Supplement to The Impact of Future Emission Policies on Tropospheric Ozone using a Parameterised Approach

Steven Turnock¹, Oliver Wild², Frank Dentener³, Yanko Davila⁴, Louisa Emmons⁵, Johannes Flemming⁶, Gerd Folberth¹, Daven Henze⁴, Jan Jonson⁷, Terry Keating⁸, Sudo Kengo^{9,10}, Meiyun Lin^{11,12}, Marianne Lund¹³, Simone Tilmes⁴, Fiona O'Connor¹

¹Met Office Hadley Centre, Exeter, UK

²Lancaster Environment Centre, Lancaster University, Lancaster, UK

³European Commission, Joint Research Centre, Ispra, Italy

⁴National Center for Atmospheric Research, Boulder, CO, USA

⁵European Centre for Medium-RangeWeather Forecasts, Reading, UK

⁶Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA

⁷EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway

⁸U.S. Environmental Protection Agency, Washington D.C., USA

⁹Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

¹⁰Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan.

¹¹Atmospheric and Oceanic Sciences, Princeton University, Princeton, USA

¹²NOAA Geophysical Fluid Dynamics Laboratory, Princeton, USA

¹³Center for International Climate and Environmental Research – Oslo (CICERO), Oslo, Norway

Correspondence to: Steven Turnock (steven.turnock@metoffice.gov.uk)

S1 Additional tests on the linear scaling used in the parameterisation based on multiple models as input

Figure S1: Sensitivity of monthly surface O₃ changes in HadGEM2-ES (solid lines) and that of the parameterised response using solely multi-model response as input (dashed lines) to 20%, 50% and 75% reduction in all precursor emissions over the European source region (a) and a remote region receptor of North America (b). The difference between HadGEM2-ES and the parameterised response is shown over Europe (c) and North America (d). Annual mean values are in black with monthly responses in grey and the highest and lowest months highlighted in red and blue respectively.

S2 Percentage change in CO and NMVOC precursor emissions for each of the ECLIPSE emission scenarios over the TF-HTAP2 regions and used with the parameterisation

Table S1. Percentage change in global and regional CO emissions relative to 2010 over each TF-HTAP2 region for the different ECLIPSE V5a emission scenarios (CLE, CLIM and MTFR). MTFR scenarios are only available for 2030 and 2050.

TF-HTAP2 Region	Annual total emission change (%) from 2010									
		Cl	LE			CL		MTFR		
	2020	2030	2040	2050	2020	2030	2040	2050	2030	2050
Global CO	-7	-14	-10	-8	-12	-22	-23	-25	-64	-70
]	Regiona	l CO Ei	nissions	8				
Central America	0	-17	-14	-6	-16	-38	-41	-43	-59	-76
Central Asia	42	42	35	32	44	18	-7	-23	-45	-82
East Asia	-18	-35	-37	-41	-24	-40	-43	-47	-71	-75
Europe	-22	-34	-36	-37	-26	-42	-48	-50	-64	-70
Middle East	21	16	42	66	-12	-23	-28	-29	-32	-40
North Africa	-8	-2	15	31	-27	-24	-17	-10	-63	-67
North America	-11	-27	-29	-31	9	-23	-29	-32	-52	-70
North Pole	-30	-38	-42	-41	-37	-47	-47	-51	-70	-81
Ocean	-2	10	16	23	-13	-10	-12	-12	-51	-61
Pacific Aus NZ	-17	-40	-41	-42	-22	-46	-48	-51	-61	-69
Rus Bel Ukr	-10	-4	0	5	-15	-13	-7	-6	-57	-60
Southern Africa	5	11	17	24	2	7	8	9	-64	-69
South America	-7	-7	-1	6	-9	-11	-6	-1	-58	-59
South Asia	2	2	10	16	-1	-4	-4	-7	-66	-65
South East Asia	-6	-9	1	10	-11	-16	-15	-16	-67	-77

Table S2. Percentage change in global and regional NMVOC emissions relative to 2010 over each TF-HTAP2 region for the different ECLIPSE V5a emission scenarios (CLE, CLIM and MTFR). MTFR scenarios are only available for 2030 and 2050.

TF-HTAP2 Region	Annual total emission change (%) from 2010										
		CI	LE			CL	MTFR				
	2020	2030	2040	2050	2020	2030	2040	2050	2030	2050	
Global NMVOC	-4	-6	0	6	-3	-3	-1	-1	-68	-64	
		Regional NMVOC Emissions									
Central America	4	-2	1	7	-5	-11	-12	-11	-49	-60	
Central Asia	46	53	50	50	51	39	23	12	-18	-49	
East Asia	2	-6	-4	-2	1	-5	-4	-5	-54	-61	
Europe	-18	-24	-25	-26	-19	-25	-27	-28	-55	-56	
Middle East	9	11	30	45	-3	-4	2	5	-18	-10	
North Africa	-3	-2	6	23	-14	-13	-10	1	-50	-55	
North America	-8	-25	-26	-28	4	-18	-20	-21	-58	-63	
North Pole	-24	-32	-29	-27	-25	-35	-35	-36	-47	-46	
Ocean	4	8	14	21	-0.4	0.2	2	4	-27	-27	
Pacific Aus NZ	-13	-28	-29	-33	-13	-28	-28	-32	-60	-65	
Rus Bel Ukr	-11	-15	-11	-7	-14	-21	-19	-19	-56	-61	
Southern Africa	5	8	16	25	2	5	9	13	-62	-62	
South America	0	0	9	20	8	4	11	18	-52	-56	
South Asia	6	19	34	47	4	13	16	16	-58	-48	
South East Asia	0	3	19	33	-15	-19	-16	-14	-56	-64	

S3 Additional regional results from the parameterisation using the CMIP5 emission scenarios in 2050

	Surface (D3 response fr	om 2010 to 20	50 (ppby)
TF-HTAP2 Region	RCP2.6	RCP4.5	RCP6.0	RCP8.5
Central America	-3.0 +/- 0.3	-1.5 +/- 0.2	-1.8 +/- 0.3	+0.6 +/- 0.4
Central Asia	-4.4 +/- 0.5	-2.6 +/- 0.4	-1.8 +/- 0.4	+0.5 +/- 0.6
East Asia	-4.7 +/- 0.3	-2.9 +/- 0.3	+0.2 +/- 0.2	+0.4 +/- 0.3
Europe	-4.4 +/- 0.3	-2.9 +/- 0.2	-1.6 +/- 0.2	+0.3 +/- 0.1
Middle East	-4.3 +/- 0.5	-1.9 +/- 0.7	-1.4 +/- 0.5	+2.3 +/- 1.1
North Africa	-4.0 +/- 0.4	-2.1 +/- 0.3	-1.5 +/- 0.3	+0.9 +/- 0.7
North America	-5.0 +/- 0.3	-3.5 +/- 0.3	-1.8 +/- 0.2	-0.7 +/- 0.3
North Pole	-3.3 +/- 0.5	-2.1 +/- 0.4	-0.8 +/- 0.3	+0.1 +/- 0.6
Ocean	-2.3 +/- 0.2	-1.0 +/- 0.1	-0.7 +/- 0.1	+1.0 +/- 0.4
Pacific Aus NZ	-1.4 +/- 0.6	-0.3 +/- 0.5	-0.4 +/- 0.4	+1.4 +/- 0.6
Rus Bel Ukr	-3.6 +/- 0.2	-2.3 +/- 0.1	-0.9 +/- 0.1	+0.4 +/- 0.4
Southern Africa	-0.8 +/- 0.2	+0.3 +/- 0.1	-0.3 +/- 0.1	+2.1 +/- 0.5
South America	-0.9 +/- 0.2	-0.1 +/- 0.3	-0.6 +/- 0.1	+1.3 +/- 0.3
South Asia	-0.8 +/- 0.2	+2.4 +/- 0.2	-0.5 +/- 0.1	+4.0 +/- 0.4
South East Asia	-1.3 +/- 0.2	-0.2 +/- 0.2	+0.1 +/- 0.1	-0.4 +/- 0.5
South Pole	-0.9 +/- 0.2	-0.1 +/- 0.2	-0.2 +/- 0.1	+1.3 +/- 0.5

Table S3. Annual mean surface O₃ response (ppbv plus one standard deviation) in 2050 (relative to 2010) using the parameterisation for each RCP scenario.

S4 Percentage change in CO and NMVOC precursor emissions for each of the CMIP6 SSPs over the TF-HTAP2 regions and used with the parameterisation

Table S4. Percentage change in global and regional CO emissions relative to 2010 over each TF-HTAP2 region for t	he
different CMIP6 emission scenarios (SSP3 BASE, SSP2 60 and SSP1 26)	

								(0 () 0				
TF-HTAP2 Region	Annual total emission change (%) from 2010											
		SSP	1 26			SSP	2 60			SSP3	BASE	
	2020	2030	2040	2050	2020	2030	2040	2050	2020	2030	2040	2050
Global CO	-19	-38	-42	-45	-9	-12	-17	-24	2	2	2	1
			Re	gional C	CO Emis	sions						
Europe, North America,												
Pacific Aus NZ	-19	-40	-45	-48	-16	-23	-30	-35	-1	-6	-8	-10
Central Asia,												
Rus Bel Ukr	1	3	-17	-27	-5	-4	-8	-16	2	2	4	2
East Asia, South Asia,												
South East Asia	-23	-42	-46	-51	-12	-16	-27	-39	7	10	12	10
Middle East, North												
Africa, Southern Africa	-15	-32	-39	-36	0	3	7	8	-2	-5	-6	-7
Central America,												
South America	-18	-38	-37	-44	-14	-24	-30	-38	1	-2	-1	0

Table S5. Percentage change in global and regional NMVOC emissions relative to 2010 over each TF-HTAP2 region for the different CMIP6 emission scenarios (SSP3 BASE, SSP2 60 and SSP1 26)

TF-HTAP2 Region	Annual total emission change (%) from 2010											
		SSP2 60				SSP3 BASE						
	2020	2030	2040	2050	2020	2030	2040	2050	2020	2030	2040	2050
Global NMVOC	-21	-33	-32	-28	-6	-9	-13	-17	3	3	-6	-7
			Regio	onal NM	VOC Ei	nissions	3					
Europe, North America,												
Pacific Aus NZ	-35	-54	-62	-68	-14	-21	-25	-27	-2	-7	-11	-12
Central Asia,												
Rus Bel Ukr	-17	-44	-58	-69	-6	-10	-12	-11	3	4	-1	-3
East Asia, South Asia,												
South East Asia	-26	-35	-41	-49	-6	-9	-15	-22	7	11	11	10
Middle East, North												
Africa, Southern Africa	-10	-18	6	46	0	3	3	-2	1	3	5	6
Central America,												
South America	-21	-41	-40	-47	-14	-24	-25	-30	3	4	2	4

S5 Additional figures showing the source contribution analysis for the other TF-THAP2 source regions using the ECLIPSE emission scenarios in the parameterisation

Figure S2: Total annual mean change in regional surface O₃ concentrations over North America and the contribution of local (blue), remote (red) and methane (gold) sources between 2010 and 2050 from the parameterisation for the ECLIPSEv5a emissions under the CLE (a), CLIM (b) and MTFR (c) scenarios. Grey lines on the local and methane panels represent individual model estimates of O₃ changes, showing the spread in model responses; Solid lines show the multi-model mean. Error bars represent one standard deviation over the model range. The last row of panels shows the O₃ response from individual sources plotted together for each year.

Figure S3: Same as Fig. S2 but for East Asia

Figure S4: Same as Fig. S2 but for Middle East

Figure S5: Same as Fig. S2 but for Russia Belarus and Ukraine

Figure S6: Same as Fig. S2 but for Central America

Figure S7: Same as Fig. S2 but for Central Asia

Figure S8: Same as Fig. S2 but for South East Asia

Figure S9: Same as Fig. S2 but for South America

Figure S10: Same as Fig. S2 but for North Africa

Figure S11: Same as Fig. S2 but for Southern (sub-Saharan) Africa

Figure S12: Same as Fig. S2 but for Pacific Australia and New Zealand

Figure S13: Same as Fig. S2 but for Ocean Regions