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Abstract  41 

Ambient air pollution from ozone and fine particulate matter is associated with 42 

premature mortality. As emissions from one continent influence air quality over others, 43 

changes in emissions can also influence human health on other continents. We estimate 44 

global air pollution-related premature mortality from exposure to PM2.5 and ozone , and 45 

the avoided deaths from 20% anthropogenic emission reductions from six source 46 

regions, North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), 47 

Russia/Belarus/Ukraine (RBU) and the Middle East (MDE), three global emission 48 

sectors, Power and Industry (PIN), Ground Transportation (TRN) and Residential (RES) 49 

and one global domain (GLO), using an ensemble of global chemical transport model 50 

simulations coordinated by the second phase of the Task Force on Hemispheric 51 

Transport of Air Pollution (TF-HTAP2), and epidemiologically-derived concentration-52 

response functions. We build on results from previous studies of the TF-HTAP by using 53 

improved atmospheric models driven by new estimates of 2010 anthropogenic 54 

emissions (excluding methane), with more source and receptor regions, new 55 

consideration of source sector impacts, and new epidemiological mortality functions. 56 

We estimate 290,000 (95% CI: 30,000, 600,000) premature O3-related deaths and 2.8 57 

million (0.5 million, 4.6 million) PM2.5-related premature deaths globally for the 58 

baseline year 2010. While 20% emission reductions from one region generally lead to 59 

more avoided deaths within the source region than outside, reducing emissions from 60 

MDE and RBU can avoid more O3-related deaths outside of these regions than within, 61 

and reducing MDE emissions also avoids more PM2.5-related deaths outside of MDE 62 

than within. Our findings that most avoided O3-related deaths from emission reductions 63 

in NAM and EUR occur outside of those regions contrast with those of previous studies, 64 

while estimates of PM2.5-related deaths from NAM, EUR, SAS and EAS emission 65 

reductions agree well. In addition, EUR, MDE and RBU have more avoided O3-related 66 

deaths from reducing foreign emissions than from domestic reductions. For six regional 67 

emission reductions, the total avoided extra-regional mortality is estimated as 6,000 (-68 

3,400, 15,500) deaths/year and 25,100 (8,200, 35,800) deaths/year through changes in 69 

O3 and PM2.5, respectively. Interregional transport of air pollutants leads to more deaths 70 

through changes in PM2.5 than in O3, even though O3 is transported more on 71 

interregional scales, since PM2.5 has a stronger influence on mortality. For NAM and 72 

EUR, our estimates of avoided mortality from regional and extra-regional emission 73 

reductions are comparable to those estimated by regional models for these same 74 

experiments. In sectoral emission reductions, TRN emissions account for the greatest 75 
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fraction (26-53% of global emission reduction) of O3-related premature deaths in most 76 

regions, in agreement with previous studies, except for EAS (58%) and RBU (38%) 77 

where PIN emissions dominate. In contrast, PIN emission reductions have the greatest 78 

fraction (38-78% of global emission reduction) of PM2.5-related deaths in most regions, 79 

except for SAS (45%) where RES emission dominates, which differs with previous 80 

studies in which RES emissions dominate global health impacts. The spread of air 81 

pollutant concentration changes across models contributes most to the overall 82 

uncertainty in estimated avoided deaths, highlighting the uncertainty in results based 83 

on a single model. Despite uncertainties, the health benefits of reduced intercontinental 84 

air pollution transport suggest that international cooperation may be desirable to 85 

mitigate pollution transported over long distances. 86 

 87 

1 Introduction  88 

Ozone (O3) and fine particulate matter with aerodynamic diameter less than 2.5 89 

μm (PM2.5) are two common air pollutants with known adverse health effects. 90 

Epidemiological studies have shown that both short-term and long-term exposures to 91 

O3 and PM2.5 are associated with elevated rates of premature mortality. Short-term 92 

exposure to O3 is associated with respiratory morbidity and mortality (Bell et al., 2005; 93 

Bell et al., 2014; Gryparis et al., 2004; Ito et al., 2005; Levy et al., 2005; Stieb et al., 94 

2009) while long-term exposure to O3 has been associated with premature respiratory 95 

mortality (Jerrett et al., 2009, Turner et al., 2016). Short-term exposure to PM2.5 has 96 

been associated with increases in daily mortality rates from all natural causes, and 97 

specifically from respiratory and cardiovascular causes (Bell et al., 2014; Du et al., 98 

2016; Powell et al., 2015; Pope et al., 2011) while long-term exposure to PM2.5 can 99 

have detrimental chronic health effects, including premature mortality due to 100 

cardiopulmonary diseases and lung cancer (Brook et al., 2010; Burnett et al., 2014; 101 

Hamra et al., 2014; Krewski et al., 2009; Lepeule et al., 2012; Lim et al., 2012). The 102 

Global Burden of Disease Study 2015 (GBD 2015) estimated 254,000 deaths/year 103 

associated with ambient O3 and 4.2 million associated with ambient PM2.5 (Cohen et al. 104 

2017). A comparable study using output from an ensemble of global chemistry–climate 105 

models estimated 470,000 deaths/year associated with O3 and 2.1 million premature 106 

deaths/year associated with anthropogenic PM2.5 (Silva et al. 2013). These differences 107 

in GBD estimates result mainly from differences in concentration response functions 108 

and estimates of pollutant concentrations. 109 

Numerous observational and modeling studies have shown that anthropogenic 110 

emissions can affect O3 and PM2.5 concentrations across continents (Dentener et al., 111 

2010; Heald et al., 2006; Leibensperger et al., 2011; Lin et al., 2012; Lin et al., 2017; 112 
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Liu et al., 2009a; West et al., 2009a; Wild and Akimoto, 2001; Yu et al., 2008). As 113 

changes in emissions from one continent influence air quality over others, several 114 

studies have estimated the premature mortality from intercontinental transport 115 

(Anenberg et al., 2009; Anenberg et al., 2014; Bhalla et al., 2014; Duncan et al., 2008; 116 

Im et al., 2018; Liu et al., 2009b; West et al., 2009b; Zhang et al., 2017). In 2005, the 117 

Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) was launched under 118 

the United Nations Economic Commission for Europe (UNECE) Convention on Long-119 

Range Transboundary Air Pollution (LRTAP). One of its tasks is to investigate the 120 

impacts of emission reductions on the intercontinental transport of air pollution, air 121 

quality, health, ecosystem and climate effects, using a multi-model ensemble to 122 

quantify uncertainties due to differences between models (Anenberg et al., 2009; 123 

Anenberg et al., 2014; Fiore et al., 2009; Fry et al., 2012; Huang et al., 2017; Stjern et 124 

al., 2016; Yu et al., 2013).  125 

In the TF-HTAP Phase 1 (TF-HTAP1), human premature mortality due to 20% 126 

anthropogenic emission reductions in four large source regions was investigated by 127 

Anenberg et al. (2009 and 2014). They found that 20% foreign O3 precursor emission 128 

reductions contribute approximately 30% to >50% of the deaths avoided by reducing 129 

precursor emissions in all four regions together (Anenberg et al., 2009). Similarly, 130 

reducing emissions in NA and EU was found to avoid more O3-related premature deaths 131 

outside the source region than within (Anenberg et al., 2009), which agrees with other 132 

studies that together show for the first time that emission reductions in NA and EU have 133 

greater impacts on mortality outside the source region than within (Duncan et al., 2008; 134 

West et al., 2009). In contrast, Anenberg et al. (2014) estimate that 93–97 % of PM2.5-135 

related avoided deaths from reducing emissions in all four regions occurs within the 136 

source region while 3–7 % occur outside the source region from transport between 137 

continents. Despite the longer atmospheric lifetime of O3 and its relatively larger scale 138 

of influence, PM2.5 was found to cause more deaths from intercontinental transport 139 

(Anenberg et al., 2009; 2014). These prior studies have consistently concluded that 140 

most avoided O3-related deaths from emission reductions in NAM and EUR occur 141 

outside of those regions, while most avoided PM2.5-related deaths occur within the 142 

regions. Similarly, an ensemble of regional models in the third phase of the Air Quality 143 

Modelling Evaluation International Initiative (AQMEII3) found that a 20% decrease of 144 

emissions within the source region avoids 54,000 and 27,500 premature deaths in 145 

Europe and the U.S. (from both O3 and PM2.5), while the reduction of foreign emissions 146 

alone avoids ~1,000 and 2,000 premature deaths in Europe and the U.S. (Im et al., 2018). 147 

Crippa et al (2017) used the TM5-FASST reduced-form model with HTAP2 emissions 148 

to estimate a global sensitivity to 20 % emission reductions of PM2.5-related premature 149 

deaths of 401,000 globally, and 42,000 and 20,000 for Europe and the US respectively.    150 
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In addition, several studies have evaluated the relative importance of individual 151 

emissions sectors (Barrett et al., 2010; Bhalla et al., 2014; Chafe et al., 2014; Chambliss 152 

et al., 2014; Corbett et al., 2007) or multiple sectors (Lelieveld et al., 2015; Silva et al., 153 

2016a) to ambient air pollution–related premature mortality. Lelieveld et al. (2015) 154 

estimated that residential energy use such as for heating and cooking has the largest 155 

mortality impact globally (for PM2.5 and O3 mortality combined), particularly in South 156 

and East Asia. Silva et al (2016) likewise found that residential & commercial emissions 157 

are most important for ambient PM2.5-related mortality, but also found that land 158 

transportation had the greatest impact on O3-related mortality, particularly in North 159 

America, South America, Europe, FSU and the Middle East. Understanding the impact 160 

of different sectors on the global burden and the relative importance of each sector 161 

among regions can help stimulate international efforts and region-specific air pollution 162 

control strategies. Nevertheless, those studies were limited by using a single 163 

atmospheric model, reflecting a need to understand whether results differ among 164 

models and apportionment approaches.  165 

In this study, we estimate the impacts of interregional transport and of source 166 

sector emissions on human premature mortality from O3 and PM2.5, using an ensemble 167 

of global chemical transport models coordinated by the Task Force on Hemispheric 168 

Transport of Air Pollution Phase 2 (TF-HTAP2) (Galmarini et al., 2017; Huang et al., 169 

2017; Janssens-Maenhout et al., 2015; Stjern et al., 2016). Anthropogenic emissions 170 

were reduced by 20% in six source regions: North America (NAM), Europe (EUR), 171 

South Asia (SAS), East Asia (EAS), Russia/Belarus/Ukraine (RBU) and the Middle 172 

East (MDE), three emission sectors: Power and Industry (PIN), Ground Transportation 173 

(TRN) and Residential (RES), and one worldwide region (GLO). Human premature 174 

mortality due to these reductions is calculated using a health impact function based on 175 

a log-linear model for O3 (Jerrett et al. 2009) and an integrated exposure-response 176 

model for PM2.5 (Burnett et al. 2014), within the six source regions and elsewhere in 177 

the world. We conduct a Monte Carlo simulation to estimate the overall uncertainty due 178 

to uncertainties in relative risk, air pollutant concentrations (given by the spread of 179 

results among different models), and baseline mortality rates.  180 

 181 

2 Method 182 

2.1 Modeled O3 and PM2.5 surface concentration 183 

Global numerical modelling experiments initiated by TF-HTAP2, the regional 184 

experiments by the Air Quality Model Evaluation International Initiative (AQMEII) 185 

over Europe and North America, and the Modelling Intercomparison Study-Asia 186 

(MICS-Asia) were coordinated to perform consistent emission perturbation modelling 187 
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experiments across the global, hemispheric and continental/regional scales (Galmarini 188 

et al., 2017). Simulation periods, meteorology, emission inventories, boundary 189 

conditions, and model output are also consistent. The Joint Research Centre’s (JRC) 190 

EDGAR (Emission Data Base for Global Research) team in collaboration with regional 191 

emission experts from the U.S. Environmental Protection Agency (US-EPA), European 192 

Monitoring and Evaluation Programme (EMEP), Centre on Emission Inventories and 193 

Projections (CEIP), Netherlands Organization for Applied Research (TNO), and the 194 

MICS-Asia Scientific Community and Regional Emission Activity Asia (REAS) 195 

provide a global emission inventory at 0.10x0.10 resolution for TF-HTAP2 modeling 196 

experiments (Janssens-Maenhout et al., 2015). The emissions dataset was constructed 197 

for SO2, NOX, CO, NMVOC, NH3, PM10, PM2.5, BC and OC and seven emission sectors 198 

(shipping, aircraft, land transportation, agriculture, residential, industry and energy) for 199 

the year 2010 (Fig. S1).  200 

This study uses outputs from 14 global models / model versions (Table S1) 201 

participating in TF-HTAP2. Overall, TF-HTAP2 model resolutions are finer than in TF-202 

HTAP1. In TF-HTAP2, each model performed a baseline simulation and sensitivity 203 

simulations where the anthropogenic emissions in a defined source region or sector 204 

were perturbed (reduced by 20% in most cases). Based on the number of models that 205 

simulated different experiments, we choose to focus on emission reductions from six 206 

source regions, three emission sectors, and one global domain. More specifically, all 207 

anthropogenic emissions are reduced by 20% in the North America (NAM), Europe 208 

(EUR), South Asia (SAS), East Asia (EAS), Russia/Belarus/Ukraine (RBU) and the 209 

Middle East (MDE) continental regions, in the Power and Industry (PIN), Ground 210 

Transportation (TRN) and Residential (RES) emission sectors globally, and in one 211 

global domain (GLO) (Fig. S2). Unlike TF-HTAP1 (Dentener et al., 2010) which 212 

defined rectangular regions that included ocean or some sparsely inhabited regions, TF-213 

HTAP2 regions are defined by geopolitical boundaries.  214 

We selected output from the models that provided temporally resolved volume 215 

mixing ratios of O3 and mass mixing ratios of PM2.5 (“mmrpm2p5”) for the baseline 216 

and at least one regional or sectoral emission reduction scenario. Among the 14 models, 217 

11 models reported O3 and 8 reported PM2.5 for regional emission perturbation 218 

scenarios, 4 models reported O3 and 4 reported PM2.5 for sectoral emission perturbation 219 

scenarios, and 10 models reported O3 and 8 reported PM2.5 for the global emission 220 

perturbation. All models used prescribed meteorology for the year 2010, although this 221 

meteorology was derived from different (re-)analysis products and not uniform across 222 

models. Modeled concentrations are processed by calculating metrics consistent with 223 

the underlying epidemiological studies to estimate premature mortality. For O3, we 224 

calculate the average of daily 1-h maximum O3 concentration for the 6 consecutive 225 
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months with the highest concentrations in each grid cell (Jerrett et al., 2009), for the 226 

baseline and each 20% emission reduction scenario. While some models reported 227 

hourly O3 metrics, others only reported daily or monthly O3. We include these models 228 

by first calculating the ratio of the 6-month average of daily 1-h maximum O3 to the 229 

annual average of O3 in individual grid cells, for models reporting hourly O3, and then 230 

applying that ratio to the annual average of ozone for those models that only report 231 

daily or monthly O3, following Silva et al. (2013; 2016b). For PM2.5, we calculate the 232 

annual average PM2.5 concentration in each cell using the monthly total PM2.5 233 

concentrations reported by each model (“mmrpm2p5”). Model results for these two 234 

metrics are then regridded from each model’s native grid resolution (varying from 235 

0.5ο×0.5ο to 2.8ο×2.8ο) to a consistent 0.5ο×0.5ο resolution used in mortality estimation. 236 

We estimate regional and sectoral multi-model averages for each 20% emission 237 

reduction scenario in the year 2010, but for each perturbation case, we only include 238 

models that report both the baseline and perturbation cases. 239 

 240 

2.2 Model evaluation  241 

Measurements from multiple observation networks are employed in this study to 242 

evaluate the model performance around the world. We evaluate model performance for 243 

the 2010 baseline simulation for 11 TF-HTAP2 models for O3 and 8 for PM2.5 (Table 244 

S1). For O3, we use ground level measurements from 2010 at 4,655 sites globally, 245 

collected by the Tropospheric Ozone Assessment Report (TOAR) (Schultz et al., 2017; 246 

Young et al., 2018). The TOAR dataset identifies stations as urban, rural and 247 

unclassified sites (Schultz et al., 2017). Model performance is evaluated for the average 248 

of daily 1-h maximum O3 concentrations for the 3 consecutive months (3m1hmaxO3) 249 

with the highest concentrations in each grid cell, including models that only report daily 250 

or monthly O3 as described above. This metric for O3 differs slightly from the 6-month 251 

average of daily 1-h maximum metric used for health impact assessment, and is chosen 252 

because TOAR reports the 3-month metric but not the 6-month metric. For PM2.5, we 253 

compare the annual average PM2.5, using PM2.5 observations from 2010 at 3,157 sites 254 

globally selected for analysis by the Global Burden of Disease 2013 (GBD2013) 255 

(Forouzanfar et al., 2016). Statistical parameters including the normalized mean bias 256 

(NMB), normalized mean error (NME), and correlation coefficient (R) are selected to 257 

evaluate model performance. 258 

Table S2 and S3 present statistical parameters of model evaluation for O3 and 259 

PM2.5, and Figures S3-S10 show the spatial O3 and PM2.5 evaluation as NMB around 260 

the world, and in North America, Europe and East Asia. For 3m1hmaxO3, the model 261 

ensemble mean shows good agreement with measurements globally with NMB of 7.3% 262 

and NME of 13.2%, but moderate correlation with R of 0.53 (Table S2). For individual 263 
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models, 8 models (CAM-chem, CHASER_T42, CHASER_T106, EMEPrv48, 264 

GEOSCHEMADJOINT, GEOS-Chem, GFDL_AM3 and HadGEM2-ES) overestimate 265 

3m1hmaxO3 with NMB of 9.2% to 23% while 3 models (C-IFS, OsloCTM3.v2 and 266 

RAQMS) underestimate by -10.8% to -19.4% globally (Figure S3). In the 6 267 

perturbation regions, the model ensemble mean is also in good agreement with the 268 

measurements, with -11.2% to 25.3% for NMB, 9.8% to 25.3% for NME, and -0.09 to 269 

0.98 for R. The ranges of NMB for individual models are -18.1% to 32.3%, -24.1% to 270 

21.3%, -24.5% to 45.0%, -26.4% to 24.5%, -30.5% to 20.3%, -35.3% to 5.4%, in NAM, 271 

EUR, SAS, EAS, MDE, and RBU, respectively (Figure S4-S6). Note that some regions 272 

(SAS, MDE, and RBU) have very few observations for model evaluation, making the 273 

comparison less robust. The underestimated O3 in the western US and overestimated 274 

O3 in eastern US in most models is very close to the model performance result of Huang 275 

et al. (2017) who compare 8 TF-HTAP2 models with CASTNET observations (Figure 276 

S4) , as well as earlier studies under HTAP1 (Fiore et al. 2009). Similarly, Dong et al. 277 

(2018) find that O3 is overestimated in EUR and EAS by 6 TF-HTAP2 models, 278 

consistent with our ensemble mean result in these two regions (Figure S5-S6). 279 

For PM2.5, the model ensemble mean agrees well with measurements globally, 280 

with NMB of -23.1%, NME of 35.4%, and R of 0.77 (Table S3). For individual models, 281 

only 1 model (GEOSCHEMADJOINT) overpredicts PM2.5 by 20.3%, while the other 282 

7 models underpredict PM2.5 by -60.9% to -7.4% around the world (Figure S7). In 6 283 

perturbation regions, the model ensemble mean is also in good agreement with 284 

measurements, with ranges of NMB of -49.7% to 19.4%, 21.2% to 49.7% for NME, 285 

and 0.50 to 1.00 for R. The range of NMB for individual models are -46.6% to 13.9%, 286 

-76.0% to 31.9%, -35.0% to 49.7%, -50.4% to 29.5%, -52.6% to 31.5%, and -74.1% to 287 

-19.8%, in NAM, EUR, SAS, EAS, MDE, and RBU, respectively (Figure S8-S10). 288 

Dong et al. (2018) shows that PM2.5 is underestimated in EUR and EAS by 6 TF-HTAP2 289 

models, consistent with our ensemble mean result in these two regions (Figure S9-S10). 290 

Note that many observations used are located in urban areas, and models with coarse 291 

resolution may not be expected to have good model performance. Also several models 292 

neglect some PM2.5 species, which may explain the tendency of models to 293 

underestimate. 294 

 295 

2.3 Health impact assessment  296 

We use output from the TF-THAP2 model ensemble to estimate annual O3- and 297 

PM2.5-related global cause-specific premature mortality and avoided mortality from the 298 

20% regional and sectoral emission reductions, following the same methods used by 299 

Silva et al. (2016a; 2016b). The annual O3- and PM2.5-related premature mortality is 300 

calculated using a health impact function based on epidemiological relationships 301 
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between ambient air pollution concentration and mortality in each grid cell: ∆𝑀 =302 

𝑦0 × 𝐴𝐹 × 𝑃𝑜𝑝 , where ∆𝑀  is premature mortality, 𝑦0  is the baseline mortality rate 303 

(for the exposed population), AF=1 – 1/RR is the attributable fraction, where RR is 304 

relative risk of death attributable to the change in air pollutant concentration (RR=1 305 

when there is no increased risk of death associated with a change in pollutant 306 

concentration), and 𝑃𝑜𝑝 is the exposed population (adults aged 25 and older).  307 

For O3 mortality, we use a log-linear model for chronic respiratory mortality 308 

(RESP) from the American Cancer Society (ACS) study (Jerrett et al 2009), following 309 

recent studies including the GBD (Cohen et al., 2017), but Turner et al. (2016) recently 310 

published new results for chronic ozone mortality, and adoption of these results would 311 

lead to more ozone-related deaths overall (Malley et al., 2017). RR is calculated as: 312 

𝑅𝑅 =  𝑒𝛽∆𝑥 (1)  313 

where β is the concentration-response factor, and Δx corresponds to the change in 314 

pollutant concentrations between simulations with perturbed emissions and the baseline 315 

simulation. For O3, RR = 1.040 (95% Confidence Interval, CI: 1.013-1.067 ) for a 10 316 

ppb increase in O3 concentrations (Jerrett et al., 2009), which from eq. 1 gives values 317 

for β of 0.00392 (0.00129-0.00649). We estimate O3-related premature deaths due to 318 

respiratory disease (RESP) based on decreases or increases in O3 concentration (i.e. Δx) 319 

due to 20% regional and sectoral emission reduction scenarios relative to the baseline. 320 

For regional and sectoral reductions, we do not assume a low-concentration threshold 321 

below which changes in O3 have no mortality effects, as there is no clear evidence for 322 

such a threshold, following Anenberg et al (2009; 2010) and Silva et al. (2013; 2016a, 323 

b). However, we evaluate global O3 premature mortality for the baseline 2010 324 

simulation, relative to a counterfactual concentration of 37.6 ppb (Lim et al. 2012), for 325 

consistency with GBD estimates (Cohen et al., 2017). 326 

For PM2.5 mortality, we apply the Integrated Exposure–Response (IER) model, 327 

which is intended to better represent the risk of exposure to PM2.5 at locations with high 328 

ambient concentrations (Burnett et al., 2014). RR is calculated as:  329 

For z<zcf, 𝑅𝑅𝐼𝐸𝑅(𝑧) = 1  (2) 330 

For z≧zcf, 𝑅𝑅𝐼𝐸𝑅(𝑧) = 1 + 𝛼{1 − 𝑒𝑥𝑝 [−𝛾(𝑧 − 𝑧𝑐𝑓)
𝛿

]}  (3) 331 

where z is the PM2.5 concentration in μg/m3 and zcf is the counterfactual concentration 332 

below which no additional risk is assumed, and the parameters α, γ, and δ are used to 333 

fit the function for cause-specific RR (Burnett et al., 2014). The overall PM2.5-related 334 

cause-specific premature deaths related to ischemic heart disease (IHD), 335 

cerebrovascular disease (STROKE), chronic obstructive pulmonary disease (COPD) 336 

and lung cancer (LC) are estimated using RRs per age group for IHD and STROKE and 337 

RRs for all ages for COPD and LC. A uniform distribution from 5.8 μg/m3 to 8.8 μg/m3 338 

is used for zcf as suggested by Burnett et al. (2014), which does not vary in space nor 339 
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time. For uncertainty analysis, we use results from 1,000 Monte Carlo simulations of 340 

Burnett et al. (2014) to calculate RR in each grid cell by eq.2 or eq. 3. We estimate 341 

avoided premature mortality in 20% emission perturbation experiments by taking the 342 

difference in premature mortality estimates with the 2010 baseline. However, in the IER 343 

model, the concentration–response function flattens off at higher PM2.5 concentrations, 344 

yielding different estimates of avoided premature mortality for identical changes in air 345 

pollutant concentrations from less-polluted vs. highly-polluted regions. That is, one unit 346 

reduction of air pollution may have a stronger effect on avoided mortality in regions 347 

where pollution levels are lower (e.g., Europe, North America) compared with highly 348 

polluted regions (e.g., East Asia, India), which would not be the case for a log-linear 349 

function (Jerrett et al., 2009; Krewski et al., 2009). Therefore, using the IER model in 350 

this study may result in smaller changes in avoided mortality in highly polluted areas 351 

than using the linear model. 352 

For the exposed population, we use the Oak Ridge National Laboratory's Landscan 353 

2011 Global Population Dataset at approximately 1 km resolution (30"x30") (Bright et 354 

al., 2012). For the population of adults aged 25 and older, we use ArcGIS 10.2 355 

geoprocessing tools to estimate the population per 5-year age group in each cell by 356 

multiplying the country level percentage in each age group by the population in each 357 

cell. We obtained cause-specific baseline mortality rates for 187 countries from the 358 

GBD 2010 mortality dataset (IHME, 2013). The population and baseline mortality per 359 

age group were regridded to the 0.5ο×0.5ο grid (Table S4 and Fig. S11). Cause-specific 360 

baseline mortality rates vary geographically, e.g. RESP and COPD are relatively more 361 

dominant in South Asia, IHD in Europe, STROKE in Russia, and LC in North America. 362 

Finally, we conduct 1,000 Monte Carlo simulations to propagate uncertainty from 363 

baseline mortality rates, modeled air pollutant concentrations, and the RRs in health 364 

impact functions. We use the reported 95% CIs for cause-specific baseline mortality 365 

rates, assuming lognormal distributions. For modeled O3 and PM2.5 concentrations we 366 

use the absolute value of the coefficient of variation among models in each grid cell, 367 

for each 20% emission perturbation case minus the baseline, assuming a normal 368 

distribution. For O3 RRs, we use the reported 95% confidence intervals (CIs), assuming 369 

a normal distribution. For PM2.5 RRs, we use the parameter values (i.e. α, γ, δ and zcf) 370 

of Burnett et al. (2014) for 1,000 simulations. One should acknowledge that the range 371 

of modeled air pollution concentrations in an ensemble is not a true reflection of the 372 

uncertainty in emissions to concentration relationships. The mean health outcome of 373 

the 1,000 Monte Carlo simulations (the “empirical mean”) may differ from the mean 374 

when using the mean RR. 375 

We also quantify the uncertainties in mortality due to the spread of air pollutant 376 

concentrations across models, RRs, and baseline mortality rates, as contributors to the 377 
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overall uncertainty, expressed as a coefficient, of variation and compare the result with 378 

the Monte-Carlo analysis estimate. To do so, we hold two variables at their mean values 379 

and change the variable of interest within its uncertainty range; for example, using mean 380 

RRs and baseline mortality rates, we analyze the spread of the model ensemble to 381 

calculate the coefficient of variation caused by model uncertainty. Given that our 382 

0.5ο×0.5ο grid cell resolution can capture most of the population well in a given region, 383 

uncertainty associated with population was assumed to be negligible. We estimate the 384 

impacts of extra-regional emission reductions on mortality by using the Response to 385 

Extra-Regional Emission Reduction (RERER) metric defined by TF-HTAP (Galmarini 386 

et al., 2017):  387 

𝑅𝐸𝑅𝐸𝑅𝑖 =
𝑅𝑔𝑙𝑜𝑏𝑎𝑙−𝑅𝑟𝑒𝑔𝑖𝑜𝑛,𝑖

𝑅𝑔𝑙𝑜𝑏𝑎𝑙
 (4) 388 

where for a given region i, 𝑅𝑔𝑙𝑜𝑏𝑎𝑙  is the change in mortality in the global 20% 389 

reduction simulation (GLO) relative to the base simulation, and 𝑅𝑟𝑒𝑔𝑖𝑜𝑛,𝑖 is the change 390 

in mortality in response to the 20% emission reduction from that same region i. A 391 

RERER value near 1 indicates a strong relative influence of foreign emissions on 392 

mortality within a region, while a value near 0 indicates a weak foreign influence. We 393 

also estimate the total avoided extra-regional mortality from a source perspective as the 394 

sum of avoided deaths outside of each of the 6 source regions, and from a receptor 395 

perspective by summing 𝑅𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑅𝑟𝑒𝑔𝑖𝑜𝑛,𝑖 for all 6 regions. 396 

 397 

3 Results 398 

3.1 Response of O3 and PM2.5 concentrations to 20% regional and sectoral 399 

emission reductions 400 

Previous TF-HTAP studies reported area-averaged concentrations to quantify 401 

source-receptor relationships averaging concentrations over a region (Doherty et al., 402 

2013; Fiore et al., 2009; Fry et al., 2012; Huang et al., 2017; Stjern et al., 2016; Yu et 403 

al., 2013). Here, we present the population-weighted concentration over a region, which 404 

is more relevant for health. Among six receptor regions, the population-weighted multi-405 

model mean O3 concentrations range from 48.38±8.05 ppb in EUR to 65.72±10.08 ppb 406 

in SAS with a global average of 53.74±8.03 ppb, while the annual population-weighted 407 

multi-model mean PM2.5 concentrations range from 9.36±2.62 μg/m3 in NAM to 39.27408 

±13.50 μg/m3 in EAS with a global average of 25.98±5.05 μg/m3 (Table 1 and S5-S6 409 

and Figs.S12-S13).  410 

For 20% perturbation scenarios, in general the impact on the multi-model mean 411 

change in surface O3 and PM2.5 concentration is greater within the source region (i.e., 412 
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domestic region) than outside of it (i.e., foreign region) (Figs. 1-2). This is also true for 413 

individual model results (Figs. S14-S16). Among six source regions, the emission 414 

reduction from SAS has the greatest impact on global population-weighted O3 415 

concentration (Tables 2 and S5), while that from EAS has greatest impact on PM2.5 416 

(Tables 3 and S6). The source-receptor pairs with the greatest changes in O3 and PM2.5 417 

concentration reflect the geographical proximity between regions and the magnitude of 418 

emissions (Table 2-3) – e.g., EUR→MDE (0.34±0.08 ppb), EUR→RBU (0.34 419 

ppb±0.09), EAS→NAM (0.29±0.14 ppb), EAS→RBU (0.27±0.12 ppb), and 420 

NAM→EUR (0.26±0.55 ppb) for O3, and EUR→RBU (0.26±0.19 μg/m3), EUR→MDE 421 

(0.18±0.08 μg/m3), MDE→SAS (0.12±0.06 μg/m3), SAS→EAS (0.08±0.08 μg/m3), 422 

and EAS→SAS (0.08±0.07 μg/m3) for PM2.5. Our ensemble shows similar ozone 423 

responses in the western US to emission reductions from EAS (Figs. 1c) as those 424 

modeled by Lin et al. (2012 and 2017), who show that a model can capture the measured 425 

western US ozone increases due to rising Asian emissions.  426 

For each receptor region, reducing foreign anthropogenic emissions by 20% 427 

(estimated by global minus within-region reductions) can decrease population-428 

weighted O3 concentrations by 29-74% of the change in O3 concentration and 8–41 % 429 

of the change in PM2.5 concentration (Tables 2-3). In some cases, regional emission 430 

reductions cause small O3 concentration increases within the source region or in foreign 431 

receptors, reflecting O3 nonlinear responses (Figs. S14). For instance, C-IFS_v2 432 

predicts O3 concentration increases in EUR by 0.04 ppb from domestic emission 433 

reductions, which is in agreement with results from TF-HTAP1 (Anenberg et al. 2009). 434 

Similarly, CMAchem shows more local O3 increases, particularly in SAS, than other 435 

models (Figs. S14). The change in O3 concentration in foreign receptors is broader than 436 

for PM2.5, reflecting that O3 has a longer atmospheric lifetime than PM2.5.  437 

For sectors, TRN emission reductions cause the greatest decrease in global 438 

population-weighted O3 by 1.13±0.19 ppb, while PIN emission reductions cause the 439 

greatest decrease in surface PM2.5 by 1.46±0.56 μg/m3 globally (Tables 2-3 and Figs. 1-440 

2). The 20% emission reductions from individual sectors also have different effects in 441 

different regions. Of the three sectors, emission reductions from TRN have the greatest 442 

effect on population-weighted O3 in NAM, EUR, SAS, MDE and MDE (40-50% of the 443 

global emission reduction) while PIN emission reductions dominate in EAS (57%). 444 

Emission reductions from PIN have the greatest effect on population-weighted PM2.5 445 

in NAM, EUR, EAS, MDE and MDE (41-84%) while RES emission reductions 446 

dominate in SAS (43%). The response of PM2.5 concentration to sectoral emission 447 

reductions differs significantly across models, which reflects in part the PM2.5 species 448 

simulated by each model (Table S1 and Figs. S15-S17). For instance, we found that 449 

models that simulate PM2.5 nitrate (i.e. CHASER_t42 and GEOSCHEMADJOIN) 450 
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predict a greater impact on PM2.5 concentration from TRN emission reduction than 451 

those without nitrate (i.e. GOCARTv5 and SPRINTARS) (Fig. S17).  452 

 453 

3.2 Global mortality burden associated with anthropogenic air pollution 454 

Table 4 shows the annual multi-model mean O3- and PM2.5-related premature 455 

deaths on 6 regions and globally for year 2010 baseline with 95% confidence intervals 456 

(CI) based on Monte Carlo sampling. Tables S7-S8 show estimates of premature deaths 457 

due to anthropogenic O3 and PM2.5 from individual models. For the ensemble model 458 

mean, we estimate 290,000 (30,000, 600,000) premature O3-related deaths globally 459 

using a 37.6 ppb counterfactual concentration, and 2.8 million (0.5 million, 4.6 million) 460 

PM2.5-related premature deaths using a uniform distribution of counterfactual 461 

concentration from 5.8 μg/m3 to 8.8 μg/m3. Highly populated areas of India and East 462 

Asia have the greatest O3- and PM2.5-related deaths, and those regions together account 463 

for 82% and 66% of the global total O3- and PM2.5-related deaths. Compared with the 464 

GBD 2015 (Cohen et al 2017), our global burden estimates are greater than the 254,000 465 

(97,000, 422,000) premature deaths/year for O3 from GBD, while less than 4.2 million 466 

(3.7 million, 4.8 million) premature deaths for PM2.5. Lelieveld et al (2015) estimate 467 

142,000 (CI: 90,000, 208,000) O3-related deaths and 3.2 million (1.5 million, 4.6 468 

million) PM2.5-related premature deaths for 2015. These differences can be explained 469 

mainly by exposure estimates. Here we used a multi-model ensemble, whereas 470 

Lelieveld et al. (2015) used a single model, and Cohen et al (2017) used a single model 471 

for O3 and a single model combined with surface and satellite observations for PM2.5. 472 

In addition, Cohen et al. (2017) use RRs for particulate matter for IHD and stroke 473 

mortality that are modified from those used by Burnett et al (2014) and applied age 474 

modification to the RRs, fitting the IER model for each age group separately. The 475 

updated IER with estimated higher relative risks, together with greater global pollution 476 

and baseline mortality rates in the low-income and middle-income countries in east and 477 

south Asia leads to the higher absolute numbers of attributable deaths and disability-478 

adjusted life-years in GBD 2015 than estimated in GBD 2013 (Forouzanfar et al., 2016). 479 

Also, GBD 2015 includes child lower respiratory infections estimate whereas we do 480 

not. Our wider range of uncertainty for the global mortality reflects the uncertainty in 481 

baseline rates, RRs and spread of air pollutant concentration across models whereas 482 

Cohen et al (2017) consider national-level population-weighted mean concentrations 483 

and uncertainty of IER function predictions at each concentration and Lelieveld et al. 484 

(2015) only account for the statistical uncertainty of the parameters used in the IER 485 

functions. 486 

 487 
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3.3 Effect of regional reductions on mortality 488 

Reducing global anthropogenic emissions of air pollutant by 20% avoids 47,400 489 

(11,300, 99,000) O3-related deaths and 290,000 (67,100, 405,000) PM2.5-related 490 

premature deaths (Tables 5-6 and S9-S10). Most avoided air pollution-related deaths 491 

were found within or close to the source region (Figs.3-76). Reducing anthropogenic 492 

emissions by 20% from NAM, EUR, SAS, EAS, MDE and RBU can avoid 54%, 54%, 493 

95%, 85%, 21%, and 22% of the global change in O3-related deaths within the source 494 

region (The number of avoided deaths within source region is divided by the number 495 

of avoided deaths globally), and 93%, 81%, 93%, 94%, 32%, and 82% of the global 496 

change in PM2.5-related deaths, respectively (Table 5-6). Whereas the most O3-related 497 

premature deaths can be avoided by reducing SAS emissions (20,000 (3,600, 42,200) 498 

deaths/year), reducing EAS emissions avoids more O3-related premature deaths (1,700 499 

(-1,300, 5,400)) outside of the source region than for any other region (500 (180, 870) 500 

deaths/year to 1,300 (-1,200, 4,400) deaths/year (Table 5). Similarly, while reducing 501 

EAS emissions avoids the most PM2.5-related premature deaths (96,600 (3,500, 136,000) 502 

deaths/year), reducing EUR emissions avoids more PM2.5-related premature deaths 503 

(7,400 (930, 9,500) deaths/year) outside of the source region than for any other region 504 

(1,400 (-320, 2,300) deaths/year to 5,500 (3,000, 7,800) deaths/year) (Table 6). While 505 

emission reductions from one region generally lead to more avoided deaths within the 506 

source region than outside, 20% anthropogenic emission reductions from MDE (i.e. 507 

79% and 68% of global avoided deaths outside of source region for O3 and PM2.5, 508 

respectively) and RBU (78% for O3) can avoid more premature deaths outside of the 509 

source region than within (Table 5-6). This result for RBU is in agreement with West et 510 

al (2009). However, the results for NAM and EUR do not agree with previous studies 511 

that found that emission reductions in these regions cause more O3-related avoided 512 

premature deaths outside of the source region than within (Anenberg et al., 2009; 513 

Duncan et al., 2008; West et al., 2009). For PM2.5, our results are comparable with 514 

Anenberg et al. (2014) and Crippa et al. (2017) who found that for most regions, PM2.5-515 

related avoided premature deaths are higher within the source region than outside. The 516 

above difference in results with TF-HTAP1 may be in part because of the definition of 517 

regions. Whereas the TF-HTAP2 regions are defined by geopolitical boundaries, the 518 

TF-HTAP1 regions are defined by square domains which are larger and include more 519 

ocean areas (Anenberg et al., 2009). In addition, updated atmospheric models and 520 

emissions inputs, as well as different atmospheric dynamics in the single years chosen 521 

in TF-HTAP1 vs. TF-HTAP2 may contribute to the differences.   522 

Using individual models, different conclusions may result for the relative 523 

importance of inter-regional transport. For example, for O3, 8 models predict that NAM 524 

emission reductions cause more O3-related premature deaths within NAM (i.e CAM-525 
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Chem, CHASER_T42, CHASER_T106, C-IFS, GEOSCHEMADJOINT, GEOS-526 

Chem, GFDL_AM3 and HadGEM2-ES), whereas 2 models predict more deaths outside 527 

(i.e. EMEPrv48 and OsloCTM3.v2). 5 models suggest that EUR emission reductions 528 

cause more O3-related premature deaths within EUR (i.e. CAM-chem, CHASER_T42, 529 

CHASER_T106, GFDL_AM3 and HadGEM2-ES), whereas 4 show more deaths 530 

outside (i.e. C-IFS, GEOSCHEMADJOINT, EMEPrv48 and OsloCTM3.v2). Each 531 

individual model shows that emission reductions from SAS and EAS avoid more O3-532 

related premature deaths within than outside, and that those from MDE and RBU avoid 533 

more O3-related premature deaths outside than within (Fig. S18). For PM2.5, each 534 

individual model shows that emission reductions from NAM, EUR, SAS, EAS and 535 

RBU avoid more PM2.5-related premature deaths within than outside, while for 536 

emission reductions from MDE, 3 models (EMEPrv48, GEOSCHEMADJOINT and 537 

SPRINARS) show more PM2.5-related premature deaths within, while 3 538 

(CHASER_T42 GEOS5 and GOCART) show more PM2.5-related premature deaths 539 

outside (Fig. S19). The variation of health effect reflects the differences in processing 540 

of natural emissions, atmospheric physical and chemical mechanisms, numerics etc 541 

across models. 542 

For each receptor region, reducing domestic anthropogenic emissions by 20% 543 

contributes about 66%, 39%, 84%, 72%, 45% and 25% of the total O3-related avoided 544 

premature mortality (from the global reduction), and 90%, 78%, 87%, 87%, 58% and 545 

66% of the total PM2.5-related avoided premature mortality (from the global reduction) 546 

in NAM, EUR, SAS, EAS, MDE and RBU, respectively (Table 5-6). Therefore, 547 

reducing emissions from foreign regions avoids more O3 premature deaths in EUR 548 

(foreign emission account for 61% of total avoided deaths from the global reduction), 549 

MDE (55%) and RBU (75%) than reducing domestic emissions (Table 5-6), in 550 

agreement with the results for EUR from Anenberg et al (2009). Whereas EAS has the 551 

greatest number of avoided O3-related premature deaths due to foreign emission 552 

reduction (3,800 (3,600, 3,900) deaths/year), RBU has the greatest fraction of O3 553 

mortality from foreign emission reductions (75%) (Table 5). Similarly, for PM2.5, while 554 

EAS has greatest number of avoided PM2.5-related premature deaths due to foreign 555 

emission reductions (13,600 (3,500, 18,800) deaths/year), MDE has the greatest 556 

fraction of PM2.5 mortality from foreign emission reduction (42%) (Table 6).  557 

Overall, adding results from all 6 regional reductions, interregional transport of air 558 

pollution from extra-regional contributions is estimated to lead to more avoided deaths 559 

through changes in PM2.5 (25,100 (8,200, 35,800) deaths/year) than in O3 (6,000 (-3,400, 560 

15,500) deaths/year), consistent with Anenberg et al. (2009; 2014). This result is due to 561 

the greater influence of PM2.5 on mortality, despite the shorter atmospheric lifetime of 562 

PM2.5 relative to O3.  563 
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The contributions of different factors to the overall uncertainties in mortality are 564 

shown in Tables S11-S12, considering uncertainties due to the spread of air pollutant 565 

concentrations across models, RRs, and baseline mortality rates, expressed as 566 

coefficients of variation.  For both O3 and PM2.5 mortality, the spread of model results 567 

generally contributes most to the overall uncertainty, followed by uncertainty in RRs 568 

and in baseline mortality rates, for most source-receptor pairs. The spread of model 569 

results is generally wider for PM2.5 (14% to 3974% among source-receptor pairs) than 570 

for O3 (13% to 1065%). The uncertainty in RRs for O3 mortality has constant value 571 

(33% to 34%) due to the fixed uncertainty range of RRs from Jerrett et al. (2009), 572 

whereas PM2.5 mortality leads to a wider range of uncertainty (1% to 247%) in RRs 573 

because the uncertainty differs at different PM2.5 concentrations (Burnett et al., 2014). 574 

Low uncertainty in baseline mortality rate was found for most source-receptor pairs 575 

(<20%) except for the response of PM2.5 mortality in SAS to 20% reduction from RBU 576 

(66%).  577 

 578 

3.4 Effect of sectoral reductions on mortality  579 

Reducing global anthropogenic emissions by 20% in 3 sectors (i.e. PIN, TRN and 580 

RES) together avoids 48,500 (7,100, 108,000) O3-related premature deaths and 243,000 581 

(66,800, 357,000) PM2.5-related premature deaths globally (Tables 5-6), with the 582 

greatest avoided air pollution-related premature deaths located in highly populated 583 

areas (e.g., North America, Europe, India, China, etc.) (Figs.3-6). For instance, reducing 584 

anthropogenic emissions by 20% in 3 sectors together avoids the highest number of O3-585 

related deaths in SAS (24,000 (6,000, 49,600) deaths/year) and PM2.5-related deaths in 586 

EAS (83,400 (29,400, 135,000) deaths/year). We compare our estimates of O3 and 587 

PM2.5-related premature deaths attributable to PIN, TRN and RES emissions with 588 

previous studies, by multiplying our results for 20% emission reductions by 5, and by 589 

combining their sectors to nearly match each of the three sectors in this study (Table 7). 590 

Compared with Silva et al (2016a), our estimate of O3 and PM2.5-related premature 591 

deaths attributable to PIN and TRN are very comparable, but that to RES is lower here. 592 

In comparison with Lelieveld et al (2015), we estimate greater O3 and PM2.5-related 593 

premature deaths attributable to PIN and TRN, but less for RES. 594 

Like Silva et al. (2016a) and Lelieveld et al. (2015), different locations show 595 

relatively different mortality responses to changes in sectoral emissions. Whereas PIN 596 

emission reductions cause the greatest number of avoided O3-related premature deaths 597 

globally (19,300 (1,400, 45,000) deaths/year), TRN emission reductions cause the 598 

greatest fraction of avoided deaths in most of the six regions (26-53% of the global 599 

emission reduction), except for EAS (58%) and RBU (38%) where the effect of 600 

reducing PIN emissions dominates. In comparison with other studies (Table 7), our 601 



 

17 

 

conclusion that PIN emissions cause the most O3-related deaths and TRN emissions 602 

cause the greatest fraction of avoided deaths in most regions agrees well with Silva et 603 

al (2016a). For PM2.5, reducing PIN emissions avoids the most PM2.5-related premature 604 

deaths globally (128,000 (41,600, 179,000) deaths/year) and in most regions (38-78% 605 

of the global emission reduction), except for SAS (45%) where the RES emission 606 

dominates. Although these findings differ from those of Lelieveld et al (2015) and Silva 607 

et al (2016), who find that Residential emissions have the greatest of impact on PM2.5 608 

mortality globally and in most regions, all studies agree that PIN emissions have the 609 

greatest impact in NAM. Our result is also comparable with Crippa et al (2017) who 610 

find that PIN emissions have the greatest health impact in most countries. Although 611 

comparable emission inventories are used (i.e. Lelieveld et al (2015) and this study use 612 

EDGAR emissions while Silva et al (2016) use RCP8.5 emissions), our lower mortality 613 

estimate for RES emissions may be explained by our 20% reductions relative to the 614 

zero-out method, and the different years simulated.  615 

Considering results from individual models, we found that mortality from TRN 616 

emission reductions show greater relative uncertainty than from PIN or RES (Table 5-617 

6 and Table S9-S10), reflecting a greater spread of results across models. Regional 618 

impacts from individual model also differ from the ensemble mean result - e.g., for O3, 619 

GEOSCHEMADJOINT and OsloCTM3.v2 show that reducing PIN emissions causes 620 

the greatest fraction of avoided O3-related deaths in EUR, while 621 

GEOSCHEMADJOINT, HadGM2-ES and OsloCTM3.v2 show that TRN emissions 622 

have the greatest fraction of avoided O3-related deaths in RBU (Figs. S20). For PM2.5, 623 

CHASER_t42 and GEOSCHEMADJOINT show that reducing PIN emissions causes 624 

the greatest fraction of avoided PM2.5-related deaths in SAS (Figs. S21).  625 

 626 

4 Discussion 627 

We aggregate the avoided deaths attributable to 20% reductions from four 628 

corresponding source regions (i.e. NAM, EUR, SAS and EAS), and compare with the 629 

findings from TF-HTAP1. We estimate that these regional emission reductions are 630 

associated with 36,000 (-1,500, 90,300) avoided deaths globally through the change in 631 

O3 and 207,000 (41,500, 304,000) avoided deaths through the change in PM2.5, more 632 

than those estimated by Anenberg et al. (2009 and 2014) – 21,800 (10,600, 33,400) 633 

deaths for O3 and 192,000 (146,000, 230,000) deaths for PM2.5. This discrepancy might 634 

be attributed to different health impact function, emissions data sets, region definitions, 635 

updated population or baseline mortality rates. In particular, for O3 respiratory mortality, 636 

we use a log-linear model for chronic mortality (Jerrett et al 2009), instead of the short-637 

term O3 mortality estimate based on a daily time-series study (Bell et al., 2004) used by 638 
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Anenberg et al., (2009). For PM2.5 mortality, Anenberg et al., (2014) only included the 639 

simulated changes in BC, particulate organic matter (POM=primary organic 640 

aerosol+secondary organic aerosol), and sulfate for PM2.5 concentration, while we use 641 

the total model reported PM2.5 concentration which includes more species for some 642 

models. We also apply the Integrated Exposure–Response (IER) model (Burnett et al. 643 

2014) for PM2.5, as opposed to the log-linear model of Krewski et al. (2009) used by 644 

Anenberg et al., (2014).  645 

For regional reductions, our multi-model average results suggest that NAM and 646 

EUR emissions cause more deaths inside of those regions than outside, which disagrees 647 

with previous studies (Anenberg et al., 2009; Duncan et al., 2008; West et al., 2009) 648 

whereas similar regional impacts are found for EAS and SAS. Also, total avoided 649 

deaths through interregional air pollution transport are estimated as 6,000 (-3,400, 650 

15,500) deaths/year for O3 and 25,100 (8,200, 35,800) deaths/year for PM2.5 in this 651 

study, in contrast with 7,300 (3,600, 11,200) deaths/year for O3 and 11,500 (8,800, 652 

14,200) deaths/year for PM2.5 in Anenberg et al. (2009; 2014). These differences likely 653 

result from different concentration-response functions and the use of 6 regions here vs. 654 

4 by Anenberg et al. (2009; 2014). In addition, updated atmospheric models and 655 

emissions inputs, as well as different atmospheric dynamics in the single years chosen 656 

in TF-HTAP1 vs. TF-HTAP2 may contribute to the differences. In addition, updated 657 

atmospheric models and emissions inputs, as well as different atmospheric dynamics in 658 

the single years chosen in HTAP vs. HTAP2 may contribute to the differences.  Overall, 659 

whereas O3 accounts for a higher percentage of the total deaths in foreign regions than 660 

PM2.5, PM2.5 leads to more deaths in general, which agrees well with the results of 661 

Anenberg et al. (2009; 2014).  662 

Using regional models in AQMEII3, driven by a single global model (C-IFS_v2), 663 

Im et al. (2018) estimated that 20% domestic emission reductions would avoid 54,000 664 

and 27,500 premature deaths (for O3 and PM2.5 combined) in Europe and the U.S., 665 

respectively, as opposed to ~1,000 and 2,000 premature deaths due to foreign emission 666 

reductions. These results are comparable to our estimates that 32,900 and 19,500 667 

premature deaths result from 20% domestic emission reductions in Europe and the U.S., 668 

while 670 and 570 premature deaths result from foreign emission reductions. Although 669 

our defined U.S. region is slightly bigger than Im et al. (2018), the majority of U.S. 670 

emission sources and population are located within the region defined by Im et al. 671 

(2018). This comparison shows that regional and global models show similar impacts 672 

on mortality from air pollution transport.  673 

Differences in our estimates of premature mortality attributable to air pollution 674 

from three emission sectors (multiplied by 5) may be explained by methodological 675 

differences relative to previous studies (Silva et al., 2016; Lelieveld et al., 2015), 676 
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including our use of 20% emission reductions versus the zero-out method in those 677 

studies, different emission inventories, a multi-model ensemble versus single models, 678 

and differences in baseline mortality rates, population, and concentration response 679 

functions. Our finding that TRN emissions contribute the most avoided deaths for O3 680 

in most regions agrees well with the result by Silva et al (2016a), but differs for PM2.5 681 

mortality for which we find that PIN emissions cause the most deaths, while both Silva 682 

et al (2016a) and Lelieveld et al (2015) find that RES emissions are responsible for the 683 

most deaths. This discrepancy may be explained by different PM2.5 species included in 684 

individual models, as we showed that changes in PM2.5 concentration to TRN emission 685 

differ across models.  686 

By using an ensemble of multi-model results here, we highlight the relative 687 

importance of difference source-receptor pairs for mortality in a way that is more robust 688 

than using a single model, particularly since some individual models yielded different 689 

conclusions than the ensemble mean. The air pollutant concentration changes reported 690 

by the HTAP2 models may be different among models, it may result from variety of 691 

processes, e.g. atmospheric physical and chemical mechanisms, processing of natural 692 

emissions, and transport time step, etc. (Table S1), but not anthropogenic emissions 693 

since those were nearly identical among models. In addition, the coarse model 694 

resolution used by global models may underestimate health effects by misaligning peak 695 

concentration and population, particularly in urban areas and for PM2.5 (Punger and 696 

West, 2013), but it is not known how model resolution would affect the relative 697 

contributions of extra-regional and intraregional health benefits. Future research should 698 

explore the possible bias from using coarse global models for extra-regional and 699 

intraregional mortality estimates in metropolitan regions by comparing with finer-700 

resolution chemical transport models.  701 

Another uncertainty in this paper (and other global studies) lies in applying the 702 

same RRs worldwide, because of lack of long-term records of the chronic influences of 703 

ambient air pollution on mortality outside of North America and Europe. We consider 704 

only the population of adults ≥25 years old, ignoring possible mortality effects on the 705 

younger population, and consequently we may underestimate premature mortality 706 

overall. Likewise, the effects of air pollution on several morbidity endpoints are omitted. 707 

We assume that all PM2.5 is equally toxic, for lack of clear evidence for greater toxicity 708 

of some species. Inter-regional transport may also change the toxicity of PM2.5 by 709 

changing the size distribution or chemical composition, where transport likely causes 710 

particles to become more oxidized (West et al., 2016). Future research on PM2.5-related 711 

mortality should include estimating health effects for different PM2.5 chemical 712 

components. 713 

 714 
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5 Conclusions  715 

We estimate O3- and PM2.5-related premature mortality from simulations with 14 716 

global CTMs participating in the TF-HTAP2 multi-model exercise for the year 2010. 717 

An estimate of 290,000 (30,000, 600,000) global premature O3-related deaths and 2.8 718 

million (0.5 million, 4.6 million) global PM2.5-related premature deaths is obtained 719 

from the ensemble for the year 2010 in the baseline case. We focus on model 720 

experiments simulating 20% regional air pollutant emission reductions (excluding 721 

methane) in 6 regions, 3 sectors and 1 global domain. For regional scenarios, 6 source 722 

emission reductions altogether can cause 84% of the global avoided O3-related 723 

premature deaths within the source region, ranging from 21 to 95% among 6 regions, 724 

and 16% (5 to 79%) outside of the source region. For PM2.5, 89% of global avoided 725 

PM2.5-related premature deaths are within the source region, ranging from 32 to 94% 726 

among 6 regions, and 11% (6 to 68%) outside of the source region. While most avoided 727 

mortality generally occurs within the source region, we find that emission reductions 728 

from RBU (only for O3) and MDE (for both O3 and PM2.5) can avoid more premature 729 

deaths outside of these regions than within. Considering the effects of foreign emissions 730 

on receptor regions, 20% foreign emission reductions lead to more avoided O3-related 731 

premature deaths in EUR, MDE and RBU than domestic reductions. Reductions from 732 

all six regions in the transport of air pollution between regions are estimated to lead to 733 

more avoided deaths through changes in PM2.5 (25,100 (8,200, 35,800) deaths/year) 734 

than for O3 (6,000 (-3,400, 15,500) deaths/year). For NAM and EUR, our estimates of 735 

avoided mortality from regional and extra-regional emission reductions are comparable 736 

to those estimated by regional models in AQMEII3 (Im et al., 2018) for these same 737 

emission reduction experiments. Overall, the spread of modeled air pollutant 738 

concentrations contributes most to the uncertainty in mortality estimates, highlighting 739 

that using a single model may lead to erroneous conclusions and may underestimate 740 

uncertainty in mortality estimates. 741 

For sectoral emission reductions, reducing anthropogenic emissions by 20% in 3 742 

sectors together avoids 48,500 (7,100, 108,000) O3-related premature deaths and 743 

243,000 (66,800, 357,000) PM2.5-related premature deaths globally. Of the 3 sectors, 744 

TRN had the greatest fraction (26-53%) of O3-related premature deaths globally and in 745 

most regions, except for EAS (58%) and RBU (38%) where PIN emissions dominate. 746 

For PM2.5 mortality, PIN emissions cause the most deaths in most regions (38-78%), 747 

except for SAS (45%) where the TRN emissions dominate.  748 

In this study, we have gone beyond previous TF-HTAP1 studies that quantified 749 

premature mortality from interregional air pollution transport, by using more source 750 

regions, analyzing source emission sectors, and using updated atmospheric models and 751 
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health impact functions. The estimate of air transport premature mortality could vary 752 

due to differences in exposure estimate (single model vs ensemble model), health 753 

impact function, regional definitions, and grid resolutions. These discrepancies 754 

highlight uncertainty estimated by different methods in previous studies. Despite 755 

uncertainties, our results suggest that reducing pollution transported over a long 756 

distance would be beneficial for health, with impacts from all foreign emission 757 

reductions combined that may be comparable to or even exceed the impacts of emission 758 

reductions within a region. Additionally, actions to reduce emissions should target 759 

specific sectors within world regions, as different sectors dominate the health effects in 760 

different regions. This work highlights the importance of long-range air pollution 761 

transport, and suggests that estimates of the health benefits of emission reductions on 762 

local, national, or continental scales may underestimate the overall health benefits 763 

globally, when interregional transport is accounted for. International cooperation to 764 

reduce air pollution transported over long distances may therefore be desirable. 765 
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Table 1. Population-weighted multi-model mean O3 (ppb) and PM2.5 concentration (μg/m3) for the 2010 baseline, for the 6-month O3 season 1048 

average of 1-hr. daily maximum O3 and annual average PM2.5, shown with the standard deviation among models. 1049 

Scenarios 
Receptor regions 

NAM EUR SAS EAS MDE RBU World 

O3 

(11 models) 
56.51±9.40 48.38±8.05 65.72±10.08 59.10±10.46 61.11±9.79 46.79±7.53 53.74±8.03 

PM2.5 

(8 models) 
9.36±2.62 10.75±3.87 37.05±8.74 39.27±13.50 34.49±17.64 11.61±3.52 25.98±5.05 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 
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Table 2. Population-weighted multi-model mean change in O3 (ppb) in receptor regions due to 20% regional (NAM, EUR, SAS, MDE and RBU), 1060 

sectoral (PIN, TRN and RES) and global (GLO) anthropogenic emission reductions, for the 6-month O3 season average of 1-hr. daily maximum. 1061 

The diagonal, showing the effect of each region on itself, is underlined. All numbers are rounded to the nearest hundredth, and are shown with 1062 

standard deviations among models. 1063 

Source 

regions/sectors 

Receptor region 

NAM EUR SAS EAS MDE RBU World 

NAM -1.88±0.06 -0.26±0.55 -0.04±0.14 -0.11±0.06 -0.23±0.12 -0.21±0.09 -0.19±0.07 

EUR -0.08±0.04 -0.80±0.55 0.01±0.14 -0.10±0.06 -0.34±0.08 -0.34±0.09 -0.14±0.07 

SAS -0.05±0.02 -0.04±0.02 -3.65±0.94 -0.08±0.04 -0.11±0.04 -0.04±0.03 -0.90±0.22 

EAS -0.29±0.14 -0.25±0.13 -0.09±0.22 -1.96±1.10 -0.23±0.12 -0.27±0.12 -0.58±0.25 

MDE -0.04±0.02 -0.05±0.01 -0.07±0.15 -0.03±0.01 -1.23±0.66 -0.11±0.01 -0.09±0.04 

RBU -0.05±0.04 -0.13±0.05 0.03±0.16 -0.08±0.06 -0.10±0.07 -0.45±0.38 -0.05±0.06 

PIN -1.13±0.28 -0.70±0.19 -1.43±0.18 -1.58±0.88 -1.09±0.45 -0.69±0.31 -1.11±0.25 

TRN -1.26±0.42 -0.81±0.34 -2.05±0.32 -0.73±0.32 -1.40±0.17 -0.71±0.19 -1.13±0.19 

RES -0.24±0.09 -0.21±0.04 -1.19±0.44 -0.62±0.10 -0.23±0.06 -0.18±0.03 -0.57±0.14 

GLO -2.86±0.77 -1.98±0.66 -4.40±1.04 -2.77±1.21 -2.84±0.70 -1.76±0.52 -2.82±0.53 

 1064 

 1065 
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Table 3. Population-weighted multi-model annual average change in PM2.5 concentrations (μg/m3) in receptor regions due to 20% regional (NAM, 1066 

EUR, SAS, MDE and RBU), sectoral (PIN, TRN and RES) and global (GLO) anthropogenic emission reductions. The diagonal, showing the effect 1067 

of each region on itself, is underlined. All numbers are rounded to the nearest hundredth, and are shown with standard deviations among models. 1068 

Source 

regions/sectors 

Receptor region 

NAM EUR SAS EAS MDE RBU World 

NAM -1.33±0.66 -0.03±0.02 0.00±0.01 -0.02±0.02 -0.01±0.01 -0.01±0.01 -0.08±0.04 

EUR -0.01±0.00 -1.17±0.87 -0.01±0.01 -0.02±0.01 -0.18±0.08 -0.26±0.19 -0.13±0.09 

SAS <-0.01 <-0.01 -4.86±2.17 -0.08±0.08 -0.03±0.02 <-0.01 -1.16±0.51 

EAS -0.03±0.01 -0.02±0.01 -0.08±0.07 -6.19±3.08 <-0.01 -0.04±0.02 -1.45±0.71 

MDE <-0.01 -0.03±0.01 -0.12±0.06 -0.01±0.02 -0.91±0.38 -0.05±0.03 -0.08±0.03 

RBU <-0.01 -0.07±0.05 -0.01±0.02 -0.04±0.02 -0.03±0.02 -0.78±0.50 -0.05±0.03 

PIN -0.61±0.18 -0.57±0.26 -1.73±0.71 -2.75±0.99 -0.92±0.14 -0.58±0.19 -1.46±0.56 

TRN -0.27±0.20 -0.38±0.41 -0.82±0.88 -0.54±0.43 -0.09±0.06 -0.15±0.16 -0.40±0.37 

RES -0.20±0.05 -0.27±0.12 -1.93±0.40 -1.70±0.28 -0.08±0.02 -0.20±0.05 -1.17±0.31 

GLO -1.47±0.72 -1.52±1.04 -5.40±2.31 -6.76±3.29 -1.55±0.75 -1.19±0.73 -3.49±1.51 

 1069 

 1070 

 1071 



 

26 

 

Table 4. Annual multi-model empirical mean O3- and PM2.5-related premature deaths with 95% CI from Monte-Carlo simulations in parenthesis 1072 

(including uncertainty in baseline mortality rates, RRs and air pollutant concentration across models) in year 2010 baseline. All numbers are 1073 

rounded to three significant figures or the nearest 100 deaths. Empirical mean is the mean of 1,000 Monte Carlo simulations. 1074 

 Receptor region 

 NAM EUR SAS EAS MDE RBU World 

O3 

(11 models) 

15,000 

(900－30,000) 

13,000 

(600－28,000) 

136,000 

(23,000－277,000) 

100,000 

(3,900－213,000) 

3,200 

(300－7,000) 

2,900 

(100－6,600) 

291,000 

(30,000－596,000) 

PM2.5 

(8 models) 

72,000 

(1,500－158,000) 

203,000 

(2,700－463,000) 

732,000 

(328,000－1,110,000) 

1,120,000 

(159,000－1,720,000) 

79,000 

(600－133,000) 

177,000 

(2,700－358,000) 

2,770,000 

(514,000－4,640,000) 

  1075 
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Table 5. Annual avoided multi-model empirical mean O3-related premature respiratory deaths with 95% CI from Monte-Carlo simulations in 1076 

parenthesis due to 20 % regional (NAM, EUR, SAS, MDE and RBU), sectoral (PIN, TRN and RES) and global (GLO) anthropogenic emission 1077 

reductions in each region and worldwide. The diagonal, showing the effect of each region on itself, is underlined. For regional reductions, we also 1078 

the RERER (eq. 4) as the percent of total avoided deaths in each receptor region that result from foreign emission reductions, as well as the percent 1079 

of global avoided deaths from emission reductions in each source region. All numbers are rounded to three significant figures or the nearest 10 1080 

deaths. 1081 

Source 
regions/sectors 

Receptor region Impact on foreign 
receptor regions NAM EUR SAS EAS MDE RBU World 

NAM 
1,500 

(-170－4,000) 
330 

(10－780) 
170 

(-250－690) 
500 

(-910－2,200) 
30 

(0－80) 
70 

(0－170) 
2,800 

(-1,300－8,400) 
46% 

EUR 
60 

(-80－240) 
930 

(-70－2,400) 
-80 

(-880－670) 
490 

(-1,100－2,300) 
50 

(10－110) 
110 

(10－250) 
1,700 

(-490－4,900) 
45% 

SAS 
40 

(-40－130) 
50 

(-30－160) 
19,000 

(4,000－42,000) 
420 

(-340－1,400) 
20 

(0－40) 
10 

(-10－40) 
20,000 

(3,600－42,200) 
5% 

EAS 
230 

(-50－630) 
310 

(-50－850) 
450 

(-1,300－2,400) 
9,700 

(-2,000－26,400) 
30 

(0－100) 
80 

(-10－230) 
11,400 

(-3,300－31,800) 
15% 

MDE 
30 

(-30－120) 
60 

(-50－190) 
310 

(-90－910) 
160 

(-120－520) 
180 

(-10－480) 
30 

(0－70) 
870 

(-330－2,600) 
79% 

RBU 
40 

(-60－170) 
150 

(-50－440) 
-200 

(-1,700－1,200) 
420 

(-620－1,700) 
20 

(-10－60) 
140 

(-60－420) 
640 

(120－1,300) 
78% 

PIN 
900 

(100－2,100) 
850 

(40－2,100) 
7,400 

(1,800－15,400) 
7,800 

(3,100－20,900) 
140 

(30－330) 
210 

(-100－650) 
19,300 

(1,400－45,000) 
- 

TRN 
1,000 

(-20－2,600) 
970 

(-270－2,800) 
10,600 

(2,600－22,000) 
3,500 

(-420－9,300) 
210 

(50－440) 
200 

(20－490) 
18,800 

(3,000－41,600) 
- 

RES 
200 

(-20－510) 
250 

(40－550) 
6,000 

(1,600－12,200) 
3,000 

(670－6,300) 
30 

(0－80) 
60 

(10－120) 
10,400 

(2,700－21,100) 
- 

GLO 
2,300 

(80－5,600) 
2,400 

(250－5,400) 
22,600 

(6,200－46,000) 
13,500 

(1,500－30,300) 
400 

(80－940) 
550 

(80－1,210) 
47,400 

(11,300－99,000) 
- 

RERER 34% 61% 16% 28% 55% 75% -  
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Table 6. Annual avoided multi-model empirical mean PM2.5-related premature deaths (IHD+STROKE+COPD+LC) with 95% CI from Monte-1082 

Carlo simulations in parenthesis due to 20 % regional (NAM, EUR, SAS, MDE and RBU), sectoral (PIN, TRN and RES) and global (GLO) 1083 

anthropogenic emission reductions in each region and worldwide. The diagonal, showing the effect of each region on itself, is underlined. For 1084 

regional reductions, we also the RERER (eq. 4) as the percent of total avoided deaths in each receptor region that result from foreign emission 1085 

reductions, as well as the percent of global avoided deaths from emission reductions in each source region. All numbers are rounded to three 1086 

significant figures or the nearest 10 deaths. 1087 

Source 
regions/sectors 

Receptor region Impact on foreign 
receptor regions NAM EUR SAS EAS MDE RBU World 

NAM 
18,000 

(630－28,300) 
640 

(80－1,100) 
10 

(-210－80) 
200 

(-300－370) 
10 

(0－30) 
250 

(90－420) 
19,400 

(310－30,600) 
7% 

EUR 
60 

(20－110) 
31,900 

(4,500－53,900) 
120 

(-60－190) 
390 

(-20－550) 
400 

(30－1,400) 
2,700 

(680－8,000) 
39,400 

(5,500－63,400) 
19% 

SAS 
50 

(-10－90) 
110 

(0－200) 
47,900 

(30,000－68,500) 
1,400 

(-70－2,100) 
40 

(0－150) 
40 

(10－110) 
51,300 

(32,300－73,300) 
7% 

EAS 
340 

(40－510) 
400 

(20－690) 
900 

(590－1,400) 
91,100 

(440－128,700) 
10 

(0－30) 
800 

(0－1,300) 
96,600 

(3,500－136,000) 
6% 

MDE 
30 

(0－60) 
420 

(90－850) 
1,400 

(740－2,400) 
180 

(-610－460) 
1,600 

(240－4,500) 
640 

(30－1,600) 
5,000 

(1,900－11,100) 
68% 

RBU 
40 

(10－60) 
2,200 

(300－3,700) 
90 

(-220－190) 
810 

(330－1,100) 
80 

(10－220) 
17,600 

(390－25,700) 
21,500 

(900－31,000) 
18% 

PIN 
9,300 

(940－13,000) 
15,700 

(1,900－24,700) 
21,000 

(8,400－30,700) 
47,310 

(22,600－69,700) 
2,200 

(200－6,100) 
14,300 

(0－24,100) 
128,000 

(41,600－179,000) 
- 

TRN 
3,600 

(-320－7,000) 
8,900 

(130－17,400) 
6,200 

(-12,800－14,400) 
6,800 

(-6,400－12,200) 
230 

(10－770) 
3,100 

(0－5,400) 
31,900 

(-16,500－58,300) 
- 

RES 
2,900 

(110－4,400) 
6,900 

(210－11,300) 
25,000 

(15,100－40,700) 
29,300 

(13,200－52,900) 
200 

(10－520) 
4,600 

(0－8,100) 
83,400 

(41,700－120,000) 
- 

GLO 
19,900 

(710－31,300) 
40,900 

(4,900－68,100) 
55,300 

(36,500－78,300) 
105,000 

(4,000－147,000) 
2,800 

(330－8,400) 
26,700 

(2,300－36,000) 
290,000 

(67,100－405,000) 
- 

RERER 10% 22% 13% 13% 42% 34% -  
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Table 7. Comparison of O3 and PM2.5-related premature deaths attributable to PIN, 1089 

TRN and RES emissions with previous studies. Results from this study (for 20% 1090 

reductions) are multiplied by 5. For Silva et al. (2016), we combine results for “Energy” 1091 

and “Industry” to represent PIN, and use “Land transportation” to represent TRN and 1092 

“Residential & Commercial” to represent RES. For Lelieveld et al. (2015), we combine 1093 

the “Power generation” and “Industry” sectors to represent PIN, and use “Land Traffic” 1094 

to represent TRN, and “Residential Energy” to represent RES.  1095 

Emission 

source 

sector 

This study Silva et al. (2016) 
Lelieveld et al. 

(2015) 

PIN 
O3: 96,500 (7,000, 225,000) 

PM2.5: 640,000 (208,000, 895,000) 

O3 : 111,000 (23,200, 240,000) 

PM2.5:613,000 (422,000, 816,000) 

O3 + PM2.5 

(692,000) 

TRN 
O3: 94,000 (15,000, 208,000) 

PM2.5: 160,000 (-82,500, 292,000) 

O3: 80,900 (17,400, 180,000) 

PM2.5: 212,000 (114,000, 292,000) 

O3 + PM2.5 

(165,000) 

RES 
O3: 52,000 (13,500, 106,000) 

PM2.5:417,000 (209,000, 600,000) 

O3: 53,700(12,300, 116,000) 

PM2.5:675,000 (428,000, 899,000) 

O3 + PM2.5 

(1,020,000) 

 1096 
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 1097 

Figure 1– Global difference in multi-model mean O3 concentrations (ppb) in 20% 1098 

emission reduction scenarios relative to the baseline for the year 2010 in a) North 1099 

America (NAM), b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) Middle 1100 

East (MDE), f) Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), h) 1101 

Transportation (TRN), i) Residential (RES) and j) Global (GLO), shown for the 6-mo. 1102 

O3 season average of 1-hr. daily maximum health relevant metric. 1103 
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 1104 

Figure 2– Global difference in multi-model annual mean PM2.5 concentrations (μg/m3) 1105 

in 20% emission reduction scenarios relative to the baseline for the year 2010 in a) 1106 

North America (NAM), b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) 1107 

Middle East (MDE), f) Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), 1108 

h) Transportation (TRN), Residential (RES) and j) Global (GLO). 1109 
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 1110 

Figure 3. Annual avoided O3-related premature deaths in 2010 per 1,000 km2 due to 20 1111 

% emission reduction scenarios relative to the base case in a) North America (NAM), 1112 

b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) Middle East (MDE), f) 1113 

Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), h) Transportation (TRN), 1114 

i) Residential (RES) and j) Global (GLO). 1115 
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 1116 

Figure 4. Annual avoided O3-related premature deaths in 2010 per million people due 1117 

to 20 % emission reduction scenarios relative to the base case in a) North America 1118 

(NAM), b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) Middle East 1119 

(MDE), f) Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), h) 1120 

Transportation (TRN), i) Residential (RES) and j) Global (GLO) 1121 
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 1122 

Figure 5. Annual avoided PM2.5-related premature deaths in 2010 per 1,000 km2 due to 1123 

20 % emission reduction scenarios relative to the base case in a) North America (NAM), 1124 

b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) Middle East (MDE), f) 1125 

Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), h) Transportation (TRN), 1126 

i) Residential (RES) and j) Global (GLO). 1127 
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 1128 

Figure 6. Annual avoided PM2.5-related premature deaths in 2010 per million people 1129 

due to 20 % emission reduction scenarios) relative to the base case in a) North America 1130 

(NAM), b) Europe (EUR), c) East Asia (EAS), d) South Asia (SAS), e) Middle East 1131 

(MDE), f) Russia/Belarus/Ukraine (RBU), g) Power and Industry (PIN), h) 1132 

Transportation (TRN), i) Residential (RES) and j) Global (GLO). 1133 


