
Response to Referee #2 

General comments 

This manuscript uses the multi-model results from HTAP2 project to 

estimate mortality for the baseline year 2010, and health benefits 

from reduced emissions in source regions. In general, it is well 

organized and written, and the multi-model results can provide more 

reasonable range than single model results in previous studies. 

However, some details are not well documented and explanations 

are too general, but important for readers. 

 

Thank you for your careful review of our paper and constructive comments. 

 

Specific comments 

1.Page 3, line 100: It is better to provide some brief explanation of reasons for large 

differneces in estimates (4.2 and 2.1 million premature deaths). 

Response:  

We have added short discussion on this point (Lines 107-109): 

“These differences in GBD estimates result mainly from differences in concentration 

response functions and estimates of pollutant concentrations.” 

 

2.Page 5, line 159: Please specify if the perturbation is increasing or decreasing. 

Response:  

We reduced the anthropogenic emissions by 20% (Line 170):  

“Anthropogenic emissions were reduced by 20% in six source regions: …” 

 

3.Page 6, line 190-203: how do these models perform in simulating ozone and PM2.5 

Response:  

Thank you for this comment. We had previously anticipated that other HTAP2 studies 

would include this comparison with observations. But we now see that while two 

papers do include comparisons in some regions, a full global comparison with 

observations for all of the models used in this study is desirable here. We have now 

included this model evaluation with ground level observations as described in the 

new section 2.2 (Lines 241-294):  

“Measurements from multiple observation networks are employed in this study 

to evaluate the model performance around the world. We evaluate model 

performance for the 2010 baseline simulation for 11 TF-HTAP2 models for O3 and 8 

for PM2.5 (Table S1). For O3, we use ground level measurements from 2010 at 4,655 

sites globally, collected by the Tropospheric Ozone Assessment Report (TOAR) 



(Schultz et al., 2017; Young et al., 2018). The TOAR dataset identifies stations as 

urban, rural and unclassified sites (Schultz et al., 2017). Model performance is 

evaluated for the average of daily 1-h maximum O3 concentrations for the 3 

consecutive months (3m1hmaxO3) with the highest concentrations in each grid cell, 

including models that only report daily or monthly O3 as described above. This metric 

for O3 differs slightly from the 6-month average of daily 1-h maximum metric used for 

health impact assessment, and is chosen because TOAR reports the 3-month metric 

but not the 6-month metric. For PM2.5, we compare the annual average PM2.5, using 

PM2.5 observations from 2010 at 3,157 sites globally selected for analysis by the 

Global Burden of Disease 2013 (GBD2013) (Forouzanfar et al., 2016). Statistical 

parameters including the normalized mean bias (NMB), normalized mean error 

(NME), and correlation coefficient (R) are selected to evaluate model performance. 

Table S2 and S3 present statistical parameters of model evaluation for O3 and 

PM2.5, and Figures S3-S10 show the spatial O3 and PM2.5 evaluation as NMB around 

the world, and in North America, Europe and East Asia. For 3m1hmaxO3, the model 

ensemble mean shows good agreement with measurements globally with NMB of 

7.3% and NME of 13.2%, but moderate correlation with R of 0.53 (Table S2). For 

individual models, 8 models (CAM-chem, CHASER_T42, CHASER_T106, EMEPrv48, 

GEOSCHEMADJOINT, GEOS-Chem, GFDL_AM3 and HadGEM2-ES) overestimate 

3m1hmaxO3 with NMB of 9.2% to 23% while 3 models (C-IFS, OsloCTM3.v2 and 

RAQMS) underestimate by -10.8% to -19.4% globally (Figure S3). In the 6 

perturbation regions, the model ensemble mean is also in good agreement with the 

measurements, with -11.2% to 25.3% for NMB, 9.8% to 25.3% for NME, and -0.09 to 

0.98 for R. The ranges of NMB for individual models are -18.1% to 32.3%, -24.1% to 

21.3%, -24.5% to 45.0%, -26.4% to 24.5%, -30.5% to 20.3%, -35.3% to 5.4%, in NAM, 

EUR, SAS, EAS, MDE, and RBU, respectively (Figure S4-S6). Note that some regions 

(SAS, MDE, and RBU) have very few observations for model evaluation, making the 

comparison less robust. The underestimated O3 in the western US and overestimated 

O3 in eastern US in most models is very close to the model performance result of 

Huang et al. (2017) who compare 8 TF-HTAP2 models with CASTNET observations 

(Figure S4) , as well as earlier studies under HTAP1 (Fiore et al. 2009). Similarly, Dong 

et al. (2018) find that O3 is overestimated in EUR and EAS by 6 TF-HTAP2 models, 

consistent with our ensemble mean result in these two regions (Figure S5-S6).   

For PM2.5, the model ensemble mean agrees well with measurements globally, 

with NMB of -23.1%, NME of 35.4%, and R of 0.77 (Table S3). For individual models, 

only 1 model (GEOSCHEMADJOINT) overpredicts PM2.5 by 20.3%, while the other 7 

models underpredict PM2.5 by -60.9% to -7.4% around the world (Figure S7). In 6 

perturbation regions, the model ensemble mean is also in good agreement with 



measurements, with ranges of NMB of -49.7% to 19.4%, 21.2% to 49.7% for NME, 

and 0.50 to 1.00 for R. The range of NMB for individual models are -46.6% to 13.9%, -

76.0% to 31.9%, -35.0% to 49.7%, -50.4% to 29.5%, -52.6% to 31.5%, and -74.1% to -

19.8%, in NAM, EUR, SAS, EAS, MDE, and RBU, respectively (Figure S8-S10). Dong et 

al. (2018) shows that PM2.5 is underestimated in EUR and EAS by 6 TF-HTAP2 models, 

consistent with our ensemble mean result in these two regions (Figure S9-S10). Note 

that many observations used are located in urban areas, and models with coarse 

resolution may not be expected to have good model performance. Also several 

models neglect some PM2.5 species, which may explain the tendency of models to 

underestimate.” 

 

4.Page 7, line 246-257: what beta value is used in this study? any source for the used 

RR=1.040? Please clarify.. 

Response:  

We added this (Lines 316-318): 

“For O3, RR = 1.040 (95% Confidence Interval, CI: 1.013-1.067) for a 10 ppb increase 

in O3 concentrations (Jerrett et al., 2009), which from eq. 1 gives values for 𝛽 of 

0.00392 (0.00129-0.00649).” 

 

5.Page 8, line 264-271: The used RR framework here is not actually the latest. 

Please refer to Cohen et al. (2017). 

Response: 

Our work was nearly completed before Cohen et al. (2017) was published, and so we 

chose the most recent available RR from Burnett et al. (2014) for PM2.5. This function 

was widely used in many studies, including by Silva et al (2016a), Lelieveld et al 

(2015), and GBD 2010 (Lim et al., 2012). However, we have added short discussion on 

this difference (Lines 473-481):  

“Cohen et al. (2017) use RRs for particulate matter for IHD and stroke mortality that 

are modified from those used by Burnett et al (2014) and applied age modification to 

the RRs, fitting the IER model for each age group separately. The updated IER with 

estimated higher relative risks, together with greater global pollution and baseline 

mortality rates in the low-income and middle-income countries in east and south 

Asia leads to the higher absolute numbers of attributable deaths and disability-

adjusted life-years in GBD 2015 than estimated in GBD 2013 (Forouzanfar et al., 

2016). Also, GBD 2015 includes child lower respiratory infections estimate whereas 

we do not”. 

 

6.Page 8, line 276-277: Please clarify how you treat age distribution in the 2011 



populaiton dataset. 

Response:  

We add text (Lines 355-358): 

“For the population of adults aged 25 and older, we use ArcGIS 10.2 geoprocessing 

tools to estimate the population per 5-year age group in each cell by multiplying the 

country level percentage in each age group by the population in each cell.” 

 

7.Page 8, is sex difference considered in the estimation? 

Response:  

No, we only consider age-specific RR, as given by the health impact functions we use 

and the underlying epidemiological studies.  

 

8.Page 8, line 282: Monte Carlo simulation is powerful to address uncertainty issues. 

However, the way of including model air pollutant concentrations is a bit misleading. 

The procedure in this study is actually the range of multi-model results. However, 

it is possible that this range deviate from the observations. Without showing model 

evaluation, we don’t have confidence how reliable is the range from multi-models. 

Response:  

We’ve added the model evaluation in section 2.2 (Lines 241-294).   

We also added an acknowledgement that the range of models in an ensemble is not 

a true reflection of the uncertainty in emissions to the method section (Lines 371-

373):  

“One should acknowledge that the range of models in an ensemble is not a true 

reflection of the uncertainty in emissions to concentration relationships.” 

 

10.Page 9, line 306: The texts refer to supplemental plots many times. I would 

suggest move some important figures from supplemental materials. 

Response:  

We’ve moved figures S6-S7 to figures 1-2 in the main paper. The order of figures has 

been updated to reflect this change in main paper as well as the supporting 

document. 

 

11.Page 10, line 368-369: Please provide more details here: the updated baseline 

mortality rate in 2017, and how population is different. This comparison is too 

general here. In my understanding, the biggest change from GBD framework from old 

to latest (Cohen et al., 2017) is not just baseline mortality. In Cohen et al. (2017), the 

RR for stoke is totally different from previous version GBD, and LRI disease is added in 

addition to IHD, LC, COPD and stroke. 



Response:    

As stated before, we now provide details on how RRs were updated for use by Cohen 

et al. (2017) (Lines 473-481):  

“Cohen et al. (2017) use RRs for particulate matter for IHD and stroke mortality that 

are modified from those used by Burnett et al (2014) and applied this age 

modification to the RRs, fitting the IER model for each age group separately. The 

updated IER with estimated higher relative risks, together with greater global 

pollution and baseline mortality rates in the low-income and middle-income 

countries in east and south Asia leads to the higher absolute numbers of attributable 

deaths and disability-adjusted life-years in GBD 2015 than estimated in GBD 2013 

(Forouzanfar et al., 2016). Also, GBD 2015 includes child lower respiratory infections 

estimate whereas we do not.” 

 

12.Page 11 line 382-383: Please clarify how the avoid deaths is calculated. the IER 

model is not linear: at the high end large changes in pollutant will not result in large 

changes in death, some studies used average changes, some used marginal. How is 

this addressed here? 

Response:  

The percentage of the global change in O3-related deaths within the source region is 

computed by the number of avoided deaths within source region divided by the 

number of avoided deaths globally from 20% source emission reduction. We’ve 

revised to clarify this calculation (Lines 495-496): 

“The number of avoided deaths within source region is divided by the number of 

avoided deaths globally” 

 

We added text to discuss the issue about IER model (Lines 343-352): 

“However, in the IER model, the concentration–response function flattens off at 

higher PM2.5 concentrations, yielding different estimates of avoided premature 

mortality for identical changes in air pollutant concentrations from less-polluted vs. 

highly-polluted regions. That is, one unit reduction of air pollution may have a 

stronger effect on avoided mortality in regions where pollution levels are lower (e.g., 

Europe, North America) compared with highly polluted regions (e.g., East Asia, India), 

which would not be the case for a log-linear function (Jerrett et al., 2009; Krewski et 

al., 2009). Therefore, using the IER model in this study may result in smaller changes 

in avoided mortality in highly polluted areas than using the linear model.” 

 

13.Page 11 line 406-408: The explanation here is not convincing. 

Response: 



We’ve revised this explanation to (Lines 520-522):  

“In addition, updated atmospheric models and emissions inputs, as well as different 

atmospheric dynamics in the single years chosen in TF-HTAP1 vs. TF-HTAP2 may 

contribute to the differences.” 

 

14.It would be great to make a table to inter-compare the response of sector 

reductions, which is highly uncertain from different models, and please discuss it too. 

Response: 

We’ve listed this inter-comparison between models for sector reductions in TableS9-

S10 and discussed these differences in Lines 616-625: 

“Considering results from individual models, we found that O3-and PM2.5-related 

mortality from TRN emission reductions show greater relative uncertainty than from 

PIN or RES (Table 5-6 and Table S9-S10), reflecting a greater spread of results across 

models. Regional impacts from individual models also differ from the ensemble 

mean result - e.g., for O3, GEOSCHEMADJOINT and OsloCTM3.v2 show that reducing 

PIN emissions causes the greatest fraction of avoided O3-related deaths in EUR, while 

GEOSCHEMADJOINT, HadGM2-ES and OsloCTM3.v2 show that TRN emissions have 

the greatest fraction of avoided O3-related deaths in RBU (Figs. S20). For PM2.5, 

CHASER_t42 and GEOSCHEMADJOINT show that reducing PIN emissions causes the 

greatest fraction of avoided PM2.5-related deaths in SAS (Figs. S21)” 

 

In addition, we also compare our O3 and PM2.5-related premature deaths attributable 

to PIN, TRN and RES emissions with previous studies conducted by Silva et al. (2016) 

and Lelieveld et al. (2015) in table 7 and discuss the differences from our estimates in 

Lines 601-615 : 

“In comparison with other studies (Table 7), our conclusion that PIN emissions cause 

the most O3-related deaths and TRN emissions cause the greatest fraction of avoided 

deaths in most regions agrees well with Silva et al (2016a). For PM2.5, reducing PIN 

emissions avoids the most PM2.5-related premature deaths globally (128,000 (41,600, 

179,000) deaths/year) and in most regions (38-78% of the global emission 

reduction), except for SAS (45%) where the RES emission dominates. Although these 

findings differ from those of Lelieveld et al (2015) and Silva et al (2016), who find that 

Residential emissions have the greatest of impact on PM2.5 mortality globally and in 

most regions, all studies agree that PIN emissions have the greatest impact in NAM. 

Our result is also comparable with Crippa et al (2017) who find that PIN emissions 

have the greatest health impact in most countries. Although comparable emission 

inventories are used (i.e. Lelieveld et al (2015) use EDGAR emissions while Silva et al 

(2016) use RCP8.5. emissions), our lower mortality estimate for RES emissions may 



be explained by our 20% reductions relative to the zero-out method, and the 

different years simulated.” 

 

and Lines 674-686 : 

“Differences in our estimates of premature mortality attributable to air pollution 

from three emission sectors (multiplied by 5) may be explained by methodological 

differences relative to previous studies (Silva et al., 2016; Lelieveld et al., 2015), 

including our use of 20% emission reductions versus the zero-out method in those 

studies, different emission inventories, a multi-model ensemble versus single 

models, and differences in baseline mortality rates, population, and concentration 

response functions. Our finding that TRN emissions contribute the most avoided 

deaths for O3 in most regions agrees well with the result by Silva et al (2016a), but 

differs for PM2.5 mortality for which we find that PIN emissions cause the most 

deaths, while both Silva et al (2016a) and Lelieveld et al (2015) find that RES 

emissions are responsible for the most deaths. This discrepancy may be explained by 

different PM2.5 species included in individual models, as we showed that changes in 

PM2.5 concentration to TRN emission differ across models.” 


