
Note that all line numbers in our responses refer to the version with tracked comments included 
in this document.  Line numbers from the reviewers refer to the original manuscript. 
 
Reviewer #1 
 
We thank the reviewer for their comments.  Below, we detail our responses.   
 
64-65. As a single number to quantify the spread, the standard deviation would also be helpful. 
 
We have added 5-95% confidence intervals throughout the paper. 
 
66. Why do you use only a single decade, rather than all the data, for instance by dividing the 
dataset into two or using regression (cf Barnes and Barnes, 2015, 10.1175/JCLI-D-15-0032.1)? 
A single decade would be less precise. You could estimate the statistical uncertainty incurred 
from the control run. 
 
We calculate ECS using this approach because this is the way most ECS calculations based on 
the 20th-century observational record are done.  Thus, our results can therefore directly provide 
insight into the impact of variability in the observational estimates of ECS.   
 
The reviewer is correct that using more than a decade might affect the results.  If one used the 
difference between the averages of the first and last 20 years, the range in l declines from 0.87 
W/m2/K to 0.48 W/m2/K.  Using longer averaging periods does not further decrease the range.  
We now mention this in the paper (line 67). 
 
118. It would be useful to remark here that 16 years is chosen to match the CERES dataset, 
because that was mentioned some lines above (103-104), where it appears actually to be 17 
years and 5 months long. 
 
We have added a statement that the segmentation of the data is done to match the CERES record  
(line 134).  We have also updated the paper to segment the data into 17-year segments to more 
closely match CERES. 
 
119, 196. Why are monthly anomalies used here, rather than annual? Does it make a difference? 
 
We do this to facilitate the comparison with the CERES regressions, which also uses monthly 
data.  The reason most analyses with CERES data are done with monthly data is because using 
annual data means there’s only 17 data points, and the uncertainties end up being very large.  
Issues involved in annual vs. monthly regressions are discussed in some detail in Forster (2016, 
10.1146/annurev-earth-060614-105156). 
 
167. Again, the standard deviation would be helpful, and could be compared with lines 64-65. 
 
Added. 
 



173, 175. You could give standard errors of the mean for each of these two numbers, and judge 
the significance of their difference. 
 
We have added the 5-95% confidence intervals to all of these numbers. 
 
174, 175. "analysis" and "calculated" - by what method? From the slope of R against Delta T? 
 
We have clarified the text that we use the method of Gregory et al. (2004), where annual average 
R is regressed against T, and the slope of the curve is an estimate of l or Q (line 194) 
 
204. "agrees" in what sense? 
 
We have changed the sentence to read: “We find that the 15 models whose average short-term Q 
falls within the uncertainty of Q estimated from CERES observations have ECS values ranging 
from 2.0-3.9 K, with an average of 2.9 K.” (line 247) 
 
218. I would say that this is "one source" of the spread, which is not eliminated, but 
only reduced, by using Theta instead. 
 
We believe that this sentence is phrased correctly.  The spread in our estimate from the ensemble 
is due to the construction of the energy-balance equation.  Unlike observational analyses, we 
know everything else perfectly.  Using our revised energy balance equation does not completely 
solve the problem, but it is an improvement.   
 
233. Why is this material an appendix, rather than being incorporated in the main text? 
 
We felt that this material would not be interesting to most readers, so we put it in the appendix.  
In retrospect, perhaps that was a bad decision.  At this stage in the paper’s review cycle, we 
hesitate to move material around.  We can, however, if the reviewer or editor insists. 
 
Reviewer #2 
 
We thank the reviewer for their comments.  In this document, we detail our responses.  
 
1) It would be helpful to provide a little more physical motivation for the choice of tropical 500 
hPa temperature. I see some good reasons why mid-tropospheric temperature should work better 
(e.g., it should scale better with LR, WV and LW cloud feedbacks), but I don’t think this was 
discussed anywhere. Why use tropical temperature rather than global-mean? Is there a physical 
rationale, or did this simply work better in MPI-ESM?  
 
Also, although mid-tropospheric temperature clearly works better for the overall feedback, I 
expect the scaling with Ta might actually be a worse choice for some individual feedback 
processes (e.g. surface albedo, marine low cloud). This might be worth discussing briefly. 
 
A: To address this, we have added a paragraph to the paper beginning on line 221. 
 



2) A key result is that the revised feedback parameter theta more accurately estimates the “true” 
feedback strength under CO2 forcing. This is shown to be the case in MPI-ESM (L172-176). 
However, does this hold for CMIP5 models in general? I.e., do the values of theta estimated in 
control runs correlate well with those in 4xCO2?  
 
A: This is not a claim we make in the paper, although one might infer it from the MPI model.  
Indeed, there is some correlation between short-term and long-term theta in the CMIP5 
ensemble, as seen here: 

 
Caption: Scatter plot of Q4xCO2 vs. Qcontrol from the CMIP5 ensemble.  Each point represents 
values from model. 
 
However, because of the outlier models, the relation is hard to interpret and we have not pursued 
this “emergent constraint” approach in our estimate of ECS using our revised framework 
[Dessler and Forster (2018, February 6). An estimate of equilibrium climate sensitivity from 
interannual variability. Retrieved from eartharxiv.org/4et67].   
 
We have added a short statement to the paper to reflect this on line 260: “It may also be possible 
to use the relation between short-term and long-term Q as an emergent constraint to convert 
short-term observations to the long-term response.  There is some scatter in the relation in the 
CMIP5 ensemble, however, so more analysis of how these relate is likely required before ECS 
can be constrained in this way.” 
 
Relatedly, I would also suggest adding the correlation between R and Ta in CMIP5 piControl to 
Fig. 4, as additional bars in a different color. 
 
A: We have done that. 
 
3) One important issue that isn’t discussed in the paper is that the “pattern effect” doesn’t 
simply go away with the improved relationship; rather, it shifts from the feedback parameter to 
the Ts/Ta term. This isn’t a problem, but the way the paper is currently written, some readers 
might get that impression. 
 
A: We have added a sentence discussing this: “Thus, the pattern effect’s impact on ECS 
calculations shifts from l in the traditional framework to the ∆TS/∆TA term in Eq. 4.” (line 217) 
 



So if most of the curvature in the relationship between radiative response and temperature goes 
away with the revised framework (Fig. 6), I expect there must be some curvature in the Ta versus 
Ts relationship in 4xCO2 runs. Can the authors confirm this? 
 
Confirmed. 

 
Caption. Scatterplot of slope of ∆TS vs. ∆TA in CMIP5 abrupt4xCO2 runs.  Each point represents 
one model.  The dotted line is the 1:1 line.  The subscripts (10-30, 30-150) indicate the years of 
the run from which the slopes are calculated. 
 
We’ve added a sentence to the paper mentioning that there is curvature in TA vs TS relation: “The 
lack of curvature in the Q calculations means there is curvature in the relation between TA and TS 
in the models.” (line 216) 
 
4) I expect the Ts/Ta ratio cannot be reliably estimated from historical runs in the presence of 
large variability (for the same reason that lambda cannot be reliably estimated - because of the 
pattern effect). So we must rely on models to estimate this ratio under future global warming, 
meaning that it will be important to understand how future patterns of surface warming will 
develop. I suggest the authors discuss this briefly, for example in the conclusions. 
 
We have added a sentence to the paper mentioning this point: “This also emphasizes the need to 
improve our understanding of the factors that control ∆TS/∆TA, as well as how future patterns of 
surface warming will evolve.” (line 218) 
 
Other minor comments: 
 
I suggest using colors in Fig. 6, rather than dark grey and black.  
 
Done 
 
L223: Cite Andrews and Webb 2018 - For future reference, it would be useful to mention the 
value of theta estimated from observations (horizontal dashed bar in Fig. 7a). 
 
Done. 
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Abstract: Our climate is constrained by the balance between solar energy absorbed by the 8 

Earth and terrestrial energy radiated to space.  This energy balance has been widely used to 9 

infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming.  Such 10 

estimates yield lower values than other methods and these have been influential in pushing 11 

down the consensus ECS range in recent assessments.  Here we test the method using a 100-12 

member ensemble of the MPI-ESM1.1 climate model simulations of the period 1850-2005 with 13 

known forcing.  We calculate ECS in each ensemble member using energy balance, yielding 14 

values ranging from 2.1 to 3.9 K.  The spread in the ensemble is related to the central 15 

hypothesis in the energy budget framework: that global average surface temperature 16 

anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected 17 

solar energy).  We find that assumption is not well supported over the historical temperature 18 

record in the model ensemble or more recent satellite observations.  We find that framing 19 

energy balance in terms of 500-hPa tropical temperature better describes the planet’s energy 20 

balance.  21 

  22 
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The problem 23 

When an energy imbalance is imposed, such as by adding a greenhouse gas to the atmosphere, 24 

the climate will shift in such a way to eliminate the energy imbalance.   This process is 25 

embodied in the traditional linearized energy balance equation: 26 

R = F + l Ts          (1) 27 

where the forcing F is an imposed energy imbalance, TS is the global average surface 28 

temperature, and l relates changes in TS to a change in net top-of-atmosphere (TOA) flux 29 

(Gregory et al., 2002; Dessler and Zelinka, 2014).  R is the resulting TOA flux imbalance from the 30 

combined forcing and response.  All quantities are deviations from an equilibrium base state, 31 

usually the pre-industrial climate. Equilibrium climate sensitivity (hereafter ECS, the equilibrium 32 

warming in response to a doubling of CO2) is equal to -F2xCO2/l, where F2xCO2 is the forcing from 33 

doubled CO2.   34 

Many investigators (e.g., Gregory et al., 2002; Annan and Hargreaves, 2006; Otto et al., 2013; 35 

Lewis and Curry, 2015; Aldrin et al., 2012; Skeie et al., 2014; Forster, 2016) have used Eq. 1 36 

combined with estimates of R, F, and Ts to estimate l: 37 

 l = ∆(R-F)/∆Ts          (2) 38 

where ∆ indicates the change between the start of the historical period (usually the mid to late 39 

nineteenth century) and a recent period.  These calculations result in values of l near  40 

-2 W/m2/K and appear to rule out ECS larger than ~4 K (Stevens et al., 2016).  The substantial 41 

likelihood of an ECS below 2 K implied by these calculations led the IPCC Fifth Assessment 42 

Report to extend their lower bound on likely values of ECS to 1.5 K (Collins et al., 2013). 43 

We test this energy balance methodology through a perfect model experiment consisting of an 44 

analysis of a 100-member ensemble of runs of the MPI Earth System Model, MPI-ESM1.1.  This 45 

is the latest coupled climate model from the Max Planck Institute for Meteorology and consists 46 

of the ECHAM6.3 atmosphere and land model coupled to the MPI-OM ocean model. The 47 

atmospheric resolution is T63 spectral truncation, corresponding to about 200 km, with 47 48 
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vertical levels, whereas the ocean has a nominal resolution of about 1.5 degrees and 40 vertical 49 

levels. MPI-ESM1.1 is a bug-fixed and improved version of the MPI-ESM used during CMIP5 50 

(Giorgetta et al., 2013) and nearly identical to the MPI-ESM1.2 (Mauritsen et al., 2018) model 51 

being used to provide output to CMIP6, except that the historical forcings are from the MPI-52 

ESM.  53 

Each of the 100 members simulates the years 1850-2005 (Fig. 1) and use the same evolution of 54 

historical natural and anthropogenic forcings.  The members differ only in their initial 55 

conditions —each starts from a different state sampled from a 2000-year control simulation. 56 

We calculate effective radiative forcing F for the ensemble by subtracting top-of-atmosphere 57 

flux R in a run with climatological sea surface temperatures (SSTs) and a constant pre-industrial 58 

atmosphere from average R from an ensemble of three runs using the same SSTs but the time-59 

varying atmospheric composition used in the historical runs (Hansen et al., 2005; Forster et al., 60 

2016).  The three-member ensemble begins with perturbed atmospheric states.  We estimate 61 

F2xCO2 using the same approach in a set of fixed SST runs in which CO2 increases at 1% per year, 62 

which yields a F2xCO2 value of 3.9 W/m2.   63 

We calculate l using Eq. 2 for each ensemble member, producing values ranging from -1.88 to  64 

-1.01 W/m2/K (5-95% range -1.63 to -1.17 W/m2/K), with an ensemble median of -1.43 W/m2/K 65 

(Fig. 2a).  In this calculation, ∆(R-F) and ∆TS are the average difference between the first and last 66 

decade of each run.  The spread in l depends to some extent on how the calculation is set up 67 

— if one used the difference between the averages of the first and last 20 years, for example, 68 

the range in l declines from 0.87 W/m2/K to 0.48 W/m2/K.  Using longer averaging periods does 69 

not further decrease the range. 70 

We also calculate ECS = -F2xCO2/l for each ensemble member, producing values ranging from 71 

2.08 to 3.87 K (5-95% range 2.39 to 3.34 K) (Fig. 2b), with an ensemble median of 2.72 K.  Thus, 72 

our analysis shows that l and ECS estimated from the historical record can vary widely simply 73 

due to internal variability. Given that we have only a single realization of the 20th century, we 74 

should not consider estimates based on the historical period to be precise — even with perfect 75 

observations. This supports previous work that also emphasized the impact of internal 76 
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variability on estimates of l and ECS (Huber et al., 2014; Andrews et al., 2015; Zhou et al., 2016; 82 

Gregory and Andrews, 2016). 83 

Previous researchers have questioned whether the historical record provides an accurate 84 

measure of l and ECS, and we can check this by comparing the ensemble values to ECS 85 

estimates from a 2xCO2 run of the MPI-ESM1.2, which is physically very close to MPI-ESM1.1.  86 

An abrupt 2xCO2 run yields an ECS of 2.93 K in response to an abrupt doubling of CO2 87 

(estimated by regressing years 100-1000 of a 1000-year run) — 8% larger than the ensemble 88 

median. This is in line with the 10% difference in ECS estimated by Mauritsen and Pincus (2017) 89 

to arise from the average CMIP5 model time-dependent feedback, but smaller than suggested 90 

in other recent studies of ECS in transient climate runs (e.g., Armour, 2017; Proistosescu and 91 

Huybers, 2017).  92 

Thus, there are a number of issues that need to be considered when interpreting estimates of l 93 

and ECS derived from the historical period.  In addition to the precision and accuracy issues 94 

discussed above, it also includes the large and evolving uncertainty in forcing over the 20th 95 

century (Forster, 2016), different forcing efficacies of greenhouse gases and aerosols (Shindell, 96 

2014; Kummer and Dessler, 2014), and geographically incomplete or inhomogeneous 97 

observations (Richardson et al., 2016).  98 

Why are estimates using the traditional energy balance approach imprecise? 99 

In this section, we explain the physical process by which internal variability leads to the large 100 

spread in l and ECS estimated from the ensemble.  We begin by observing that Eqs. 1 and 2 101 

parameterize R-F in terms of global average surface temperature, TS.  In model runs with strong 102 

forcing driving large warming, such as abrupt 4xCO2 simulations, there is indeed a strong 103 

correlation between these variables (e.g., Gregory et al., 2004).  However, because R-F in such 104 

runs is dominated by a monotonic trend, correlations will exist with any geophysical field that 105 

also exhibits a monotonic trend, regardless of whether there is a physical connection between 106 

the fields. Thus, one should not take the correlation between R-F and TS in these runs as 107 

proving causality.  108 
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If TS is a good proxy for the response R-F, we would expect to also see a correlation in 115 

measurements dominated by interannual variations. Observational data allow us to test this 116 

hypothesis.  We use observations of R from the Clouds and the Earth’s Radiant Energy System 117 

(CERES) Energy Balanced and Filled product (ed. 4) (Loeb et al., 2009), which cover the period 118 

March 2000 to July. 2017. Our sign convention throughout the paper is that downward fluxes 119 

are positive.  Temperatures come from the European Centre for Medium Range Weather 120 

Forecasts (ECMWF) Interim Re-Analysis (ERAi) (Dee et al., 2011).  We assume forcing changes 121 

linearly over this time period and account for it by detrending ∆R and ∆T anomaly time series 122 

using a linear least-squares fit to remove the long-term trend.  123 

These data show that ∆R is poorly correlated with ∆Ts in response to interannual variability (Fig. 124 

3a), as has been noted many times in the literature; see, e.g., Sect. 5 of Forster (2016).  In 125 

particular, the low correlation coefficient tells us that ∆TS explains little of the variance in ∆R.  126 

Using explicit estimates of forcing or other temperature datasets (e.g., MERRA-2) yield the 127 

same result.   128 

GCMs that submitted output to the 5th phase of the Coupled Model Intercomparison Project 129 

(CMIP5) (Taylor et al., 2012) also show this poor correlation.  To demonstrate this, we have 130 

calculated the correlation coefficient between ∆TS and ∆R in CMIP5 pre-industrial control runs 131 

(these are runs for which forcing F = 0).  To facilitate comparison with the CERES data, as well as 132 

avoid any issues with long-term drift in the control runs, we break each run into 17-year 133 

segments to match the length of the CERES data and calculate the correlation coefficient of 134 

monthly anomalies of ∆R and ∆TS for each segment. Fig. 4 shows that the correlation between 135 

∆R and ∆TS in the models is similar to that from the CERES analysis. 136 

Recent work provides an explanation: the response of ∆(R-F) to a particular ∆TS is determined 137 

not only by the global average magnitude, but also by the pattern of warming (Armour et al., 138 

2013; Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016, 2017; Andrews and 139 

Webb, 2018). During El Nino cycles that dominate the observations in Fig. 3, the spatial pattern 140 

of warm and cool regions changes, leading to responses in ∆(R-F) that do not scale cleanly with 141 

∆TS — something Stevens et al. (2016) refer to as “pattern effects” 142 
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To demonstrate how this also generates the spread in l in the model ensemble (Fig. 2a), we 145 

calculate the local response lr in three equal-area regions (90°S-19.4°S, 19.4°S-19.4°N, 19.4°N-146 

90°N).  We define lr as the regional analog to l (Eq. 2): 147 

lr = ∆(R-F)r/∆TS,r        (3) 148 

where the “r” subscript indicates a regional average value.   149 

We find that lr varies between the regions (Fig. 5). This means that different ensemble 150 

members with similar global average ∆TS but different patterns of surface warming produce 151 

different values of global average ∆(R-F), thereby leading to spread in the estimated l among 152 

the ensemble members.  We also see strong variability in lr within each region, suggesting that 153 

how the warming is distributed within the region also drives some of the spread in estimated l 154 

in the ensemble. 155 

This explanation is consistent with analyses showing that l changes during transient runs as the 156 

pattern of surface temperature evolves (Senior and Mitchell, 2000; Armour et al., 2013; 157 

Andrews et al., 2015; Gregory and Andrews, 2016; Stevens et al., 2016).  In our model 158 

ensemble, however, the pattern changes are caused by internal variability rather than differing 159 

regional heat capacities that cause some regions to warm more slowly than others during 160 

forced warming. 161 

A better way to describe energy balance 162 

Our analysis demonstrates limitations of the conventional energy balance framework (Eq. 1). It 163 

has been previously noted that ∆R correlates better with tropospheric temperatures than ∆TS 164 

(Murphy, 2010; Spencer and Braswell, 2010; Trenberth et al., 2015). Recent analyses have also 165 

stressed the importance of atmospheric temperatures — through its influence on lapse rate — 166 

as providing a fundamental control on the planet’s energy budget (Zhou et al., 2016; Ceppi and 167 

Gregory, 2017).  Based on this, we test a new energy balance framework constructed using the 168 

temperature of the tropical atmosphere: 169 
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 R - F = Q TA        (4) 170 

where TA is the tropical average (30°N-30°S) 500-hPa temperature and Q relates this quantity to 171 

R-F.  R and F are the same global average quantities they were in equation 1.  ECS can be 172 

expressed in terms of Q: 173 

ECS= − ∆'(×CO2
,

-./
-.0

       (5) 174 

where ∆TS and ∆TA are the equilibrium changes in these quantities in response to doubled CO2. 175 

The CMIP5 ensemble average ratio ∆TS/∆TA is 0.86±0.10 (±1s), where ∆ represents the average 176 

difference between the first and last decades of the abrupt 4xCO2 runs.  177 

Support for Eq. 4 can be found in the observations: ∆R shows a tighter correlation with ∆TA than 178 

with ∆TS in observations (Figs. 3a vs. 3b).  CMIP5 models also show this (Fig. 4).  Given that the 179 

slope of these plots can be taken as estimates of Q and l, the tighter correlation leads to more 180 

accurate estimates of Q than l, both in absolute and relative terms.   181 

Turning to the model ensemble, we next demonstrate that Q is a more precise metric than l.  182 

We do this by calculating Q [= ∆(R-F)/∆TA] in each ensemble member, yielding values ranging 183 

from -1.18 to -0.89 W/m2/K (5-95% range -1.16 to -0.92 W/m2/K), with an ensemble median of  184 

-1.04 W/m2/K (Fig. 2a).  There is clearly less variability in Q among the ensemble members than 185 

for l.  This reflects less variability in the regional response Qr (= ∆(R-F)r/∆TA,r) than in lr (Fig. 5), 186 

as well as less variability within the regions.  We therefore conclude that interannual variability 187 

has less of an impact on Q than l.  We show additional evidence for the superior precision of Q 188 

in the Appendix. 189 

As far as accuracy goes, we can compare Q in the ensemble over the historical period to Q in 190 

response to much larger warming.  The ensemble median of Q from the historic period (Fig. 2),  191 

-1.04±0.01 W/m2/K (5-95% confidence interval), is close to the value obtained from an analysis 192 

of the first 150 years of an abrupt 4xCO2 run of the same model, Q = -1.03±0.04 W/m2/K, as 193 

well as Q calculated from all 2600 years of this run, Q = -1.00±0.01 W/m2/K (values from the 194 

4xCO2 runs are all obtained using the Gregory method (Gregory et al., 2004) using annual 195 
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average R and temperatures).  On the other hand, l changes substantially in the 4xCO2 run as 201 

the climate warms: l = -1.36±0.07 W/m2/K when calculated from the first 150 years, but l =  202 

-0.95±0.01 W/m2/K from all 2600 years of that run.  203 

We can verify this result in the CMIP5 abrupt 4xCO2 ensemble.  It has been previously 204 

demonstrated that plots of R-F vs. TS do not trace straight lines as the climate warms (Andrews 205 

et al., 2015; Rugenstein et al., 2016; Rose and Rayborn, 2016; Armour, 2017), so l and ECS 206 

calculated in a single model run may depend on the portion of the run selected.  In the CMIP5 207 

abrupt 4xCO2 ensemble, for example, average l calculated by regressing years 10-30 (l10-30) is 208 

more negative than l calculated from years 30-150 (l30-150) by 0.49 W/m2/K (Fig. 6).   209 

Several explanations for this have been advanced, most prominently that l is function of the 210 

pattern of surface warming (Senior and Mitchell, 2000; Armour et al., 2013; Andrews et al., 211 

2015; Gregory and Andrews, 2016; Zhou et al., 2016; Stevens et al., 2016).  Using Q largely 212 

eliminates this pattern effect: Q10-30 and Q30-150 have an average difference of 0.13 W/m2/K for 213 

the CMIP5 ensemble (Fig. 6).  Thus, we find additional evidence that Q tends to be similar for 214 

different amounts and patterns of warming.  215 

The lack of curvature in the Q calculations means there is curvature in the relation between TA 216 

and TS in the models.  Thus, the pattern effect’s impact on ECS calculations shifts from l in the 217 

traditional framework to the ∆TS/∆TA term in Eq. 4.  This also emphasizes the need to improve 218 

our understanding of the factors that control ∆TS/∆TA, as well as how future patterns of surface 219 

warming will evolve.   220 

There are several plausible reasons why TA may control R better than TS.  It seems likely that 221 

several of the feedbacks — e.g., lapse rate, water vapor, longwave cloud — should be more 222 

strongly influenced by atmospheric temperatures than TS.  More recently, it has been shown 223 

that atmospheric temperatures also play a key role in regulating low clouds (Zhou et al., 2016, 224 

2017), thereby influencing the shortwave cloud feedback.  This is also consistent with Ceppi et 225 

al. (2017), who identified a dependence of ECS on atmospheric stability in models.  We have 226 

not further investigated this — ultimately, our use of TA in Eq. 4 is based on observations 227 

Deleted: .  228 

Deleted: 50229 

Deleted: 6230 



 10 

(Murphy, 2010; Spencer and Braswell, 2010; Trenberth et al., 2015) that it correlates well with 231 

R.  Other metrics, such as global average atmospheric temperature work almost as well.  232 

Clearly, further investigations on how to best describe the Earth’s energy balance are 233 

warranted. 234 

Finally, one of our ultimate goals for this revised framework is to help produce better estimates 235 

of ECS.  We are working on a detailed analysis of ECS based on this framework and will publish 236 

that in a follow-on paper, but we briefly show here how the advantages of the revised energy 237 

balance framework may be leveraged to do this.  Fig. 7a shows Q calculated from control runs 238 

of 25 CMIP5 models.  To calculate Q in the control runs, we break each control run into 17-year 239 

segments and calculate monthly anomalies of ∆R and ∆TA during each segment.  Then, we 240 

calculate Q for each segment as the slope of the regression of ∆R vs. ∆TA for that segment.  241 

Thus, for each control run, we generate a large number of estimates of Q. The value in Fig. 7a is 242 

the average of these individual values. 243 

Fig. 7b shows the ECS of these models, calculated from the first 150 years of the abrupt 4xCO2 244 

runs using the Gregory method.  If we assume that models with more accurate simulation of 245 

short-term Q produce more accurate estimates of ECS (Brown and Caldeira, 2017; Wu and 246 

North, 2002), then we can use Figs. 7a and 7b to constrain ECS.  We find that the 15 models 247 

whose average short-term Q falls within the uncertainty of Q estimated from CERES 248 

observations have ECS values ranging from 2.0-3.9 K, with an average of 2.9 K.  This excludes 249 

many of the highest ECS models, a result consistent with other analyses (Cox et al., 2018; Lewis 250 

and Curry, 2015). 251 

It would not have been possible to draw this conclusion with the conventional energy balance 252 

framework. Fig. 7c shows the comparison between l from the control runs (calculated the 253 

same way Q was calculated) and CERES observations.  Because of the much larger uncertainty 254 

in the observational estimate of short-term l, almost all models fall within the observational 255 

range, thereby prohibiting any constraint on the ECS range. 256 
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It may also be possible to use the relation between short-term and long-term Q as an emergent 260 

constraint to convert short-term observations to the long-term response.  There is some scatter 261 

in the relation in the CMIP5 ensemble, however, so more analysis of how these relate is likely 262 

required before ECS can be constrained in this way. 263 

Conclusions 264 

We have estimated ECS in each of a 100-member climate model ensemble using the same 265 

energy-balance constraint used by many investigators to estimate ECS from 20th-century 266 

historical observations.  We find that the method is imprecise — the estimates of ECS range 267 

from 2.1 to 3.9 K (Fig. 2), with some ensemble members far from the model’s true value of 2.9 268 

K.  Given that we only have a single ensemble of reality, one should recognize that estimates of 269 

ECS derived from the historical record may not be a good estimate of our climate system’s true 270 

value.   271 

The source of the imprecision relates to the construction of the traditional energy balance 272 

equation (Eq. 1).  In it, the response of TOA net flux (R-F) is parameterized in terms of global 273 

average surface temperature (TS).  Recent research has suggested that the response is not just 274 

determined by the magnitude of TS, but includes other factors, such as the pattern of TS (e.g., 275 

Armour et al., 2013; Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2017) or the 276 

lapse rate (e.g., Zhou et al., 2017; Ceppi and Gregory, 2017; Andrews and Webb, 2018).  As a 277 

result, two ensemble members with the same ∆TS can have different climate responses, ∆(R-278 

F), leading to spread in the inferred l.  279 

The lack of a direct relationship between TS and radiation balance suggests that it may be 280 

profitable to investigate alternative formulations. We test parameterizing the response in terms 281 

of 500-hPa tropical temperature (Eq. 4) and find that it is superior in many ways.  Ultimately, 282 

how investigators describe the energy balance of the planet will depend on the problem and 283 

the available data.  The surface temperature is indeed special, so the traditional framework 284 

may be preferred for some problems.  But investigators may find that the alternatives are 285 

superior for certain problems, for instance constraining Earth's climate sensitivity. 286 

Deleted: this suggests that some skepticism is appropriate 287 
when considering288 
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Appendix 289 
It has been previously noted in analyses of the historical record that l exhibits significant 290 

interdecadal variability (Andrews et al., 2015; Gregory and Andrews, 2016; Zhou et al., 2016).  291 

We can reproduce this in a 2000-year control run (a run with fixed pre-industrial boundary 292 

conditions) of the MPI-ESM1.1 model.  Fig. 8 shows l calculated in a sliding 17-year window 293 

and confirms significant temporal variability in l.  We can similarly calculate Q and find that 294 

temporal variability in Q is substantially smaller (Fig. 8).  295 

This result is reproduced in the CMIP5 control models.  Fig. 9 plots the standard deviation of 296 

each CMIP5 model’s set of short-term l divided by the standard deviation of that model’s set of 297 

short-term Q (as described previously, we calculate time series of short-term l and Q values for 298 

each model by regressing anomalies in a 17-year sliding window of the control runs).  All of the 299 

models fall above 1, demonstrating that there is less variability in the Q time series than in the 300 

l time series in every climate model.  This confirms that Q is more robust with respect to 301 

internal variability than l. It also suggests that Q estimated from the satellite data (Fig. 3) 302 

should be considered a better estimate of the climate system’s long-term value than l 303 

estimated from the same data set. 304 
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 426 

Fig. 1. Plot of annual and global average surface temperature from the 100 members of the 427 

MPI-ESM1.1 ensemble (colored lines), along with the GISTEMP measurements (Hansen et 428 

al., 2010) (white line).  Temperatures are referenced to the 1951-1980 average. 429 

 430 

 431 

Figure 2. PDFs of (a) l (lighter) and Q (darker) and (b) ECS derived from the members of the 432 

MPI-ESM1.1 historical ensemble. The vertical lines are the 5th, 50th, and 95th percentile of each 433 

distribution.  434 
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 435 

Figure 3. Scatter plot of detrended monthly anomalies of ∆R vs. (a) global average surface 436 

temperature ∆TS, (b) tropical average 500-hPa temperature ∆TA. Observations cover the period 437 

March 2000-July 2017 and anomalies are deviations from the mean annual cycle.  The dashed 438 

lines are ordinary least-squares fits; the slope, 5-95% confidence interval, and correlation 439 

coefficient are shown on each panel.  Confidence intervals account for autocorrelation of the 440 

time series (Santer et al., 2000).   441 
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 445 

Fig. 4. Correlation coefficients between ∆R and temperature in CMIP5 control runs: black 446 

and red symbols represent the correlation with ∆TS and ∆TA, respectively.  The dot is the 447 

average of the correlation coefficients from the 17-year segments of the model run; the 448 

bars indicate the maximum and minimum values from the control run.  The dashed lines 449 

are the corresponding correlation coefficients from the CERES regressions in Fig. 2. 450 
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 459 

 460 

Fig. 5. lr and Q r calculated as regional average ∆(R-F) divided by regional average temperature 461 

(∆TS for l and ∆TA for Q).  The regions are 90°S-19.4°S (SH), 19.4°S-19.4°N (EQ), and 19.4°N-462 

90°N (NH).  The values are calculated for each member of the 100-member ensemble; the solid 463 

symbols are the ensemble average while the bars show the 5-95% range.   464 

 465 

Fig. 6. Scatterplot of l10-30 vs. l30-150 (red circles) in CMIP5 abrupt4xCO2 runs, as well as  466 

Q10-30 vs. Q30-150 (black triangles) in the same models.  Each point represents one model.  467 

The dotted line is the 1:1 line.  The subscripts (10-30, 30-150) indicate the years of the run 468 

from which the values are calculated. 469 
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 472 

Figure 7.  (a) Q from individual CMIP5 control runs.  The dotted line is the estimate from 473 

CERES observations; the gray region is the 5-95% confidence band. (b) ECS from each 474 

CMIP5 model, estimated from the first 150 years of abrupt 4xCO2 runs using the Gregory 475 

method (Gregory et al., 2004). “Good” models are those whose Q agrees with observations 476 

in panel (a), “bad” models are those that do not.  (c) Same as panel (a), but for l. 477 
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 480 

Fig. 8. (a) Time series of l (gray) and Q (black) estimated in a 17-year sliding window of a 481 

2000-year control run of the MPI-ESM1.1.  (b) PDFs of the time series in panel a. Median 482 

and 5-95% confidence interval for each distribution is displayed on the plot. 483 
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 485 

Fig. 9. The standard deviation of the l time series divided by the standard deviation of the 486 

Q time series.  Each time series is calculated from 17-year segments of CMIP5 control runs. 487 

The dotted line is the ensemble average. 488 
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