have measured field blanks following the same procedure. 
These samples showed WSOC and OC concentrations higher than instruments detection limits. As 
this contamination can contribute to different extents to different factors, data have been corrected 
post PMF as described in Section 2.5.  
 
In order to account for the effect of the field blanks on the source apportionment, we subtracted the 
blank concentrations factor after the PMF analysis. To that purpose we performed PMF runs using 
PMFblock while also the field blank measurements were included in the PMF run. Thereby, we found 
how much the different factors contributed to the field blanks. Finally, we subtracted this effect 
from the factor time series. In addition, the OC blank levels used in the previous version of the 
manuscript were overestimated and have now been updated. Therefore, all numbers in the 
manuscript related to the source apportionment analysis slightly changed (yearly average factor 
concentrations changed by around 15%). However, the main conclusions remain the same. 
 

The respective text was adapted for a better readability: 

“… For a limited number of PMF runs (PMFblock) also the field blank analyses were included in the PMF 

input data. This provides the contribution of different factors to the field blanks which were used to 

correct the output factor time series. Uncertainties induced by the blank subtraction were 

propagated. …” 

 
Page 4, lines 9-10: The expression in the parenthesis is unclear and needs to be reworded.  
 

The text has been adapted in the revised version of the manuscript: 

 

“… The correction factor (
𝐶𝑂2,𝑚𝑒𝑎𝑠

𝑁𝑂3,𝑚𝑒𝑎𝑠
)

𝑁𝐻4𝑁𝑂3,𝑝𝑢𝑟𝑒
 was determined based on measurements of aqueous 

NH4NO3 conducted regularly during the entire measurement period and  varied between ~1% and 

~5% (Pieber et al., 2016). …” 

 
Page 5, lines 9-11: The method for rescaling here and that explained in the 2nd paragraph of page 9 
does not seem identical. 
 
While OC concentrations are available for all samples, WSOC concentrations are only available for a 
subset of all samples (Magadino and Zurich). Therefore, for the samples from Magadino and Zurich it 
was possible to evaluate mass closure, i.e. whether the sum of WSOC factor concentrations after Rk 
correction matched the measured OC (𝑂𝐶𝑖,𝑟𝑒𝑠 = 𝑂𝐶𝑖,𝑚𝑒𝑎𝑠 − ∑ 𝑊𝑆𝑂𝐶𝑖,𝑘/𝑅𝑘𝑘 . For all other samples 

this was not possible because of the unavailability of WSOC concentrations and, therefore, these 
samples needed to be scaled to OC. 
 

The text has been adapted in the revised manuscript: 



 
“… The last criterion relates to OC mass closure. A Monte Carlo approach was applied to evaluate 
whether a combination of water soluble factor time series and recovery parameters would achieve 
OC mass closure, as described in the following. For the samples from Zurich and Magadino, for which 
WSOC concentrations were available (in contrast to the other samples), offline AMS measurements 
were scaled to the water soluble organic matter (WSOM), calculated using the WSOC measurements 
and OM/OC ratios from the AMS HR analysis. The water-soluble contributions from an identified 
aerosol source in a sample i were rescaled to their total organic matter concentrations (OAi,k), where 
k represents a given factor, using combinations of factor recoveries as determined by Daellenbach et 
al. (2016, medians of the used combinations being: RHOA: 0.11, RCOA: 0.54, RBBOA: 0.65, and ROOA: 0.89 
used for WOOA and SOOA). … 
 
 
Page 5, equation 3: The constraint represented by equation 3 seems erroneous because the left and 
the right parts of the equation are identical. 
 
There was indeed a typo in the equation. The equation was adapted to the presentation in Canonaco 
et al. (2013), since the interface presented therein was used and the same type of constraints was 
applied. 
 
Page 5, lines 21-22: Were the inferred fitted ions also for constraint? Does this sentence mean all the 
factors other than HOA and COA were inferred from published UMR profiles? 
 
Ions that were present in our dataset but not in the reference profiles for HOA and COA were 
inferred and constrained. However, such ions were given an a-value of unity. For the other factors 
besides HOA and COA, factor elements were not constrained but fitted by ME-2. The section was 
adapted to: 
 

“… fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting 

value in the solution. In all PMF runs (unless mentioned otherwise), we used the high resolution 

mass spectra for HOA and COA (cooking OA) from Crippa et al. (2013b) as constraints, i.e. two rows 

of 𝑓𝑘,𝑗 were set equal to the mass spectra of HOA and COA. Ions that were present in our datasets 

but not in the reference profiles for HOA and COA were inferred from published unit mass resolution 

(UMR) profiles (Ng et al., 2011 and Crippa et al., 2013c). For this purpose, the fraction of signal at a 

specific m/z in the UMR reference spectrum (fUMR,m/z) was compared to the fraction of signal of all 

ions at this m/z in the HR reference spectrum (fHR,m/z). The difference fUMR,m/z – fHR,m/z was used as 

entries in 𝑓𝑘,𝑗
′  for such missing ions. For these ions, an a-value of unity was set. For the other factors, 

the factor elements were fitted by ME-2. Alternatively, such missing ions can be also treated as 

ordinary factor elements, to be fitted by ME-2 with all other ordinary factor elements.…” 

 
 
Page 5, lines 22-24: The explanation in this sentence is not clear. This sentence should be reworded. 
 
The respective sentence has been reworded to: 
 
“ … For this purpose, the fraction of signal at a specific m/z in the UMR reference spectrum (fUMR,m/z) 
was compared to the fraction of signal of all ions at this m/z in the HR reference spectrum (fHR,m/z). 
The difference fUMR,m/z – fHR,m/z was used as entries in 𝑓𝑘,𝑗

′  for such missing ions …” 



 
Page 8, line 1: The values of the recoveries used in this study should be presented.  
 
Recoveries are presented in Fig. 6 and the text was adapted to: 
 
The water-soluble contributions from an identified aerosol source in a sample i were rescaled to its 
total organic matter concentration (OAi,k), where k represents a given factor, using combinations of 
factor recoveries as determined by Daellenbach et al. (2016, medians of the combinations being: 
RHOA: 0.11, RCOA: 0.54, RBBOA: 0.65, and ROOA: 0.89 used for WOOA and SOOA). 
 
 
Page 8, line 2: The meaning of “the contributions of different factors to the field blank 
samples” is not clear. What was done is not clear, either. 
 
The text was adapted for a better readability: 

“… For a limited number of PMF runs (PMFblock) also the field blank analyses were included in the 

PMF input data. This provides the contributions of different factors to the field blanks which were 

used to correct the output factor time series. Uncertainties induced by the blank subtraction were 

propagated. …” 

 
Page 8, line 27: Is “α_=0.5” the significance level? Fifty percent is too high. 
 
For PMFblock, we performed an additional sensitivity test with α=0.05 instead of α=0.5. The results 
are described in a new section in the supplementary material and the comparison mentioned in the 
main text. 
 
The sentence in the main text reads: 
 
“… A t-test is then used to verify the significance (α=0.5) of the average correlation coefficient 

between factor and marker time series, ravg (Eq. 7):  

 

𝑡𝑎𝑣𝑔 =
𝑟𝑎𝑣𝑔

√
1−𝑟𝑎𝑣𝑔

2

𝑁−2

           

 (7) 

 

Here, ravg is the correlation coefficient averaged over the different stations, derived from the average 

z value, tavg is the corresponding t-value and N is the average number of samples at the different 

stations. Results with significance level α=0.05 are summarized in Fig. S8.  

…“ 

 
The section in the supplementary information reads: 
 



“… 

For PMFblock, a sensitivity test with significance level of 0.05 instead of 0.5 as in the base case was 
performed. The factor concentrations and their corresponding uncertainties (σa) are compared and 
displayed as number density functions (Fig. S8). Changes in the estimated factor concentrations are 
within 10% of the factor concentrations for SCOA and smaller for all other factors. The uncertainty 
related to COA is decreased when lowering the significance level to 0.05, while the other factors 
remain largely unaffected. 

 

 

Figure S8: number density functions of source apportionment results obtained using a significance 
level of 0.05 normalized to results obtained using a significance level of 0.5: a) Comparison of 
factor concentrations b) Comparison of uncertainty estimate (σa). 

…”  
 
Page 8, line 26-28: How the statistical analysis using the average values from different stations can 
be justified? The validity of this method is not obvious. 
 
The ratios of factor concentrations to marker concentrations cannot be assumed to be the same at 

all sites. Therefore, correlation coefficients need to be calculated at different sites. However, to 

achieve an optimized system for the entire dataset the average R should be considered. 

Page 9, lines 2-4: More details in the calculation should be given so that the readers can assess its 
validity. 
 
We have adapted the text and added further information: 
 
“…  

The first two criteria (1-2) ensure an appropriate separation of HOA and COA from OOA and BBOA, 

respectively. Criteria 3-6 relate to the evaluation of the correlation between factor and marker time 
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series. This was achieved by computing the Fisher-transformed correlation coefficient z at different 

stations (Eq. 6): 

 

𝐳 = 𝟎. 𝟓 ∗ 𝐥𝐧 (
𝟏+𝐫

𝟏−𝐫
) = 𝐚𝐫𝐜𝐭𝐚𝐧(𝐫)         (6) 

 

where r is the correlation coefficient between factor and marker at a given station. The obtained z 

values at the different stations are subsequently averaged and transformed back to ravg before 

further analysis. A t-test is then used to verify the significance (α=0.5) of the average correlation 

coefficient between factor and marker time series, ravg (Eq. 7): 

 

𝒕𝒂𝒗𝒈 =
𝒓𝒂𝒗𝒈

√𝟏−𝒓𝒂𝒗𝒈
𝟐

𝑵−𝟐

           

 (7) 

 

Here, ravg is the correlation coefficient averaged over the different stations, derived from the average 

z value, tavg is the corresponding t-value and N is the average number of samples at the different 

stations. Results with significance level α=0.05 are summarized in Fig. S8.  

 

To evaluate whether HOA correlated significantly better with NOx than COA did, the average z 

values obtained between HOA and NOx and between COA and NOx (Eq. 6) were compared, using a 

standard error on the z distribution of 1 √N − 3⁄  (Zar, 1999). 

…” 

 
Page 9, lines 14-16: Is the issue really explained in the supplement?  
 
This paragraph has been reworded and further information has been added. Now the paragraph 
reads: 
 
“…The sum of OCi,k from all factors k (mod-OCi) was then evaluated against the measured OC (meas-

OCi). For this, the residual OC mass (res-OCi) for each sample was calculated (meas-OCi – mod-OCi), 

and the residual distributions were examined for different conditions that are specified in the 

Supplement. In summary, a solution was only accepted if res-OCi were normally distributed around 0 

considering all points and subsets of points: a) summer, b) winter c) Magadino, d) Zurich, e) low and 

high concentrations of the single factors (see Table S1). …” 

 
Page 10, line 2: What are the percentages of the accepted data? 



 
We added this information to the manuscript at P10 L5: 
 
“…Thereby Thereby, 331 PMF runs were selected for PMFblock (230 for PMFzue,isol, 99 for PMFzue,reps, 
and 269 for PMF1filter/month). …“ 
 
Page 11, line33 – page 12, line 1: This sentence is not clear. Does COA relate to the discussion here? 
 
Besides the correlation between the yearly average concentrations of SC-OA and NOx, we also 
present the same values for HOA vs. NOx and COA vs. NOx. This comparison allows the conclusion 
that not all anthropogenically influenced factors show a relation to NOx. 
 
“… SC-OA instead exhibits low background levels episodically intercepted by remarkable ten-fold 
enhancements, especially at urban sites affected by traffic emissions (e.g. the SC-OA contribution is 
significantly higher at sites with higher yearly NOX average levels). The hypothesis of an influence of 
traffic activity on SC-OA is provided by the correlation of the yearly average concentrations with NOx 
(Rs,SC-OA,NOx =0.65, n=9, p<0.06) which is, however, comparable to the correlation of HOA and COA 
(e.g., Rs,HOA,NOx=0.68, n=9, p<0.05, Rs,COA,NOx =0.68, n=9, p<0.05)..  …” 
 
Page 13, line 1: The “uncertainties” here should be relative uncertainties. This should be addressed 
explicitly. 
 
In Figure 7, we present the uncertainties relative to the factor concentrations. We corrected the 
mistake in the manuscript: 
 
“… We note that relative uncertainties related with SOOA increase with decreasing concentrations 

(Fig. 7). A small error in modelling sources with high contributions (BBOA, WOOA) in winter can 

result in a large error of SOOA with its small contribution during winter. Furthermore, some other 

sources like primary biological OA (PBOA, see Sec. 4.2.2) might also mix into SOOA. …” 

 
Page 13, lines 2-3: The meaning of “contribution from other more significant wintertime sources” is 
not clear. Further, justification of the explanation in this sentence should be provided. 
 
This sentence has been adapted and reads now: 
 
“… A small error in modelling sources with high contributions (BBOA, WOOA) in winter can result in a 
large error of SOOA with its small contribution during winter. …”  
 
Page 13, lines 3-4: It is not clear why the mixing of some winter-time SOA into SOOA results in a 
larger uncertainty. 
 
SOOA concentrations are relatively small in winter compared to BBOA or WOOA concentrations. 
Therefore, a small error in modelling BBOA or WOOA can result in a rather big error in SOOA. The 
corresponding section in the manuscript was adapted: 
 
“… We note that relative uncertainties related with SOOA increase with decreasing concentrations 

(Fig. 7). A small error in modelling sources with high contributions (BBOA, WOOA) in winter can 

result in a large error of SOOA with its small contribution during winter. Furthermore, some other 

sources like primary biological OA (PBOA, see Sec. 4.2.2) might also mix into SOOA. …” 



Page 14, lines 1-2: How was σb calculated? 
 
12 samples are present in all PMF datasets (PMFblock, PMFzue,iso, PMF1filt/month, PMFzue,reps). 
For these 12 samples we determine the median concentration for the independently treated PMF 
datasets. σb is the variability of the median concentrations of these 12 samples. This information can 
be found in the supplementary information (section uncertainty estimation and propagation).  
 
We adapted the main text to the following: 
 
“… The variability of the factor time series for the single PMF sensitivity tests (PMFblock, PMFzue,isol, 
PMF1filter/month, PMFzue,eps) is used as an uncertainty estimate (shaded area in Fig. 4). This estimate (σa) 
depends on the measurement repeatability (10 single mass spectra included for each sample) and 
on the selected PMF solution/ Rk combinations and, therefore, also on the a-value. However, the 
variability depending (1) on the choice of input points (time and site; PMFblock, PMFzue,isol, 
PMF1filter/month) and (2) on the instrumental reproducibility (PMFzue,reps) of the offline AMS 
measurements is not accounted for. The contribution of (1) and (2) to the uncertainty is assessed 
through the sensitivity tests by examining the variability of the median factor time-series (σb). σb is 
the variability of the median factor concentrations from the PMF sensitivity tests using PMFblock, 
PMFzue,isol, PMF1filter/month, PMFzue,reps for the 12 samples common to all 4 PMF datasets. For the 12 
filters common in all PMF datasets (PMFblock, PMFzue,isol, PMF1filter/month, PMFzue,reps), we calculate a best 
estimate of the overall uncertainty (errtot), by propagating both error terms: σa and σb. …” 
 
Page 14, line 8: The meaning of “σb – rotational ambiguity” is not clear. 
 
The part “- rotational ambiguity” has been removed and more information has been added to the 
text: 
 
“… It is worthwhile to note that for major factors exhibiting a similar seasonality, i.e. WOOA and 
BBOA, a great part of the uncertainty arises from σb. Thus the variability between the PMF solutions 
using PMFblock, PMFzue,isol, PMF1filter/month, PMFzue,reps (σb ) and, therefore, the sensitivity of the factor 
concentrations on the chosen PMF dataset significantly contribute to the uncertainty. …” 
 
Page 14, lines 12-15: This sentence is not very organized and needs to be reworded. 
 
We reworded the sentence, now it reads: 
 
“… In the present analysis, PBOA could not be separated by PMF (neither unconstrained nor using 
the mass spectral signature from Bozzetti et al., 2016). This inability might be caused by the low 
water-solubility and the absence of PM2.5 filters in the dataset.  …” 
 
Page 14, lines 24-26: What is the definition of the site-to-site variability? Was standard 
deviation calculated for the average values at respective sites? 
 
The site-to-site variability is the standard deviation of average concentrations at the different sites. 
This information has been added to the text and the sentence has been reworded for easier 
readability: 
 
“…Using this approach, we estimate that PBOA contributes 0.30 µg/m3 during the warm months 
(site-to-site variability computed as standard deviation of the average concentration of all sites of 
0.03 µg/m3). During the same period, SOOA concentrations are 1.78 µg/m3 (site-to-site variability of 
0.18 µg/m3) and OA concentrations 4.32 µg/m3 (site-to-site variability of 0.44 µg/m3).  …” 



 
Page 15, line 2: The use of the word “however” does not seem appropriate. 
 
The word “however” has been removed and the sentence reworded. Now it reads: 
 
“…The ion C2H5O2

+ (indicator for PBOA) shows higher concentrations with increasing OCcoarse 
concentrations. …” 
 
Page 16, line 5: Is POA here the sum of HOA, COA and BBOA? Shouldn’t it be defined here instead of 
line 9? 
 
We moved the definition of POA to line 9. Now the paragraph reads: 
 
“…In general, the seasonality of the factor time series is consistent for all the 9 sites in the entire 
study area (Fig. 9). In summer, SOOA is the main contributor to OA, while in winter POA 
(HOA+COA+BBOA) becomes more important although WOOA still contributes significantly. In 
comparison to the sites in northern Switzerland, OA in the southern alpine valleys is dominated by 
BBOA in winter, while in the north WOOA also plays a role. The different factors contribute 
0.47±0.12 (HOA, average and site-to-site variability), 0.31±0.13 (COA), 1.37±1.77 (BBOA), 0.67±0.31 
(SC-OA), 1.11±0.23 (WOOA), 1.31±0.13 (SOOA) µg/m3 for all sites during the entire year (Table 3). In 
northern Switzerland, POA  contributes less to OA (POA/OA=0.3) than in the southern alpine valleys 
where POA/OA is equal to 0.6. …” 
 
Figure 2: The aHOA and aCOA are not defined explicitly. 

The figure caption was adapted to: 

“…Figure 1: Step-by-step outline of adopted source apportionment approach (factor recoveries Rk). 
aHOA and aCOA represent the a-value applied for HOA and COA, respectively. …” 

Figure 3: The definition of fm/z should be given. 
 
The definition of fm/z has been added to the figure caption: 
“…Figure 2: PMF factor profiles of HOA, COA, BBOA, SOOA, WOOA, SC-OA, color-coded with ion 
family of PMFblock (average). fm/z is the relative intensity at a specific mass-to-charge ratio (m/z). 
…” 

 
Figure 9: The definition of OAexpl is not given explicitly. 
 
The figure caption has been adapted to: 
 

“…Figure 3: Map of Switzerland with yearly cycles. Negative concentrations were set to 0 prior to 
normalization for display. The OA mass explained by the source apportionment analysis is termed 
OAexpl. …” 

 
 
Page 2 (supplement): The relationship among “Qi/Qi;exp”, “Δ (Qi/Qi;exp)”, “Δ Qi/Qi;exp”, “(Qi/Qi;exp 
contribution)”, and “Δ (Qi/Qi;exp contribution)” is not clear. 
 



The nomenclature has been unified. The results refer to the distributions of Qi,j –(median and 
quartiles or average) and not to Q/Qexp. Qi,j (referred to as Q-contribution) is computed as: 
 

𝑄𝑖,𝑗 = (
𝑒𝑖,𝑗

𝑠𝑖,𝑗
)

2

 

 
We corrected the text and axis labels accordingly and refer only to Q-contribution.  
 
“… Δ(Q-contribution) shows the difference in  the median Q-contributions between groups of points 
like sites or season. The smaller the Δ(Q-contribution), the smaller are the differences in the 
mathematical quality of the PMF solution for the different seasons/sites. …” 
 
Page 3 (supplement): The definitions of “r(. . . )”, “Q25(OCres)” and “Q75(OCres)” are not given. 
 
The table caption has been modified as: 
 
“…Table S1: set of acceptance criteria used. r is the correlation coefficient between a factor time 
series and the respective marker. Q25 is the 1st quartile and Q75 the 3rd quartile. …” 
 
 
Page 4 (supplement): The definition of “fion” is not given. 
 
The figure caption has been updated: 
 

“…Figure S6: mass spectral fingerprints of BBOA (PMFblock) and nebulized levoglucosan. fion is the 

fraction of signal of a respective ion to the sum of the total signal.” 

 
Technical corrections: 
Page 1, line 21: Should “at” be added between “10 _m” and “9 stations”?  
 
This mistake has been corrected. 
 
Page 3, line 20: “HiVol” should be spelled out. 
 
Spelled out as High-Volume samplers. 
 
Page 5, lines 29-30: The subscripts of “PMF” are not written consistently in the paper. 
 
The PMF datasets are now consistently called: 

PMFblock 

PMFzue,isol 

PMF1filter/month 

PMFzue,reps 

 
Page 10, line 18: Should “from” be added after “profile”? 
 
The missing word has been added as well as the number corrected: 



 
“…COA profile elements were constrained using the COA profile from Crippa et al. (2013b) and the 
obtained factor profile maintains the same features (OM/OC of 1.32, IQR 1.30-1.33, Fig. 3).  …” 
 
Page 13, line 29: Should “Fig. 5” be “Fig. 4”? 
 
Yes it should be Fig. 4. The mistake has been corrected. 
 
Page 14, lines 30 and 33: Should “is in summer” be “in summer is”? 
 
The mistake has been corrected. 

 

Page 14, line 33: “OCcoarse” should be defined in line 30.. 
 
OCcoarse is now defined on line 30. 
 
“… Bozzetti et al. (2016) showed that coarse OC (OCcoarse = OCPM10-OCPM2.5) in summer is dominated 
by PBOA for samples collected at a rural site in Switzerland (Payerne). …” 

 
Page 19, lines 9-10: The list of authors are incorrect. 
 
The citation has been corrected: 

“Daellenbach, K. R., Bozzetti, C., Křepelová, A., Canonaco, F., Wolf, R., Zotter, P., Fermo, P., Crippa, 

M., Slowik, J. G., Sosedova, Y., Zhang, Y., Huang, R.-J., Poulain, L., Szidat, S., Baltensperger, U., 

El Haddad, I., and Prévôt, A. S. H.: Characterization and source apportionment of organic aerosol 

using offline aerosol mass spectrometry, Atmos. Meas. Tech., 9, 23-39, doi:10.5194/amt-9-23-2016, 

2016.” 

 
 
 
 
 
  



Table 1: The commas after “St. Gallen” and “San Vittore” in the column “Site (station code)”, and the 
periods after “m” in the column “altitude” should be omitted. The initial 
letter of “altitude” should be capitalized. 
 
In the column further information on the station location have been added. Altitude has been 
capitalized and the periods are omitted. 
 

Site (station code) Classification General location Altitude 

Basel, St. Johann (bas) Urban/background North of Alps/Swiss plateau 308 m 

Bern, Bollwerk (ber) Urban/traffic North of Alps/Swiss plateau 506 m 

Frauenfeld, Bahnhofstr. (fra) Suburban/backgroun

d 

North of Alps/Swiss plateau 403 m 

Payerne (pay) Rural/background North of Alps/Swiss plateau 539 m 

St. Gallen, Rorschacherstr. (gal) Urban/traffic North of Alps/Swiss plateau 457 m 

Zurich, Kaserne (zue) Urban/background North of Alps/Swiss plateau 457 m 

Vaduz, Austrasse (vad) Urban/traffic North of Alps/alpine valley 706 m 

Magadino, Cadenazzo (mag) Rural/background South of Alps 254 m 

San Vittore, Zentrum (vi) Rural/traffic South of Alps/alpine valley 330 m 

 
 
Figure 4 caption: It is better to write “HOA, COA,. . . .” in the order of the corresponding panels. 
 
The figure caption has been adapted and reads now: 
 
“…Figure 4: HOA, COA, BBOA, WOOA, SOOA, and SC-OA and respective marker concentrations as a 
function of time for Zurich in 2013. Depicted are the median factor time series results for the 
different PMF datasets (median) including the uncertainties for PMFblock (first and third quartile) 
(green: PMFblock, black: PMFzue,isol, red: PMFzue,reps, pink bullets: PMF1filter/month).  … ” 
 
 
Figure 5 caption: Should “NH4” be “NH4+”? 
 
The figure caption has been corrected: 
 
“…Figure 5: Scatter-plots for the different extreme sensitivity tests for Zurich and for all sites for 
PMFblock median concentrations): a) HOA vs NOx, b) BBOA vs levoglucosan, c) SOOA vs temperature, 
d) WOOA vs NH4

+. …” 
 
Figure 7: Should “[” after “concentration” be “]”? 
 
In the y-axis |concentration| refers to the absolute concentration. 
 
Page 4 (supplement): The “interquartile range PMF block” should be represented by 
a symbol because it is in a mathematical formula. It may be better to write “median 
bootstrap solutions” as the subscript of σ. 
 
Since σa and σb are explained in detail in the text we remove this part of the mathematical 
expression. The equation reads now: 
 



“… 

erri,k,tot = √σa
2 + σb

2 

 
…„ 
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Abstract. Long-term monitoring of the organic aerosol is important for epidemiological studies, validation of atmospheric 

models, and air quality management. In this study, we apply a recently developed filter-based offline methodology of the 

aerosol mass spectrometer to investigate the regional and seasonal differences of contributing organic aerosol sources. We 20 

present offline-AMS measurements for particulate matter smaller than 10 µm at 9 stations in central Europe with different 

exposure characteristics for the entire year of 2013 (819 samples). The focus of this study is a detailed source apportionment 

analysis (using PMF) including in-depth assessment of the related uncertainties. Primary organic aerosol (POA) is separated 

in three components: hydrocarbon-like OA which is, related to traffic emissions (HOA), cooking OA (COA), and biomass-

burning OA (BBOA). We observe enhanced production of secondary organic aerosol (SOA) in summer, following the 25 

increase in biogenic emissions with temperature (summer oxygenated OA, SOOA). In addition, a SOA component was 

extracted that correlated with anthropogenic secondary inorganic species which is dominant in winter (winter oxygenated 

OA, WOOA). A factor (SC-OA) explaining sulfur-containing fragments (CH3SO2
+), which has an event-driven temporal 

behavior, was also identified. The relative yearly average factor contributions range for HOA from 34 to 1514%, for COA 

from 3 to 3111%, for BBOA from 11 to 6159%, for SC-OA from 5 to 23%, for WOOA from 14 to 2827%, and for SOOA 30 

from 1415 to 4038%. The uncertainty of the relative average factor contribution lies between 52 and 912% of OA. At the 

sites north of the alpine crest, the sum of HOA, COA, and BBOA (POA) contributes less to OA (POA/OA=0.3) than at the 

southern alpine valley sites (0.6). BBOA is the main contributor to POA with 8887% in alpine valleys and 4342% north of 
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the alpine crest. Furthermore, the influence of primary biological particles (PBOA), not resolved by PMF, is estimated and 

could contribute significantly to OA in PM10. 

1 Introduction 

The development and field deployment of the Aerodyne aerosol mass spectrometer (AMS, Canagaratna et al., 2007) have 

greatly improved air quality monitoring by providing real-time measurements of the non-refractory (NR) submicron aerosol 5 

(PM1) components. The application of factor analysis on the collected organic aerosol (OA) mass spectra enabled the 

efficient disentanglement of aerosol factors, which could be subsequently related to specific aerosol sources and processes 

(Lanz et al., 2007, 2010; Jimenez et al., 2009; Ulbrich et al., 2009, Zhang et al., 2011; Ng et al., 2010; Crippa et al., 2014). 

Factors typically extracted include directly emitted primary OA (POA) from biomass burning (BBOA) or traffic (HOA), 

oxygenated OA (OOA) that is typically associated with secondary OA (SOA), formed through the oxidation of organic 10 

vapor precursors or heterogeneous processes. The model is not capable of identifying the main SOA precursors, but often 

differentiates OOA based on its volatility and degree of oxygenation (semi-volatile fraction: SV-OOA and low-volatility 

fraction: LV-OOA) due to the available highly time-resolved data.  

 

However, the cost and operational requirements of the AMS make its deployment impractical throughout a dense monitoring 15 

network and over longer time periods. As a result, most available datasets are often limited to few weeks of measurements 

and factors are extracted mainly based on diurnal variations in POA emission strength and SOA oxygen content (Zhang et 

al., 2011; El Haddad et al., 2013). Highly mobile measurements on platforms as aircrafts (e.g. DeCarlo et al., 2008) or 

vehicles (e.g. Mohr et al., 2011) are designed for regional studies, but are even more limited by cost, availability and time 

than stationary studies. This hinders the determination of the aerosol regional and seasonal characteristics and evaluation of 20 

long-term emission trends, limiting the information required for model validation and development of efficient mitigation 

strategies. Furthermore, the negligible transmission efficiency of the AMS inlet for coarse particles, prevents the 

characterization of their chemical nature and contributing sources. 

 

The recent development of the aerosol chemical speciation monitor (ACSM, Ng et al., 2011, Fröhlich et al., 2013) has 25 

enabled the establishment of dense networks of long-term AMS-type measurements and source apportionment of the organic 

aerosol (e.g. Crippa et al., 2014 using AMS for shorter campaigns within the EUCAARI project or EMEP/ACTRIS projects 

for longer multi-season campaigns using ACSM). However, the mass spectrometers used by the ACSMs have far lower 

mass resolution than the AMS, reducing their performance for OA characterization and source apportionment. An alternate 

monitoring strategy involves extending AMS spatial and temporal coverage by measuring the nebulized water extracts of 30 

filter samples (Daellenbach et al., 2016, restricted to WSOA in Mihara et al., 2011). This approach allows the retroactive 

investigation of specific events, e.g. haze events in China (Huang et al., 2014) andas well as AMS measurements of coarse 
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mode aerosol (Bozzetti et al., 2016a, b,2016) and long-term source apportionment studies (Bozzetti, 2017a, 2017b). Such an 

approach was also used in prep.).recent studies for identifying the different types of water-soluble chromophores (Chen et 

al., 2016). Additionally, such offline filters are routinely collected and are already available over multi-year periods at many 

air quality monitoring stations around the world for years/decades. Unlike single-season online AMS studies, the offline 

AMS analysis of filter samples may reveal seasonal and long-term variations in the emissions of POA and SOA precursors, 5 

required for model validations and the establishment of efficient mitigation strategies.  

 

Here, we present offline AMS measurements of PM10 (particulate matter with an aerodynamic diameter smaller than 10 µm) 

at 9 stations in central Europe with different exposure characteristics for the entire year of 2013 (819 samples). The sites 

cover rural and urban locations, including urban background and traffic and wood-burning influenced stations. Such long-10 

term multi-site analyses allow the quantitative description of the temporal and spatial variability of the main OA sources and 

may provide further insights into SOA precursors and formation pathways. This paper focuses on the identification of the 

main factors influencing the OA concentrations at the different sites and the assessment of the associated uncertainties 

without analysing the other aerosol components in detail.. In thea second partpaper, we will investigate the site-to-site 

differences and general trends in the factor time series.  and their relationship with external parameters. 15 

2 Methods 

2.1 Study area and aerosol sampling 

PM10 samples were collected at 9 sites in Switzerland and Liechtenstein (Tab. 1 and Fig. 1). 7 of the sites (Basel, Bern, 

Payerne, Zurich, Frauenfeld, St. Gallen, Vaduz) are located in northern Switzerland and Liechtenstein and 2 (Magadino and 

San Vittore) in southern Switzerland. Aerosol was sampled at the selected sites every 4th day for 24h throughout the year 20 

2013 onto quartz fibre filters (14.7 cm) using HiVolHigh-Volume samplers (500 l min-1). Filters were then wrapped in 

aluminium foil or lint-free paper and stored at -20°C. Field blanks were collected following the same approach.  

2.2 Offline AMS analysis 

The offline AMS analysis summarized below was carried out following the methodology developed by Daellenbach et al. 

(2016). For each analyzed filter sample, 4 16 mm diameter filter punches were sonicated together in 10 mL ultrapure water 25 

(18.2MΩcm, total organic carbon TOC/ < 5 ppb, 25 °C) for 20 min at 30 °C. Liquid extracts were then filtered (0.45 µm) 

and nebulized in synthetic air (80% Vol N2, 20% Vol O2, Carbagas, Gümligen CH-3073 Switzerland) using a customized 

Apex Q nebulizer (Elemental Scientific Inc., Omaha 24 NE 68131 USA) operating at 60°C. The resulting droplets were 

dried using a Nafion® dryer, and then injected and analyzed by the HR-ToF-AMS. Three types of measurements were 

performed: (i) filter samples, (ii) field blanks (collected and treated in the same way as the exposed filters), and (iii) 30 

measurement blanks (nebulized ultrapure water without filter extract). The measurement blank was determined before and 
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after every filter sample or field blank.. Each sample was recorded for 480 seconds (AMS V-mode, m/z 12-447), with a 

collection time for each spectrum of 30 seconds. Ultrapure water was measured for 720 seconds. Once per day, ultrapure 

milliQ water was nebulized with a particle filter interposed between the nebulizer and the AMS, providingfor the 

determination of the gas-phase contribution to the measured mass spectrum, which was then subtracted during analysis from 

both blanks and filter samples. The filters from Zurich were analysed twice with a time difference of approximately 5 5 

months to assess the measurement repeatability. High resolution mass spectral analysis was performed for each m/z (mass to 

charge) in the range of 12- 115. The measurement blank was subtracted from the sample spectra. In a previous study, it has 

been shown that the measurement blank is comparable to the organic blanks obtained from the nebulization of NH4NO3 

(Bozzetti et al. (2017a). The interference of NH4NO3 on the CO2
+ signal described by Pieber et al. (2016) was corrected as 

follows (Eq. 1): 10 

𝑪𝑪𝑪𝑪𝟐𝟐,𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝑪𝑪𝑶𝑶𝟐𝟐,𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 − �𝑪𝑪𝑶𝑶𝟐𝟐,𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑵𝑵𝑶𝑶𝟑𝟑,𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

�
𝑵𝑵𝑯𝑯𝟒𝟒𝑵𝑵𝑶𝑶𝟑𝟑,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

∗ 𝑵𝑵𝑶𝑶𝟑𝟑,𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎       (1) 

The correction factor �𝐶𝐶𝑂𝑂2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑂𝑂3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑁𝑁𝐻𝐻4𝑁𝑁𝑂𝑂3,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 was determined based on measurements of aqueous NH4NO3 conducted 

regularly during the entire measurement period and  varied between ~1% and ~5% (Pieber et al., 2016, from 

�𝐶𝐶𝑂𝑂2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑂𝑂3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑁𝑁𝐻𝐻4𝑁𝑁𝑂𝑂3,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 < 1% and up to approximately 5%).). 

2.3 Other chemical analysis 15 

Organic and elemental carbon (OC, EC) content were measured by a thermo-optical transmission method with a Sunset 

OC/EC analyzer (Birch and Cary, 1996), following the EUSAAR-2 thermal-optical transmission protocol (Cavalli et al., 

2010). Water-soluble carbon was measured by water-extraction followed by catalytic oxidation, non-dispersive infrared 

detection of CO2 using a total organic carbon analyser, only for the samples from Magadino and Zurich. Water-soluble ions 

(K+, Na+, Mg2+, Ca2+, NH4
+; and SO4

2-, NO3
-, Cl-) and methane sulfonic acid were analyzed using ion chromatography 20 

(Piazzalunga et al., 2013 and Jaffrezo et al., 1998). Levoglucosan measurements were performed by a high-performance 

anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) using an ion chromatograph (Dionex 

ICS1000) following Piazzalunga et al. (2010 and 2013a). Free cellulose was determined by an enzymatic conversion to D-

glucose (Kunit and Puxbaum, 1996) and subsequent determination of glucose with HPAEC (Iinuma et al., 2009). Online 

measurements of gas-phase compounds and meteorology were also performed at selected sites.  25 
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3 Source apportionment 

3.1 General principle 

Source apportionment of the organic aerosol is performed using positive matrix factorization (PMF, Paatero, 1994). PMF is a 

statistical un-mixing model explaining the variability of the organic mass spectral data (xi,j), as linear combinations of static 

factor profiles (fj,k) and their time-dependent contributions (gi,k), sesee Eq. 2. (where p is the number of factors). The index i 5 

represents a specific point in time, j an ion, and k a factor. The elements of the model residual matrix are termed ei,j. 

 

𝒙𝒙𝒊𝒊,𝒋𝒋 = 𝒈𝒈𝒊𝒊,𝒌𝒌  ×  𝒇𝒇𝒌𝒌,𝒋𝒋 + 𝒆𝒆𝒊𝒊,𝒋𝒋 ∑ 𝒈𝒈𝒊𝒊,𝒌𝒌 𝒇𝒇𝒌𝒌,𝒋𝒋
𝒑𝒑
𝒌𝒌=𝟏𝟏 + 𝒆𝒆𝒊𝒊,𝒋𝒋        

  (2) 

 10 

In the input data matrix, each filter sample was represented on average by 11 mass spectral repetitions to examine the 

influence of the AMS measurement repeatability on the PMF outputs. A correspondingA preceding measured blank from 

nebulized ultrapure water was subtracted from each mass spectrum. The input errors si,j required for the weighted least-

squares minimization by the model includeconsist of the blank variability (σi,j) and the uncertainty related to ion counting 

statistics and ion-to-ion signal variability at the detector (δi,j Allan et al., 2003; Ulbrich et al., 2009). We applied a minimum 15 

error according to Ulbrich et al. (2009), and a down-weighting factor of 3 to all fragments with an average signal to noise 

lower than 2 (Ulbrich et al., 2009). Input data and error matrices includedconsisted of 202 organic ions and were rescaled by. 

The organic fragments, x’i,j, obtained from offline AMS analyses do not directly represent ambient concentrations. 

Therefore, the signal of each fragment was converted to such an ambient concentration (xi,j in µg m-3), by multiplying the 

fraction of this signal with the estimated organic matter (OM) concentration,. The latter was calculated as the product of the 20 

OC concentrations measured by the sunsetSunset OC/EC analyzer and the OM/OC ratios from the offline AMS 

measurements.  (OM/OC)oAMS (Eq. 3). Note that such scaling does not change the outcome of Eq. 2 since both data and error 

matrices are scaled in the same manner and the fingerprints (fk,j) are not changed. 

 

𝑥𝑥𝑖𝑖,𝑗𝑗 =
𝑥𝑥′𝑖𝑖,𝑗𝑗
∑ 𝑥𝑥′𝑖𝑖,𝑗𝑗𝑖𝑖

∗ 𝑂𝑂𝑂𝑂 ∗ (𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂⁄ )𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜          (3) 25 

 

The Source Finder toolkit (SoFi v.4.9, Canonaco et al., 2013) for Igor Pro software package (Wavemetrics, Inc., Portland, 

OR, USA) was used to configure the PMF model and for post- analysis. The PMF algorithm was solved using the multilinear 

engine-2 (ME-2, Paatero, 1999), which). Normalization of the PMF solution during the iterative minimization process is 

disabled as implemented in SoFi (Canonaco et al., 2013). ME-2 enables an efficient exploration of the solution space by a 30 

priori constraining the fk,j elements (n and m being any two realizations of j) within a certain range defined by the scalar a (0 

≤ a ≤ 1),) from a starting value fk,j′, such that the modelled fk,j‘ in the solution satisfy Eq. 34:  
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(𝟏𝟏−𝒂𝒂)∗𝒇𝒇𝒌𝒌,𝒏𝒏
(𝟏𝟏+𝒂𝒂)∗𝒇𝒇𝒌𝒌,𝒎𝒎

≤ 𝒇𝒇𝒌𝒌,𝒏𝒏′
𝒇𝒇𝒌𝒌,𝒎𝒎′

≤ (𝟏𝟏−𝒂𝒂)∗𝒇𝒇𝒌𝒌,𝒏𝒏
(𝟏𝟏+𝒂𝒂)∗𝒇𝒇𝒌𝒌,𝒎𝒎

          (3) 

𝒇𝒇𝒌𝒌,𝒋𝒋 = 𝒇𝒇𝒌𝒌,𝒋𝒋
′ + 𝒂𝒂 ∗ 𝒇𝒇𝒌𝒌,𝒋𝒋

′           (4) 

fk,j′ is the starting value used as a priori knowledge from previous studies and fk,j is the resulting value in the solution. In all 

PMF runs (unless mentioned otherwise), we used the high resolution mass spectra for HOA and COA (cooking OA) from 5 

Crippa et al.,. (2013b) as constraints. Fitted ions, i.e. two rows of 𝑓𝑓𝑘𝑘,𝑗𝑗 were set equal to the mass spectra of HOA and COA. 

Ions that were present in our datasets missingbut not in the reference profiles for HOA and COA were inferred from 

published unit mass resolution (UMR) profiles (Ng et al., 2011 and Crippa et al., 2013c). The relative intensity allocated to a 

missing ion was For this purpose, the intensityfraction of signal at a specific m/z in the corresponding UMR peak minus 

reference spectrum (fUMR,m/z) was compared to the intensitiesfraction of signal of all HR ions presentat this m/z in the HR 10 

reference profile.spectrum (fHR,m/z). The difference fUMR,m/z – fHR,m/z was used as entries in 𝑓𝑓𝑘𝑘,𝑗𝑗
′  for such missing ions. For these 

ions, an a-value of unity was set. For the other factors, the factor elements were fitted by ME-2. Alternatively, such missing 

ions can be also treated as ordinary factor elements, to be fitted by ME-2 with all other ordinary factor elements. 

 

Source apportionment analysis was performed following the scheme shown in Fig. 2 and discussed below. Exploratory 15 

unconstrained and constrained PMF runs provided information on the number of interpretable factors (Sec. 3.2). Multiple 

constrained PMF runs were then performed, to assess the model sensitivity to the chosen a-value, the model starting point 

and input matrix (entire dataset: PMFblock, only Zurich: PMFzue,isol, 1 filter per site and month: PMF1filt/MPMF1filter/month, 

repeated measurements for Zurich: PMFzue,reps) and repeated measurements (Sec. 3.3). The obtained factors were then 

classified and corrected for their recovery (Sec 3.4 and 3.5). Finally, the different solutions were evaluated and only the 20 

solutions that satisfied a set of predefined criteria (Sec. 3.6 and supplement) were considered.  

3.2 Preliminary PMF 

We explored constrained PMF solutions, ranging from 1-10 factors. This investigation is performed on the entire dataset, 

including all stations and seasons (details in SI). The impact of the number of factors on the residuals is examined in the 

supplement. The introduction of 2 factors, in addition to HOA and COA, resulted in a significant reduction in the residuals 25 

and the separation of BBOA and OOA contribution. BBOA exhibited a prominent seasonal variation with a significant 

increase during winter and contributed most to the explained variation of the fragment C2H4O2
+, originating from the 

decomposition of anhydrous sugars, i.e., from cellulose pyrolysis. OOA was identified based on its mass spectral fingerprint, 

with high contribution from oxygenated ions at m/z 43 and 44. A further increase in the number of factors did not 

significantly contribute to the reduction in the residuals. However, the introduction of a 5th factor allowed the separation of 30 

the OOA into two different factors, with distinct seasonal variability and different relative contributions from oxygenated 
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fragments at m/z 43 and 44. The two OOA factors will be referred to as winter and summer OOA (WOOA and SOOA), 

according to their seasonality. The introduction of a 6th factor allowed resolving a factor with a distinct time series explaining 

the variability of sulfur-containing fragments (e.g. CH3SO2
+). This factor will be referred to as sulfur containing organic 

aerosol (SC-OA). We explored higher order solutions, but could not interpret the resulting factor separations. Therefore, we 

further consider a 6-factor solution below.  5 

 

3.3 Sensitivity analysis 

We assessed the model sensitivity to the chosen a-value for HOA and COA, the model starting point (independently for all 

four PMF inputs, as described below). The a-values were independently varied for HOA and COA (a-value from 0 to 1 with 

increments of 0.1, giving 121 a-value combinations). For every a-value combination, the model was initiated from five 10 

different pseudo-random starting points (seeds), yielding 605 total runs. As the selection of the a-value combination was 

randomized, the process was repeated four times in order to ensure that every a-value combination was represented at least 

once (2420 runs), which in turn provided an assessment of the seed effect on the results. 

 

While this approach has been proven very effective in selecting a range of environmentally relevant solutions (Elser et al., 15 

2016a, 2016b and Daellenbach et al., 2016), the resulting modelling errorsuncertainties may be underestimated. Paatero et al. 

(2014) comparecompared the effectiveness in estimating modelling errorsuncertainties of factor elements using two different 

approaches: the displacement (DISP) and bootstrap analysis (BS), respectively.). BS involves applying the model to input 

matrices consisting of a subset of the entire dataset. DISP involves running PMF several times using randomlysystematically 

perturbed factor profile elements of a reference solution, but allowing a defined difference in Q from the reference solution. 20 

Both approaches are computationally intensive, especially DISP. Because of such computational limitations the combination 

of BS and DISP was not feasible for the dataset presented here, especially in combination with a-value sensitivity tests. 

Therefore, we chose to perform 4 sensitivity tests performing PMF runs using 4 different input datasets, presented in the 

following. These sensitivity tests allow conclusions on the stability of PMF analysis when reducing the temporal or spatial 

resolution as well as the influence of the measurement repeatability. 25 

 

1. PMFblock: PMF was performed on data from all seasons and all sites combined (all measured in October 2014). The 

corresponding data and error matrices involved 819 samples from 9 sites with 202 ions and on average 11 spectra 

per sample. This represents the base case. 

2. PMFzue,isoisol: PMF was performed on data from Zurich alone (isolated from PMFblock input). The corresponding data 30 

and error matrices involved 91 samples with 202 ions and on average 11 spectra per sample. 
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3. PMF1filtPMF1filter/month: PMF was performed on data from all sites but only considering the 1st filter collected for 

every month (12 filters/site), as for these samples levoglucosan and cellulose data was available. The corresponding 

data and error matrices involved 108 samples with 202 ions and on average 11 spectra per sample. 

4. PMFzue,reps: PMF was performed on data from the repeated measurements of Zurich samples. The corresponding 

data and error matrices comprised 91 samples with 196 ions and on average 14 spectra per sample. 5 

 

For each of the four PMF datasets, 2420 PMF runs were performed for evaluating the sensitivity of the model to the chosen 

a-value and the seed. The quality of each of the 2420 PMF runs was individually assessed using criteria lined out in Sec. 3.6.  

3.4 Factor classification 

From the sensitivity analysis, a large number of solutions were generated. Systematic analysis of these solutions required 10 

automatic identification/classification of the retrieved factors within each solution. We applied a sequential classification 

algorithm as follows. The identity of Since HOA and COA were identified first as their mass spectra were initially 

constrained on preselected rows of F, they did not need to be identified. In a second step, the factor showing the highest 

explained variation for C2H4O2
+ among the 4 remaining factors was identified as BBOA. In a third step, the factor with the 

highest explained variation for CH3SO2
+ among the 3 remaining factors was identified as SC-OA. From the last two factors, 15 

the one with the highest explained variation of CO2
+ was identified as WOOA and the other as SOOA. 

3.5 Recovery and blank corrections 

After factor identification, factor time series are corrected using factor-specific recoveries (Eq. 45, resulting in OAi,k) 

determined in Daellenbach et al. (2016) for HOA, COA, BBOA, and OOA. 

𝑶𝑶𝑶𝑶𝒊𝒊,𝒌𝒌 =
𝑮𝑮𝒊𝒊,𝒌𝒌
𝑹𝑹𝒌𝒌

∑
𝑮𝑮𝒊𝒊,𝒌𝒌
𝑹𝑹𝒌𝒌𝒌𝒌

𝒈𝒈𝒊𝒊,𝒌𝒌
𝑹𝑹𝒌𝒌

∑
𝒈𝒈𝒊𝒊,𝒌𝒌
𝑹𝑹𝒌𝒌𝒌𝒌

∗ 𝑶𝑶𝑨𝑨𝒊𝒊           (45) 20 

where gi,k are the concentrations of factor k at the timepoint i, Rk the recoveries of the respective factor and OAi the OA 

concentration. The For a limited number of PMF runs (PMFblock) also the field blank analyses were included in the PMF 

input data. This provides the contributions of different factors to the field blank samples were estimated by inserting in the 

input matrix the field blank mass spectra. This was performed only for a limited number of runs, using the PMFblock dataset. 

The factor contributions to the field blanks which were used to correct the output factor time series, and the uncertainty. 25 

Uncertainties induced by the blank subtraction waswere propagated. 
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3.6 Solution selection 

Each of the 2420 PMF solutions wereper PMF dataset (PMFblock, PMFzue,isol, PMFzue,reps, PMF1filter/month) was evaluated based 

on their factor profiles, time series, and the OC mass closure. Solutions were selected if they satisfied the following set of 

criteria: 

1. fCO2
+ < 0.04 in HOA and COA factor profiles (HOA based on Aiken et al., 2009, Mohr et al., 2012, Crippa et al., 5 

2013b, 2014 and COA based on Crippa et al., 2013b, 2013c, Mohr et al., 2012); 

2. fC2H4O2
+ < 0.004 and 0.01 in HOA and COA, respectively (HOA based on Aiken et al., 2009, Mohr et al., 2012, 

Crippa et al., 2013b, 2014 and COA based on Crippa et al., 2013b, 2013c, Mohr et al., 2012); 

3. HOA correlates significantly with NOx being the sum of NO and NO2 (defined below); 

4. HOA correlates significantly better with NOx than COA; BBOA correlates significantly with levoglucosan (defined 10 

below); 

5. SC-OA correlates significantly with CH3SO2
+ (defined below); 

6. for samples from Zurich and Magadino, where WSOC data are available, modelled and measured OC mass are 

comparable for a different set of conditions (see below and in SI).  

 15 

The first two criteria (1-2) insureensure an appropriate separation of HOA and COA from OOA and BBOA, respectively. 

Criteria 3-6 relate to the evaluation of the correlation between factor and marker time series. This was achieved by 

computing the Fisher-transformed correlation coefficient z at different stations (Eq. 56):  

 

𝒛𝒛𝐳𝐳 = 𝟎𝟎. 𝟓𝟓 ∗ 𝐥𝐥𝐥𝐥 �𝟏𝟏+𝒓𝒓
𝟏𝟏−𝒓𝒓

� 𝐥𝐥𝐥𝐥 �𝟏𝟏+𝐫𝐫
𝟏𝟏−𝐫𝐫

� = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚(𝒓𝒓)          20 

 (5𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚(𝐫𝐫)           (6) 

 

where r is the correlation coefficient between factor and marker at a given station. The obtained z values at the different 

stations are subsequently averaged and transformed back to ravg before further analysis. A t-test is then used to verify the 

significance (α=0.5) of the average correlation coefficient between factor and marker time series, ravg (Eq. 67): 25 

 

𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂 = 𝒓𝒓𝒂𝒂𝒂𝒂𝒂𝒂

�𝟏𝟏−𝒓𝒓𝒂𝒂𝒂𝒂𝒂𝒂
𝟐𝟐

𝑵𝑵−𝟐𝟐

            (67) 

 

Here, ravg is the correlation coefficient averaged over the different stations, derived from the average z value, tavg is the 

corresponding t-value and N is the average number of samples at the different stations. Results with significance level 30 

α=0.05 are summarized in Fig. S8.  
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To evaluate whether HOA correlated significantly better with NOx than COA did, the average z values obtained between 

HOA and NOx and between COA and NOx (Eq. 6) were compared, using a standard error on the z distribution of 

1 √𝑁𝑁 − 3⁄ 1 √N − 3⁄  (Zar, 1999). 

 

 The last criterion relates to OC mass closure. A Monte Carlo approach was applied to evaluate whether a combination of 5 

water soluble factor time series and recovery parameters would achieve OC mass closure, as described in the following. For 

the samples from Zurich and Magadino, for which WSOC concentrations were available (in contrast to the other samples), 

offline AMS measurements were scaled to the water soluble organic matter (WSOM), calculated using the WSOC 

measurements and OM/OC ratios from the AMS HR analysis. The water-soluble contributions from an identified aerosol 

source in a sample i were rescaled to itstheir total organic matter concentrationconcentrations (OAi,k), where k represents a 10 

given factor, using combinations of factor recoveries as determined by Daellenbach et al. (2016).(2016, medians of the used 

combinations being: RHOA: 0.11, RCOA: 0.54, RBBOA: 0.65, and ROOA: 0.89 used for WOOA and SOOA). For SC-OA, whose 

recovery was not previously determined, a recovery value was stochastically generated between 0 and 1. The obtained OAi,k 

concentrations were then converted to organic carbon concentrations OCi,k, using factor specific OM/OC ratios determined 

from the factor profiles. The sum of OCi,k from all factors k (mod-OCi) was then evaluated against the measured OC (meas-15 

OCi). For this, the residual OC mass (res-OCi) for each sample iswas calculated (meas-OCi – mod-OCi), and the residual 

distributions were examined for different conditions that are thoroughly described in the Supplement.specified in the 

Supplement. In summary, a solution was only accepted if res-OCi were normally distributed around 0 considering all points 

and subsets of points: a) summer, b) winter c) Magadino, d) Zurich, e) low and high concentrations of the single factors (see 

Table S1). 20 

 

For each of the Monte Carlo simulations, the water soluble factor time series satisfying criteria 1-6 were used together with a 

combination of factor recoveries from Daellenbach et al. (2016) as input data. The water soluble OC used for scaling 𝐺𝐺𝑖𝑖,𝑘𝑘 

matrix and the meas-OCi used for residual calculation were varied within their uncertainties (5%) and biases (5%) assuming 

a normal distribution of the errors. Likewise, constant biases were also introduced into the initial recovery distributions from 25 

Daellenbach et al. (2016). Monte Carlo simulations were performed and simulations for which res-OCi distributions were 

significantly different from 0 (Q25<0<Q75, details in SI) were discarded until 500 acceptable simulations were found. 

FactorThereby, 331 PMF runs were selected for PMFblock (230 for PMFzue,isol, 99 for PMFzue,reps, and 269 for PMF1filter/month). 

Median factor time series and recovery parameters from all retained simulations were then averageddetermined and the 

standard deviation of these averages representinterquartile range (IQR) represents our best estimate of the uncertainties for 30 

the single PMF datasets. The Monte Carlo process was repeated for the four different PMF datasets described above and the 

resulting averagemedian time series of their estimated uncertainties were compared. The resulting uncertainty estimates and 

the method are described in Sec. 4.2.1. and in the SI. 

Formatted: English (U.S.)

Formatted: Font: Not Italic, English
(U.S.)

Formatted: English (U.S.)

Formatted: English (U.S.)

Formatted: Font: Not Italic, English
(U.S.)

Formatted: English (U.S.)

Formatted: English (U.S.)



11 
 

4 Results and discussions 

In this section, the final source apportionment results are presented and validated. The source signatures are presented in Fig. 

3 for PMFblock color-coded with the ion family. Fig. 4 shows the time series for Zurich obtained from all PMF approaches 

and Tab. 2 summarizes the correlation coefficients between factor and marker time series for Zurich (all PMF runs) and the 

other sites in the study area (PMFblock) while the relation between factor and marker time series is displayed in Fig. 4 and 5. 5 

Presented are median (and quartile) results for all PMF runs accepted following the criteria described above. 

4.1 Interpretation of PMF factors 

HOA:  HOA profile elements were constrained using the reference profile from Crippa et al. (2013b). The final factor 

profile (Fig. 3) maintains the same features, characterized by high contributions from hydrocarbon fragments. The fraction of 

oxygenated organic fragments that were missing in the initial reference profile, that were added based on UMR spectra, 10 

show an increased contribution to the ions above m/z 100 (see Sec. 3.1). While this indicates a possible overestimation of the 

contribution of these fragments, using this methodology, this increase does not substantially affect the results: e.g. HOA 

OM/OC ratio remains low (1.32, IQR 1.30-1.33). The HOA time series follows an expected pattern that matches the NOX 

yearly cycle (Fig. 4.a) except for San Vittore which is very likely due to the extremely high contribution of biomass burning 

at this site during winter, which may result in additional NOX inputs and/or may affect the separation of HOA by PMF. The 15 

HOA/NOx (Fig. 5.a) ratio at the different sites (0.014015 ± 0.010011 µg m-3 ppb-1) lies within the range of literature values 

(0.001 to 0.028 (µg/m3)/ppb, Lanz et al., 2007 and Kirchstetter et al., 1999). A similar average ratio was obtained for Zurich 

from the different sensitivity tests, but with high variability (0.012013±0.009 µg m-3 ppb-1) similar to that obtained between 

the different sites. This implies that the observed site-to-site differences are not statistically significant given our uncertainty 

in extracting HOA contributions.  20 

 

COA:  COA profile elements were constrained using the COA profile from Crippa et al. (2013b) and the obtained factor 

profile maintains the same features (OM/OC of 1.32, IQR 1.30-1.33, Fig. 3). For COA, no molecular marker is available for 

validation purposes. Daellenbach et al. (2016) demonstrated that COA concentrations can be estimated with offline AMS (in 

Zurich at the same site) by constraining its signatures, but only with a high uncertainty. This was performed by comparing 25 

offline AMS results to those from a collocated ACSM, which owing to its higher time resolution enabled the identification of 

cooking emissions based on their diurnal cycles (Canonaco et al., 2013). Here, while no ACSM data were available, we 

followed the same methodology used in Daellenbach et al. (2016) to estimate the contribution of COA. The average COA 

contributions estimated here and their yearly variability are similar to those from previous studies at the same sites, but as 

expected have high uncertainties (Fig. 4.b). 30 
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BBOA:  BBOA is identified based on its spectral fingerprint (OM/OC 1.74, IQR 1.74-1.75, Fig. 3), which, similar to 

previously extracted BBOA factors at other locations (Daellenbach et al., 2016, Lanz et al., 2007; Crippa et al., 2014), 

exhibits high contributions from oxygenated fragments (CHO+, C2H4O2
+, C3H5O2

+) from anhydrous sugars fragmentation 

(see comparison to nebulized levoglucosan in Supplement Fig. SIIS6). Similar to levoglucosan, the BBOA time series shows 

an expected seasonal variation with high concentrations in winter, supporting the identification of this factor (Fig. 4.c). 5 

Except for Bern and Magadino (6.87.5 and 10.911.2), a similar ratio of BBOA to levoglucosan is found at all other sites 

(3.59 to 5.7), despite apparent site-to-site differences in the model residuals during winter due to significantly higher 

contributions of BBOA at the southern stations (Fig. 5.b). The obtained ratios are within the range of values reported in 

literature (between 4 and 18 assuming OM/OC ratios between 1.6 and 1.8 for the non-AMS analyses, Zotter et al., 2014, 

Herich et al., 2014, Minguillon et al., 2011, Crippa et al., 2013a, and Favez et al., 2010). We note that a similar ratio is also 10 

found for the different PMF datasets performed for the case of Zurich (BBOA/levoglucosan between 4.8 and 11.03.9 

and12.1). Taken together, the high (for most sites) correlation (R2=0.78 for all sites, single sites in Tab. 2) between 

levoglucosan and BBOA and their consistent ratios at different sites and between the different PMF datasets indicates that 

BBOA is well resolved by PMF at all sites, despite potential site-to-site differences in BBOA composition. 

 15 

SC-OA:  Sulfur-containing fragments (e.g., CH3SO2
+) are predominantly apportioned to this factor, which also has a high 

OM/OC ratio (1.82, IQR 1.80-1.9293, Fig. 3). As mentioned in Sec. 3.6, the recovery of SC-OA was unknown and had to be 

determined by mass closure, while the recoveries of the other factors were determined by comparison to their online 

counterparts (albeit for a different dataset, Daellenbach et al., 2016). In the lack of specific constraints (like an online 

counterpart), the recovery of SC-OA is highly uncertain and thus also the factor time series. A similar factor profile had been 20 

extracted from previous online AMS datasets, and was related to the fragmentation of methane sulfonic acid (MSA) present 

in PM1 particles, a secondary product of marine origin (Crippa et al 2013b, Zorn et al., 2008). However, the SC-OA factor 

extracted here did not seem to be related to marine emissions because neither its variability nor its levels matched those of 

MSA (Fig. 4.d). First we compared the MSA levels measured in Zurich using ion chromatography to those estimated based 

on the concentration of sulfur containing fragments from offline AMS measurements in SC-OA (Eq. 78), based on Crippa et 25 

al. (2013b): 

 

𝑴𝑴𝑴𝑴𝑨𝑨𝒊𝒊,𝒆𝒆𝒆𝒆𝒆𝒆 = 𝑺𝑺𝑺𝑺 − 𝑶𝑶𝑨𝑨𝒊𝒊 ∗
𝒇𝒇𝑺𝑺𝑺𝑺−𝑶𝑶𝑶𝑶(𝑪𝑪𝑯𝑯𝟐𝟐𝑺𝑺𝑶𝑶𝟐𝟐

+)+𝒇𝒇𝑺𝑺𝑺𝑺−𝑶𝑶𝑶𝑶(𝑪𝑪𝑯𝑯𝟑𝟑𝑺𝑺𝑶𝑶𝟐𝟐
+)+𝒇𝒇𝑺𝑺𝑺𝑺−𝑶𝑶𝑶𝑶(𝑪𝑪𝑯𝑯𝟒𝟒𝑺𝑺𝑶𝑶𝟑𝟑

+)
𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏

      (78) 

 

Here, MSAi,est is the estimated MSA concentration, SC-OAi the factor concentration of the sulfur-containing factor, fSC-30 

OA(CH2SO2
+) and the following summands the fractional contributions of the respective organic fragment to SC-OA, while 

0.147 is a scaling factor from Crippa et al. (2013b). The estimated MSA levels are 56 times higher than the measured MSA, 

indicating the presence of another source of sulfur-containing species. Second, unlike marine OA factors from previous 
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online datasets (lower size cut-off, typically PM1), the SC-OA time series does not correlate with MSA (R2= 0.0302). While 

MSA concentrations show a clear enhancement during summer, the SC-OA time series exhibit a very weak seasonal 

variability with slightly higher concentrations in winter. SC-OA instead exhibits instead low background levels episodically 

intercepted by remarkable ten-fold enhancements, especially at urban sites affected by traffic emissions (e.g. the SC-OA 

contribution is significantly higher at sites with higher yearly NOX average levels). The hypothesis of an influence of traffic 5 

activity on SC-OA is provided by the correlation of the yearly average concentrations of SC-OAwith NOx (Rs,SC-OA,NOx 

=0.865, n=9, p=<0.01)06) which is, however, comparable to the correlation of HOA and also of different POA factors 

correlate with NOx (Rs,COA (e.g., Rs,HOA,NOx=0.468, n=9, p=<0.27), COA (05, Rs,COA,NOx =0.4368, n=9, p=<0.23).05).. 

Besides that, the SC-OA time series also correlates with that of NOx (overall R2=0.432, for sites in Tab. 2). While HOA and 

BBOA also correlate with NOx, both of the secondary factors, WOOA and SOOA, do not, supporting the hypothesis that 10 

SC-OA consists of locally emitted anthropogenic (primary) OA. The site-to-site differences in SC-OA concentrations and 

temporal behaviour suggest that this factor, which to the best of our knowledge is reported here for the first time, is 

influenced by primary sources.  

 

 15 

Oxygenated OA factors: Unlike oxygenated OA factors from limited-duration intensive online campaigns characterized by 

a high temporal resolution in which factor variability is thought to be primarily driven by volatility and/or local oxidation 

reactions, OOA factors are here resolved based on differences in their seasonal behavior: SOOA (in summer) and WOOA (in 

winter). The SOOA (summer) and WOOA (winter) mass spectral signature (Fig. 3) show similarities with OOA from earlier 

measurements (Ng et al., 2011, Canonaco et al., 2013, 2015), with high contributions of C2H3O+, CO2
+ and high OM/OC 20 

ratios though SOOA (OM/OC = 1.89, IQR 1.88-1.89) is less oxidized than WOOA (OM/OC = 2.12, IQR 2.11-2.1514). The 

mass spectral fingerprints (Fig. 3), the temporal behaviour (Fig. 4e and f) and the relation to markers (Fig. 5c and d) of the 

two factors are in agreement with those from earlier work at other locations, including Zurich (Daellenbach et al., 2016), 

Payerne (Bozzetti et al., 2016a2016), and Lithuania (Bozzetti et al., 2016b2017a). This OOA separation appears to be typical 

for PMF analysis of long-term, low time-resolution OA mass spectra of filter samples. 25 

 

SOOA correlates significantly among the different sites (also south and north of the alpine crest) and with local temperature 

(Fig. 5c). The SOOA exponential increase with average daily temperatures from 5-30 °C is consistent with the exponential 

increase in terpenes emissions, which are dominant biogenic SOA precursors (Guenther et al., 2006). This is also consistent 

with the mass spectral fingerprint of this factor, characterized by an fC2H3O+ of 0.10 and an fCO2
+ of 0.13, which are similar 30 

to values reported for chamber SOA from terpenes or at an urban location (Zurich) during summer (Canonaco et al., 2015). 

A similar temperature dependence of biogenic SOA concentrations has been observed for a terpene-dominated Canadian 

forest (Leaitch et al., 2011) and for the case of Switzerland, using a similar source apportionment model (Daellenbach et al., 

2016; Bozzetti et al., 2016a2016). Taken together, these observations suggest that SOOA principally derives from the 
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oxidation of biogenic precursors during summer. Site-to-site SOOA concentrations were not statistically different within our 

model errors, assessed from the different sensitivity tests for the case of Zurich. Therefore, even though the behavior of 

SOOA at the different sites studied here might be controlled by various parameters, including tree cover, available OA mass, 

air mass photochemical age and oxidation conditions (e.g. NOX concentrations), temperature seems to be the main driver of 

the SOOA concentrations. Indeed, the aforementioned parameters may contribute, together with model and measurement 5 

uncertainties, to the observed scatter in the data. Biogenic VOC emissions might even in winter be non-negligible (Oderbolz 

et al., 2013; Schurgers et al., 2009; Holzke et al., 2006) and, therefore, significant winter-time SOOA concentrations are not 

in disagreement with the hypothesized biogenic origin. The lower SOOA concentrations in the temperature range between 7 

and 12 °C might be explained by often occurring precipitation in this temperature range. We note that relative uncertainties 

related with this factorSOOA increase with decreasing concentrations (Fig. 7), due to the considerable contribution from 10 

other more significant wintertime7). A small error in modelling sources (e.g.with high contributions (BBOA, WOOA and 

BBOA).) in winter can result in a large error of SOOA with its small contribution during winter. Furthermore, some winter-

time SOA or other sources like primary biological OA (PBOA, see Sec. 4.2.2) might also mix into SOOA. 

 

Compared to SOOA, the WOOA profile can be distinguished by a higher contribution from CO2
+ and a lower C2H3O+ (Fig. 15 

3), similar to OOA factors previously extracted in this region during winter based on ACSM measurements. This fingerprint 

is characteristic of highly oxidized SOA from non-biogenic precursors with low H/C ratios (e.g. aromatic compounds from 

wood combustion emissions, Bruns et al., 2016). WOOA is well correlated with NH4
+ (Fig. 5.d, overall R2 0.65 for all sites, 

overall R2 0.6781 for all PMF runs for Zurich in Tab. 2) which is in agreement with earlier studies (e.g., Zurich in Lanz et 

al., 2008). This is probably explained by its correlation with other inorganic secondary ions NO3
- and SO4

2- (driven like 20 

WOOA by meteorological factors including boundary layer height and temperature), which govern the NH4
+ concentration 

in the aerosol. Here, we have used ammonium as a proxy for aged aerosols affected by anthropogenic emissions, as WOOA 

correlates better with ammonium than with nitrate sulfate. We note that in winter, when WOOA is highest, 56% of 

ammonium can be attributed to nitrate, whereas in summer ammonium sulfate dominates (97% of ammonium can be 

attributed to sulfate). Therefore, WOOA correlates more with nitrate (R2 =0.64) than sulfate (R2 =0.48). WOOA exhibits a 25 

regional behaviour and its concentrations are correlated at all sites in the Swiss plateau. The WOOA mass spectral 

fingerprint, its seasonal variability and its high correlation with long-range transported anthropogenic inorganic secondary 

ions suggest that this factor is characteristic of a highly aged OOA influenced by wintertime anthropogenic emissions (e.g., 

biomass burning).  
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4.2 Uncertainty analysis  

4.2.1 Model uncertainties 

PMF uncertainties depend on the factor contribution. According to Ulbrich et al. (2009), reliable interpretation of factors 

with a low relative contribution is challenging. However, also the specificity of the time series and factor profile (caused by 

rotational ambiguity) and in this sense also solution acceptance criteria influence the uncertainty. In our analysis, we correct 5 

our results from WSOM to OM using Rk and, thereby, introduce additional uncertainties (caused by the uncertainty of Rk or 

an unknown Rk). The more uncertain Rk is, the higher is the additional uncertainty in the extrapolation (Eq. 45). As 

mentioned in Sec. 3.5, Rk constraints (recovery combinations for different factors) are available for RHOA, RCOA, RBBOA, and 

ROOA but not for RSC-OA and not for individual OOA factors (Daellenbach et al., 2016). With the available constraints of mass 

closure (for Magadino and Zurich), RSC-OA can only be determined with a high uncertainty (Fig. 6).  10 

 

The variability of the factor time series for the single PMF sensitivity tests (PMFblock, PMFzue,iso, PMF1filtisol, PMF1filter/month, 

PMFzue,repseps) is used as an uncertainty estimate (shaded area in Fig. 54). This estimate (σa) depends on the measurement 

repeatability (10 single mass spectra included for each sample) and on the selected PMF solution/ Rk combinations and, 

therefore, also on the a-value. However, the variability depending (1) on the choice of input points (time and site; PMFblock, 15 

PMFzue,iso, PMF1filtisol, PMF1filter/month) and (2) on the instrumental reproducibility (PMFzue,reps) of the offline AMS 

measurements is not accounted for. The contribution of (1) and (2) to the uncertainty is assessed through the sensitivity tests 

by examining the variability of the median factor time-series (σb). σb is the variability of the median factor concentrations 

from the PMF sensitivity tests using PMFblock, PMFzue,isol, PMF1filter/month, PMFzue,reps for the 12 samples common to all 4 PMF 

datasets. For the 12 filters common in all PMF datasets (PMFblock, PMFzue,iso, PMF1filtisol, PMF1filter/month, PMFzue,reps), we 20 

calculate a best estimate of the overall uncertainty (errtot), by propagating both error terms: σa and σb. As σb is not available 

for all datapoints, we parametrized σb as a function of the factor concentration (details in SI) and subsequently used this 

parameterized σb, σb´, to calculate an approximated overall error, err’tot. err’tot is displayed in Fig. 7.b in comparison with 

σa(Fig 7.a). For all factors, errtot’ are in general high (~a factor of 2),, especially for low factor concentrations. (~a factor of 

2). It is worthwhile to note that for major factors exhibiting a similar seasonality, i.e. WOOA and BBOA, a great part of the 25 

uncertainty arises from σb – the rotational ambiguity.. Thus the variability between the PMF solutions using PMFblock, 

PMFzue,isol, PMF1filter/month, PMFzue,reps (σb ) and, therefore, the sensitivity of the factor concentrations on the chosen PMF 

dataset significantly contribute to the uncertainty. By contrast, moderately soluble fractions, COA and HOA, constrained in 

the PMF the major part of errtot’ is related to σa.  

4.2.2 Influence of unresolved primary biological OA. 30 

Unresolved sources in PMF are an inherent uncertainty of source apportionment analyses. As Bozzetti et al. (2016a2016) 

show, PBOA can present considerable contributions to OA in PM10 (constituting a large part of coarse OA). In the present Formatted: English (U.S.)
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analysis, this primary sourcePBOA could not be separated statistically using by PMF (also not byneither unconstrained nor 

using the mass spectral signature from Bozzetti et al., 2016) without mixing with other factors possibly because of). This 

inability might be caused by the low water-solubility in combination withand the absence of PM2.5 filters in the dataset. 

Since these coarse particles are only abundant in PM10 and not in PM2.5/PM1, the presence of both PM10 and PM2.5 

samples, exhibiting a large gradient in PBOA, might allow an unambiguous separation of PBOA. The aim of this section is 5 

to estimate the influence of PBOA on the source apportionment results. A quantification of this fraction is, however, beyond 

the scope of this paper. In the following, we estimate the influence of PBOA in three alternative ways:  

 

• Based on factor profiles: Bozzetti et al. (2016a2016) identified the AMS fragment C2H5O2
+ as a possible tracer ion 

for PBOA. Based on the seasonality of SOOA (high in summer and low in winter), one can assume that SOOA in 10 

this study is a linear combination of PBOA and SOOA identified in PM2.5 and PM1. Based on the relative 

contribution of the ion C2H5O2
+ to the factor profiles of SOOA from this analysis and literature profiles of PBOA 

and SOOA from Bozzetti et al. (2016a2016, study site: Payerne), we estimate that 17% of the water-soluble SOOA 

is in fact PBOA (between 52 and 2223% for the different sensitivity tests). Using this approach, we estimate that 

PBOA contributes 0.30 µg/m3 during the warm months on average for the different sites 0.29 µg/m3 with a (site-to-15 

site variability computed as standard deviation of the average concentration of all sites of 0.03 µg/m3 (). During the 

same period, SOOA concentrations are 1.7178 µg/m3 with a (site-to-site variability of 0.1618 µg/m3,) and OA 

3.41concentrations 4.32 µg/m3 with a (site-to-site variability of 0.3744 µg/m3). This approach is very uncertain, 

mainly due to the uncertainty in PBOA and SOOA profiles, the assumption of a constant PBOA contribution to 

SOOA, and also the uncertainty of RPBOA.  20 

 

• Based on coarse OC: Bozzetti et al. (2016a2016) showed that coarse OC (OCcoarse = OCPM10-OCPM2.5) is in summer 

is dominated by PBOA for samples collected at a rural site in Switzerland (Payerne). For a subset of the samples 

used in the present work, OC in the PM2.5 fraction was also analysed (Basel, Bern, Magadino, Payerne, Zurich, 

accounting for 149 samples in total). For these samples, the OCcoarse contribution to OC in the PM10 fraction is in 25 

summer 16% higher than in winter (site-to-site variability of 4%). This part of OC might be related to resuspension 

caused by traffic or emissions of primary biological particles. However, the indicator The ion C2H5O2
+ (indicator 

for PBOA) shows higher concentrations with increasing OCcoarse concentrations. Therefore, this increment can 

tentatively be ascribed to PBOA, which leads to a contribution of 0.55 µg/m3 to OC in summer (site-to-site 

variability 0.16 µg/m3). This results in an average summer PBOA concentration of 1.21µg/m3 with a site-to-site 30 

variability of 0.39 µg/m3 when assuming an OM/OC of 2.2 (or 0.66±0.21 µg/m3, for OM/OC 1.2, OM/OC range 

according to Bozzetti et al., 2016). For Magadino (2014, Vlachou et al., in prep.), OCcoarse represents 8% of OC in 

PM10 in winter while this ratio is 25% in summer. It can be assumed that the difference of 17% in summer can be 

attributed to PBOA. Extrapolating this estimate to the overall data set from 2013 considered in this study and 
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assuming an OM/OC of 2.2, PBOA contributes in summer on average 0.97 µg/m3 to OA in PM10, with a site-to-

site variability of 0.13 µg/m3 (or 0.63±0.07µg/m3 OA with for OM/OC of 1.2). 

 

• Based on cellulose: It has previously been shown that free cellulose contributes strongly to PBOA (25% of PBOA 

mass, for measurements made in Payerne during summer 2012/winter 2013; Bozzetti et al., 2016a2016). Therefore, 5 

we can attempt to use cellulose analyses on a subset of samples (the same one as for levoglucosan but Bern, see 

Sec. 2.3) to estimate PBOA concentrations (Fig. 8). As seen for the case of OCcoarse, cellulose concentrations also 

increase with higher C2H5O2
+ concentrations. For the sites with cellulose measurements available (all sites in the 

study but Bern), cellulose average concentrations of 0.17 µg/m3 (site-to-site variability 0.08 µg/m3, in the warm 

season 0.18±0.07 µg/m3) are observed which corresponds to 0.69 µg/m3 PBOA with a site-to-site variability of 0.34 10 

µg/m3 (, in the warm season 0.77±0.29 µg/m3), using the ratio cellulose / PBOA from Bozzetti et al. (2016a2016). 

In this last study conducted during summer (15 days in June/July 2012), PBOA concentrations of 3 µg/m3 on 

average (with cellulose concentrations of 0.8 µg/m3) were estimated, which is clearly above the observation made 

here. However, Bozzetti et al. (2016a2016) assessed a shorter time period with diurnal resolution, instead of 1 

sample per month as in the present work. Cellulose concentrations from other European sites during other years are 15 

consistent with the results in this study (Sanchez-Ochoa et al., 2007; Yttri et al., 2011). In general, the background 

cellulose concentrations at the southern alpine sites are higher and also the temporal behaviour deviates from the 

one observed at the northern sites: the maximal concentrations are not reached in July/August but rather in May or 

October/November. The different seasonality might be caused by different agricultural procedures. The higher 

background concentrations of cellulose for the southern Alpine sites might be caused by interferences from wood 20 

burning, which in the absence of glucose analyses cannot be excluded.  

 

All these PBOA estimates (between 0.3 to 1.0 µg/m3 during the warm season) are consistently lower than reported in 

Bozzetti et al. (2016a2016), with a factor of 3 to 10 times lower depending on the site. One should keep in mind that these 

estimates are based on limited data sets in both studies (30 samples in Bozzetti et al. (2016) while 12 samples from the same 25 

site in this study).  

4.3 Factor relative contribution at different sites 

In general, the seasonality of the factor time series is consistent for all the 9 sites in the entire study area (Fig. 9). In summer, 

SOOA is the main contributor to OA, while in winter POA (HOA+COA+BBOA) becomes more important thoughalthough 

WOOA still contributes significantly. In comparison to the sites in northern Switzerland, OA in the southern alpine valleys is 30 

dominated by BBOA in winter, while in the north WOOA also plays a role. The different factors contribute 0.3947±0.1112 

(HOA, average and site-to-site variability), 0.2431±0.1213 (COA), 1.2537±1.7077 (BBOA), 0.5367±0.2731 (SC-OA), 

0.931.11±0.23 (WOOA), 1.1231±0.1213 (SOOA) µg/m3 for all sites during the entire year (Tab.Table 3). In northern 
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Switzerland, POA (HOA+COA+BBOA) contributes less to OA (POA/OA=0.3) than in the southern alpine valleys where 

POA/OA is equal to 0.6. Among POA, BBOA is the most important, with 8887% of POA in the south and 4342% in the 

north. The higher relative contribution of BBOA to POA in the southern alpine valleys than at the northern sites supports the 

conclusion that the high BBOA concentrations (e.g. 2.2645 µg/m3 Magadino compared to 0.5362 µg/m3 Vaduz) are not only 

a consequence of the meteorological situation in the valleys (strong thermal inversion close to the valley ground) but mainly 5 

reflect the emission strength. SC-OA, which is possibly linked to a local source of rather primary origin, shows clear site-to-

site differences, with e.g. high concentrations at a traffic site in Bern (1.0825 µg/m3) and low concentrations at a rural site in 

Payerne (0.1626 µg/m3). SOOA, believed to have strong influences from biogenic SOA, shows consistently low 

concentrations at all sites for low temperatures (0.6576±0.6067 µg/m3 at 5-15°C) and clearly increased concentrations under 

warmer conditions (4.6085±1.3551 µg/m3 at 25-35°C).  10 

5 Conclusion 

Sources contributing to OA are quantitatively separated and their uncertainty estimated statistically at 9 sites in central 

Europe throughout the entire year 2013 (819 samples). Thereby, 3 primary (HOA, COA, BBOA) OA sources are separated 

from 2 secondary (WOOA, SOOA) categories and a yet unknown source explaining sulfur-containing fragments (SC-OA). 

BBOA exhibits clearly higher concentrations at the alpine valley sites in southern Switzerland than at the sites in northern 15 

Switzerland. SOOA, characterized by high concentrations in summer, shows a more than linear increase with rising 

temperatures as is observed from biogenic VOC emissions and biogenic SOA concentrations. WOOA, dominant SOA 

category during winter, closely correlates with NH4
+. The influence of PBOA, not resolved by PMF, is estimated using 

among others cellulose analyses and could be an important contributor. Cellulose’s temporal behaviour suggests maximal 

PBOA contributions in northern Switzerland during summer while at the southern alpine sites maximal concentrations are 20 

reached in spring/autumn. 
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Table 1:Study sites with geographical location and classification 

Site (station code) Classification General location altitudeAltit
ude 

Basel, St. Johann (bas) Urban/background North of Alps/Swiss plateau 308 m. 
Bern, Bollwerk (ber) Urban/traffic North of Alps/Swiss plateau 506 m. 
Frauenfeld, Bahnhofstr. (fra) Suburban/background North of Alps/Swiss plateau 403 m. 
Payerne (pay) Rural/background North of Alps/Swiss plateau 539 m. 
St. Gallen,(, Rorschacherstr. (gal) Urban/traffic North of Alps/Swiss plateau 457 m. 
Zurich, Kaserne (zue) Urban/background North of Alps/Swiss plateau 457 m. 
Vaduz, Austrasse (vad) Urban/traffic North of Alps/alpine valley 706 m. 
Magadino, Cadenazzo (mag) Rural/background South of Alps 254 m. 
San Vittore, Zentrum (vi) Rural/traffic South of Alps/alpine valley 330 m. 
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Figure 1: Map of study area with locations of sites indicating their characteristics. The topography is displayed as meters above 
sea level. 
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Figure 2: Step-by-step outline of adopted source apportionment approach (factor recoveries Rk). aHOA and aCOA represent the a-
value applied for HOA and COA, respectively. 

 5 
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Figure 3: PMF factor profiles of HOA, COA, BBOA, SOOA, WOOA, SC-OA, color-coded with ion family of PMFblock (average). 
fm/z is the relative intensity at a specific mass-to-charge ratio (m/z). 
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Figure 4: HOA, COA, BBOA, SC-OAWOOA, SOOA, and WOOASC-OA and respective marker concentrations as a function of 
time for Zurich in 2013. Depicted are the median factor time series results for the different PMF datasets (median) including the 
uncertainties for PMFblock (first and third quartile) (green: PMFblock, black: PMFzue,isol, red: PMFzue,reps, pink bullets: 
PMF1filtPMF1filter/month).  5 
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Figure 5: Scatter-plots for the different extreme sensitivity tests for Zurich and for all sites for PMFblock median concentrations): 
a) HOA vs NOx, b) BBOA vs levoglucosan, c) SOOA vs temperature, d) WOOA vs NH4.+.  5 
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Table 2: Comparison of factor time series to reference data for different PMF input datasets runs (by Pearson and Spearman 
correlation coefficient, Rp and Rs). Displayed are the results for PMFblock unless stated otherwise.  

R2  

(number of points) 
HOA  
vs NOx, Rp

2 
BBOA  
vs levo, Rp

2 
WOOA  
vs NH4

+, Rp
2 

SOOA  
vs T, Rs 

SC-OA  
vs NOx, Rp

2 
Basel 0.3931 (91) 0.91 (11) 0.6566 (91) 0.6570 

(91) 
0.2517 (91) 

Bern 0.231221 (90) 0.48 (12) 0.53 (90) 0.5863 
(90) 

0.2017 (90) 

Frauenfeld 0.4140 (89) 0.7473 (12) 0.7677 (90) 0.6063 
(90) 

0.3728 (89) 

St. Gallen 0.2223 (91) 0.4039 (12) 0.78 (91) 0.6872 
(91) 

0.5950 (91) 

Magadino 0.2118 (91) 0.5455 (12) 0.5254 (91) 0.6672 
(91) 

0.7063 (91) 

Payerne 0.4948 (91) 0.6765 (12) 0.4644 (91) 0.6368 
(91) 

0.2717 (91) 

Vaduz 0.3938 (91) 0.90 (12) 0.77 (91) 0.6568 
(91) 

0.5446 (91) 

San Vittore 0.0102 (90) 0.99 (12) 0.36 (90) 0.7276 
(68) 

0.0001 (90) 

Zurich      
 PMFblock 0.3835 (91) 0.4243 (12) 0.79 (90) 0.6165 

(91) 
0.5040 (91) 

 PMFzue,isoisol 0.2829 (91) 0.59 (12) 0.8382 (90) 0.6366 
(91) 

0.3427 (91) 

 PMFzue,repreps  
(only 12 points) 

0.3332 (12) 0.23 (12) 0.84 (12) 0.85 (12) 0.0201 (12) 

 PMF1filt/mPMF1fi

lter/month 
0.30 (91) 0.44 (12) 0.7877 (90) 0.59 (91) 0.6353 (91) 

1 1 outlier removed. 
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Figure 6: Distributions of Rk for HOA, COA, BBOA, OOA (WOOA plus SOOA) and SC-OA (500 pairs). A priori information for 
HOA, COA, BBOA, and OOA on Rk are used from Daellenbach et al., 2016, with propagated errors and biases, while RSC-OA is 
determined in this study. Distributions of all factors have a resolution of dRk=0.01 except for dRSC-OA=0.05. 5 

 



39 
 

  Formatted: Justified



40 
 

 



41 
 

 

Figure 7: Relative σa (a) and err‘tot (b) for factor concentrations > 0.1 µg/m3 as a function of factor concentration. err‘tot includes 
the uncertainties from a-value/seed variability and Rk, and the different PMF datasets. 
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Figure 8: Cellulose concentrations and PBOA concentrations (estimated based on cellulose concentrations) as a function of the 
season and site. For comparison literature data from other years is added European sites: Payerne (Bozzetti et al., 2016, error bars 
representingthe standard deviation of the measurements in June and July), Puy de Dôme, Schauinsland, Sonnblick, K-Puszta 
(Sanchez-Ochoa et al., 2007), Birkenes, Hyytiälä, Lille Valby, and Vavihill (Yttri et al., 2011).  5 
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Figure 9: Map of Switzerland with yearly cycles. Negative concentrations were set to 0 prior to normalization for display. The OA 
mass explained by the source apportionment analysis is termed OAexpl. 
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Table 3: Yearly average contribution and uncertainty of resolved factors for block PMFPMFblock run for the different sites and the 
average for all sites. The uncertainty is calculated based on the variability of the yearly averages from PMFblock and the variability 
between the 4 sensitivity tests. 

Factor 
contribution and 
uncertainty 
µg/m3 (%) 

HOA COA BBOA SC-OA WOOA SOOA 

Basel 0.5565±0.
21 (15±623 
(14) 

0.2735±0.20 
(7±519 (8) 

0.6172±0.201
5 (16±6) 

0.3651±0.26 
(10±724 
(11) 

1.08±0.89±0
.37 (24±10 
(24) 

1.0321±0.2
1 (28±630 
(27) 

Bern 0.5261±0.
2223 
(11±5) 

0.5059±0.32
29 (11±7) 

0.5564±0.191
4 (12±4) 

1.0825±0.55
45 (23±12) 

1.0121±0.43
28 (22±9) 

1.11±0.97±
0.2229 
(21±5) 

Frauenfeld 0.4756±0.
2022 
(12±5) 

0.2128±0.18 
(5±519 (6) 

0.5564±0.19 
(14±5 (14) 

0.7896±0.41
35 (20±10) 

0.8198±0.34
22 (21±9) 

1.1230±0.2
2 (28±632 
(27) 

St. Gallen 0.3140±0.
17 (10±620 
(11) 

0.115±0.151
6  
(3±5) 

0.3442±0.120
9 (11±4) 

0.5371±0.29 
(18±1027 
(19) 

0.6783±0.29 
(23±1019 
(22) 

1.0322±0.2
1 (35±730 
(33) 

Magadino 
0.3541±0.
1720 (6±3) 

0.2227±0.20
21 (4±3) 

2.2645±0.74 
(39±1350 (37) 

0.3341±0.24 
(5±420 (6) 

1.3553±0.55
32 (23±9) 

1.3354±0.2
3 (32±435 
(24) 

Payerne 

0.2634±0.
1619 (9±5) 

0.1015±0.1
6 (3±54) 

0.4454±0.12 
(15 (15±5) 

0.1626±0.17 
(5±616 (7) 

1.00±0.81±0
.34 
(28±1222 
(27) 

1.1841±0.2
1 (40±733 
(38) 

Vaduz 0.3543±0.
1820 
(10±5) 

0.1927±0.18 
(5±519 (6) 

0.5362±0.18 
(15±514 (14) 

0.6784±0.36 
(19±1030 
(20) 

0.7793±0.33 
(22±9 (22) 

1.0322±0.2
1 (29±630 
(28) 

S. Vittore 0.2833±0.
16 (3±218 
(4) 

0.2528±0.21
22 (3±2) 

5.5078±1.78 
(61±2016 (59) 

0.4251±0.27
23 (5±3) 

1.2639±0.52
30 (14±6) 

1.2845±0.2
2 (14±233 
(15) 

Zurich 0.4554±0.
2022 
(12±5) 

0.3141±0.22 
(8±621 (9) 

0.4451±0.151
1 (12±4) 

0.4862±0.30 
(13±828 
(14) 

1.01±0.83±0
.35 (23±10 
(23) 

1.1635±0.2
2 (32±633 
(30) 

Average  0.3947±0.
1821 
(9±4) 

0.2431±0.2
0 
(5±46) 

1.2537±0.41 
(28±9 
(26) 

0.5367±0.32
28 
(12±713) 

1.11±0.93±0
.3925 
(21±9) 

1.1331±0.2
232 
(25±5) 
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• Number of factors: 

Based on the input data for PMFblock, we evaluate the influence of the number of factors, p, on the Qi/Qi,exp contribution.Qi,j . 
For this experiment, both the traffic and cooking signatures were constrained using adapted reference profiles from Crippa et 
al. (2013b) as described in section III.1. Based on this evaluation, we chose to perform PMF using 6 factors. 

Qi,j is computed using the PMF residuals (eij) and the PMF input errors (si,j): 5 

𝑄𝑄𝑖𝑖,𝑗𝑗 = �
𝑒𝑒𝑖𝑖,𝑗𝑗
𝑠𝑠𝑖𝑖,𝑗𝑗
�
2
           (S1) 

 

 

Figure S1: Qi,j as a function of the number of factors for a reference experiment with all data used in PMF (9 sites, full year 2013, 
HOA and COA constrained with a=0.0 (b and d). Δ(median(Qi,j))max is evaluated for the different periods during the year 2013 10 
(January-February-March, April-Mai-June, July-August-September, October-November-December) and for all sites (a and c). 
The grey line depicts the difference between the category (geographical or season) with the highest and the lowest median Qi,j. 

Fig. SI.1S1 shows the Qi/Qi,exp contributionQi,j s as a function of the number of factors for different sites (b) and seasons (d) 
and the difference between the highest (a) and lowest (c) median to evaluate the maximal difference in the mathematical 
quality of the solutions. As expected, forcing PMF to explain the variability in the dataset only with the 2 constrained factors 15 
(p=2), results in very high Q/Qexp contributions.median Qi,j . Δ(Qi/median(Qi,exp)j))max shows the difference in  the median 
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Qi/Qi,exp,j between groups of points like sites or season. The smaller the Δ(median(Qi/Qi,exp),,j))max, the smaller are the 
differences in the mathematical quality of the PMF solution for the different seasons/sites. To explain the temporal and 
geographical variability at least 5 factors are required. However, the difference between the site that is best explained and the 
site that is least explained is approximately 6 when using 5 or 6 factors. When increasing to 6 factors, also a factor 
explaining the variability of sulfur-containing organic ions (especially, CH3SO2

+) is resolved. Therefore, we opted to perform 5 
PMF using 6 factors. Using 6 factors, there is also no difference between the average Qi,j on week-days and weekend (Fig. 
S2). 

 

 
Figure SI.1S2: Qi/Qi,exp,j as a function of the day of the week.  10 
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However, for PMFblock also with 6 factors, the average Qi,j is clearly larger (7 only the Zurich data points) than the ideal value 
of 1, i.e. the PMF residuals are larger than the measurement uncertainties. In comparison to PMFblock, the average Qi,j for 
Zurich is slightly reduced for the same number of factors for a reference experiment with all data usedwhen only including 1 
site in PMF (9 sites, fullPMFzue,isol, PMFzue,reps, average Qi,j 6). In this study, we analyse yearly cycles and, thereby, assume 
constant factor profiles throughout the year 2013,which can contribute to Q>1.  5 

Another possible reason for Q>1 is an underestimation of the measurement uncertainty. A main contributor in high-
resolution AMS data treatment (attribution of the signal at a nominal mass to several ions) stems from errors in the m/z 
calibration which could not be incorporated in the current data analysis. Recent studies demonstrate that for overlapping 
peaks (ions) the measurement uncertainties are strongly underestimated (Cubison et al., 2015; Corbin et al., 2015). For 
PMFblock using 6 factors, average Qi,j do not depend on m/z but rather on the ion family (Fig. S3): ions consisting of C, H, S, 10 
(and O) summarized under the name (CS) and ions consisting of C, H, N, (and O) summarized under the name CHN have a 
higher Qi,j than hydrocarbon ions (CH, only C and H) and oxygenated ions (CHOz=1 with 1 oxygen and CHO z>11 with more 
than 1 oxygen). Since the time series of CH3SO2

+ is event-driven, the high Qi,j of this ion hints to the fact that PMF is unable 
to accurately resolve all of these events.  

The average Qi,j for ions with a mass defect (nominal mass – exact ion mass) around 0.03 a.m.u. is higher than for the other 15 
ions (Fig S3). Mass defects in this range are most common in our dataset. This makes these peaks prone to overlap with 
other ions and thus their error prone to an underestimation because this effect is not considered in the sij calculation 
(described above).  
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Figure S3: a) Average Qi,j of ions in PMFblock as a function of their mass-to-charge ratio (m/z). The ions are color-coded with their 
composition (CH: ions consisting only of C and H; CHO1: ions consisting of C, H, and 1 O; CHOgt1: ions consisting of C, H, and 
more than 1 O; CHN: ions consisting of C, H, N, (and O); CS: ions consisting of C, H, S, (and O)). b) Average Qi,j of the ions in 
PMFblock as a function of their mass defect (exact mass – nominal mass) as well as a histogram of the number of ions with a certain 5 
mass defect. The mean Qi,j of the ion families is displayed separately. 

 

Cumulative density functions for the a-values of HOA and COA constrained with a=0.are presented for the accepted solutions 
in Fig. S4. We found that 80% of the accepted solutions have an a-value≤0, b and d). ΔQi/Qi,exp is evaluated for .3 for HOA and 
an a-value≤0.5 for COA. The output HOA and COA factor profiles are therefore not significantly variable and very similar 10 
to the input profiles, indicating that similar solutions were selected. Furthermore, the yearly average factor concentrations of 
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all selected PMFblock solutions after Rk correction are shown for the case of Zurich as an illustration in Fig. S5. The 
distributions of each of the different periods during the year 2013 (January-February-March, April-Mai-June, July-August-
September, October-November-December) and for all sites (a and c). The grey line depicts the difference between the category 
(geographical or season) with the highest median Qi/Qi,exp and the lowest.factors do not show more than 1 distinct mode, 
indicating that we do not have several populations of solutions. 5 

 

Figure S4: Cumulative density functions of a-values for HOA and COA for the accepted solutions. 
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The yearly average factor concentrations of all selected PMFblock solutions after Rk correction areshown for the case of Zurich 
as an illustration (Fig. S5). The distributions of each of the different factors do not show more than 1 distinct mode. 

 

Figure S5: Histograms of yearly average factor concentrations of all selected PMFblock solutions (after Rk correction). 

 5 
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• Quality assessment of solutions: 
 
Set of criteria used when assessing quality of a single PMF run: 

Table SI.1S1: set of acceptance criteria used to discard bad solutions. r is the correlation coefficient between a factor time series 
and the respective marker. Q25 is the 1st quartile and Q75 the 3rd quartile. 5 
criteria on profile 
 f(CO2

+) f(C2H4O2
+) 

HOA <0.4 <0.004 
COA <0.4 <0.01 
Criteria on time series 
HOA r(HOA,NOx)> 0 & r(HOA,NOx)> r(COA,NOx) 
BBOA r(BBOA,levo)> 0 
SC-OA r(SC-OA,CH3SO2

+)>0 
Mass closure criteria 
OCres total Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
Magadino winter, Magadino summer Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
Zurich winter, Zurich summer Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
Magadino, Zurich Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
HOC<median, HOC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
COC<median, COC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
BBOC<median, BBOC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
SC-OC<median, SC-OC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
WOOC<median, WOOC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
SOOC<median, SOOC>median Q25(OCresres-OC)<0 & Q75(OCresres-

OC)>0 
for PMF with 12 filters per site summer Magadino and 
Zurich 

Q25(OCresres-OCi)<0 & Q75(OCresres-
OCi)>0 

for PMF with 12 filters per site winter Magadino and 
Zurich 

Q25(OCresres-OCi)<0 & Q75(OCresres-
OCi)>0 
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• Comparison of mass spectral signature of BBOA and nebulized levoglucosan: 

Figure SI.2S6 demonstrated the high similarity between the retrieved BBOA signature and the mass spectrum of nebulized 
levoglucosan. 

 

 5 

 

 

 

 

Figure SI.2S6: mass spectral fingerprints of BBOA (PMFblock) and nebulized levoglucosan. fion is the fraction of signal of a 10 
respective ion to the sum of the total signal. 
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• Comparison of SOOA to ozone and Ox 

In Figure S7, we compare the SOOA concentrations to ozone and Ox (O3+NO2) for Zurich. The SOOA concentrations 

follow best the temperature (Rs,SOOA,temp=0.65, Fig. S7.a) but show also some correlation to ozone Rs,SOOA,O3=0.33, Fig. S7.b) 

and Ox (Rs,SOOA,Ox=0.38, Fig. S7.c).   

 5 

Figure S7: SOOA concentrations compared to temperature, ozone, and Ox (O3+NO2) for Zurich.  
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• Uncertainty estimation and propagation: 

The uncertainty described by the interquartile range from the a-value sensitivity assessment (σa) does not fully explain the 
variability between the 4 sensitivity tests. In the following, we use the source apportionment results of the 12 filters common 
to all 4 sensitivity tests for achieving a better estimate of the uncertainty of the factor concentrations. For these 12 filters the 
uncertainty is estimated by propagating the variability between the median concentrations for the 4 sensitivity tests (σb) and 5 
half the interquartile range of PMFblock (σa, Eq. SI.1S2): 

𝒆𝒆𝒆𝒆𝒓𝒓𝒊𝒊,𝒌𝒌,𝒕𝒕𝒕𝒕𝒕𝒕 = �𝝈𝝈𝒂𝒂𝟐𝟐 + 𝝈𝝈𝒃𝒃𝟐𝟐 = ��𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑷𝑷𝑷𝑷𝑷𝑷 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝟐𝟐

�
𝒊𝒊,𝒌𝒌

𝟐𝟐
+ �𝝈𝝈�𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔��

𝒊𝒊,𝒌𝒌

𝟐𝟐
   SI.1

   S2 

In absence of σb for all other points, we parametrize σb. We express σb as a function of a minimal uncertainty (σminimal) and an 
uncertainty proportional (k) to the factor concentration and fit the equation using the 12 points in common to all datasets (Eq. 10 
SI.2S3): 

𝝈𝝈𝒃𝒃
|𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒊𝒊,𝒌𝒌|

=
� 𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝟐𝟐 +𝒌𝒌𝟐𝟐∗𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒊𝒊,𝒌𝒌
𝟐𝟐

|𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒊𝒊,𝒌𝒌|
          SI.2S3 

The uncertainty (σa and σb) is propagated for all points using the parameters from Eq. SI.2S3 in order to obtain the total 
uncertainty for all points in the dataset (Eq. SI.3S4): 

𝒆𝒆𝒆𝒆𝒓𝒓𝑖𝑖 ,𝑘𝑘,𝒕𝒕𝒕𝒕𝒕𝒕
′ = �𝝈𝝈𝒂𝒂𝟐𝟐 + � 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2 + 𝑘𝑘2 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑘𝑘2 �        SI.3S4 15 

The resulting coefficients of the error model are presented in table SI.2S2:  

Table SI.2S2: σminimal and k for the different factors including their uncertainty. 

factor σminimal k 

HOA 0.1416±0.0206 0.4039±0.4724 

COA 0.0409±0.01 0.7652±0.1509 

BBOA 0.0506±0.01 0.5048±0.0705 

SC-OA 0.2630±0.0100 0.2632±0.3827 

WOOA 0.0428±0.0208 0.7642±0.3027 

SOOA 0.0305±0.01 0.2724±0.05 
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characterization, and quantification of primary biological organic aerosol at a European rural site, Environ. Sci. Technol., 50, 
3425-3434, doi:10.1021/acs.est.5b05960, 2016.  



14 
 

• Sensitivity to significance level of statistical tests in PMFblock: 
 
For PMFblock, a sensitivity test with significance level of 0.05 instead of 0.5 as in the base case was performed. The factor 
concentrations and their corresponding uncertainties (σa) are compared and displayed as number density functions (Fig. S8). 
Changes in the estimated factor concentrations are within 10% of the factor concentrations for SCOA and smaller for all 5 
other factors. The uncertainty related to COA is decreased when lowering the significance level to 0.05, while the other 
factors remain largely unaffected. 
 

 
Figure S8: number density functions of source apportionment results obtained using a significance level of 0.05 normalized to 10 
results obtained using a significance level of 0.5: a) Comparison of factor concentrations b) Comparison of uncertainty estimate 
(σa). 
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