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lower troposphere that exceed those arising from meteorological uncertainties only in boreal summer. 

3. The flux inversion constrained by in situ data better agrees (by 0.5 ppm) with independent observations on the 
global annual scale compared to the inversion constrained with GOSAT observations but the inversion with 
GOSAT data better captures the seasonal cycle of CO2 at northern extratropical TCCON sites. 15 

 
Keywords:  data assimilation, carbon dioxide, GOSAT, CO2 flux estimation, greenhouse gas sources and sinks, HIPPO, 

HIAPER Pole-to-Pole Observations, National ScienceFoundation, NSF, NSF/NCAR Gulfstream-V (GV). 

  

mailto:saroja.polavarapu@canada.ca


2 

 

 

Abstract.   

Posterior fluxes obtained from inverse modeling are difficult to verify because there is no dense network of flux 

measurements available to evaluate estimates against. Here we present a new diagnostic to evaluate structures in posterior 

fluxes. First, we simulate the change in atmospheric CO2 fields between posterior and prior fluxes, referred to as the 5 

posterior atmospheric adjustments due to updated fluxes (PAAF). Second, we calculate the uncertainty in atmospheric CO2 

fields due solely to uncertainty in the meteorological fields, referred to as the posterior atmospheric adjustments due to 

imperfect meteorology (PAAM). We argue that PAAF can only be considered robust if it exceeds PAAM, that is, the 

changes in atmospheric CO2 between the posterior and prior fluxes should at least exceed atmospheric CO2 changes arising 

from imperfect meteorology. This diagnostic is applied to two CO2 flux inversions: one which assimilates observations from 10 

the in situ CO2 network and the other which assimilates observations from the Greenhouse Gas Observing SATellite 

(GOSAT). On the global scale, PAAF in the troposphere reflects northern extratropical fluxes whereas stratospheric 

adjustments primarily reflect tropical fluxes. In general, larger spatiotemporal variations in PAAF are obtained for the 

GOSAT inversion than the in situ inversion.  Zonal standard deviations of the PAAF exceed the PAAM through most of the 

year when GOSAT observations are used, but the minimum value is exceeded only in boreal summer when in situ 15 

observations are used. Zonal spatial structures in GOSAT-based PAAF exceed PAAM throughout the year in the tropics and 

through most of the year in the northern extratropics, suggesting GOSAT flux inversions can constrain zonal asymmetries in 

fluxes. However, we cannot discount the possibility that these structures are influenced by biases in GOSAT retrievals. 

Verification of such spatial structures will require a dense network of independent observations. 

  20 
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1 Introduction 

Flux inversion systems have become useful tools for understanding the global carbon budget as evidenced by their presence 

in Intergovernmental Panel on Climate Change (IPCC) reports (Ciais et al., 2013).  However, even with the expansion of the 

near surface in situ network, limitations remain in the ability to retrieve regional-scale fluxes (Bruhwiler et al., 2011).   Thus, 

with the promise of retrieving fluxes with higher spatial resolution, the first satellite missions dedicated to greenhouse gas 5 

measurements from space were launched: the Greenhouse gas Observing SATellite (GOSAT) in 2009 (Kuze et al., 2009) 

and the Orbiting Carbon Observatory (OCO-2) (Crisp et al., 2015; 2017) in 2014.  The expectation was that not only should 

space-based measurements of column integrated CO2 offer better spatial coverage, but the column amount should be less 

sensitive to modelling errors associated with the Planetary Boundary layer (PBL) and its representativeness should better 

correspond to that of coarse model grids (Keppel-Aleks, 2011).  This occurs because mainly long range fluxes are seen in 10 

column data whereas both local and long-range flux signals are seen by surface in situ observations (Keppel-Aleks et al., 

2011).  Thus, space-based measurements of column integrated CO2 offered the promise of alleviating some of the challenges 

associated with the assimilation of near surface in situ measurements in flux inversion systems.  However, that promise has 

yet to be realized.  Regional flux estimates have not been robust (e.g. Maksyutov et al., 2013; Basu et al., 2013; Chevallier et 

al., 2014; Deng et al., 2014, Houweling et al., 2015) and they are sensitive to biases in satellite retrievals (Basu et al., 2013, 15 

Deng et al., 2014, Takagi et al., 2014).  Retrieved uptake by the European biosphere is twice as large in GOSAT inversions 

compared to in situ inversions (Reuter et al., 2014; 2017), with many studies finding such increased sinks (Houweling et al., 

2015; Feng et al., 2016).  It has been suggested that the GOSAT-based inversions shift some uptake from North Africa to 

Europe which reduces the north-south gradient in CO2 and reduces agreement with observations (Houweling et al., 2015).  

The issue may also be due to the impact of nonlocal observations in flux inversion systems since biases in upstream CO2 20 

contribute 60-90% of the European sink (Feng et al., 2016). On the other hand, the uneven spatial coverage of the in situ 

network  may also be playing a role in the discrepancy. Bruhwiler et al. (2011) found that the inclusion of newer European 

sites results in a large rebalancing of uptake from Europe to boreal Eurasia in comparison to an inversion with existing older 

sites. Kim et al. (2016) found that after adding Siberian in situ measurements to their inversion system, the carbon uptake in 

Europe was enhanced while it decreased in the Eurasian boreal TransCom region. The point is that within the context of flux 25 

inversion systems, this new type of measurement poses new challenges.  These challenges are related to aspects of the data 

specific to satellite column measurements.  For example, biases arise from sampling only clear skies (Corbin et al., 2009; 

Parazoo et al., 2012) and from the seasonal variation of observational coverage (Liu et al., 2014; Byrne et al., 2017).  At the 

same time, model transport errors remain an issue for inversions using column measurements.  Model errors in simulating 

boundary layer mixing are still important for assimilating column measurements (Lavaux and Davis, 2014), isentropic 30 

transport needs to be correctly modelled (Parazoo et al., 2012; Barnes et al. 2016) and model biases in the high latitude upper 

troposphere can impact the north-south distribution of fluxes (Deng et al., 2015).  Thus, it is important to get not only the 

https://agupubs-onlinelibrary-wiley-com.myaccess.library.utoronto.ca/doi/full/10.1002/2016JD026164#jgrd53902-bib-0004


4 

 

low level vertical gradients correct in the transport model, but also the upper tropospheric and lower stratospheric 

distributions that the satellites are sensitive to.  Ultimately, the best network will combine surface and satellite measurements 

(Baker et al., 2006, Basu et al., 2013, Lavaux and Davis, 2014).  The question is how to use the different types of 

observations to their strengths within a given data assimilation system. 

The goal of this work is to improve our understanding of how the different types of CO2 observing systems can inform 5 

model simulations of CO2 by (1) examining the imprint of inversion flux corrections in atmospheric CO2 and (2)  

determining if this imprint is larger than CO2 changes that arise solely from meteorological uncertainties. The imprint of flux 

corrections in atmospheric CO2 can be found by simulating the change in atmospheric CO2 fields between posterior and prior 

fluxes, which we refer to as the posterior atmospheric adjustments due to updated fluxes (PAAF).  

The PAAF assumes that the meteorological fields are known exactly.  However, there are known to be significant 10 

uncertainties in meteorological fields.  For instance, Liu et al., (2011) estimate the uncertainty due to meteorology as 1.2–3.5 

ppm at the surface and 0.8–1.8 ppm in a column mean CO2 fields. This level of uncertainty can be calculated using an online 

weather and greenhouse gases transport model. Meteorological observations can be assimilated into the analysis to produce 

an error estimate in atmospheric transport (using an ensemble Kalman filter in our set-up). From this error estimate one can 

quantify a minimum level of uncertainty in CO2 distributions arising from imperfect knowledge of wind fields, referred to as 15 

posterior atmospheric adjustments due to imperfect meteorology (PAAM). If PAAF is larger than PAAM it implies that the 

change in atmospheric CO2 is robust against uncertainties in meteorological fields. Thus, we argue that atmospheric CO2 

adjustments due to retrieved fluxes should at least exceed the minimum level of uncertainty in CO2 distributions arising from 

imperfect knowledge of wind fields for subsequent model intercomparisons to be meaningful. 

To illustrate the utility of this new diagnostic, we compare the 3-D structure of the (PAAFs) estimated from the in situ 20 

observing network and from GOSAT.  Because satellite data are sensitive to the full column of CO2 concentrations, accurate 

forward model simulations throughout the troposphere and lower stratosphere are needed in order to be able to correctly 

attribute model-data mismatch to upstream surface fluxes.  Thus we focus on assessing posterior CO2 distributions at various 

heights by comparing to observations.  In addition, the spatio-temporal evolution of the PAAFs is examined through its 

global mean evolution, zonal mean structures, and zonal asymmetries. Two different tracer transport models, GEOS-Chem 25 

(http://geos-chem.org) and GEM-MACH-GHG (Polavarapu et al., 2016), are used to simulate the propagation of the PAAF. 

This allows an investigation of the sensitivity of our results to transport errors between the models. Furthermore, since GEM-

MACH-GHG is a coupled weather and greenhouse gases (GHG) transport model, we are able to determine uncertainties in 

our diagnostics that arise due to imperfections in meteorological analyses (PAAM).  Only when PAAF diagnostics exceed 

such minimum uncertainty levels do we find potential benefits of a given observing system. 30 

http://geos-chem.org/
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The article is organized as follows.  The experimental design is presented in section 2.  Here the observations used for 

assimilation and verification, the transport models and the flux inversion system, are all described.  Section 3 presents the 

results.  First the posterior fluxes are briefly compared (section 3.1) before the impact of posterior fluxes on CO2 

distributions is examined (section 3.2).  Diagnostics focus on variations of the PAAF on global scales and in three zonal 

bands.  Because PAAF cannot be directly verified, comparisons to independent observations of CO2 are also made, to inform 5 

the discussions of PAAF differences due to the different observing systems.  Section 4 summarizes the results and considers 

their implications and generality. 

2 The experimental design 

In order to understand how the PAAF retrieved from assimilating atmospheric observations propagates into the vertical, we 

must first perform some flux inversions.  There are two sets of flux inversions performed with the GEOS-Chem model and 10 

these are based on either the in situ observation network or on GOSAT column measurements.  In order to assess the quality 

of the CO2 distributions from the two observing systems, we compare posterior CO2 distributions to independent 

measurements that contain some information about the vertical distribution of CO2, namely, aircraft profiles from 

measurement campaigns, routine NOAA aircraft profiles and the ground-based column measurement network. These 

comparisons will inform subsequent discussions of PAAF.  Section 2.1 describes the observation systems used in the flux 15 

inversions as well as those used for validation of modelled CO2 distributions.  The models used are presented in section 2.2.  

The posterior atmospheric adjustment and its components (PAAF, PAAM) are defined mathematically  in section 2.3 while 

section 2.4 explains how they are computed. 

2.1 The observations 

The in situ observation network primarily consists of CO2 mixing ratios measured by a nondispersive infrared absorption 20 

technique applied to air samples collected in glass flasks at the NOAA ESRL Carbon Cycle Cooperative Global Air 

Sampling Network sites (Conway et al., 2011) and at the Environment and Climate Change Canada (ECCC) sampling sites. 

We use the same 72 NOAA sites and 6 ECCC sites that were used by Deng et al. (2014). Figure 1 shows the approximate 

distribution of the insitu observations, as well as the validating observations (described below).  Since observing stations 

may have missing data or may start or stop during the period of interest, the figure is only meant to provide a general idea of 25 

the spatial distribution of the in situ observation network.  While the coverage is global, the density of the stations is sparse, 

particularly in the tropics and southern hemisphere.  On the other hand, the measurements are accurate, to better than 0.2 

ppm (Tans and Thoning, 2016).  The CO2 measurements reflect the influence of local as well as remote sources (Keppel-

Aleks et al., 2012; Byrne et al., 2017).  
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The satellite data used this paper are version b3.4 of the NASA Atmospheric CO2 Observations from Space (ACOS) 

GOSAT XCO2 product, spanning July 2009 to December 2011, and have been bias corrected (Osterman et al., 2013). The 

ACOS retrievals employ an optimal estimation approach to infer atmospheric profile abundances of CO2, from which XCO2 

is calculated. The details of the retrieval are described in O’Dell et al. (2012).  Takagi et al. (2014) and Deng et al. (2014) 

showed that the biases of different versions of GOSAT products impact regional flux estimates but Deng et al. (2016) found 5 

that version b3.4 inferred fluxes result in CO2 distributions that compare well to independent measurements.  Hence, the 

XCO2 data used here are exactly those used in Deng et al. (2016).  In addition, Deng et al. (2016) found that assimilating 

ocean glint measurements in addition to land nadir measurements results in generally improved agreement with independent 

observations and so both types of GOSAT data are used here also.  Figure 2 shows that, in contrast to the fixed locations of 

the ground-based in situ observations, satellite observations have a seasonal variation.  In particular, in boreal summer when 10 

CO2 uptake by the terrestrial biosphere in the Northern Hemisphere dominates the global CO2 evolution, observations are 

dense.  In austral summer, the satellite’s observational coverage shifts southward and the southern midlatitudes is observed 

well.  Throughout the year, ocean glint measurements observe the tropical oceans and improve the estimation of tropical 

fluxes (Deng et al., 2016). 

Since posterior atmospheric adjustments are not directly verifiable, the impact of the inversion results on CO2 distributions 15 

are evaluated by comparing posterior CO2 fields with atmospheric CO2 observations from the Total Carbon Column 

Observing Network (TCCON) (http://tccon.ornl.gov/ ) (Wunch et al., 2011). At the TCCON sites, solar-viewing ground-

based Fourier transform spectrometers are used to measure high-resolution spectra (0.02 cm-1) in the near infrared (3800–

15,500 cm-1), from which XCO2 is retrieved. For the comparisons, we use observations from the current TCCON GGG2014 

data set from 14 different sites (Blumenstock et al., 2014; Deutscher et al., 2014; Griffith et al., 2014a,b; Hase et al., 2014; 20 

Kivi et al., 2014; Notholt et al., 2014; Sherlock et al., 2014; Strong et al., 2014; Sussmann and Rettinger 2014; Warneke et 

al., 2014; Wennberg et al., 2014a,b).  While total column measurements can indicate the quality of modelled CO2 

simulations throughout the troposphere, they do not provide information on vertical distributions.  For a more direct 

indication of model performance in the middle and upper troposphere, we also evaluate the inversions using aircraft data 

from the HIAPER Pole-to-Pole Observations (HIPPO) aircraft campaign (http://hippo.ornl.gov/) as well as NOAA aircraft 25 

profiles (Sweeney et al., 2015).  Specifically, the 10 s averaged data from the HIPPO-3 campaign (Wofsy et al., 2012, 2011) 

are used for 24 March to 16 April 2010.  The NOAA aircraft profiles were limited to flights over Canada and the continental 

U.S. during 2010.  The model comparisons to TCCON, HIPPO and NOAA aircraft profiles will be used to inform the 

discussions of posterior atmospheric adjustments in section 3. 

http://tccon.ornl.gov/
http://hippo.ornl.gov/
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2.2 The models 

2.2.1 The GEOS-Chem inversion system 

The GEOS-Chem 4-dimensional variational (4D-Var) data assimilation system was used to estimate global regional CO2 

fluxes. The GEOS-Chem global 3-dimensional chemical transport model is driven by assimilated meteorological 

observations from the Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling Assimilation Office 5 

(GMAO). The model configuration is the same as that used in Deng et al. (2014). The horizontal resolution of the model is 

4° x 5°, with 47 vertical levels extending from the surface to 0.01 hPa. The prior CO2 fluxes, as described in Deng et al. 

(2014), include CO2 fluxes from fossil fuel combustion and cement production from the Carbon Dioxide Information 

Analysis Center (CDIAC) (Andres et al., 2011), monthly mean shipping emissions of CO2 from the International 

Comprehensive Ocean-Atmosphere Data Set (ICOADS) (Corbett, 2004; Corbett and Koehler, 2003; Endresen et al., 2004; 10 

Endresen et al., 2007) , 3-D aviation CO2 emissions (Friedl, 1997; Kim et al., 2007; Wilkerson et al., 2010), a climatology of 

monthly mean ocean-atmosphere CO2 flux by Takahashi et al. (2009), biofuel CO2 emission based on Yevich and Logan 

(2003), and monthly mean biomass burning CO2 emissions from the Global Fire Emissions Database version 3 (GFEDv3) 

from van der Werf et al. (2010). The model includes 3-hourly Terrestrial ecosystem exchange from the Boreal Ecosystem 

Productivity Simulator (BEPS) (Chen et al., 2012), which was driven by NCEP reanalysis data (Kalnay et al., 1996) and 15 

remotely sensed leaf area index (LAI) (Deng et al., 2006). The annual terrestrial ecosystem exchange imposed in each grid 

box is neutral (Deng and Chen, 2011). 

Two sets of inversions were performed using the two different observing networks for the 1 July 2009 to 30 June 2011 

period (Figure 3).  The first six months are treated as a spin up period and we mainly consider the estimated fluxes for 

January 2010 – July 2011. The initial 3-D CO2 mixing ratio fields were generated by running the model from January 1996 20 

to December 2007 without assimilating any data, and then by assimilating surface CO2 flask data from January 2008 to July 

2010, following Deng et al. (2014). The optimized CO2 mixing ratio field at 00:00 UTC on 1 July 2009, was used as the 

initial CO2 field for the inversion analysis. As described in Deng et al. (2014), in assimilating the GOSAT data the model is 

transformed using the averaging kernels and prior CO2 profiles from the XCO2 retrievals. The assimilation did not account 

for horizontal correlations in the observation and prior error covariance matrices.  The uncertainties applied to the GOSAT 25 

and in situ data are the same as in Deng et al. (2016) and Deng et al. (2014), respectively.  Specifically, the reported XCO2 

retrieval uncertainties were inflated by 1.90 over land and 1.02 over ocean.  Uncertainties applied to in situ data were 

determined from model-observation statistics for each site. Prior flux uncertainties are 16%, of fossil fuel emissions and 38% 

of biomass burning per gridbox per month.  An uncertainty of 44% is assumed for the ocean flux and a 22% uncertainty is 

assigned to both the gross primary production and total ecosystem respiration per 3h per gridbox. Detailed explanations for 30 

these choices are found in Deng et al. (2014; 2016). Each set of inversions used a different assimilation window: 18 months 
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for the insitu network but 12 months for the GOSAT network.  This difference is necessitated by the different data densities.  

With the sparse insitu network, sufficient time is needed to collect enough observations to determine upstream fluxes, 

therefore, we use, an 18-month window as in Deng et al. (2014).  However, with the more dense GOSAT observations 

(Figure 2), flux perturbationss have a greater chance of being observed quickly after injection into the atmosphere so a 

shorter window will suffice.  Thus we used a 12-month assimilation window for the GOSAT inversion, as in Deng et al. 5 

(2016).  Differences in the two inversion setups are inevitable because some parameters must necessarily differ (such as 

observation and representativeness error variances for the two measurement types).  So, choosing exactly the same setup for 

both would force one system (and observation network) to be unfairly disadvantaged.  Moreover, our intention is to examine 

the fluxes retrieved from what we believe to be the “best” configuration for each.   

2.2.2 The GEM-MACH-GHG model 10 

GEM-MACH-GHG is a global, coupled weather and greenhouse gas prediction model with approximately 0.9° horizontal 

grid spacing and 80 vertical levels spanning the ground to the mesosphere (0.01 hPa).  It is derived from the operational 

weather forecast model used for global and regional predictions by the Canadian Meteorological Centre and is described in 

detail in Polavarapu et al. (2016).  A semi-Lagrangian advection scheme is used for meteorology and constituent transport.  

For the latter, a global mass fixer was implemented.  Convective transport of tracers through the deep convection scheme of 15 

Kain and Fritsch (Kain and Fritsch, 1990; Kain, 2004) was also implemented.  The same initial condition used by GEOS-

Chem was regridded to GEM-MACH-GHG’s grid.  Because of the large differences in model resolution and topography, the 

global air masses in the two models differ so forcing mass conservation during the regridding process introduced local 

differences.  In particular, the GEM-MACH-GHG initial condition has a bias of about 0.5 ppm in the southern hemisphere. 

Since all model integrations use the same initial conditions, diagnostics involving a difference in model integrations (section 20 

2.3) are not affected by the initial state differences between the two models. The posterior fluxes from the GEOS-Chem 

assimilation are inserted every model time step with 3 h updates.  Note that posterior fluxes contain the total of all optimized 

(GPP, Respiration, ocean, biomass burning and anthropogenic) fluxes and the small amount of un-optimized fossil fuel 

emissions from shipping (~0.19 PgC/yr) and aviation (~0.16 PgC/yr).  Since GEM-MACH-GHG does not yet have the 

ability to insert 3-dimensional emissions as GEOS-Chem does, the aircraft emissions were not inserted.  This will lead to an 25 

underestimate in global CO2 of less than 0.1 ppm per year.  

2.3 The posterior atmospheric adjustment 

In this section, we introduce a new diagnostic for flux inversion results.  To do this, we first mathematically define the 

posterior atmospheric adjustment and show that, in general, it is comprised of a number of components.  In our work, we 

will compute two of these components: the component due to flux adjustments and that due to meteorological uncertainty.  30 
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By comparing these two components we can determine which is the dominant one.  In particular, we are interested in 

identifying when changes in CO2 fields introduced by flux analysis increments exceed CO2 changes obtained from random 

perturbations on the size and shape of meteorological analysis errors.  When this does not occur, CO2 adjustments due to 

fluxes are smaller than those due to transport error and are therefore not robust against transport error. 

Consider a transport model: 5 
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𝑐𝑛 = 𝑇�𝑥0,𝑛−1, 𝑐0, 𝑠0,𝑛−1�    (1) 

where 𝑇 is the transport model which evolves the constituent (c) from time step 0 to time step n and which depends on the 

meteorological states, 𝑥0,𝑛−1 , the constituent initial condition, 𝑐0 , and the fluxes, 𝑠0,𝑛−1 .  This same transport model is 

integrated twice: once with a set of prior fluxes, 𝑠0,𝑛−1
𝑏 , and a second time with the posterior fluxes, 𝑠0,𝑛−1

𝑎 .  The posterior 

fluxes are related to the prior fluxes as follows. 5 

𝑠0,𝑛−1
𝑎 =  𝑠0,𝑛−1

𝑏 + ∆𝑠0,𝑛−1     (2) 

The second term on the right side is the flux increment obtained from inverse modelling and its spatial structure strongly 

depends on the observations used within the inversion model.  The Posterior Atmospheric Adjustment  (∆𝑐𝑛 ) can be defined 

as: 

   ∆𝑐𝑛 = 𝑇�𝑥0,𝑛−1
𝑎 , 𝑐0𝑎 , 𝑠0,𝑛−1

𝑎 � − 𝑇�𝑥0,𝑛−1
𝑏 , 𝑐0𝑏 , 𝑠0,𝑛−1

𝑏 � .    (3) 10 

The superscript a in (3) denotes the “after adjustment” value and the superscript b refers to the “before adjustment” value.  

This is a general form which allows for the initial state of the constituent and the meteorological states to change when the 

posterior flux changes  (i.e. uncertainty in initial conditions and meteorology is permitted).  If the initial state of the 

constituent is not adjusted in the flux inversion (as in our case), we can drop the superscripts on 𝑐0.  However, let us retain 

the possibility of meteorological analysis uncertainty where 15 

𝑥0,𝑛−1
𝑎 =  𝑥0,𝑛−1

𝑏 + 𝜀0,𝑛−1.       (4) 

The second term on the right side in (4) is a realization of meteorological analysis errors.  If a meteorological data 

assimilation system computes analysis error covariances, such an estimate of uncertainty can be obtained.  Then, as in 

Polavarapu et al. (2016), we expand the transport terms in Taylor series about the posterior state as follows: 

∆𝑐𝑛 = 𝜕𝑇
𝜕𝜕

�𝑥0,𝑛−1
𝑎 , 𝑐0, 𝑠0,𝑛−1

𝑎 �∆𝑠0,𝑛−1 +  𝜕𝑇
𝜕𝜕

�𝑥0,𝑛−1
𝑎 , 𝑐0, 𝑠0,𝑛−1

𝑎 �𝜀0,𝑛−1+ O�∆𝑠0,𝑛−1𝜀0,𝑛−1�  (5) 20 
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To first order, the Posterior Atmospheric Adjustment (PAA) is comprised of two components (because in this work we do 

not consider the components of PAA related to imperfect initial concentrations).   

∆𝑐𝑛 ≅ ∆𝑐𝑛𝜕  + ∆𝑐𝑛𝜕   (6) 

Note that for a given set of meteorological analyses, the transport model is a linear function of the flux and the linearized 

model is then the same as the original transport model in (5).  We can approximate the components of the PAA using finite 5 

differences: 

∆𝑐𝑛𝜕 = 𝑇�𝑥0,𝑛−1
𝑎 , 𝑐0 , 𝑠0,𝑛−1

𝑎 � − 𝑇�𝑥0,𝑛−1
𝑎 , 𝑐0 , 𝑠0,𝑛−1

𝑏 � = 𝑃𝑃𝑃𝑃  (7) 

∆𝑐𝑛𝜕 = 𝑇�𝑥0,𝑛−1
𝑎 , 𝑐0 , 𝑠0,𝑛−1

𝑎 � − 𝑇�𝑥0,𝑛−1
𝑏 , 𝑐0 , 𝑠0,𝑛−1

𝑎 � = 𝑃𝑃𝑃𝑃  (8) 

PAAF is the component of PAA due to flux adjustments while PAAM is the component of PAA due to uncertain 

meteorology.   PAAF is computed by integrating the transport model with a set of posterior fluxes and again with the prior 10 

fluxes but both integrations use the same set of meteorological analyses (𝑥0,𝑛−1
𝑎 ) and initial concentrations.  However, this is 

only one component of the posterior flux adjustment because the meteorological analyses are not perfectly known, and we 

can simulate that uncertainty by perturbing the meteorological analyses with realizations of meteorological analysis error 

(see supplemental material for a detailed description of how this was done).  In other words, for a given set of fluxes, the 

meteorological fields could have been slightly different but equally valid in the context of the meteorological analysis errors.  15 

This is what PAAM defines and it is computed by integrating the model twice (with perturbed and unperturbed meteorology) 

for a given set of posterior fluxes and where we again use the same initial concentrations in both integrations.  Figure 4 

illustrates these concepts schematically.  Note that the impact of the meteorological uncertainty on posterior distributions is a 

different matter from transport biases that result from biased meteorology.  The latter will be present in PAAF when it is 

computed with a single set of analyses but the former requires PAAM to be computed with two or more sets of analyses.  A 20 

novel aspect of our work is the ability to compare the component of posterior atmospheric adjustment due to flux increments 

(PAAF) with that due to meteorological uncertainty (PAAM).  If the PAA component due to flux increments alone (PAAF) 

does not exceed the component due to meteorological errors (PAAM), then it may not be the dominant contribution in (5) 

and therefore it should not be accorded much significance.  In reality, the story will be complex because the PAA is a 4-

dimensional field and the dominant component will likely be a function temporal and spatial scale.   Therefore, in what 25 
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follows, we consider some broad statistics of the PAA and its subcomponents such as global means and zonal means and 

zonal standard deviations.  

 

2.4 Computing contributions to posterior atmospheric adjustments 

Once the flux estimates have been obtained, they are inserted into a forecast model to obtain posterior CO2 distributions.  5 

Prior CO2 distributions are also obtained by inserting prior fluxes into the same model and then the PAAF is determined by 

subtracting the prior CO2 distribution from the posterior CO2 distribution.  Both model integrations use the same CO2 initial 

states and meteorological fields.  Here we use GEOS-Chem as well as GEM-MACH-GHG (Polavarapu et al., 2016) for this 

purpose.  The advantage of using two models is that we can get a sense of the robustness of the results since the models will 

have different model errors.  The disadvantage of using a different model (from that used for the flux inversions) to obtain 10 

the PAAF is that posterior fluxes contain an imprint of transport model errors from the model used for the flux inversion, so 

integrating these into another model will convolve the two transport models’ errors (as seen in Polavarapu et al., 2016).  If 

the two models’ transport errors are fortuitously similar, then this problem is avoided.  However, this is unlikely to be the 

case for any two models on all time and spatial scales.  Thus, we assess the ability of GEM-MACH-GHG to simulate CO2 

with fluxes derived from inversions performed with GEOS-Chem in order to identify where convolution of the two transport 15 

models’ errors is evident. 

By comparing CO2 distributions from GEM-MACH-GHG obtained with posterior fluxes from GEOS-Chem with 

observations, we can assess the ability of this model to simulate CO2 and search for instances of convolution of transport 

model errors.  Figure 5 shows two-year time series of modelled and measured CO2 at the NOAA or ECCC stations of Alert, 

Mauna Loa, Sable Island and South Pole.  Both model simulations use the flux estimates obtained with in situ observations.  20 

At Alert, which is far from CO2 sources and sinks, a good comparison between the model simulation and measurements 

indicates a good ability of the model to transport the PAAF from the midlatitudes to the high latitudes on seasonal 

timescales.  Indeed, Figure 5 shows that both model simulations agree rather well with observations at Alert with in situ 

posterior fluxes.  In boreal summer GOSAT-retrieved fluxes produce a better match than insitu-based fluxes for both models 

(Table 2).  The better match with observations in boreal summer is consistent with the increased density of GOSAT 25 

observations in the northern hemisphere at that time (Byrne et al., 2017).   The overestimation in boreal spring of both years 

with GOSAT-based fluxes (Table 2) was also seen in Deng et al. (2016) and suggests fortuitously similar transport by the 

two models to this location.  The overall agreement of both GEM-MACH-GHG simulations with Alert measurements is 

rather good especially considering the poorer agreement obtained with CarbonTracker 2013B (Peters et al., 2007, 

http://carbontracker.noaa.gov) fluxes in Polavarapu et al. (2016).  This does not mean that GEOS-Chem posterior fluxes are 30 

http://carbontracker.noaa.gov/
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superior in any way to those of CT2013B, but rather that the transport errors of GEOS-Chem and GEM-MACH-GHG are 

fortuitously commensurate, at this location and time period.  At Mauna Loa and Sable Island, which are far from sources but 

are also affected by synoptic scale variability, both model simulations compare well to measurements.  At the South Pole, 

any differences in transport errors between the two models that accumulate over long timescales are visible.  Here a bias 

appears but it is mostly (~0.5 ppm) is due to the regridded initial conditions with another 0.1 ppm arising after 2 years of 5 

simulation.  The bias with GEM-MACH-GHG occurs with both sets of fluxes but the bias is smaller with in situ-based 

posterior fluxes (see also Table 2).  From the bias in the simulation with in situ fluxes we infer a mismatch of transport times 

to the southern hemisphere between the two models since GEOS-Chem simulations with the in situ-based fluxes match this 

station’s time series well (Table 2) and since a similar bias is also present between the two model simulations at other 

southern hemisphere stations (not shown).  In addition, a positive bias of 0.5 ppm appears when GOSAT-based posteriors 10 

are used with GEOS-Chem (Table 2).  Thus the increased bias with GOSAT-data is seen by both models (Table 2) and is a 

separate issue from the convolution of transport errors.  

The GEOS-Chem inversion was performed with a coarse 4°×5° resolution grid whereas GEM-MACH-GHG uses a much 

higher 0.9° resolution.  So, the fact that the forward model simulations agree well with observations on synoptic time scales 

supports the contention of Agusti-Panareda et al. (2014) that the large scale gradients of CO2 are captured in the retrieved 15 

fluxes due to an adequate density of observations whereas the high resolution model captures and adds the correct synoptic 

scale variability.  Overall, we conclude that GEM-MACH-GHG simulates CO2 reasonably well with GEOS-Chem fluxes on 

a variety of timescales in the northern hemisphere, but there is mismatch of transport times to the southern hemisphere. The 

fact that there are differences in the posterior CO2 distributions with the two models (and evidence of convolution of 

transport errors) will inform discussions of atmospheric adjustments (PAAF and PAAM) in section 3. 20 

Polavarapu et al. (2016) showed that the existence of uncertainty in meteorological fields limits the spatial scales that can be 

depicted in CO2 fields.  Although it is only one of the many sources of error impacting CO2 model distributions, it will 

always be present and may be considered a minimum error level.  To estimate this error (PAAM), the forward simulations of 

GEM-MACH-GHG were repeated with perturbed meteorological fields and the difference in CO2 defines this inescapable 

error.  To perturb the meteorological fields, Polavarapu et al. (2016) simply computed the difference between the 25 

meteorological analyses valid at the required time and those valid 6h prior to the required time, and then removed the diurnal 

signal from this perturbation.  Here we improve on the methodology by using actual realizations of analysis error from our 

operational ensemble Kalman Filter (EnKF) system (Houtekamer et al., 2014), which is used to determine meteorological 

forecast uncertainty on the medium range.  Because the ensemble members were not available in the archives of the 

Canadian Meteorological Centre for the period of study here, we use analysis error estimates from a different year.  The 30 

supplemental material describes how the perturbations were computed and demonstrates that the method used to estimate 
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analysis errors is considerably better that used in Polavarapu et al. (2016) despite some unavoidable approximations.  In this 

work, meteorological fields perturbed by EnKF-derived meteorological analysis errors will be used to define minimum error 

levels in the diagnostics of sections 3.2.4 and 3.2.5. 

3 Results 

The two sets of posterior fluxes that will be used to study the atmospheric CO2 adjustments are described in section 3.1 5 

before considering the vertical structure of the PAAF in section 3.2.  While some of the figures below include results from 

both models, others show those from a single model.  In such cases, results from the GEOS-Chem model are shown, while 

corresponding figures obtained with GEM-MACH-GHG are relegated to the supplemental information.  This choice was 

made because GEOS-Chem was used in the flux inversions, so posterior CO2 distributions with GEOS-Chem are obtained 

with consistent model errors while posterior distributions obtained with GEM-MACH-GHG will convolve the transport 10 

errors from the two models.  However, despite this convolution of errors, consistent patterns emerge with both models, 

lending greater confidence in the robustness of results in the face of transport error. 

3.1 Posterior flux estimates 

The inversion results used here are similar to those presented in Deng et al. (2014, 2016).  However, we briefly present those 

results again here because (1) the runs used here are not identical (e.g. observation sets) to those published, and (2) we will 15 

be comparing the CO2 adjustments arising from these two sets of fluxes so it is worth directly comparing them here.   

The global total flux estimates for 2010 obtained from the two observation networks studied here are 5.01 Pg C (in situ) and 

4.95 Pg C (GOSAT).  Here positive values indicate fluxes from the Earth’s surface into the atmosphere. The actual annual 

growth rate for 2010 from Conway and Tans (2012) is 2.41±0.06 ppm or 5.12±0.13 Pg C (using a conversion factor of 2.124 

Pg C ppm-1).  The general agreement of both sets of posterior fluxes with the 2010 annual total flux suggests that both 20 

inversions are sufficiently well configured.  

While the global annual totals for 2010 are similar with the two different observation networks, the spatial distributions of 

the fluxes for the 11 TransCom (Gurney et al., 2003) land regions differ (Figure S6).  The prior and the in situ-based 

posterior fluxes are similar to those shown in Figure 4 of Deng et al. (2014) while the GOSAT-based posterior fluxes are 

similar to those presented in Figure 8 of Deng et al. (2016).  As in Deng et al. (2014), Figure S6 reveals that in situ data 25 

result in more uptake in the Americas whereas fluxes retrieved from GOSAT data put more uptake in Eurasia. As noted in 

this Introduction, this increase in European uptake with GOSAT data was also seen by Reuter et al. (2014) and Houweling et 

al. (2015).   In the north-south direction, in situ fluxes produce more uptake in the three tropical regions compared to 

GOSAT-derived fluxes, while the latter have relatively more uptake in temperate and boreal Eurasia.  This was also seen in 
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Houweling et al. (2015).  This difference in north-south distributions of fluxes is more readily evident in Figure 6 which 

shows the temporal variation of the fluxes accumulated over three large latitudinal bands: the northern extratropics, the 

tropics and the southern extratropics.  (Here the dividing latitude between the tropics and extratropics is taken as 19.47° or 

sin-1 (1/3) because it results in exactly equal areas for all three regions.  This advantage is exploited later to interpret the 

diagnostics of section 3.2.)  Figure 6a reveals that both sets of fluxes are generally similar on the global scale with two 5 

exceptions: (1) the peak boreal summer uptake occurs in June with GOSAT data, but in July with in situ data, and (2) 

GOSAT data produces larger outgassing of CO2 in October and November.  The larger outgassing with GOSAT data in 

boreal autumn is due to larger contributions from both the northern extratopics (Figure 6b) and the tropics (Figure 6c).  The 

larger global uptake in June with GOSAT data is due to the northern extratropics (Figure 6b).  In the southern extratropics, 

GOSAT generally results in more uptake than in situ data but the magnitude of the uptake and the difference between the 10 

two posterior fluxes is small (Figure 6d).   

 In summary, the posterior fluxes produced here bear similarities to those produced by other inversion systems 

constrained by similar observation sets, and are consistent with the range of results of the multi-inversion intercomparison of 

Houweling et al. (2015).  Thus the two sets of posterior fluxes may be considered as reasonable examples representative of 

the two observing systems.  Furthermore, the results obtained here should be relevant to other flux inversion systems.   15 

3.2 Vertical propagation of the PAAF 

Given the two sets of posterior fluxes, we now consider how they inform atmospheric CO2 distributions.  Although column 

measurements contain information about CO2 concentrations throughout the depth of the troposphere, ultimately, in a flux 

inversion, this information is used to update a surface flux.  It is unclear how this updated surface flux perturbation is then 

vertically transported to inform the middle and upper troposphere.  Intuitively, one might expect the assimilation of column 20 

measurements to result in better CO2 depictions in the middle and upper troposphere.  However, as will be shown, this is not 

necessarily the case.    

3.2.1 Zonal mean patterns 

The PAAF was computed for both sets of posterior fluxes resulting in four sets of 4-dimensional CO2 fields—two sets for 

each model.  To encapsulate the vertical motion, zonal mean fields were computed.  The GEOS-Chem fields are animated in 25 

Figure S7 and snapshots from the animation, taken every 3 months from 1 October 2009 to 1 July 2011 are shown in Figure 

7.  Qualitatively similar results are obtained with GEM-MACH-GHG ( Fig. S9).  Immediately obvious from Figure 7 is that 

the PAAF is largely negative for both experiments at all times.  This occurs because the prior flux has a terrestrial 

component that produces an annually balanced biospheric flux.  Thus, the fact that the terrestrial biosphere annually takes up 

approximately 30% of the anthropogenic emissions entering the atmosphere (Le Quéré et al., 2015) is not assumed by the 30 
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prior fluxes.  This is done intentionally because of the desire that observations determine the existence and amount of uptake 

by the terrestrial biosphere.  Here, the impact of using annually balanced biospheric fluxes and ocean prior fluxes from 

Takahashi (2009) that only account for 1.4 of the expected 2.5 Pg C per year  is that the prior CO2 distribution has a 

continually increasing global total relative to the actual increase.  Then, once the flux inversion is performed and the fluxes 

are pulled toward realistic values, the posterior distributions reduce the overestimated CO2.  Thus the difference between the 5 

posterior and the prior CO2 distributions is always negative, in a global sense—hence the overwhelming negative values seen 

in Figure 7.  

 Comparing the distributions obtained with the two observing systems reveals some clear patterns.  In October 2009 (which 

is still in the spin up period), the patterns are similar except that the GOSAT data produce a smaller PAAF in the tropics.  

This is even more evident by January 2010, where the GOSAT-derived PAAF has smaller CO2 adjustments in the northern 10 

hemisphere as well.  At this time, there is a clear difference in the vertical gradient of the PAAF between the tropics and 

northern extratropics, and GOSAT data produces reduced meridional gradients.  This was also seen by the inversion systems 

in Houweling et al. (2015, their Fig. 8), but the reduced gradient was not supported by independent measurements.  By April 

2010, the in situ data are continuing to reduce CO2 in the northern hemisphere and tropics, while the GOSAT data seem to 

not have much impact.  On the other hand, in July 2010, GOSAT data produce a large negative PAAF in the northern 15 

hemisphere when the satellite observes this region well (Figure 2).  However, the tropical upper troposphere retains a 

stronger PAAF with the in situ data.  In the second year of simulation, these patterns are repeated as the troposphere slowly 

adjusts to more realistic global mean values resulting from the observationally constrained terrestrial biospheric uptake.  

Specifically, October 2010 sees similar patterns for the two simulations in the northern hemisphere and tropics while January 

2011 reveals larger CO2 (smaller adjustments) throughout the troposphere in GOSAT-based simulations.  April 2011 again 20 

sees a greater reduction in CO2 throughout the tropics with in situ data so that the GOSAT-based PAAF is relatively lower 

throughout the troposphere.  Finally, by the end of June 2011, the large PAAF obtained with GOSAT data is seen once again 

in the northern hemisphere while in situ data retain a large PAAF in the tropical troposphere.  When these patterns are 

animated (Figure S7), it appears that the in situ data provide a constant injection of information from northern hemispheric 

fluxes which is transported upward and equatorward to inform the tropical middle and upper troposphere.  GOSAT data 25 

provide large updates to fluxes in boreal summer in the northern hemisphere, but when boreal autumn comes and the satellite 

tracks shift southward, the PAAF diminishes.  In boreal winter, GOSAT observes the southern hemisphere well, but the 

northern hemisphere dominates the global CO2 seasonal variation (Keeling, 1960) and so GOSAT misses the northern 

hemisphere emissions and the PAAF diminishes in this hemisphere with subsequent missing transport of the PAAF to the 

tropics. In fact, Houweling et al. (2015) argue that this seasonal variation of GOSAT data coverage plays a role in 30 

amplifying the European sink.  This difference in the seasonality between inversions with in situ and GOSAT data is also 

consistent with the results of Byrne et al. (2017). Although both simulations only adjust surface fluxes, the in situ-based 
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posterior fluxes constantly inform the northern hemisphere and the adjusted CO2 patterns are transported upward to the 

tropics.  This transport of information relies on the accuracy of the model’s transport and hence may not be correct.  

Transport error has long been known to be a major source of error in flux inversion systems (e.g., Chevallier et al., 2014; 

Chevallier et al., 2010; Houweling et al., 2010; Law et al., 1996).  Thus, to see which of the two posterior fluxes better 

depicts the middle and upper troposphere, we compare to independent measurements in the next subsection.   5 

3.2.2 Comparison to observations 

Since the PAAF is defined as the CO2 change relative to a given prior, it is not clear which pattern is more correct when the 

PAAFs are compared.  Thus in order to inform subsequent discussions about PAAF diagnostics, we compare CO2 posteriors 

directly to independent measurements.  Total column measurements from the TCCON provide indirect information about 

CO2 concentrations throughout the troposphere.   The dominant feature seen in seasonally-aggregated comparisons of 10 

modelled CO2 to TCCON is the larger bias resulting from GOSAT-based fluxes (Figures 8, 9).     At all stations, except 

Eureka, a difference of about 0.5 ppm between the biases of the two simulations is present, with in situ data providing a 

closer fit to the measurements (Figure 8). However, if we look beyond this time-mean bias (by subtracting it out), GOSAT-

based fluxes are seen to better define the seasonal cycle (Table S1) at most northern extratropical sites.  Visually, this means 

the black curves are generally flatter than the red curves in Figure 9.  At most of the northern sites (Bialystok, Garmisch, 15 

Izana, Karslruhe, Lamont, Orleans, Park Falls, Sodankyla) the seasonal variation of the statistics obtained with GOSAT  is 

better since the means of absolute anomalies are lower than those obtained with in situ data (compare columns 6 and 7 in 

Table S1).  (The results from Eureka seem anomalous relative to other TCCON sites so this is a topic currently under 

investigation by Kimberly Strong.  Explanations under consideration include sampling issues, site-to-site differences, model 

transport errors and unknown issues with the data.)   The improved ability of inversions constrained by GOSAT data to 20 

capture the seasonal cycle was also found by previous analyses (e.g., Deng et al., 2014; Liu et al., 2014; and Reuter et al., 

2014).  Butz et al. (2011) and Lindqvist et al. (2015) showed that GOSAT/ACOS data alone can match the seasonal cycle at 

TCCON locations (typically within 1 ppm in the Lindqvist study).  In addition to better capturing the seasonal cycle, the 

GOSAT-based simulations result in lower mean residuals at many of the northern hemisphere sites in June, July and August 

(Figure 9).  Improved agreement with independent observations using posterior fluxes from the GOSAT inversion relative 25 

to the in-situ inversion during boreal summer was also found by Basu et al. (2013), Deng et al. (2014) , and  Reuter et al. 

(2014)  and suggests that the summer drawdown in the in-situ inversions is too weak over the northern extratropics.    

Overall, however, the posterior fluxes obtained with in situ observations provide better agreement with TCCON overall since 

61 of the 76 (80%) comparisons favour the simulation based on in situ data (Figure 9).  The standard deviations are rather 

similar for the two simulations and are frequently smaller than the means (Figure 9). 30 
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Comparisons to TCCON obtained with GEM-MACH-GHG posterior CO2 distributions are found in Figures S10 and S11.  

The same conclusions hold:  there is an overall larger mean mismatch with TCCON when GOSAT-based posteriors are used 

(Figure S10) but the seasonal cycle is better captured at most northern extratropical sites (Table S1) and the agreement in 

boreal summer is better at many northern extratropical sites (Figure S11).  Additionally, a larger bias with TCCON at 

southern hemisphere sites is seen with GEM-MACH-GHG compared to that obtained with GEOS-Chem (Figure 8).  This 5 

bias was also seen in Figure 5 (South Pole station) and arises mainly from the initial condition but is affected by the  

differing transport times from the tropics to the southern hemisphere in the two models.  GEOS-Chem transports CO2 more 

rapidly to the southern hemisphere and its posterior fluxes reflect this rapid transport (see animation in Figure S8, especially 

July-August 2010).  When inserted into GEM-MACH-GHG, the fluxes obtained assuming a fast transport to the southern 

hemisphere result in a too-slow departure from the prior CO2 distribution and a larger bias with respect to observations.  10 

However, because GEM-MACH-GHG is disadvantaged by the convolution of transport errors, these results do not identify 

which model’s interhemispheric transport to the south is more realistic.  As a weather and environmental forecast model, 

knowledge of the age-of-air for GEM-MACH is not essential for its time scales of interest so this work identifies a need to 

better characterize interhemispheric transport with the GHG version of this model.  At the same time, this work shows little 

evidence for the convolution of transport errors on shorter time scales or in the northern hemisphere (as was seen when 15 

GEM-MACH-GHG used CT2013b fluxes in Polavarapu et al., 2016).  Moreover, despite the existence of some convolution 

of transport errors, conclusions regarding the agreement with independent measurements hold for both models, increasing 

confidence in the robustness of results in the face of model errors. 

A more direct assessment of middle and upper tropospheric CO2 distributions is obtained by comparing to aircraft profiles.  

Comparisons of both GEOS-Chem simulations to measurements from the HIPPO-3 campaign in 24 March to 16 April  2010 20 

are shown in Figure 10.  The results are aggregated by latitude and vertical bands.  The in situ-based posterior fluxes result 

in lower mean differences from measurements in the middle to upper troposphere (panel c) and the lower stratosphere (panel 

d) in the northern extratropics.  However, the GOSAT-based   posterior fluxes generally agree better with measurements in 

the southern extratropics at all heights.  Similar results are also obtained with GEM-MACH-GHG (Figure S12) in the 

northern extratropics but in the southern extratropics, in situ fluxes better match observations because of initial condition 25 

differences and the convolution of transport errors which leads to increased CO2 in the southern hemisphere for all fluxes.  

Note that in the stratosphere for both comparisons with HIPPO-3 (Figures 10d and S12d), the mean mismatch exceeds the 

standard deviation.  This means that both model simulations are biased in the stratosphere as was seen in Deng et al. (2015).  

Such a bias can adversely affect flux estimates in the northern hemisphere (Deng et al. 2015).  Comparing Figures 10 and 

S12 (panels c and d) reveals that GEM-MACH-GHG has better agreement with HIPPO-3 than does GEOS-Chem in the 30 

middle to upper troposphere and in the stratosphere.  This makes sense given the finer vertical and horizontal resolution of 

GEM-MACH-GHG and is expected from the results of Deng et al. (2015, their Figures 11-12).  The number of realizations 
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used in each comparison in Figures 10 and S12 ranges from 94 to 2570 and the differences in the mean values of the two 

experiments are significant at the 90% level.  Thus, overall, we conclude that the middle and upper tropospheric distributions 

of CO2 are better in the northern hemisphere in boreal spring 2010 when posterior fluxes use in situ data rather than GOSAT 

column measurements.   

Since measurement campaigns occur only in select time windows (HIPPO-3 was in March-April 2010), we also consider the 5 

more routine NOAA aircraft profile measurements from continental U.S. and Canadian sites in Figure 11.  The observations 

are from ObsPack2013 (Masarie et al., 2014).  As in Agusti-Panareda et al. (2014), mean model profiles at the nearest grid 

point and time step to the observation locations and times are averaged over a season.  Observed values are binned into 1 km 

layers and compared to model values at mid-layer.  Hourly GEOS-Chem fields are used.  When the entire 2010 year is 

considered, the bias throughout the troposphere with respect to the aircraft profiles is much smaller with in situ-based 10 

posterior fluxes (Figure S13) for both models.   However, the results are more variable if broken down by season.  In boreal 

winter, in situ data produce better agreement with NOAA aircraft near the surface but from 2-6 km GOSAT data give a  

better result (Figure 11).  This variation in fit is related to the fact that vertical profiles from GEOS-Chem have stronger than 

observed gradients in the lowest 1-2 km.  GEM-MACH-GHG profiles better match observed gradients (Figure S14) and 

GEM-MACH-GHG profiles consistently favour the same simulation in both height ranges.  In Dec.-Feb. 2010, the in situ-15 

based simulation better matches observations although it is partly in the spin up period, whereas in Dec.-Feb. 2011, the 

GOSAT-based simulation better matches mean NOAA aircraft profiles at all heights (Figure S14).  In boreal spring 

(Figures 11 and S14) in situ data produce better agreement not just near the surface, but at all heights. In boreal summer, 

GOSAT data result in much better agreement from 1-3 km but from 3-6 km there is little difference between the two 

simulations.  However, in boreal autumn, GOSAT data achieves a better match from 2-6 km, whereas in situ data has a 20 

better match near the surface (Figures 11).   As in boreal spring, incorrect vertical gradients obtained with GEOS-Chem are 

likely playing a role in the inconsistent results since GEM-MACH-GHG’s vertical gradient is closer to that observed and it 

favors the GOSAT-based simulations at all heights (Figure S14).   Overall, from 3-6 km, simulations with both posteriors 

produce similar model profiles in boreal summer and fall, but in boreal winter and spring there is a difference between the 

two, with in situ data producing lower CO2.  The lower CO2 values obtained with in situ data agree better with aircraft data 25 

in boreal spring, but not in boreal winter.  From 1-2 km, in situ data better match aircraft data in boreal spring while GOSAT 

achieves the better match in boreal summer, for both models.  These results once again confirm that in boreal summer when 

GOSAT views and samples the northern hemisphere well, the estimated fluxes are improved in the lower troposphere.   

In summary, the results that are consistent are as follows.  (1)  Despite the reliance on faithful model transport, in situ-based 

posterior fluxes produce CO2 distributions that better agree with independent observations of the middle troposphere in the 30 

northern hemisphere in boreal spring.  This may partly be due to the propagation of the near surface improvements obtained 
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in boreal winter.  (2) GOSAT-based posterior fluxes consistently achieve better agreement with independent observations in 

the northern hemisphere in boreal summer and in the middle to upper troposphere in boreal winter. 

3.2.3 Adjoint Sensitivity 

Figures 7 and S9 as well as animations S7 and S8 imply a propagation of the PAAF from the northern midlatitude lower 

troposphere to the tropical middle and upper troposphere with in situ-based posterior fluxes.  The question of whether this is 5 

realistic or not was the subject of the previous subsection where model simulations were compared to independent 

observations.  Here we consider whether such transport (realistic or otherwise) has implications for flux inversions.  In other 

words, can CO2 from the northern extratropics influence the CO2 in the tropical upper troposphere a few months later?  To 

see whether this occurs in the flux inversion system, we compute the sensitivity of CO2 at one point in time with respect to 

the CO2 state at an earlier point in time using the adjoint of GEOS-Chem (Henze et al., 2007).  While Byrne et al. (2017) 10 

utilize the adjoint sensitivity with respect to surface fluxes, here we need to consider the entire CO2 state in order to see 

vertical transport of information.  The extension of the adjoint calculation needed to produce sensitivity to the CO2 state is 

described in Appendix A, and Figure 12 shows the sensitivity of the CO2 field on 1 February 2010 to earlier states, at one 

month intervals.  Each panel shows a snapshot of the zonally averaged sensitivity field.  In February 2010, the sensitivity is 

initialized to a uniform value within a mask from 20°S-20°N and 500-250 hPa. Proceeding backward in time, this field is 15 

sensitive to the CO2 field throughout the depth of the tropics in January 2010 with a hint of sensitivity beyond the tropics in 

the stratosphere.  By November 2009, this stratospheric influence is more evident and by October 2009, extratropical 

tropospheric influence is also evident.  By September 2009, the sensitivity is largest in the northern and southern 

extratropics.  Tracing the pattern in the northern hemisphere forward in time through the panels reveals upward and 

equatorward propagation of the signal.  Thus the CO2 field in the northern tropics in the upper troposphere in boreal spring is 20 

sensitive to CO2 in the northern midlatitude lower troposphere on September 1.  In other words, observations near the surface 

at northern midlatitudes on September 1 can potentially impact CO2 fields in the tropical upper troposphere, 3 to 6 months 

later.  Because the adjoint calculation only reveals patterns without a magnitude (since the actual influence of an observation 

on CO2 estimates also involves error covariances of observations and propagated prior flux errors), only a potential influence 

can be revealed in Figure 12.  However, this potential influence is sufficient to demonstrate the atmospheric transport from 25 

the northern midlatitude lower troposphere to the tropical upper troposphere on the timescale of several months.  This figure 

then supports the notion that observations of the northern midlatitudes combined with model transport can influence (rightly 

or wrongly) CO2 distributions downstream in the middle and upper tropical troposphere.   

3.2.4 Global mean posterior atmospheric adjustments 

Flux perturbations modify CO2 fields locally but, eventually, gradients get diffused by atmospheric turbulence and only the 30 

impact on the background CO2 field is retained.  Thus, looking at the zonal or global mean PAAF reveals long time scale 
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information retained from flux adjustments after redistribution and dispersion by model transport.   How long does it take for 

a flux perturbation to modify the background CO2 state?  Deng et al. (2014) show that transit times of regional fluxes to the 

middle troposphere further downstream are shorter than two months and flux perturbations have dispersed to the background 

within 3 months (see their Figure 15).  Similarly, Liu et al. (2015) found that column measurements are unable to distinguish 

the locality of fluxes older than three months.  Figure 13 shows the globally averaged zonal mean PAAF for both models 5 

and both observing systems at selected model levels in the lower troposphere (panel a), the middle troposphere (panel b), the 

upper troposphere (panel c), the lower stratosphere (panel d), middle stratosphere (panel e) and the upper stratosphere (panel 

f).   (It was possible to find similar model levels in terms of approximate pressure for the six representative pressures for the 

two models by assuming a 1000 hPa reference for each vertical coordinate.  These are listed in Table 1.)  From Deng et al. 

(2014) and Liu et al. (2015) we conclude that the time scales reflected in Figure 13 are seasonal and longer time scales.  The 10 

evolution of global CO2 when forced by the prior flux is missing a trend due to the assumption of a balanced biosphere so 

the prior CO2 fields drift from a realistic global mean, increasingly overestimating it.  Since the posterior CO2 fields are 

constrained by observations to resemble the actual atmospheric budget evolution, our global PAAF increases with time as 

the trend error accumulates (Figure 13 black curves).  (Here the posterior fields are subtracted from the prior fields to give 

positive values, for convenience.)  Figure 13 shows that the global PAAF increases not only for the atmosphere as a whole 15 

but also at all heights (except the upper stratosphere).  In addition, for the GOSAT-based PAAF, there is a large seasonal 

variation on top of the linear trend which has largest amplitude near the surface.   

Figure 13 also shows that despite the differing transport errors, the global PAAFs are very similar for the two models.  The 

largest differences occur in the upper troposphere and lower stratosphere (UTLS) regions (panels c and d). As noted by Deng 

et al. (2015), the GEOS-Chem CO2 simulation at a resolution of 4° x 5° is biased in the UTLS. Stanevich et al. (manuscript 20 

in preparation) found a similar bias in the coarse resolution CH4 simulation in GEOS-Chem, which they attributed to 

excessive mixing across the tropopause at the 4° x 5° resolution. Also, as noted earlier, GEM-MACH-GHG compares better 

to HIPPO3 in the upper troposphere and stratosphere of the northern extratropics with the same posterior fluxes as GEOS-

Chem. Compared to the PAAF obtained with in situ data, the PAAF derived from GOSAT data diminishes in boreal winter 

and spring throughout the troposphere.  Recall that in boreal spring, in situ data provided the better match of CO2 25 

distributions to NOAA aircraft in the lower troposphere (Figures 11, S14).  In the stratosphere, the overall signal is smaller 

with GOSAT data, but there is little seasonality to the signal for either experiment (Figure 13d-f).  Because the PAAF 

reflects the departure of the posterior from the prior CO2 field, it is not clear whether a large or small seasonal variation 

should be expected.  However, comparisons of posterior fields to measurements in section 3.2.2 revealed that the posterior 

CO2 fields derived from in situ data have an approximately 0.5 ppm lower bias relative to TCCON at all sites except Eureka.  30 

They also agree better with NOAA aircraft and HIPPO-3 in the middle and upper troposphere in boreal spring and with 

NOAA aircraft at all heights when annual mean profiles are considered.  This suggests that the larger signal seen in boreal 
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spring with in situ data may be realistic.  In boreal winter, near the surface, the CO2 fields obtained from in situ posteriors 

agree better with NOAA aircraft profiles, but those based on the GOSAT posteriors yield better matches from 2-6 km.  

However, the NOAA aircraft data used corresponds to North America, whereas Figure 13 illustrates global diagnostics 

while the overall TCCON comparison (Figure 8) suggests in situ distributions are more realistic.  Thus, it is not entirely 

clear whether the larger signal seen in boreal winter with in situ data is more realistic than the lower one obtained with 5 

GOSAT data.  What is clear is that our flux inversions that assimilate GOSAT data produce posterior distributions that are 

less consistent with observations in global, annual statistics than flux inversions using in situ data.  In addition, the GOSAT-

informed PAAF has much stronger seasonal variations than the in situ-based PAAF. Thus, sub-annual variations in the 

global mean CO2 adjustments are sensitive to the observing system used.  However, this sensitivity also depends on the 

choice of prior fluxes since, for example, a prior flux with reduced bias in boreal summer would reduce this effect. 10 

How much can we trust the global PAAF?  The model transport of flux adjustments is not perfect and a major component of 

the transport model uncertainty is due to wind field errors (Liu et al., 2011).  We can use the coupled meteorology and 

greenhouse gas transport model to identify the error due to wind field uncertainty on atmospheric adjustments by simply 

repeating each simulation with perturbed meteorological fields (as described in the Supplemental material) to compute 

PAAM.  When PAAF and PAAM are comparable, PAAF is not the dominant component and should not be accorded great 15 

significance. PAAM is plotted in Figure 13 but is not evident because the curves are near zero.  This is not surprising 

because the global mean atmospheric CO2 is independent of transport.  It is the spatial distribution of CO2 that is affected by 

atmospheric transport (as will be demonstrated shortly).  However, by considering the global mean at various heights, there 

was the possibility that an influence of errors in atmospheric transport might be seen at some vertical levels.   

Figure 14 shows how the tropics and extratropics contribute to the global PAAF based on GOSAT data and computed with 20 

the GEOS-Chem model.  As noted earlier, the dividing latitude between the tropics and extratropics was chosen so that the 

three zonal bands have equal areas.  Because the zonal bands have equal areas, we multiply the zonal contributions depicted 

in Figure 14 by a factor of three, which means that each regional total (red, blue or green curves) can be compared to the 

global total (black curves).  For example, Figure 14a reveals that in the lower troposphere, the dominant contribution to the 

global PAAF comes from the northern extratropics where there is a large seasonal variation due to the seasonality of 25 

observational coverage (Figure 2) in addition to the seasonality in the fluxes.  This is also true for the middle troposphere 

(Figure 14b).  However, in the lower and middle stratosphere, the tropics dominate the global PAAF (Figure 14d-e).  The 

upper stratosphere is not much influenced by flux adjustments (Figure 14f) on the two-year time frame.  Since the northern 

extratropics dominate the global PAAF, the concern of Houweling et al. (2015) that the excellent observational coverage of 

this region by GOSAT in boreal summer combined with the poorer coverage in boreal winter has implications on flux 30 

inversions seems warranted.  Figure S15 shows that these patterns also occur for PAAFs derived from assimilating in situ 
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observations but the seasonal variation of the PAAF is greatly reduced.   The PAAF is largest in boreal summer due to 

adjustments in the northern extratropics for both posterior fluxes (Figures 14 and S15).  As seen in Figure 7, these 

adjustments in July are much greater when GOSAT data is assimilated.  Indeed Byrne et al. (2017) found large sensitivity of 

boreal summer fluxes to GOSAT data.  This is also consistent with the large summertime flux adjustments of Liu et al. 

(2014) and the increased European fluxes seen from May-August in Houweling et al. (2015).   5 

Figure 15 compares the regional contributions to the global PAAF for the two models.  The differences seen in the UTLS in 

Figure 13c are evidently due to differences seen in the northern extratropics (Figure 15c) in boreal summer and autumn.  

Since GEM-MACH-GHG agrees better with HIPPO-3 in the middle and upper troposphere and in the lower stratosphere, it 

is possible that its signal is more accurate in this region.  However, given the limited temporal and spatial domain of the 

measurements, such a conclusion would be tentative at best.  The overall agreement between the two very different models 10 

suggests that the diagnostic is primarily seeing the impact of the posterior fluxes (which were the same for both models) for 

the large zonal bands considered.  In addition, because the diagnostic involves a difference between model integrations, the 

southern hemisphere bias in CO2 seen in GEM-MACH-GHG initial conditions is common to all simulations with this model 

and thus is subtracted out in the PAAF and PAAM diagnostics.  Figure 15 also shows that when the global mean is 

subdivided into three zonal bands, a tiny (negligible) influence of atmospheric transport errors associated with imperfect 15 

meteorology becomes apparent near the surface (Figure 15a-b) in the northern extratropics during boreal spring and 

summer.  In addition, the CO2 adjustment due to wind field uncertainty (PAAM) exceeds the atmospheric adjustment 

obtained from assimilating either set of observations (PAAF) in the tropical upper stratosphere (not shown).  Overall, 

however, the global PAAFs are very similar between the two models, even after dividing them into regional contributions.  

3.2.5 Zonal asymmetry in the posterior atmospheric adjustments 20 

Departures from zonal mean PAAFs can be used to examine shorter temporal and spatial scales in the PAAF.  The zonal 

mean flow has no zonal standard deviation (by definition) so large zonal standard deviations indicate greater zonal structure 

(or asymmetry within a zonal band).  Moreover, once the flux perturbation has diffused to the background (or zonal mean) 

state, it will not contribute to the zonal standard deviation.  As noted earlier, in the troposphere, the flux perturbation diffuses 

to the background state in about 3 months.  Thus the zonal standard deviation field shown in Figure 16 reflects shorter time 25 

scales than does the zonal mean of the PAAF.  That explains why curves in Figure 16 do not have a trend in the troposphere 

as was seen in Figures 13-15.  The zonal structure is largest in boreal summer in the lower troposphere (black curves in 

panels a-b) mainly due to the PAAF in the northern extratropics (red curves).  The impact of large flux increments in boreal 

summer was also seen in zonal mean fields in Figures 7 and S9.  In addition, a rather constant and large zonal standard 

deviation is seen in the tropics (blue curve in Figure 16a).  This is consistent with the findings of Deng et al. (2016) and 30 

Byrne et al. (2017) that finer scale flux estimates can be obtained in the tropics with GOSAT glint observations.  However, 
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in the middle troposphere and above, the seasonal variation in zonal standard deviation diminishes, as occurred with the 

zonal mean PAAF (Figures 13-15).  Also the magnitude of the zonal standard deviation diminishes with height.  In the 

stratosphere, while the magnitudes are small, a small trend is seen in the second year in panels d and e.  This suggests that 

after one year of simulation some zonal asymmetry is being seen in the PAAF and that transit times of surface flux 

perturbations to the stratosphere are longer than the three months needed to reach the mid-troposphere.  This delayed 5 

response makes sense given that the mean age of air is about one year in the tropical lower stratosphere and increases to 

more than four years in the extratropical lower stratosphere (Andrews et al., 2001; Waugh and Hall, 2002).  Thus 

perturbations of stratospheric flow can be expected to have a delayed response to perturbations in surface fluxes. 

 Figure S16 is comparable to Figure 16 but for the in situ-based fluxes.  As with GOSAT data, seasonal variation in 

PAAF is also seen in the lower and middle troposphere in the northern extratropics.  There is also a seasonal variation in the 10 

zonal standard deviations in the tropics (Figure S16a-b).  Spatial variations in the tropics are larger in boreal summer as well 

as in March  2011.  The March 2011 event was also seen with GOSAT data and with both models (Fig. 18f) and may be 

related to the fact that enhanced CO2 in tropical Asia was seen in commercial aircraft based in situ data in March to May 

2011 (Basu et al., 2014, their figure 3).    As with the GOSAT-based PAAF, the magnitude of zonal standard deviations 

diminishes with altitude, and in the stratosphere, a trend in values is seen (Figure S16d-e).  The differences in zonal 15 

asymmetry of PAAF seen with the two observing systems are directly compared in Figure 17.   Now it is clear that more 

zonal structure is apparent with GOSAT data in the lower and middle troposphere (Figure 17a-b).  Also, the slightly greater 

zonal structure in stratospheric increments obtained with in situ data in the first year is also evident (Figure 17d).  However, 

the PAAF in the stratosphere due to the assimilation of observations does not exceed that due to wind field uncertainty in the 

middle and upper stratosphere (Figure 17e-f).  In the lower stratosphere (Figure 17d), the zonal structure in the first year is 20 

also not to be trusted.  In the lower troposphere, zonal asymmetry in GOSAT PAAFs exceeds that arising from wind field 

uncertainty except in November, December and January (Figure 17a).  However, for in situ data, the zonal structure can 

only be trusted in boreal summer (June, July and August).  Thus the satellite data are potentially able to retrieve fluxes on 

finer spatial scales than are in situ data through most of the year but it is important to note that more spatial structure does 

not mean correct spatial structure.  Validation of spatial structures in posterior distributions needs to be made against a dense 25 

network of independent observations in order to determine if the increased spatial variation is correct.    Given the difference 

in observation densities (Figures 1 and 2), this result is not surprising.  The lack of ability of in situ data to produce zonal 

asymmetry in posterior atmospheric adjustments (PAAFs) that are larger than those arising from uncertainty in wind fields 

(PAAMs) outside of boreal summer may indicate why it has been difficult for flux inversions to regionally attribute sources 

with this observation network (e.g. Gurney et al., 2002, Peters et al., 2010, Bruhwiler et al., 2011, Peylin et al., 2013).   30 
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Contributions of the 3 zonal bands to the globally averaged zonal standard deviations are shown in Figure 18.  In the 

northern extratropics, GOSAT data produce zonal structures that exceeds errors due to wind field uncertainty from May to 

October in the lower troposphere (Figure 18a), from June to September in the middle troposphere (Figure 18b) and in July 

and August in the upper troposphere (Figure 18c).  However, the in situ data produce zonal structure that cannot be trusted 

except in July, August and September in the lower troposphere (Figure 18a).   In the tropics, zonal structure is evident in 5 

CO2 fields forced by GOSAT posterior fluxes in the lower troposphere at all times (Figure 18d).  In the middle troposphere, 

the tropical zonal structure can be trusted in August, September, October (Figure 18e).  For the CO2 fields informed by in 

situ observations, the zonal structure in the tropics is trustable only in July, August and September in the lower and middle 

troposphere (Figure 18d-e).  In August and September 2010, in the upper troposphere (Figure 18f), both GOSAT and in situ 

data produce zonal structure that exceeds that arising from uncertain wind fields.  Both models also produce qualitatively 10 

similar results with the exception of the tropical lower troposphere (Figure 18d) and the UTLS region in the second year 

(Figure 18c, i) where GEM-MACH-GHG produces more zonal structure.  Given the much higher resolution (horizontally 

and vertically) of this model, it can generate finer scale structures from the coarse resolution fluxes that eventually propagate 

to the stratosphere.  The differences may also be due to the higher resolution of GEM-MACH-GHG directly producing 

spatial variations in UTLS flow and in the tropics.   15 

In this subsection, the zonal standard deviations of the PAAF were examined in a global sense and in terms of contributions 

to the global values.  The potential benefit of the higher density GOSAT observations is clearly evident in enhanced zonal 

structures particularly in the northern extratropics in boreal summer and in the tropics, year round.  These values exceed the 

uncertainty in CO2 due to uncertain meteorology much of the time.  However, these diagnostics can only indicate a potential 

benefit since the increased zonal variation was not validated against independent measurements.  While this type of 20 

validation is not yet possible because it requires high resolution, globally distributed, independent measurement networks, 

Houweling et al. (2015) found that flux inversions with GOSAT data do not agree with each other on subcontinental scales.  

They conclude that flux inversions using GOSAT data do not sufficiently constrain regional scale fluxes. 

4 Summary and Discussion 

The results from flux inversion analyses are difficult to verify due to the lack of a dense, global network of flux 25 

measurements. In this work, we demonstrate that it is possible to glean useful information about flux inversion results by 

looking at the changes made to the tracer fields. The data assimilation process yields updates to prior fluxes, or “flux 

increments”, but here we consider the tracer field increment. This increment is denoted the posterior atmospheric adjustment 

(PAA) and refers to the change in concentrations obtained from a model integration using posterior fluxes, initial states and 

wind fields relative to those from another integration using prior fluxes, initial states and wind fields. We show that there are 30 



26 

 

many components to the PAA and consider two of these: posterior atmospheric adjustments due to fluxes (PAAF) and those 

due to meteorological uncertainty (PAAM). By comparing PAAF and PAAM, we obtain a new diagnostic for assessing 

retrieved fluxes. Specifically, when PAAF exceeds PAAM, atmospheric changes due to fluxes exceed those due to random 

perturbations in meteorological fields and should be more thoroughly verified against independent measurements. When this 

does not occur, PAAF is not robust against some types of transport error (namely, that due to imperfect meteorology). 5 

27 

This information will be useful for inverse model intercomparisons. The diagnostic could also be extended to check that 

PAAF also exceeds adjustments arising from initial condition updates. 

Although our new diagnostic depends on the model and prior fluxes used, as is always the case with diagnostics based on 

analysis increments, we demonstrate its utility by comparing flux inversion results obtained with the GEOS-Chem 4D-Var 10 

system and two different observing systems: in situ (Deng et al. 2014) and GOSAT (Deng et al. 2016). The largest 

contribution to the global PAAF in the troposphere is from the northern extratropics but the stratospheric signal primarily 

reflects tropical influence (Figure 14).  The global PAAF due to GOSAT observations has much stronger seasonal variations 

than that due to in situ observations (Figure 13).  Furthermore, a difference of about 0.5 ppm is seen between the simulations 

obtained using GOSAT and in situ posterior fluxes with the latter agreeing better with observations (TCCON, HIPPO-3 in 15 

the northern extratropics above the middle troposphere, and NOAA aircraft on annual time scales) (Figures 8, 10, S10, S12, 

S13).  The inversion constrained by GOSAT data does not recover the global mean flux as well as the in situ inversion on 

these long time scales.  However, GOSAT-informed CO2 distributions can be revealed to better capture the seasonal cycle at 

most northern extratropical TCCON sites (Figure 9, S11).  Zonal standard deviations of the PAAF (which reveal spatial 

structures in the zonal direction) are much larger when GOSAT-informed posteriors are used (in the northern extratropics 20 

outside of boreal winter and in the tropics throughout the year) (Figure 16, 17).     

Since the PAAF depends on the transport model used, we used two different models (GEOS-Chem and GEM-MACH-GHG) 

to define the PAAF.  Since GEOS-Chem was used for the flux inversions, subsequent integrations of posterior fluxes are 

consistent with the transport assumed during the flux inversion.  However, the posterior CO2 distributions obtained with 

GEM-MACH-GHG convolve its transport model error with that of GEOS-Chem.  Indeed, a difference in model transport 25 

times to the southern hemisphere was seen.  Yet despite this caveat, all of the main conclusions held for both models.  

Moreover, the use of GEM-MACH-GHG, which is a coupled meteorology-tracer transport model, permitted the calculation 

of uncertainties in posterior CO2 distributions due to uncertain wind fields (PAAM).  Actual meteorological analysis errors 

were used to perturb wind fields and repeat all simulations (see supplemental material).  The impact of perturbed wind fields 

on CO2 distributions was used to define a minimum level of uncertainty (since in reality, model integrations of CO2 will also 30 
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include errors from fluxes, model formulation and representativeness as well as the inevitable imperfections from 

meteorological analyses).  This error was useful for determining when spatial scales (departure from zonal symmetry) are 

robust against transport error arising from meteorological uncertainty although, being a minimum error, it provides an 

optimistic assessment.  In situ observations were found to generate zonal standard deviations larger than this minimum level 

only in boreal summer whereas GOSAT data exceeded this threshold through most of the year (Figure 17, 18).  This 5 

potential for retrieving finer spatial scales with GOSAT sampling relative to the in situ network makes sense given the 

density of GOSAT observations (Figure 2) and is consistent with the prediction of Takagi et al. (2014) or Deng et al. (2016).  

Moreover, the ability to retrieve zonal structure is evident throughout the year in the tropics and in all seasons except boreal 

winter in the northern extratropics is rather encouraging.  However, verifying such finer scales will be challenging given the 

limited spatial coverage of validating measurements from TCCON or aircraft platforms and temporal and spatial scales 10 

resolved may depend on the characteristics of the flux inversion system.  Indeed, the current dispute over the enhanced 

European sinks obtained with GOSAT data (Feng et al., 2016; Reuter et al., 2014; Houweling et al., 2015) indicates that the 

finer spatial scales retrieved are not necessarily correct and are difficult to validate.  It is plausible that spurious zonal 

structures in the PAAF could be introduced by spatially varying biases in the observations or uneven spatial coverage. 

However, there is also evidence supporting the ability of space-based observations to recover zonal asymmetries in the CO2 15 

fields. Liu et al. (2017) use observations from GOSAT and OCO-2 to isolate tropical flux anomalies between continents 

during the 2015-2016 El Niño event, while Chatterjee et al. (2017) found that zonal asymmetries in XCO2 anomalies could 

be isolated during the same El Niño event. Furthermore, the fact that the spatial structure seen in PAAFs obtained with in 

situ data surpassed the minimum uncertainty level only in boreal summer implies that regional attribution of fluxes may be 

challenging with the in situ observation network alone when the inversion integrates signals over many seasons.  Because 20 

our uncertainty arises from imperfect meteorological analyses, its impact cannot be seen in flux inversions obtained from a 

single model forced by a single set of driving meteorological fields.  However, this error source should be evident in multi-

system comparison studies when the systems use different sources of meteorological fields. 

By examining the behaviour of each observing system separately, it was possible to isolate differences in their impact on 

posterior fluxes obtained with our flux inversion system.  In particular, it is found that the in situ observing system results in 25 

posterior fluxes that well define the global mean CO2 on annual time scales and that there is a dependence of seasonal 

variations of the global PAAF on observation system.  However both systems defined the annual budget for 2010 equally 

well.  The importance of these results is two-fold.  First, the implications are that caution should be exercised when drawing 

conclusions based on sub-annual variations of the global mean CO2 because they depend on the observation sets used.  Since 

CO2 has strong seasonal variations, the PAAF in the lower atmosphere should also have seasonal variations if the prior 30 

fluxes have errors on seasonal timescales (e.g. as in Liu et al., 2014, or Ott et al., 2015).  The challenge is that the seasonal 

variation of GOSAT data coverage will be convolved with an actual seasonal variation of fluxes.  Second, our results 
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identify temporal scales of atmospheric CO2 that are best constrained by each observing network, in the context of our flux 

inversion system.  Specifically, the in situ network captures global mean (and the 18-month mean at most TCCON stations) 

well, while GOSAT better captures the seasonal cycle at northern extratropical TCCON sites.  Understanding the time scales 

resolved by different observing systems will be critical for the CO2 assimilation problem with coupled meteorological and 

GHG transport models at operational centers which are geared toward short assimilation windows (e.g. Polavarapu et al., 5 

2016; Agusti-Panareda et al., 2014; Massart et al., 2016; Ott et al., 2015).  For such systems, long time scale information will 

be challenging to extract from observations and may require novel multi-time scale analysis approaches.   

While our results regarding the behaviour of each observing system has important implications for flux estimation, they must 

be seen in the context of the inversion system used, namely, GEOS-Chem and 4D-Var with long assimilation windows.  

Aspects of the inversion system may impact the results.  For this reason, repetition of our experiments with other inversion 10 

systems is desirable to determine the generality of results across inversion systems.  Furthermore, we suggest that comparing 

PAAFs obtained by integrating a single model with known transport behaviour with posterior fluxes from various different 

inversion systems could be a useful diagnostic because it will identify relative mismatches of transport times between 

models.  For example, CT2013B fluxes with our weather model (GEM-MACH-GHG) identified a mismatch in transport of 

midlatitude fluxes in boreal summer to the high Arctic in autumn with TM5 (Polavarapu et al., 2016) as well as a too fast 15 

transport of GEOS-Chem from the tropics to the southern hemisphere relative to GEM-MACH-GHG.  While this diagnostic 

cannot determine which model’s transport is correct, if the reference model’s transport issues were known (from age-of-air 

diagnostics, for example), the PAAF comparison offers a fast, simple way to infer transport issues of other models. 

However, only obvious transport mismatches would be identifiable.  Regional, or shorter timescale transport mismatches 

would be hard to identify with a sparse verifying observation network.   Indeed, as a result of this work, we plan to identify 20 

GEM-MACH-GHG’s transport issues through age-of-air diagnostics in the future.   

Although only GOSAT-based flux inversions were considered here, it is natural to wonder if the results would apply to 

OCO-2.  Byrne et al. (2017) note that OCO-2 has higher spatial resolution and higher precision (due to aggregation of 

measurements in 2x2.5 grid) and that OCO-2 is better at picking up NH extratropical fluxes than GOSAT (their Fig. 10).  

OCO-2 also had the best constraints on regional fluxes in the tropics.  It is easy to speculate that even finer spatial scales than 25 

seen here with GOSAT data could be expected to exceed meteorological uncertainties.  However, OCO-2 also has a seasonal 

variation in coverage which has been shown to produce a bias in global annual flux (Liu et al., 2014).  Although Liu et al., 

(2014), and Houweling et al., (2015) suggest that flux inversion systems are partly to blame by not permitting seasonal 

correlations of error covariances, it may be desirable to obtain additional measurements of the northern hemisphere during 

boreal winter.  GOSAT, OCO-2 and TanSat measure in the shortwave infrared range so their latitudinal coverage does vary 30 

seasonally.  The seasonal variation of coverage could be reduced if more nadir observations over snow covered regions were 
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processed for the winter or more ocean glint observations were made in winter. (However, signal-to-noise ratio for the CO2 

bands is lower over snow, so retrieving over snow will typically result in poorer precision than over other surfaces.) 

Furthermore, active measurements such as Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) 

(https://decadal.gsfc.nasa.gov/ascends.html) that do not depend on sunlight would complement the current network of in situ 

and satellite measurements.   5 

In this work, we have separately considered the impact of in situ and GOSAT data on posterior CO2 distributions in order to 

better understand the behaviour of each type of observation in the context of a flux inversion and modelling system.  

Ultimately, the best network will be a combination of both types of observation (Baker et al., 2006).  By revealing the 

complementary benefits of the two types of observations, our results indicate a need for further research to understand how 

best to adapt flux inversion systems to take advantage of each type of observation.  For example, in situ data could constrain 10 

biases in satellite data as in Feng et al. (2016) but perhaps also the long time scale global mean, with satellite data being used 

to improve regional scale fluxes. 

5 Appendix A 

The GEOS-Chem adjoint model (Henze et al., 2007) calculates the derivative of the modeled CO2 concentration with respect 

to a set of model parameters, f. We use the adjoint model to calculate the sensitivity of modelled CO2 concentrations to an 15 

earlier atmospheric CO2 state over a volume of atmosphere with units of parts per million by volume (ppm) and use the 

adjoint model to calculate the gradient ∇𝑓J. For this study, J is defined as the mean CO2 concentration over 20°S-20°N and 

500-250 hPa at instantaneous time t0: 
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where 𝐶𝑖,𝑗,𝑘,𝑡0  and 𝑃𝑖,𝑗,𝑘,𝑡0  are the molar abundances of CO2 and air at longitude i, latitude j, level k, and time t0.  Gas 20 

abundances are obtained by sampling a forward model simulation at the time t0.  The sensitivity is obtained by calculating 

the gradient of J with respect to an earlier atmospheric CO2 state, 𝑓𝑖,𝑗,𝑘,𝑡: 
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Reference 
pressure 

(hPa) 

GEOS-Chem 
Model level ref 

GEM 
Model level ref 

index hPa index hPa 

850 9 856.781 69 854.893 

500 22 503.795 57 501.327 

250 28 263.587 47 258.932 

100 34 99.191 34 99.1268 

33 38 33.814 19 32.9691 

7 41 6.588 10 6.86514 
 

Table 1:  Comparable model levels used in later figures.  An approximate pressure level is computed for each model level 

assuming a reference surface pressure of 1000 hPa. 
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Alert 

 DJF 2010 MAM 2010 JJA 2010 SON 2010 DJF 2011 MAM 2011 

GEOS-Chem 
GOSAT 

0.59 1.46  0.84 0.83  -0.02 0.96  0.58 1.08  0.13 1.48  1.11 1.03 

GEOS-Chem 
insitu 

-0.56 1.45  -0.16 0.88  1.14 0.90  -0.03 1.08  -1.09 1.46  0.20 1.07 

GEM 
GOSAT 

0.01 0.97  1.11 0.81  0.89 1.26  -0.84 0.80  -0.57 1.09  0.78 1.04 

GEM insitu -0.96 0.95 0.12 0.88 2.33 1.27 -0.96 0.79 -1.70 1.08 -0.13 1.14 

No. obs. 2157 2195 2104 2079 2084 2145 

Mauna Loa 
 DJF 2010 MAM 2010 JJA 2010 SON 2010 DJF 2011 MAM 2011 
GEOS-Chem 
GOSAT 

0.80 0.95  1.57 0.80  -0.67 1.45  -0.09 1.07  0.72 0.72  1.61 1.10 

GEOS-Chem 
insitu 

-0.14 0.91  0.54 0.78  -0.48 1.03  0.05 0.72  0.19 0.65  0.82 1.05 

GEM 
GOSAT 

1.17 0.99  1.41 0.90  -0.84 1.67  0.08 1.31  0.94 0.77  1.64 1.10 

GEM insitu 0.22 0.98  0.45 0.89  -0.57 1.28  0.15 0.94  0.32 0.68  1.00 1.08 

No. obs. 743 759 870 1011 994 879 

Sable Island 
 DJF 2010 MAM 2010 JJA 2010 SON 2010 DJF 2011 MAM 2011 
GEOS-Chem 
GOSAT 

-0.64 4.14  0.52 3.92  -0.15 5.20  1.78 3.06  0.78 2.33  0.51 2.15 

GEOS-Chem 
insitu 

-1.89 4.09  0.39 3.85  0.46 4.56  -0.26 2.69  -0.57 2.28  0.12 2.01 

GEM 
GOSAT 

-0.91 3.97  0.73 3.78  -2.64 5.16  0.40 2.77  0.27 1.24  1.03 1.44 

GEM insitu -2.01 3.96  0.26 3.76  -1.58 4.91  -1.25 2.77  -0.97 1.18  0.59 1.63 

No. obs. 2137 1961 1388 2032 2125 2184 

South Pole 
 DJF 2010 MAM 2010 JJA 2010 SON 2010 DJF 2011 MAM 2011 
GEOS-Chem 
GOSAT 

0.22 0.18  0.52 0.16  0.29 0.11  0.52 0.12  0.49 0.20  0.56 0.17 

GEOS-Chem 
insitu 

0.19 0.17  0.05 0.15  -0.22 0.10  0.15 0.18  0.21 0.24  0.03 0.15 
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GEM 
GOSAT 

0.67 0.22  1.23 0.17  1.27 0.09  1.23 0.15  1.09 0.21  1.29 0.13 

GEM insitu 0.68 0.18  0.69 0.13  0.66 0.10  0.76 0.10  0.76 0.20  0.66 0.13 

No. obs. 2027 2111 2103 2055 2035 2120 

 

Table 2:  Comparison of GEOS-Chem and GEM-MACH-GHG CO2 to NOAA or ECCC continuous in situ observations.  

The 6-season averaged seasonal means and standard deviations from Figure 4 are given.  Each box with statistics contains 

two numbers: the seasonal mean (left) and the standard deviation (right).  Results from four experiments are shown.  Two 

models (GEOS-Chem and GEM-MACH-GHG) were used to integrate posterior fluxes from GEOS-Chem inversions using 5 

only in situ or GOSAT observations.  Units are ppm.  Note that all observations (including night time) were used. 
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Figure 1.  In situ observation network and observations used for verification.  The in situ observations used in the GEOS-

Chem flux inversion are indicated in green circles.  Observations used for model assessment are also shown: TCCON 5 

(triangles), NOAA aircraft (stars) and HIPPO-3 aircraft (green line). 
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Figure 2.  Seasonal variation of GOSAT observations.  The observations used in the GOSAT-based flux inversions are 

shown for four seasons: boreal winter (December, January, February – top left), boreal spring (March, April, May – top 

right), boreal summer (June, July, August – bottom left) and boreal autumn (September, October, November – bottom right) 

for 2010. 5 
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Figure 3.  Schematic diagram of GEOS-Chem inversion experiments.  The inversions involving the assimilation of GOSAT 

data were done in four 12-month segments.  The fluxes obtained from the first 6 months of each segment were retained as 

the retrieved fluxes.  The inversions involving in situ data were done in two 18-month segments with the fluxes retained 5 

from the first 12 months.  Thus retrieved fluxes were available for the 24 months from 1 July 2009 to 30 June 2011 for both 

sets of flux inversions. 
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Figure 4.  Components of the posterior atmospheric adjustment.  a) The top panel is a schematic diagram 
illustrating the fact that uncertain wind fields (represented by the 3 arrows) would lead to a cloud of equally 
plausible downstream locations for a given sequence of fluxes.  b)  The lower panel is a schematic diagram 
illustrating the fact that flux increments (e.g. a prior versus a posterior flux) will lead to differences in 5 
concentrations downstream, for a given sequence of meteorological analyses. The parallel arrows are meant to 
indicate the use of the same meteorological fields for two flux estimates. 
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Figure 5.  Time series of CO2 observations and model simulations for 1 July 2009 to 1 July 2011.  The CO2 observations are 

from ECCC or NOAA GHG in situ measurement networks for Alert (top), Mauna Loa (second), South Pole (third) and 

Sable Island (bottom). The observations are indicated in black.  The model simulations with GEM-MACH-GHG (red curves) 

and GEOS-Chem (blue curves) used posterior fluxes obtained from inversions with GEOS-Chem using in situ observations. 5 
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Figure 6.  Prior and posterior fluxes area weighted and regionally averaged over (a) the whole globe, (b) the northern 

extratropics, (c) the tropics and (d) the southern extratropics.  Fluxes are monthly averages from July 2009 to June 2011.  

Note the expanded vertical scales for panels c and d. 
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Figure 7.  Time sequence of zonal mean posterior atmospheric adjustment due to fluxes (PAAF) simulated with GEOS-

Chem.  Zonal mean fields are displayed as a function of height and latitude in units of ppm.  Shown are the in situ (leftmost 

of each pair) and the GOSAT (rightmost of each pair) zonal mean PAAFs.  The earliest date is in the top left corner with 

subsequent dates following down the left side then continuing down the right side.  Dates are indicated above each pair of 5 

panels starting on 1 October 2009 and continuing in three-month intervals to 30 June 2011.   
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Figure 8.  Comparison of GEOS-Chem CO2 simulations with GOSAT-derived (black) and in situ (red) derived posterior 

fluxes to TCCON measurements at 14 sites (Darwin, Wollongong, 2 instruments at Lauder, Izaña, Lamont, Park Falls, 

Garmisch, Orléans, Karlsruhe, Bremen, Bialystock, Sodankylä, and Eureka).  Stations are ordered by latitude from 5 

southernmost to northernmost.  The mean residual in ppm was computed for each stations from December 2009 to May 

2011, inclusive.  Positive values mean the modelled CO2 is generally higher than observed CO2. 
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Figure 9.  Comparison between TCCON measurements at 14 sites and the GEOS-Chem CO2 simulations driven with 

posterior fluxes from the GOSAT (black) and in situ (red) inversions.  Scores (bias and standard deviation) are aggregated by 

three-month seasons from December 2009 to May 2011.  Lauder appears twice because there are two different instruments 

there. 5 
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Figure 10.  Comparison between the HIPPO-3 measurements and the GEOS-Chem CO2 simulations driven with posterior 

fluxes from the GOSAT (black) and in situ (red) inversions.  Scores (bias and standard deviation) of modelled minus 

observed values are aggregated by latitude band and over the pressure layers given above each panel.  The numbers of 5 

observations used in each statistic are indicated within each panel.  The flights occurred between 24 March to 16 April 2010. 
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Figure 11.  Comparison of mean GEOS-Chem model profiles of CO2 to NOAA aircraft observations.  Observations (black 

curves) are from obspack_co2_1_PROTOTYPE_v1.0.4_2013-11-25 for locations over continental U.S. and Canada, only.  

Observed and modelled profiles are binned over  3-month seasons as indicated above each panel.  Model simulations used 

posterior fluxes from GEOS-Chem inversions with GOSAT (blue) or in situ (red) observations.  The shaded grey regions 5 

indicate plus or minus one standard deviation for the observations while the dashed coloured lines indicate the same 

quantities but for the different model runs.  Sites used are: Beaver Crossing, Nebraska; Bradgate, Iowa; Briggsdale, 

Colorado; Cape May, New Jersey; Charleston, South Carolina; Dahlen, North Dakota; East Trout Lake, Saskatchewan; 

Estevan Point,  British Columbia; Fairchild, Wisconsin; Harvard Forest, Massachusetts; Homer, Illinois; Oglesby, Illinois; 

Park Falls, Wisconsin; Poker Flat, Alaska; Sinton, Texas; Southern Great Plains, Oklahoma; Trinidad Head, California; West 10 

Branch, Iowa; Worcester, Massachusetts. 
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Figure 12:  Sensitivity (in ppm/ppm) of the GEOS-Chem tropical tropospheric CO2 on 1 February 2010 to the 3D modeled 

state on earlier dates.  Sensitivity fields are zonally averaged instantaneous fields for the first day of each month from 

September 2009 to February 2010 in the various panels. 5 
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Figure 13.  Global mean CO2 PAAF for 1 July 2009 to 30 June 2011 from the GOSAT-based posterior fluxes (solid black 

curves) and the in situ-based posterior fluxes (solid red curves).  PAAFs (prior minus posterior CO2 fields) are shown for the 

model level closest to the nominal pressure level indicated above each panel for both GEOS-Chem (thick lines) and GEM-

MACH-GHG (thin lines).  The global means of the CO2 uncertainty are shown for the GOSAT posterior flux integration 5 

(black dashed curves) and the in situ posterior flux integration (red dashed curves) but are not visible because they are 

negligble. Uncertainty in CO2 is estimated with GEM-MACH-GHG by perturbing the meteorological analyses and 

computing the difference from the unperturbed integration.   
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Figure 14.  Global mean CO2 PAAF obtained with GEOS-Chem with GOSAT-based posterior fluxes.    PAAFs (prior 

minus posterior CO2 fields) are shown for the model level closest to the nominal pressure level indicated above each panel.  

The coloured curves represent the global total (black) and the contributions to this from the various subregions:  northern 5 

extratropics (red), southern extratropics (green) and tropics (blue).  Because the subregions were chosen to have equal areas, 

the contribution depicted for each subregion was scaled by a factor of three so that the mean of the contributions from the 

subregions gives the total contribution. 
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Figure 15.  Regional contributions to the global mean CO2 PAAF for 1 July 2009 to 30 June 2011.  The PAAF is from the 

GOSAT-based posterior fluxes (solid black curves) and the insitu-based posterior fluxes (solid red curves).   PAAFs (prior 

minus posterior CO2 fields)  are shown for the model level closest to the nominal pressure level indicated above each panel 

for both GEOS-Chem (thick lines) and GEM-MACH-GHG (thin lines).  Regional contributions have been multiplied by a 5 

factor of three as in Figure 14.  Uncertainty in global mean CO2 is shown for the GOSAT posterior flux integration (black 

dashed curves) and the insitu posterior flux integration (red dashed curves). Uncertainty in CO2 is estimated for each 

integration by perturbing the meteorological analyses and computing the difference from the unperturbed integration.   
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Figure 16.  Global mean of zonal standard deviation of the CO2 PAAF obtained with GEOS-Chem using GOSAT-based 

posterior fluxes.  Statistics are shown for the model level closest to the nominal pressure level indicated above each panel.  

The coloured curves represent the global total (black) and the contributions to this from the various subregions:  northern 

extratropics (red), southern extratropics (green) and tropics (blue).  Because the subregions were chosen to have equal areas, 5 

the contribution depicted for each subregion was scaled by a factor of three so that the mean of the contributions from the 

subregions gives the total contribution. 
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Figure 17.  Global mean of the zonal standard deviation of the CO2 PAAF for 1 July 2009 to 30 June 2011 from the 

GOSAT-based posterior fluxes (solid black curves) and the insitu-based posterior fluxes (solid red curves).  PAAFs are 

shown for the model level closest to the nominal pressure level indicated above each panel for both GEOS-Chem (thick 

lines) and GEM-MACH-GHG (thin lines).  The zonal standard deviation of the CO2 uncertainty is shown for the GOSAT 5 

posterior flux integration (black dashed curves) and the insitu posterior flux integration (red dashed curves).  Uncertainty in 

CO2 is estimated with GEM-MACH-GHG by perturbing the meteorological analyses and computing the difference in CO2 

from the unperturbed integration with a given set of posterior fluxes.   
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Figure 18.  Regional contributions to the global mean of the zonal standard deviation of the CO2 PAAF for 1 July 2009 to 30 

June 2011 from the GOSAT-based posterior fluxes (solid black curves) and the insitu-based posterior fluxes (solid red 5 

curves).  PAAFs are shown for the model level closest to the nominal pressure level indicated above each panel for both 

GEOS-Chem (thick lines) and GEM-MACH-GHG (thin lines).  Regional contributions have been multiplied by a factor of 

three as in Figure 14.  Uncertainty in zonal standard deviation of CO2 is shown for the GOSAT posterior flux integration 

(dashed cyan curves) and the insitu posterior flux integration (dashed magenta curves).  Uncertainty in CO2 is estimated for 

each integration by perturbing the meteorological analyses and computing the difference from the unperturbed integration.   10 
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