

Interactive comment on "The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity" by Andrew E. Dessler et al.

Pehr Björnbom

pehrbjor@kth.se

Received and published: 13 February 2018

Equation (1) in my comment SC4 has the same shape as Eq. (8) with respect to the traditional climate feedback parameter λ displayed in my comment SC3

$$R = F + \lambda T_S + a_2 a_1 (\lambda_2 - \lambda_1) (T_{S,2} - T_{S,1}) + a_3 a_1 (\lambda_3 - \lambda_1) (T_{S,3} - T_{S,1}) + a_3 a_2 (\lambda_3 - \lambda_2) (T_{S,3} - T_{S,2})$$

$$(1)$$

where it is implied that $R=a_1R_1+a_2R_2+a_3R_3,\ F=a_1F_1+a_2F_2+a_3F_3,\ \lambda=a_1\lambda_1+a_2\lambda_2+a_3\lambda_3$ and $T_S=a_1T_{S,1}+a_2T_{S,2}+a_3T_{S,3}.$ Here a_1,a_2 and a_3 are the area fractions of the three regions 90°N to 19.4°N, 19.4°N to 19.4°S and 19.4°S to 90°S.

C.

However, T_S is a global average. In the case with the climate feedback parameter Θ introduced in the discussion paper, the 500 hPa mean tropical temperature T_A is used instead of T_S . Because T_A is averaged over the tropical regions 30°N to 19.4°N, 19.4°N to 19.4°S and 19.4°S to 30°S there are different area fractions for T_A than for T_A , T_A and T_A . This was overlooked in SC4. The correct equation with $T_A = b_1 T_{A,1} + b_2 T_{A,2} + b_3 T_{A,3}$ should be:

$$R = F + \Theta T_A + (a_2 b_1 \Theta_2 - a_1 b_2 \Theta_1)(T_{A,2} - T_{A,1}) + (a_3 b_1 \Theta_3 - a_1 b_3 \Theta_1)(T_{A,3} - T_{A,1}) + (a_3 b_2 \Theta_3 - a_2 b_3 \Theta_2)(T_{A,3} - T_{A,2})$$
(2)

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1236, 2018.