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Abstract: Our climate is constrained by the balance between solar energy absorbed by the 8 

Earth and terrestrial energy radiated to space.  This energy balance has been widely used to 9 

infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming.  Such 10 

estimates yield lower values than other methods and these have been influential in pushing 11 

down the consensus ECS range in recent assessments.  Here we test the method using a 100-12 

member ensemble of the MPI-ESM1.1 climate model simulations of the period 1850-2005 with 13 

known forcing.  We calculate ECS in each ensemble member using energy balance, yielding 14 

values ranging from 2.1 to 3.9 K.  The spread in the ensemble is related to the central 15 

hypothesis in the energy budget framework: that global average surface temperature 16 

anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected 17 

solar energy).  We find that assumption is not well supported over the historical temperature 18 

record in the model ensemble or more recent satellite observations.  We find that framing 19 

energy balance in terms of 500-hPa tropical temperature better describes the planet’s energy 20 

balance.  21 

  22 
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The problem 23 

When an energy imbalance is imposed, such as by adding a greenhouse gas to the atmosphere, 24 

the climate will shift in such a way to eliminate the energy imbalance.   This process is 25 

embodied in the traditional linearized energy balance equation: 26 

R = F + l Ts          (1) 27 

where the forcing F is an imposed energy imbalance, TS is the global average surface 28 

temperature, and l relates changes in TS to a change in net top-of-atmosphere (TOA) flux 29 

(Gregory et al., 2002; Dessler and Zelinka, 2014).  R is the resulting TOA flux imbalance from the 30 

combined forcing and response.  All quantities are deviations from an equilibrium base state, 31 

usually the pre-industrial climate. Equilibrium climate sensitivity (hereafter ECS, the equilibrium 32 

warming in response to a doubling of CO2) is equal to -F2xCO2/l, where F2xCO2 is the forcing from 33 

doubled CO2.   34 

Many investigators (e.g., Gregory et al., 2002; Annan and Hargreaves, 2006; Otto et al., 2013; 35 

Lewis and Curry, 2015; Aldrin et al., 2012; Skeie et al., 2014; Forster, 2016) have used Eq. 1 36 

combined with estimates of R, F, and Ts to estimate l: 37 

 l = ∆(R-F)/∆Ts          (2) 38 

where ∆ indicates the change between the start of the historical period (usually the mid to late 39 

nineteenth century) and a recent period.  These calculations result in values of l near  40 

-2 W/m2/K and appear to rule out ECS larger than ~4 K (Stevens et al., 2016).  The substantial 41 

likelihood of an ECS below 2 K implied by these calculations led the IPCC Fifth Assessment 42 

Report to extend their lower bound on likely values of ECS to 1.5 K (Collins et al., 2013). 43 

We test this energy balance methodology through a perfect model experiment consisting of an 44 

analysis of a 100-member ensemble of runs of the MPI Earth System Model, MPI-ESM1.1.  This 45 

is the latest coupled climate model from the Max Planck Institute for Meteorology and consists 46 

of the ECHAM6.3 atmosphere and land model coupled to the MPI-OM ocean model. The 47 

atmospheric resolution is T63 spectral truncation, corresponding to about 200 km, with 47 48 
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vertical levels, whereas the ocean has a nominal resolution of about 1.5 degrees and 40 vertical 49 

levels. MPI-ESM1.1 is a bug-fixed and improved version of the MPI-ESM used during CMIP5 50 

(Giorgetta et al., 2013) and nearly identical to the MPI-ESM1.2 (Mauritsen et al., 2018) model 51 

being used to provide output to CMIP6, except that the historical forcings are from the MPI-52 

ESM.  Each of the 100 members simulates the years 1850-2005 (Fig. 1) and use the same 53 

evolution of historical natural and anthropogenic forcings.  The members differ only in their 54 

initial conditions —each starts from a different state sampled from a 2000-year control 55 

simulation.  56 

We calculate effective radiative forcing F for the ensemble by subtracting top-of-atmosphere 57 

flux R in a run with climatological sea surface temperatures (SSTs) and a constant pre-industrial 58 

atmosphere from average R from an ensemble of three runs using the same SSTs but the time-59 

varying atmospheric composition used in the historical runs (Hansen et al., 2005; Forster et al., 60 

2016).  The three-member ensemble begins with perturbed atmospheric states.  We estimate 61 

F2xCO2 using the same approach in a set of fixed SST runs in which CO2 increases at 1% per year, 62 

which yields a F2xCO2 value of 3.9 W/m2.   63 

We calculate l using Eq. 2 for each ensemble member, producing values ranging from -1.88 to  64 

-1.01 W/m2/K (5-95% range -1.63 to -1.17 W/m2/K), with an ensemble median of -1.43 W/m2/K 65 

(Fig. 2a).  In this calculation, ∆(R-F) and ∆TS are the average difference between the first and last 66 

decade of each run.  The spread in l depends to some extent on how the calculation is set up 67 

— if one used the difference between the averages of the first and last 20 years, for example, 68 

the range in l declines from 0.87 W/m2/K to 0.48 W/m2/K.  Using longer averaging periods does 69 

not further decrease the range. 70 

We also calculate ECS = -F2xCO2/l for each ensemble member, producing values ranging from 71 

2.08 to 3.87 K (5-95% range 2.39 to 3.34 K) (Fig. 2b), with an ensemble median of 2.72 K.  Thus, 72 

our analysis shows that l and ECS estimated from the historical record can vary widely simply 73 

due to internal variability. Given that we have only a single realization of the 20th century, we 74 

should not consider estimates based on the historical period to be precise — even with perfect 75 

observations. This supports previous work that also emphasized the impact of internal 76 
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variability on estimates of l and ECS (Huber et al., 2014; Andrews et al., 2015; Zhou et al., 2016; 77 

Gregory and Andrews, 2016). 78 

Previous researchers have questioned whether the historical record provides an accurate 79 

measure of l and ECS, and we can check this by comparing the ensemble values to ECS 80 

estimates from a 2xCO2 run of the MPI-ESM1.2, which is physically very close to MPI-ESM1.1.  81 

An abrupt 2xCO2 run yields an ECS of 2.93 K in response to an abrupt doubling of CO2 82 

(estimated by regressing years 100-1000 of a 1000-year run) — 8% larger than the ensemble 83 

median. This is in line with the 10% difference in ECS estimated by Mauritsen and Pincus (2017) 84 

to arise from the average CMIP5 model time-dependent feedback, but smaller than suggested 85 

in other recent studies of ECS in transient climate runs (e.g., Armour, 2017; Proistosescu and 86 

Huybers, 2017).  87 

Thus, there are a number of issues that need to be considered when interpreting estimates of l 88 

and ECS derived from the historical period.  In addition to the precision and accuracy issues 89 

discussed above, it also includes the large and evolving uncertainty in forcing over the 20th 90 

century (Forster, 2016), different forcing efficacies of greenhouse gases and aerosols (Shindell, 91 

2014; Kummer and Dessler, 2014), and geographically incomplete or inhomogeneous 92 

observations (Richardson et al., 2016).  93 

Why are estimates using the traditional energy balance approach imprecise? 94 

In this section, we explain the physical process by which internal variability leads to the large 95 

spread in l and ECS estimated from the ensemble.  We begin by observing that Eqs. 1 and 2 96 

parameterize R-F in terms of global average surface temperature, TS.  In model runs with strong 97 

forcing driving large warming, such as abrupt 4xCO2 simulations, there is indeed a strong 98 

correlation between these variables (e.g., Gregory et al., 2004).  However, because R-F in such 99 

runs is dominated by a monotonic trend, correlations will exist with any geophysical field that 100 

also exhibits a monotonic trend, regardless of whether there is a physical connection between 101 

the fields. Thus, one should not take the correlation between R-F and TS in these runs as 102 

proving causality.  103 
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If TS is a good proxy for the response R-F, we would expect to also see a correlation in 104 

measurements dominated by interannual variations. Observational data allow us to test this 105 

hypothesis.  We use observations of R from the Clouds and the Earth’s Radiant Energy System 106 

(CERES) Energy Balanced and Filled product (ed. 4) (Loeb et al., 2009), which cover the period 107 

March 2000 to July 2017. Our sign convention throughout the paper is that downward fluxes 108 

are positive.  Temperatures come from the European Centre for Medium Range Weather 109 

Forecasts (ECMWF) Interim Re-Analysis (ERAi) (Dee et al., 2011).  We assume forcing changes 110 

linearly over this time period and account for it by detrending ∆R and ∆T anomaly time series 111 

using a linear least-squares fit to remove the long-term trend.  112 

These data show that ∆R is poorly correlated with ∆Ts in response to interannual variability (Fig. 113 

3a), as has been noted many times in the literature; see, e.g., Sect. 5 of Forster (2016).  In 114 

particular, the low correlation coefficient tells us that ∆TS explains little of the variance in ∆R.  115 

Using explicit estimates of forcing or other temperature datasets (e.g., MERRA-2) yield the 116 

same result.   117 

Global climate models that submitted output to the 5th phase of the Coupled Model 118 

Intercomparison Project (CMIP5) (Taylor et al., 2012) also show this poor correlation.  To 119 

demonstrate this, we have calculated the correlation coefficient between ∆TS and ∆R in CMIP5 120 

pre-industrial control runs (these are runs for which forcing F = 0).  To facilitate comparison 121 

with the CERES data, as well as avoid any issues with long-term drift in the control runs, we 122 

break each run into 17-year segments to match the length of the CERES data and calculate the 123 

correlation coefficient of monthly anomalies of ∆R and ∆TS for each segment. Fig. 4 shows that 124 

the correlation between ∆R and ∆TS in the models is similar to that from the CERES analysis. 125 

Recent work provides an explanation: the response of ∆(R-F) to a particular ∆TS is determined 126 

not only by the global average magnitude, but also by the pattern of warming (Armour et al., 127 

2013; Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016, 2017; Andrews and 128 

Webb, 2018). During El Nino cycles that dominate the observations in Fig. 3, the spatial pattern 129 

of warm and cool regions changes, leading to responses in ∆(R-F) that do not scale cleanly with 130 

∆TS — something Stevens et al. (2016) refer to as “pattern effects” 131 
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To demonstrate how this also generates the spread in l in the model ensemble (Fig. 2a), we 132 

calculate the local response lr in three equal-area regions (90°S-19.4°S, 19.4°S-19.4°N, 19.4°N-133 

90°N).  We define lr as the regional analog to l (Eq. 2): 134 

lr = ∆(R-F)r/∆TS,r        (3) 135 

where the “r” subscript indicates a regional average value.   136 

We find that lr varies between the regions (Fig. 5). This means that different ensemble 137 

members with similar global average ∆TS but different patterns of surface warming produce 138 

different values of global average ∆(R-F), thereby leading to spread in the estimated l among 139 

the ensemble members.  We also see strong variability in lr within each region, suggesting that 140 

how the warming is distributed within the region also drives some of the spread in estimated l 141 

in the ensemble. 142 

This explanation is consistent with analyses showing that l changes during transient runs as the 143 

pattern of surface temperature evolves (Senior and Mitchell, 2000; Armour et al., 2013; 144 

Andrews et al., 2015; Gregory and Andrews, 2016; Stevens et al., 2016).  In our model 145 

ensemble, however, the pattern changes are caused by internal variability rather than differing 146 

regional heat capacities that cause some regions to warm more slowly than others during 147 

forced warming. 148 

A better way to describe energy balance 149 

Our analysis demonstrates limitations of the conventional energy balance framework (Eq. 1). It 150 

has been previously noted that ∆R correlates better with tropospheric temperatures than ∆TS 151 

(Murphy, 2010; Spencer and Braswell, 2010; Trenberth et al., 2015). Recent analyses have also 152 

stressed the importance of atmospheric temperatures — through its influence on lapse rate — 153 

as providing a fundamental control on the planet’s energy budget (Zhou et al., 2016; Ceppi and 154 

Gregory, 2017).  Based on this, we test a new energy balance framework constructed using the 155 

temperature of the tropical atmosphere: 156 
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 R - F = Q TA        (4) 157 

where TA is the tropical average (30°N-30°S) 500-hPa temperature and Q relates this quantity to 158 

R-F.  R and F are the same global average quantities they were in equation 1.  ECS can be 159 

expressed in terms of Q: 160 

ECS= − ∆'(×CO2
,

-./
-.0

       (5) 161 

where ∆TS and ∆TA are the equilibrium changes in these quantities in response to doubled CO2. 162 

The CMIP5 ensemble average ratio ∆TS/∆TA is 0.86±0.10 (±1s), where ∆ represents the average 163 

difference between the first and last decades of the abrupt 4xCO2 runs.  164 

Support for Eq. 4 can be found in the observations: ∆R shows a tighter correlation with ∆TA than 165 

with ∆TS in observations (Figs. 3a vs. 3b).  CMIP5 models also show this (Fig. 4).  Given that the 166 

slope of these plots can be taken as estimates of Q and l, the tighter correlation leads to more 167 

accurate estimates of Q than l, both in absolute and relative terms.   168 

Turning to the model ensemble, we next demonstrate that Q is a more precise metric than l.  169 

We do this by calculating Q [= ∆(R-F)/∆TA] in each ensemble member, yielding values ranging 170 

from -1.18 to -0.89 W/m2/K (5-95% range -1.16 to -0.92 W/m2/K), with an ensemble median of  171 

-1.04 W/m2/K (Fig. 2a).  There is clearly less variability in Q among the ensemble members than 172 

for l.  This reflects less variability in the regional response Qr (= ∆(R-F)r/∆TA,r) than in lr (Fig. 5), 173 

as well as less variability within the regions.  We therefore conclude that interannual variability 174 

has less of an impact on Q than l.   175 

We can also reproduce this in a 2000-year control run (a run with fixed pre-industrial boundary 176 

conditions) of the MPI-ESM1.1 model.  Figure 6 shows l calculated in a sliding 17-year window 177 

and confirms significant temporal variability in l.  We can similarly calculate Q and the figure 178 

shows that temporal variability in Q is substantially smaller.  179 

This result is also reproduced in the CMIP5 control models.  Fig. 7 plots the standard deviation 180 

of each CMIP5 model’s set of short-term l divided by the standard deviation of that model’s set 181 
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of short-term Q (as described previously, we calculate time series of short-term l and Q values 182 

for each model by regressing anomalies in a 17-year sliding window of the control runs).  All of 183 

the models fall above 1, demonstrating that there is less variability in the Q time series than in 184 

the l time series in every climate model.  This confirms that Q is more robust with respect to 185 

internal variability than l. It also suggests that Q estimated from the satellite data (Fig. 3) 186 

should be considered a better estimate of the climate system’s long-term value than l 187 

estimated from the same data set. 188 

As far as accuracy goes, we can compare Q in the ensemble over the historical period to Q in 189 

response to much larger warming.  The ensemble median of Q from the historic period (Fig. 2),  190 

-1.04±0.01 W/m2/K (5-95% confidence interval), is close to the value obtained from an analysis 191 

of the first 150 years of an abrupt 4xCO2 run of the same model, Q = -1.03±0.04 W/m2/K, as 192 

well as Q calculated from all 2600 years of this run, Q = -1.00±0.01 W/m2/K (values from the 193 

4xCO2 runs are all obtained using the Gregory method (Gregory et al., 2004) using annual 194 

average R and temperatures).  On the other hand, l changes substantially in the 4xCO2 run as 195 

the climate warms: l = -1.36±0.07 W/m2/K when calculated from the first 150 years, but l =  196 

-0.95±0.01 W/m2/K from all 2600 years of that run.  197 

We can verify this result in the CMIP5 abrupt 4xCO2 ensemble.  It has been previously 198 

demonstrated that plots of R-F vs. TS do not trace straight lines as the climate warms (Andrews 199 

et al., 2015; Rugenstein et al., 2016; Rose and Rayborn, 2016; Armour, 2017), so l and ECS 200 

calculated in a single model run may depend on the portion of the run selected.  In the CMIP5 201 

abrupt 4xCO2 ensemble, for example, average l calculated by regressing years 10-30 (l10-30) is 202 

more negative than l calculated from years 30-150 (l30-150) by 0.49 W/m2/K (Fig. 8).   203 

Several explanations for this have been advanced, most prominently that l is function of the 204 

pattern of surface warming (Senior and Mitchell, 2000; Armour et al., 2013; Andrews et al., 205 

2015; Gregory and Andrews, 2016; Zhou et al., 2016; Stevens et al., 2016).  Using Q largely 206 

eliminates this pattern effect: Q10-30 and Q30-150 have an average difference of 0.13 W/m2/K for 207 
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the CMIP5 ensemble (Fig. 8).  Thus, we find additional evidence that Q tends to be similar for 208 

different amounts and patterns of warming.  209 

The lack of curvature in the Q calculations means there is curvature in the relation between TA 210 

and TS in the models.  Thus, the pattern effect’s impact on ECS calculations shifts from l in the 211 

traditional framework to the ∆TS/∆TA term in Eq. 4.  This also emphasizes the need to improve 212 

our understanding of the factors that control ∆TS/∆TA, as well as how future patterns of surface 213 

warming will evolve.   214 

There are several plausible reasons why TA may control R better than TS.  It seems likely that 215 

several of the feedbacks — e.g., lapse rate, water vapor, longwave cloud — should be more 216 

strongly influenced by atmospheric temperatures than TS.  More recently, it has been shown 217 

that atmospheric temperatures also play a key role in regulating low clouds (Zhou et al., 2016, 218 

2017), thereby influencing the shortwave cloud feedback.  This is also consistent with Ceppi and 219 

Gregory (2017), who identified a dependence of ECS on atmospheric stability in models.  We 220 

have not further investigated this — ultimately, our use of TA in Eq. 4 is based on observations 221 

(Murphy, 2010; Spencer and Braswell, 2010; Trenberth et al., 2015) that it correlates well with 222 

R.  Other metrics, such as global average atmospheric temperature work almost as well.  223 

Clearly, further investigations on how to best describe the Earth’s energy balance are 224 

warranted. 225 

Finally, one of our ultimate goals for this revised framework is to help produce better estimates 226 

of ECS.  We are working on a detailed analysis of ECS based on this framework and will publish 227 

that in a follow-on paper, but we briefly show here how the advantages of the revised energy 228 

balance framework may be leveraged to do this.  Fig. 9a shows Q calculated from control runs 229 

of 25 CMIP5 models.  To calculate Q in the control runs, we break each control run into 17-year 230 

segments and calculate monthly anomalies of ∆R and ∆TA during each segment.  Then, we 231 

calculate Q for each segment as the slope of the regression of ∆R vs. ∆TA for that segment.  232 

Thus, for each control run, we generate a large number of estimates of Q. The value in Fig. 9a is 233 

the average of these individual values. 234 
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Fig. 9b shows the ECS of these models, calculated from the first 150 years of the abrupt 4xCO2 235 

runs using the Gregory method.  If we assume that models with more accurate simulation of 236 

short-term Q produce more accurate estimates of ECS (Brown and Caldeira, 2017; Wu and 237 

North, 2002), then we can use Figs. 9a and 9b to constrain ECS.  We find that the 15 models 238 

whose average short-term Q falls within the uncertainty of Q estimated from CERES 239 

observations have ECS values ranging from 2.0-3.9 K, with an average of 2.9 K.  This excludes 240 

many of the highest ECS models, a result consistent with other analyses (Cox et al., 2018; Lewis 241 

and Curry, 2015). 242 

It would not have been possible to draw this conclusion with the conventional energy balance 243 

framework. Fig. 9c shows the comparison between l from the control runs (calculated the 244 

same way Q was calculated) and CERES observations.  Because of the much larger uncertainty 245 

in the observational estimate of short-term l, almost all models fall within the observational 246 

range, thereby prohibiting any constraint on the ECS range. 247 

It may also be possible to use the relation between short-term and long-term Q as an emergent 248 

constraint to convert short-term observations to the long-term response.  There is some scatter 249 

in the relation in the CMIP5 ensemble, however, so more analysis of how these are relate is 250 

likely required before ECS can be constrained in this way. 251 

Conclusions 252 

We have estimated ECS in each of a 100-member climate model ensemble using the same 253 

energy-balance constraint used by many investigators to estimate ECS from 20th-century 254 

historical observations.  We find that the method is imprecise — the estimates of ECS range 255 

from 2.1 to 3.9 K (Fig. 2), with some ensemble members far from the model’s true value of 2.9 256 

K.  Given that we only have a single ensemble of reality, one should recognize that estimates of 257 

ECS derived from the historical record may not be a good estimate of our climate system’s true 258 

value.   259 
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The source of the imprecision relates to the construction of the traditional energy balance 260 

equation (Eq. 1).  In it, the response of TOA net flux (R-F) is parameterized in terms of global 261 

average surface temperature (TS).  Recent research has suggested that the response is not just 262 

determined by the magnitude of TS, but includes other factors, such as the pattern of TS (e.g., 263 

Armour et al., 2013; Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2017) or the 264 

lapse rate (e.g., Zhou et al., 2017; Ceppi and Gregory, 2017; Andrews and Webb, 2018).  As a 265 

result, two ensemble members with the same ∆TS can have different climate responses, ∆(R-266 

F), leading to spread in the inferred l.  267 

The lack of a direct relationship between TS and radiation balance suggests that it may be 268 

profitable to investigate alternative formulations. We test parameterizing the response in terms 269 

of 500-hPa tropical temperature (Eq. 4) and find that it is superior in many ways.  Ultimately, 270 

how investigators describe the energy balance of the planet will depend on the problem and 271 

the available data.  The surface temperature is indeed special, so the traditional framework 272 

may be preferred for some problems.  But investigators may find that the alternatives are 273 

superior for certain problems, for instance constraining Earth's climate sensitivity. 274 
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 389 

Fig. 1. Plot of annual and global average surface temperature from the 100 members of the 390 

MPI-ESM1.1 ensemble (colored lines), along with the GISTEMP measurements (Hansen et 391 

al., 2010) (white line).  Temperatures are referenced to the 1951-1980 average. 392 

 393 

 394 

Figure 2. PDFs of (a) l (lighter) and Q (darker) and (b) ECS derived from the members of the 395 

MPI-ESM1.1 historical ensemble. The vertical lines are the 5th, 50th, and 95th percentile of each 396 

distribution.  397 
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 398 

Figure 3. Scatter plot of detrended monthly anomalies of ∆R vs. (a) global average surface 399 

temperature ∆TS, (b) tropical average 500-hPa temperature ∆TA. Observations cover the period 400 

March 2000-July 2017 and anomalies are deviations from the mean annual cycle.  The dashed 401 

lines are ordinary least-squares fits; the slope, 5-95% confidence interval, and correlation 402 

coefficient are shown on each panel.  Confidence intervals account for autocorrelation of the 403 

time series (Santer et al., 2000).   404 

 405 
  406 
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 407 

Fig. 4. Correlation coefficients between ∆R and temperature in CMIP5 control runs: black 408 

and red symbols represent the correlation with ∆TS and ∆TA, respectively.  The dot is the 409 

average of the correlation coefficients from the 17-year segments of the model run; the 410 

bars indicate the maximum and minimum values from the control run.  The dashed lines 411 

are the corresponding correlation coefficients from the CERES regressions in Fig. 2. 412 

  413 
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 414 

 415 

Fig. 5. lr and Q r calculated as regional average ∆(R-F) divided by regional average temperature 416 

(∆TS for l and ∆TA for Q).  The regions are 90°S-19.4°S (SH), 19.4°S-19.4°N (EQ), and 19.4°N-417 

90°N (NH).  The values are calculated for each member of the 100-member ensemble; the solid 418 

symbols are the ensemble average while the bars show the 5-95% range.   419 
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 420 

Fig. 6. (a) Time series of l (gray) and Q (black) estimated in a 17-year sliding window of a 421 

2000-year control run of the MPI-ESM1.1.  (b) PDFs of the time series in panel a. Median 422 

and 5-95% confidence interval for each distribution is displayed on the plot. 423 
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 424 

Fig. 7. The standard deviation of the l time series divided by the standard deviation of the 425 

Q time series.  Each time series is calculated from 17-year segments of CMIP5 control runs. 426 

The dotted line is the ensemble average. 427 

 428 

Fig. 8. Scatterplot of l10-30 vs. l30-150 (red circles) in CMIP5 abrupt4xCO2 runs, as well as  429 

Q10-30 vs. Q30-150 (black triangles) in the same models.  Each point represents one model.  430 

The dotted line is the 1:1 line.  The subscripts (10-30, 30-150) indicate the years of the run 431 

from which the values are calculated. 432 
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 433 

Figure 9.  (a) Q from individual CMIP5 control runs.  The dotted line is the estimate from 434 

CERES observations; the gray region is the 5-95% confidence band. (b) ECS from each 435 

CMIP5 model, estimated from the first 150 years of abrupt 4xCO2 runs using the Gregory 436 

method (Gregory et al., 2004). “Good” models are those whose Q agrees with observations 437 

in panel (a), “bad” models are those that do not.  (c) Same as panel (a), but for l. 438 
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