1	High particulate nitrate formation via N_2O_5 uptake in a
2	chemically reactive layer aloft during wintertime in Beijing
3	Haichao Wang ¹ , Keding Lu ¹ *, Xiaorui Chen ¹ , Qindan Zhu ^{1, #} , Zhijun Wu ¹ , Yusheng
4	Wu ¹ , Kang Sun ²
5	¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
6	Environmental Sciences and Engineering, Peking University, Beijing, China
7	² China National Environmental Monitoring Centre, Beijing, China
8	*Now at the Department of Chemistry, University of California, Berkeley, CA 94720, USA
9	
10	*Correspondence to: Keding Lu (k.lu@pku.edu.cn)
11	

12 Abstract.

13 Particulate nitrate (pNO₃⁻) is a dominant component of secondary aerosols in urban areas. Therefore, it is critical to explore its formation mechanism to assist with the 14 planning of haze abatement strategies. Simultaneous ground-based and tower-based 15 measurements of NO_x and O_3 were conducted during a winter heavy-haze episode 16 (December 18 to 20, 2016) in urban Beijing, China. We found that pNO₃⁻ formation 17 via N₂O₅ heterogeneous uptake was negligible at ground level, owing to the presence 18 of high NO concentrations, which limited the production of N₂O₅. In contrast, the 19 contribution from N_2O_5 uptake was larger at higher altitudes (e.g., > 150 m), which 20 was supported by the low total oxidant $(NO_2 + O_3)$ level at higher altitudes than at 21 ground level. Modeling results show that the nighttime integrated production of pNO₃⁻ 22 for the higher altitude air mass above urban Beijing was estimated to be 50 μ g m⁻³ and 23 enhanced the surface-layer pNO₃⁻ the next morning significantly by 28 μ g m⁻³ through 24 vertical mixing. The overnight NO_x loss via NO₃-N₂O₅ chemistry was efficient aloft (> 25 50%). The nocturnal NO_x loss was easily maximized once the N_2O_5 uptake coefficient 26 was over 2×10^{-3} on polluted days in wintertime. These results highlight that pNO₃⁻ 27

formation via N₂O₅ heterogeneous hydrolysis in higher altitude air masses could be an
important source for haze formation in the urban airshed during wintertime.
Accurately describing the formation and development of reactive air masses aloft is a
critical task for improving current chemical transport models.

32

33 1. Introduction

34 Winter particulate matter (PM) pollution events occur frequently in China and have drawn widespread and sustained attention in recent years (Guo et al., 2014; Zhang et 35 al., 2015; Huang et al., 2014; Wang G et al., 2016). PM pollution reduces visibility 36 (Lei and Wuebbles, 2013) and has harmful effects on public health (Cao et al., 2012). 37 Particulate nitrate (pNO₃⁻) is an important component of secondary inorganic aerosols 38 and contributes 15%–40% of the PM_{2.5} mass concentration in China (Sun et al., 2013, 39 2015a, 2015b; Chen et al., 2015; Zheng et al., 2015; Wen et al., 2015). The main 40 atmospheric pathways of nitrate formation are (1) the reaction of OH with NO₂ and (2)41 42 N₂O₅ heterogeneous hydrolysis (Seinfeld and Pandis, 2006). The reaction of OH with NO₂ is a daytime pathway, as OH is severely limited at night, and N₂O₅ uptake is a 43 nighttime pathway, as NO₃ and N₂O₅ are easily photo-labile. 44

Particulate nitrate formation via N₂O₅ heterogeneous hydrolysis in summer in 45 north China was proved efficient by ground-based observation (Wang H et al., 2017b; 46 Wang Z et al., 2017) and found comparable to or even higher than the daytime 47 formation. Several studies showed that N₂O₅ hydrolysis is responsible for nocturnal 48 pNO3⁻ enhancement in summer Beijing (Pathak et al., 2009, 2011; Wang H et al., 49 50 2017a). Although pNO₃⁻ formation via N_2O_5 uptake is significant in summertime, the 51 importance of this pathway in wintertime is not well characterized. Many differences in N₂O₅ chemistry exist between winter and summer. First, as the key precursor of 52 NO₃ and N₂O₅, O₃ has a much lower concentration in winter than in summer, owing 53 54 to the short daytime length and weak solar radiation. Second, colder temperatures and 55 high NO₂ levels favor partitioning towards N₂O₅. Third, nighttime lasts much longer in winter, making N₂O₅ heterogeneous hydrolysis potentially more important in pNO₃⁻ 56

57 formation. Finally, the N_2O_5 uptake coefficient, the most important parameter in N_2O_5 heterogeneous hydrolysis, is likely very different from that in summer. This is because 58 the properties of aerosol particles (e.g., organic compounds, particulate nitrate, liquid 59 water contents, solubility, and viscosity) and meteorological conditions (e.g., 60 temperature and relative humidity) differ between summer and winter (Chen et al., 61 2015; Zhang et al., 2007). These effects would result in large variations in the N₂O₅ 62 uptake coefficient (Wahner et al., 1998; Mentel et al., 1999; Kane et al., 2001; 63 64 Hallquist et al., 2003; Thornton et al., 2003; Bertram and Thornton, 2009; Wagner et al., 2013; Grzinic et al., 2015). Several parameterization methods have been 65 unsuccessful in predicting N₂O₅ uptake coefficient accurately (Chang et al., 2011; 66 Chang et al., 2016). 67

In addition to the seasonal differences in pNO_3^- formation via N_2O_5 uptake, 68 modeling and field studies showed greater levels of NO₃ and N₂O₅ at higher altitudes 69 within the nocturnal boundary layer (NBL), owing to the stratification of surface NO 70 and volatile organic compounds (VOCs) emissions, which lead to gradients in the loss 71 72 rates for these compounds as a function of altitude (e.g., Brown et al., 2007; Geyer and Stutz, 2004; Stutz et al., 2004). The pNO₃⁻ formation via N₂O₅ uptake contributes 73 to the gradients in the compounds percentage and size distribution of the particle 74 (Ferrero et al., 2010; 2012). On nights when NO₃ production in the surface layer is 75 negligible owing to high NO emissions, N₂O₅ uptake can still be active aloft without 76 NO titration. The N_2O_5 uptake aloft leads to elevated pNO₃⁻ formation in the upper 77 layer as well as effective NO_x removal (Watson et al., 2002; S. G. Brown et al., 2006; 78 Lurmann et al., 2006; Pusede et al., 2016; Baasandorj et al., 2017). Field observations 79 at high altitude sites of Kleiner Feldberg, Germany (Crowley et al., 2010a); the 80 81 London British Telecommunications tower, UK (Benton et al., 2010); and Boulder, CO, USA (Wagner et al., 2013) showed the elevated N₂O₅ concentrations aloft. Model 82 studies showed that pNO₃⁻ varied at different heights and stressed the importance of 83 the heterogeneous formation mechanism (Kim et al., 2014; Ying, 2011; Su et al., 84 85 2017). The mass fraction and concentration of pNO_3^- in Beijing was reported higher aloft (260 m) than at the ground level in Beijing (Chan et al., 2005; Sun et al., 2015b), 86

which was explained by favorable gas-particle partitioning aloft under lower
temperature conditions. The active nighttime chemistry in the upper level plays an
important role in surface PM pollution through mixing and dispersing within the
planet boundary layer (PBL) (Prabhakar et al., 2017), especially in valley terrain
regions coupled with meteorological processes (Baasandorj et al., 2017; Green et al.,
2015).

To explore the possible sources of pNO_3^- and the dependence of its formation on 93 94 altitude in wintertime in Beijing, we conducted vertical profile measurements of NO, NO_2 , and O_3 with a tower platform in combination with simultaneous ground 95 measurements of these parameters in urban Beijing. A box model was used to 96 investigate the reaction rate of N₂O₅ heterogeneous hydrolysis and its impact on 97 pNO₃⁻ formation at different altitudes during a heavy haze episode over urban Beijing. 98 Additionally, the dependence of NO_x removal and pNO₃⁻ formation on the N₂O₅ 99 uptake coefficient was probed. 100

101

102 **2. Methods**

103 **2.1 Field measurement**

Ground measurements (15 m above the ground) were carried out on the campus of 104 Peking University (PKU; 39°59'21"N, 116°18'25"E) in Beijing, China. The vertical 105 measurements were conducted at the Institute of Atmospheric Physics (IAP), Chinese 106 107 Academy of Sciences (39°58'28"N, 116°22'16"E). The IAP site is within 4 km of the PKU site. The locations of the PKU and IAP sites are shown in Fig. 1. At the PKU 108 site, dry-state mass concentration of PM2.5 was measured using a TEOM 1400A 109 analyzer. NO_x was measured via a chemiluminescence analyzer (Thermo Scientific, 110 TE-42i-TR), and O₃ was measured with a UV photometric O₃ analyzer (Thermo 111 Scientific, TE-49i). Dry-state particle number and size distribution (PNSD) was 112 measured from 0.01 to 0.7 µm with a Scanning Mobility Particle Sizer (SMPS; TSI 113 Inc. 3010). The instrumental parameters are summarized in Table S1. The data were 114 collected from December 16 to 22, 2016. Additionally, relative humidity (RH), 115

temperature (T), and wind direction and speed data were available during themeasurement period.

118 Vertical profile measurements were conducted from December 18 to 20, 2016, from the tower-based platform (maximum height: 325 m) on the IAP campus. The NO_x and 119 O_3 instruments were installed aboard a movable cabin on the tower. NO_x and O_3 were 120 measured with two low-power, lightweight instruments (Model 405 nm and Model 121 106-L, 2B Technologies, USA). The Model 405 nm instrument measures NO₂ directly 122 123 based on the absorbance at 405 nm, and NO is measured by adding excess O₃ (conversion efficiency $\sim 100\%$). The limit of detection of both NO and NO₂ is 1 part 124 per billion volume (ppbv), with an accuracy of 2 ppbv or 2% of the reading, and the 125 time resolution is 10 s (Birks et al., 2018). The Model 106-L instrument measures O₃ 126 based on the absorbance at 254 nm, with a precision of 1 ppbv, or 2% of the reading, 127 and a limit of detection of 3 ppbv. NO_x calibration was performed in the lab using a 128 gas calibrator (TE-146i, Thermo Electron, USA) associated with a NO standard (9.8 129 ppmv). The O₃ calibration was done with an O₃ calibrator (TE 49i-PS), which was 130 131 traceable to NIST (National Institute of Standards and Technology) standards annually. Before the campaign, the NO_x monitor was compared with a Cavity Attenuated Phase 132 Shift (CAPs) Particle Light Extinction Monitor, and the O₃ monitor was compared to 133 a commercial O₃ analyzer (TE-49i, Thermo Electron, USA). Good agreement was 134 found between the portable instruments and the conventional monitors. Height 135 information was retrieved via the observed atmospheric pressure measured by the 136 Model 405 nm instrument. The cabin ascended and descended at a rate of 10 m min⁻¹, 137 with a height limit of 260 m during the daytime and 240 m at night. The cabin stopped 138 139 after reaching the peak, and parameters were measured continually during the last 10 min of each cycle. One vertical cycle lasted for approximately 1 h. We measured two 140 cycles per day, one in the morning and the other in the evening, with six measurement 141 cycles conducted in total during the campaign. 142

143

144 **2.2 Box model simulation**

A box model was used to model the NO_3 and N_2O_5 mixing ratios and the nitrate 145 formation potential in vertical scale at the IAP site. A simple chemical mechanism 146 (see R1-R5) was used to model the nighttime NO₃ and N₂O₅ chemistry under NO 147 free-air-mass conditions. Physical mixing, dilution, deposition, or interruption during 148 the transport of the air mass was not considered. Here, f represents the ClNO₂ yield 149 from N₂O₅ uptake. Homogeneous hydrolysis of N₂O₅ and NO₃ heterogeneous uptake 150 reaction were neglected in this analysis because of the low level of absolute humidity 151 152 and the extremely low NO₃ concentration during wintertime (Brown and Stutz, 2012). The corresponding rate constants of R1–R3 are those reported by Sander et al. (2011). 153

154
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (R1)

155
$$NO_2 + NO_3 + M \rightarrow N_2O_5 + M$$
 (R2)

156
$$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$$
 (R3)

157
$$NO_3 + VOCs \rightarrow Products$$
 (R4)

4 - -

$$N_2O_5 + (H_2O \text{ or } Cl^-) \rightarrow (2-f) \text{ NO}_3^- + f \text{ ClNO}_2$$
(R5)

Following the work of Wagner et al. (2013), the box model can be solved using six 159 160 equations (Eqs. 1–6). In the framework, O_3 is only lost via the reaction of $NO_2 + O_3$ and the change in the O_3 concentration can be expressed as Eq. 1. Eq. 2 can express 161 the losses of NO₂. Here, the s(t) is between 0 and 1 and expressed as Eq. 5. The s(t) 162 favors 0 when direct loss of NO3 dominates and favors 1 when N2O5 uptake 163 dominates NO₃ loss. The model calculation had two steps. The first step was to 164 calculate the mixing ratio of NO_2 and O_3 at time zero (herein designated as sunset). 165 According to Eqs. 1 and 2, the initial NO₂ (t=0) and O₃ (t=0) concentrations can then 166 be integrated backward in time starting with the measured concentrations of NO₂ and 167 O_3 at each height. During the pollution period in winter in Beijing (NO₂ = 45 ppbv, 168 Temperature = 273 K, $S_a = 3000 \ \mu m^2 \ cm^{-3}$), the ratio of N₂O₅ to NO₃ is large enough, 169 i.e., 450. The pseudo-first-order loss rate of N_2O_5 heterogeneous uptake will be 1×10^{-3} 170 s⁻¹, with a N₂O₅ uptake coefficient of 5×10^{-3} . N₂O₅ uptake would contribute an NO₃ 171 loss rate of 0.4 s⁻¹, which is much higher than the direct NO₃ loss through the reaction 172 of NO₃ with VOCs, even with the k_{NO3} set to a high value of 0.02 s⁻¹. Therefore, N₂O₅ 173 uptake was proposed to be dominantly responsible for the NO₃ loss and the initial s(t) 174

was set to 1. Eq. 3 can describe the sum concentration of NO_3 and N_2O_5 . Assuming 175 the equilibrium between NO₃ and N₂O₅ is maintained after a period, based on the 176 177 temperature-dependent equilibrium rate constant (k_{eq}) and the modeled NO₂ at a certain time, Eq. 4 can be used to determine the ratio of N₂O₅ to NO₃. Combined, Eqs. 178 1-4 allow for the calculation of NO₃ and N₂O₅ concentrations considering stable NO₃ 179 and N₂O₅ loss rate constants (k_{NO3} and k_{N2O5} , respectively). In the second step, a new 180 s(t) was calculated using the data from the first step (Eq. 5), new initial NO₂ and O₃ 181 182 concentrations were then approximated, and NO₃ and N₂O₅ values were derived using the same method as used in the first step. This process was repeated until the 183 difference between the two s(t) values was less than 0.005. The number of 184 adjustments to a new s(t) could not be calculated more than 10 times. Otherwise, the 185 calculating process would become non-convergent. 186

187 The modeled N₂O₅ concentrations and given k_{N2O5} were then used to estimate pNO₃⁻ formation. The HNO₃ produced in R4 was not considered because many of the 188 products are organic nitrates (Brown and Stutz, 2012). Here, k_{NO3} and k_{N2O5} denote 189 190 the pseudo-first-order reaction rate constants of the total NO₃ reactivity caused by ambient VOCs and N_2O_5 heterogeneous uptake, respectively. k_{N2O5} is given in Eq. 6. 191 S_a is the aerosol surface area, C is the mean molecular speed of N₂O₅, and γ_{N2O5} is the 192 N₂O₅ uptake coefficient. Sunset and sunrise times during the measurements were 193 16:55 and 07:30 (Chinese National Standard Time, CNST), and the model was run 194 from sunset to sunrise, with the running time set to 14.5 h. 195

196
$$\frac{d[0_3]}{dt} = -k_{NO2+O3}[0_3][NO_2]$$

1)

197
$$\frac{d [NO_2]}{dt} = -(1 + s(t)) \times k_{NO2+O3}[O_3][NO_2]$$
(2)

198
$$\frac{d[NO_3 + N_2O_5]}{dt} = k_{NO2 + O3}[O_3][NO_2] - k_{N2O5}[N_2O_5] - k_{NO3}[NO_3]$$
(3)

199
$$\frac{[N_2O_5]}{[NO_3]} = k_{eq}[NO_2]$$
 (4)

200
$$s(t) = \frac{\int_0^t k_{N_2O_5} \cdot [N_2O_5] dt + [N_2O_5]_t}{[O_3](0) - [O_3](t)}$$
(5)

201
$$k_{N205} = \frac{C \times S_a \times \gamma_{N205}}{4}$$
 (6)

Dry-state S_a at the PKU site was calculated based on the PNSD measurement, 202 203 which was corrected to ambient (wet) S_a for particle hygroscopicity via a growth factor (Liu et al., 2013). The uncertainty of the wet S_a was estimated to be ~30%, 204 which was associated with the error from dry PNSD measurement (~20%) and the 205 growth factor (~20%). Nighttime averaged S_a on the night of December 19 was about 206 $3000 \ \mu\text{m}^2 \text{ cm}^{-3}$. PM measurements at the National Monitoring Sites proved this heavy 207 haze pollution episode was a typical regional event (Fig. S1). Furthermore, 208 synchronous study on the night of December 19, 2016, showed small variation in the 209 vertical particle number concentration, with a boundary layer height of 340 m (Zhong 210 et al., 2017). Therefore, the S_a measured at the PKU site can represent the urban 211 Beijing conditions in horizontal and vertical scale (< 340 m). Although the PNSD 212 information for particles larger than 0.7 µm was not valid during the study period, the 213 particles smaller than 0.7 µm dominated more than 95% of the aerosol surface area in 214 215 a subsequent pollution episode (01/01/2017 to 01/07/2017), and similar results also were reported in other studies (e.g., Crowley et al., 2010a; Wang et al., 2018). The 216 possible lower bias of S_a (5%) only led to a small overestimation of N₂O₅, i.e., 217 3.6%–4.2%, and an underestimation of pNO₃⁻ of 0.2%–2.5% when γ_{N205} varied from 218 1×10^{-3} to 0.05. 219

The N₂O₅ uptake coefficient and ClNO₂ yield are key parameters in the estimation 220 of pNO₃⁻ formation (Thornton et al., 2010; Riedel et al., 2013; Wagner et al., 2013; 221 Phillips et al., 2016). Wagner et al. (2013) shows the significant pNO₃⁻ suppression of 222 223 N₂O₅ uptake aloft in the wintertime in Denver, CO, USA, the uptake coefficient is 0.005 when the percentage of pNO_3^- in the $PM_{2.5}$ mass concentration is 40%. As the 224 proportion of nitrate in the particle mass concentration is similarly high in North 225 China during wintertime (Sun et al., 2013, 2015a; Chen et al., 2015; Zheng et al., 226 2015; Wen et al., 2015), herein we fixed the uptake coefficient to 0.005 for the base 227 model initial input. Because the model input of CINO₂ yield only affects the value of 228 produced pNO₃⁻ concentration and would not change the modeled N₂O₅ concentration, 229

we set the initial f_{CINO2} to zero. The average value of k_{NO3} of about 0.011 s⁻¹ in 230 summer Beijing was calculated in a previous work, with BVOCs contributing 231 significantly (Wang H et al., 2017a; Wang et al., 2018). The intensity of biogenic 232 VOCs emissions decreased in wintertime, owing to the lower temperature and weak 233 solar radiation, thus the k_{NO3} should be smaller than it is in summer. In this work, the 234 model input k_{NO3} was set to a relatively high value of 0.02 s⁻¹ (equivalent to 0.2 ppbv 235 isoprene + 40 parts per trillion volume (pptv) monoterpene + 1.0 ppbv cis-2-butene), 236 237 to constrain the impact of N₂O₅ uptake in the model. A series of sensitivity tests was conducted to study the uncertainties of the model simulation, and the detailed test sets 238 are listed in Table 1, included the test of N₂O₅ uptake coefficient and k_{NO3} . The γ_{N2O5} 239 sensitivity tests were set from 0.001 to 0.05, and the $k_{\rm NO3}$ tests were set to 0.001 s⁻¹, 240 0.01 s⁻¹, and 0.1 s⁻¹. 241

242 **3. Results and discussion**

243 **3.1 Ground-based observations.**

A severe winter PM pollution event lasted from December 16 to 22, 2016, in Beijing. 244 Figure 2a shows the time series of PM_{2.5} and other relevant parameters based on 245 ground measurements at the PKU site. The mass concentration of PM_{2.5} began to 246 increase from December 16, reaching 480 µg m⁻³ on December 20. A fast PM growth 247 event was captured, with an overall increment of 100 µg m⁻³ on the night of December 248 19 (Fig. 2a). Throughout the pollution episode, the meteorological conditions 249 included high RH (50% \pm 16%) and low temperature (2 \pm 3 °C). The slow surface 250 wind speed ($< 3 \text{ m s}^{-1}$) implied the atmosphere was stable (Fig. 2c, d). The daytime O₃ 251 concentration was low, owing to high NO emission and weak solar radiation. After 252 sunset, O₃ at surface layer was rapidly titrated to zero by the elevated NO. The 253 254 presence of high NO concentrations would have strongly suppressed the concentration of NO₃, further suppressing N_2O_5 near the ground. Figure 2b depicts the high amounts 255 of NO and NO₂ that were observed at ground level during the PM pollution episode, 256 suggesting that pNO₃⁻ production via N₂O₅ uptake was not important near the ground 257 during the winter haze episode. 258

260 **3.2 Tower observations.**

Six vertical measurements of the total oxidants ($O_x = O_3 + NO_2$) below 50 m were 261 consistent with those measured at ground level and are shown in Fig. S2, confirming 262 that the two sites are comparable. On the night of December 20 (Fig. 3a), the NO_2 and 263 NO from 0–240 m were abundant and conservative around 21:00, with concentrations 264 265 of 80 ppbv and 100 ppbv, respectively. The O₃ concentrations remained zero during the nighttime (Fig. 3b). The vertical profile on December 20 suggests that at least 266 below 240 m, the N₂O₅ chemistry was not important, which is consistent with the 267 results at ground level as mentioned above. The case on the night of December 18 was 268 269 similar to that on the night of December 20, whereas the vertical profile on December 19 was not similar to that on December 20. Figure 4a shows the vertical profiles 270 around 21:00 on December 19; NO was abundant from the ground to 100 m, then 271 gradually decreased to zero from 100 m to 150 m, and remained at zero above 150 m. 272 273 The observed NO₂ concentration was 85 ± 2 ppbv below 100 m, which gradually decreased from 100 m to 150 m, and was 50 ± 2 ppbv from 150 m to 240 m. The 274 observed O₃ concentrations below 150 m were below the instrumental limit of 275 detection (Fig. 4b). Above 150 m, the O_3 concentration was 20 \pm 2 ppbv, 276 corresponding to the greatly diminished NO concentration. With respect to O_x , the 277 mixing ratio of O_x was 85 ± 2 ppbv at lower altitudes, whereas the O_x concentration at 278 higher altitudes was 15 ppbv lower than that at lower altitudes (Fig. 4b). The O_x 279 missing from the higher altitude air mass indicated an additional nocturnal removal of 280 281 O_x aloft.

Figure 5 depicts the vertical profiles of NO_x, O₃, and O_x at 09:30 on the morning of December 20, which have similar features to those observed at 21:00 on December 19. The vertical profiles suggested stratification still existed at that time. The amount of O_x missing aloft in the morning increased to 25 ppbv at 240–260 m, demonstrating that an additional 25 ppbv of O_x was removed or converted to other compounds at higher altitudes than at the surface layer during the night from December 19 to 20. Figure S3 shows the vertical profiles of NO, NO₂, O₃, and O_x at ~12:00 on December 18, when solar radiation was strong enough to mix the trace gases well in the vertical direction. NO_x and O₃ were found to be well mixed indeed, with small variation from the ground level to 260 m.

292

3.3 Particulate nitrate formation aloft.

294 N_2O_5 uptake is one of the two most important pathways of ambient NO_x loss and an important pathway of pNO_3^- formation (Wagner et al., 2013; Stutz et al., 2010; Tsai et 295 al., 2014). At higher altitudes (e.g., > 150 m), NO₃ and N₂O₅ chemistry can be 296 initiated in the co-presence of high NO₂ and significant O₃ levels. Therefore, N₂O₅ 297 298 uptake could represent a plausible explanation for the O_x observed missing from the higher altitude air masses on the night of December 19. To explore this phenomenon, 299 a time-step box model was used to simulate the NO₃ and N₂O₅ chemistry based on the 300 observed vertical profiles of NO₂ and O₃ on the night of December 19. 301

302 In the base case, the average initial NO₂ and O₃ levels above 150 m at sunset were about 61 \pm 3 ppbv and 27 \pm 6 ppbv, respectively. The measured NO₂ concentration at 303 the PKU site at sunset (local time, 16:55) was 61 ppbv and showed good consistency 304 with the model result. The modeled N₂O₅ concentration was zero below 150 m, as the 305 306 high level of NO made for quick consumption of the NO₃ formed. In contrast, the modeled N₂O₅ concentrations at 21:00 above 150 m were in the range of 400-600 307 pptv (Fig. 6a). Particulate NO₃⁻ accumulation via N₂O₅ heterogeneous uptake from 308 sunset to the measurement time, which can be calculated using Eq. 7, was significant 309 above 150 m, with a maximum of 24 μ g m⁻³ 4.5 hours after sunset (Fig. 6b). 310

311
$$\sum pNO_3^- = \int_0^t (2-f) \cdot k_{N2O5} \cdot [N_2O_5] dt$$
 (7)

The box model enabled the analysis of the integrated pNO_3^- and $CINO_2$ via N_2O_5 uptake throughout the night. As shown in Fig. 6c, the modeled integrated pNO_3^- went as high as 50 µg m⁻³. The integrated pNO_3^- at sunrise was equal to the loss of 27 ppbv O_x , showing good agreement with the observed O_x missing aloft in the morning hours.

During the nighttime, the pNO₃⁻ formed aloft via N_2O_5 uptake led to the much higher 316 particle nitrate concentration than that in the surface layer, which has been reported in 317 many field observations (Watson et al., 2002; S. G. Brown et al., 2006; Lurmann et al., 318 2006; Ferrero et al., 2012; Sun et al., 2015b). The elevated pNO₃⁻ aloft was well 319 dispersed through vertical mixing and enhanced the surface-layer PM concentration; 320 this phenomenon was also observed in previous studies (Watson et al., 2002; S. G. 321 Brown et al., 2006; Lurmann et al., 2006; Prabhakar et al., 2017). Zhong et al. (2017) 322 323 showed that the NBL and PBL both were at 340 m from December 19 to 20, 2016 in Beijing. Daytime vertical downward transportation was helpful in mixing the air mass 324 within the PBL. Assuming the newly formed pNO_3^- aloft from 150 m to 340 m is 50 325 μ g m⁻³ during the nighttime and well mixed within the PBL by the next morning, the 326 enhancement to the surface layer ($\Delta p NO_3^{-}$) can be simplified to the calculation in Eq. 327 8 as following: 328

329
$$\Delta p NO_3 = \frac{\int_0^{150} P(p NO_3) dH + \int_{150}^{340} P(p NO_3) dH}{340}$$
(8)

Here, $P(pNO_3^-)$ is the integral production of pNO_3^- and H represents height. Owing to high NO below 150 m, the pNO_3^- formation via N_2O_5 uptake was zero. The enhancement of pNO_3^- from 150 m to 340 m was calculated as 28 µg m⁻³, which is in good agreement with the observed PM peak in the morning on December 20, with PM enhancement of ~60 µg m⁻³. The result demonstrated that the nocturnal N_2O_5 uptake aloft and downward transportation were critical for understanding the PM growth process.

337

338 **3.4 Sensitivity studies.**

Previous studies have emphasized that the N_2O_5 uptake coefficient varies greatly (0.001–0.1) in different ambient conditions (Chang et al., 2011; Brown and Stutz, 2012; Wang H et al., 2016), which is the main source of uncertainties in this model. In the present research, sensitivity studies showed the modeled N_2O_5 concentration dropping from 3 ppbv to 60 pptv when the N_2O_5 uptake coefficients increased from 344 0.001 to 0.05 (Fig. 6a), as the N_2O_5 concentration is very sensitive to the loss from heterogeneous reactions. Compared to the base case, the accumulated pNO₃⁻ was 345 evidently lower at $\gamma = 0.001$ with the accumulated pNO₃⁻ of 44 µg m⁻³, thus the low 346 N₂O₅ uptake coefficient condition corresponded to several kinds of aerosols, such as 347 secondary organic aerosols (Gross et al., 2009), humic acids (Badger et al., 2006), and 348 certain solid aerosols (Gross et al., 2008). When the N₂O₅ uptake coefficient increased 349 from 0.005 to 0.05 (Fig. 6b, c), the increase in integral pNO_3^- was negligible. This 350 351 indicates that the conversion capacity of N₂O₅ uptake to pNO₃⁻ was almost maximized at certain ClNO₂ yield. The conversion of NO_x to nitrate was not limited by the N₂O₅ 352 heterogeneous reaction rate, but by the formation of NO₃ via the reaction of NO₂ with 353 O₃ during the polluted night. 354

For describing the nocturnal NO_x removal capacity and pNO₃⁻ formation via NO₃ and N₂O₅ chemistry, the overnight NO_x loss efficiency (ϵ) was calculated using Eq. 9.

357
$$\epsilon = \frac{\int_0^t 2 \times k_{N205} \cdot [N_2 O_5] dt + \int_0^t k_{N03} \cdot [NO_3] dt}{[NO_2](0)}$$
(9)

358 The case modeled typical winter haze pollution conditions in Beijing from sunset to sunrise, with the initial model values of NO_2 and O_3 set to 60 ppbv and 30 ppbv, 359 respectively. S_a was set to 3000 μ m² cm⁻³, the ClNO₂ yield was zero, and k_{NO3} was 360 0.02 s⁻¹. The reaction time was set to 14.5 h to represent an overnight period in 361 wintertime. The consumed NO₃ by the reaction with VOCs and N₂O₅ by uptake 362 reaction were regarded as valid NO_x loss. Figure 7 shows the dependence of the 363 overnight NO_x loss efficiency on N₂O₅ uptake, as it varied from 1×10^{-5} to 0.1. This is 364 an increase from 20% to 56%, with increasing γ_{N205} , and the maximum NO_x loss 365 366 efficiency was very large, as was addressed by Chang et al. (2011). The ceiling of overnight NO_x loss via NO₃-N₂O₅ was fixed when all the NO_x loss was through N₂O₅ 367 uptake, which is limited by the reaction time and the formation rate of NO₃ (R1). In 368 this case, the N_2O_5 uptake was contributed about 90% of the overnight NO_x loss 369 (50.4%) when γ_{N205} was equal to 0.002. When γ_{N205} was less than 2×10^{-3} , NO_x 370 371 removal increased rapidly with the increasing of γ_{N2O5} , which was defined as the γ_{N205} -sensitive region. When $\gamma_{N205} \ge 2 \times 10^{-3}$, the contribution of N₂O₅ uptake to NO_x 372

loss was over 90% and became insensitive, this region was defined as the 373 γ_{N205} -insensitive region. According to Eqs. 3 and 5, higher aerosol surface 374 concentration and NO_x and lower k_{NO3} and temperature would further increase the 375 insensitivity region with lower γ_{N205} value and allow the N₂O₅ uptake to be more 376 easily located in the γ_{N205} -insensitive region. Here, the critical value of the N₂O₅ 377 uptake coefficient (2×10^{-3}) was relatively low compared to that recommended by the 378 IUPAC (International Union of Pure and Applied Chemistry) on the surface of 379 380 mineral dust (0.013, 290-300 K) (Crowley et al., 2010b) or determined in many field experiments (e.g., S. S. Brown et al., 2006; 2009; Wagner et al., 2013; Morgan et al., 381 2015; Phillips et al., 2016; Wang Z et al., 2017; Brown et al., 2016; Wang H et al., 382 2017b; Wang X et al., 2017). This suggests that the NO_x loss and pNO₃⁻ formation via 383 N₂O₅ uptake were easily maximized in the pollution episode, further worsening the 384 PM pollution. 385

In the base case, the modeled pNO_3^- formation via N_2O_5 uptake was an upper limit 386 result, as the ClNO₂ yield was set to zero. High coal combustion emitted chloride into 387 388 the atmosphere of Beijing during the heating period (Sun et al., 2013), like the emissions from power plants in north China. This enhanced anthropogenic chloride 389 provides abundant chloride-containing aerosols to form ClNO₂ via N₂O₅ uptake aloft, 390 implying that significant ClNO₂ formed in the upper layer of the NBL (Tham et al., 391 2016; Wang Z et al., 2017). Assuming the ClNO₂ yield is the average value of 0.28 392 determined at high altitude in north China (Wang Z et al., 2017), the pNO₃⁻ produced 393 throughout the night will have decreased by 7 μ g m⁻³. The ClNO₂ formation aloft 394 throughout the night reached 2.5 ppbv, which is comparable with that observed in 395 field measurement in north China (Tham et al., 2016; Wang Z et al., 2017; Wang X et 396 al., 2017). As the error of pNO₃⁻ formation simulation was subject to the ClNO₂ yield, 397 a higher yield would increase the model uncertainty directly, hence probing the 398 ClNO₂ yield is warranted in future studies. As for NO₃ reactivity, Fig. 7 shows the 399 sensitivity tests of the integral pNO₃⁻ formation for the whole night at k_{NO3} values = 400 0.001 s^{-1} , 0.01 s^{-1} , 0.02 s^{-1} , and 0.05 s^{-1} . The integral pNO₃⁻ formation decreased when 401 $k_{\rm NO3}$ varied from 0.001 s⁻¹ to 0.1 s⁻¹, but the variation ratio to the base case was within 402

403 $\pm 5\%$. The result shows the NO₃-N₂O₅ loss via NO₃ reaction with VOCs during the 404 polluted wintertime was not important, which may only lead to relatively small 405 uncertainties in the integral pNO₃⁻ formation calculation. Nevertheless, if N₂O₅ uptake 406 was extremely low (e.g., $\gamma_{N2O5} < 10^{-4}$), the uncertainty of NO₃ oxidation would 407 increase significantly.

408

409 **4.** Conclusion

During the wintertime, ambient O₃ is often fully titrated at the ground level in urban 410 Beijing owing to its fast reaction with NO emissions. Consequently, the near-surface 411 air masses are chemically inert. Nevertheless, the chemical information of the air 412 masses at higher altitudes was indicative of a reactive layer above urban Beijing, 413 which potentially drives fast pNO₃⁻ production via N₂O₅ uptake and contributes to the 414 surface PM mass concentration. In this study, we evidenced additional O_x missing (25) 415 ppbv) aloft throughout the night. Based on model simulation, we found that the 416 particulate nitrate formed above 150 m reached 50 µg m⁻³ and enhanced the surface 417 level PM concentration significantly by 28 µg m⁻³ with downward mixing after 418 break-up of the NBL in the morning. Our study also demonstrated that during the 419 heavy PM pollution period, the particulate nitrate formation capacity via N₂O₅ uptake 420 was easily maximized in the upper layer, even with N₂O₅ uptake as low as 2×10^{-3} . 421 This indicates that the mixing ratio of NO_2 aloft was directly linked to nitrate 422 formation, and reduction of NO_x is helpful in decreasing nocturnal nitrate formation. 423 Overall, this study highlights the importance of the interplay between chemical 424 425 formation aloft and dynamic processes for probing the ground-level PM pollution problem. In the future, direct observations of N₂O₅ and associated parameters should 426 be performed to explore the physical and chemical properties of this overhead 427 nighttime reaction layer and to reach a better understanding of the winter haze 428 formation. 429

430

432 Acknowledgements.

433 This work was supported by the National Natural Science Foundation of China (Grant

434 No. 91544225, 41375124, 21522701, 41571130021), the National Key Technology

435 Research and Development Program of the Ministry of Science and Technology of

436 China (Grant No. 2014BAC21B01). The authors gratefully acknowledge the science

437 team of Peking University for their general support, as well as the team running the

tower platform, which enabled the vertical profile observations.

439 **References.**

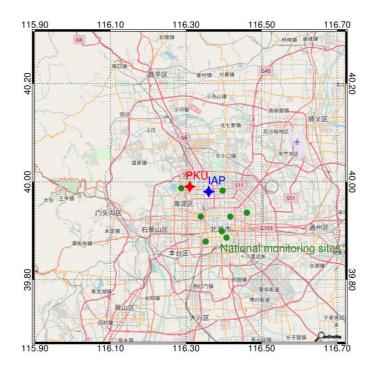
- Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly,
 K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.:
 Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool
 Conditions: Evolution of Wintertime PM_{2.5} Pollution Events and N₂O₅ Observations in Utah's
 Salt Lake Valley, Environ Sci Technol, 51, 5941-5950, 2017.
- Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N₂O₅
 by aerosol particles containing mixtures of humic acid and ammonium sulfate, J Phys Chem
 A, 110, 6986-6994, 2006.
- Benton, A. K., Langridge, J. M., Ball, S. M., Bloss, W. J., Dall'Osto, M., Nemitz, E., Harrison, R.
 M., and Jones, R. L.: Night-time chemistry above London: measurements of NO₃ and N₂O₅
 from the BT Tower, Atmos Chem Phys, 10, 9781-9795, 2010.
- Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct
 measurement of N₂O₅ reactivity on ambient particles, Atmos Meas Tech, 2, 231-242, 2009.
- Birks, J. W., Andersen, P. C., Williford, C. J., Turnipseed, A. A., Strunk, S. E., Ennis, C. A., and
 Mattson, E.: Folded Tubular Photometer for atmospheric measurements of NO₂ and NO,
 Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-24, in review, 2018.
- Brown, S. G., Roberts, P. T., McCarthy, M. C., Lurmann, F. W., and Hyslop, N. P.: Wintertime
 vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin
 Valley during the California Regional coarse PM/fine PM Air Quality Study, J Air Waste
 Manage, 56, 1267-1277, 2006.
- Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R.,
 Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M.,
 Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined
 from aircraft measurements during the Second Texas Air Quality Study: Comparison to
 current model parameterizations, J Geophys Res-Atmos, 114, 2009.
- Brown, S. S., Dube, W. P., Osthoff, H. D., Wolfe, D. E., Angevine, W. M., and Ravishankara, A. R.:
 High resolution vertical distributions of NO₃ and N₂O₅ through the nocturnal boundary layer,
 Atmos Chem Phys, 7, 139-149, 2007.
- Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R.,
 Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong
 Kong, J Geophys Res-Atmos, 121, 2457-2475, 2016.
- Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J.,
 Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.:
 Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science,
 311, 67-70, 2006.
- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem Soc Rev, 41,
 6405-6447, 2012.
- 477 Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter Constituents
 478 and Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ Health Persp,
 479 120, 373-378, 2012.
- Chan, C. Y., Xu, X. D., Li, Y. S., Wong, K. H., Ding, G. A., Chan, L. Y., and Cheng, X. H.:
 Characteristics of vertical profiles and sources of PM_{2.5}, PM₁₀ and carbonaceous species in
 Beijing, Atmos Environ, 39, 5113-5124, 2005.

- Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous
 Atmospheric Chemistry, Ambient Measurements, and Model Calculations of N2O5: A
 Review, Aerosol Sci Tech, 45, 665-695, 10.1080/02786826.2010.551672, 2011.
- Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dube, W.
 P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N2O5 heterogeneous hydrolysis
 parameterizations for CalNex 2010, J Geophys Res-Atmos, 121, 5051-5070,
 10.1002/2015jd024737, 2016.
- Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z.
 F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, Atmos Chem Phys, 15, 12879-12895, 2015.
- 494 Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J.,
 495 Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric
 496 chemistry: Volume V heterogeneous reactions on solid substrates, Atmos Chem Phys, 10,
 497 9059-9223, 2010b.
- 498 Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and
 499 Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany,
 500 Atmos Chem Phys, 10, 2795-2812, 2010a.
- Ferrero, L., Cappelletti, D., Moroni, B., Sangiorgi, G., Perrone, M. G., Crocchianti, S., and
 Bolzacchini, E.: Wintertime aerosol dynamics and chemical composition across the mixing
 layer over basin valleys, Atmos Environ, 56, 143-153, 2012.
- Ferrero, L., Perrone, M. G., Petraccone, S., Sangiorgi, G., Ferrini, B. S., Lo Porto, C., Lazzati, Z.,
 Cocchi, D., Bruno, F., Greco, F., Riccio, A., and Bolzacchini, E.: Vertically-resolved particle
 size distribution within and above the mixing layer over the Milan metropolitan area, Atmos
 Chem Phys, 10, 3915-3932, 2010.
- Geyer, A., and Stutz, J.: Vertical profiles of NO3, N2O5, O-3, and NOx in the nocturnal boundary
 layer: 2. Model studies on the altitude dependence of composition and chemistry, J Geophys
 Res-Atmos, 109, Artn D12307 Doi 10.1029/2003jd004211, 2004.
- Green, M. C.; Chow, J. C.; Watson, J. G.; Dick, K.; Inouye, D., Effects of snow cover and
 atmospheric stability on winter PM2.5 concentrations in Western U.S. valleys. J. Appl.
 Meteor. Climatol. 2015, 54 (6), 1191-1201. DOI 10.1175/JAMC-D-14-0191.1.
- Gross, S. and Bertram, A. K.: Reactive uptake of NO₃, N₂O₅, NO₂, HNO₃, and O₃ on three types
 of polycyclic aromatic hydrocarbon surfaces, J Phys Chem A, 112, 3104-3113, 2008.
- Gross, S., Iannone, R., Xiao, S., and Bertram, A. K.: Reactive uptake studies of NO₃ and N₂O₅ on
 alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry,
 Phys Chem Chem Phys, 11, 7792-7803, 2009.
- Grzinic, G., Bartels-Rausch, T., Berkemeier, T., Turler, A., and Ammann, M.: Viscosity controls
 humidity dependence of N2O5 uptake to citric acid aerosol, Atmos Chem Phys, 15,
 13615-13625, 2015.
- Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M.,
 Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze formation in
 China, P Natl Acad Sci USA, 111, 17373-17378, 2014.
- Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N₂O₅ on
 sub-micron sulfate aerosols, Phys Chem Chem Phys, 5, 3453-3463, 2003.

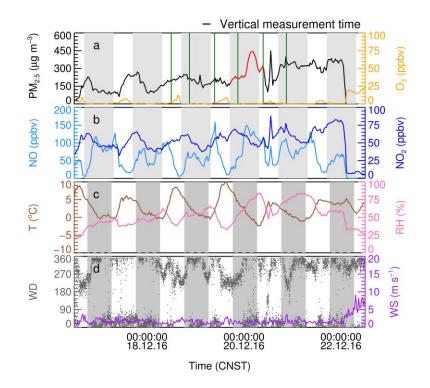
- Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R.,
 Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A.,
 Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
 Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.:
 High secondary aerosol contribution to particulate pollution during haze events in China,
 Nature, 514, 218-222, 2014.
- Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N₂O₅ by (NH₄)²SO₄,
 NH₄HSO₄, and H₂SO₄ aerosols, J Phys Chem A, 105, 6465-6470, 2001.
- Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., and Stanier, C. O.: Modeled aerosol nitrate
 formation pathways during wintertime in the Great Lakes region of North America, J
 Geophys Res-Atmos, 119, 12420-12445, 2014.
- Lei, H. and Wuebbles, D. J.: Chemical competition in nitrate and sulfate formations and its effect
 on air quality, Atmos Environ, 80, 472-477, 2013.
- Lurmann, F. W., Brown, S. G., McCarthy, M. C., and Roberts, P. T.: Processes influencing
 secondary aerosol formation in the San Joaquin Valley during winter, J Air Waste Manage, 56,
 1679-1693, 2006.
- Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of
 dinitrogen pentoxide on aqueous aerosols, Phys Chem Chem Phys, 1, 5451-5457, 1999.
- Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn,
 M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence
 of aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in
 northwestern Europe, Atmos Chem Phys, 15, 973-990, 2015.
- Pathak, R. K., Wang, T., and Wu, W. S.: Nighttime enhancement of PM_{2.5} nitrate in ammonia-poor
 atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous
 hydrolysis of N2O5 and HNO3 partitioning, Atmos Environ, 45, 1183-1191, 2011.
- Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of
 China: nitrate formation in an ammonia-deficient atmosphere, Atmos Chem Phys, 9,
 1711-1722, 2009.
- Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F.,
 Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake
 coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate,
 Atmos Chem Phys, 16, 13231-13249, 2016.
- 559 Prabhakar, G., Parworth, C. L., Zhang, X. L., Kim, H., Young, D. E., Beyersdorf, A. J., Ziemba, L. 560 D., Nowak, J. B., Bertram, T. H., Faloona, I. C., Zhang, Q., and Cappa, C. D.: Observational 561 assessment of the role of nocturnal residual-layer chemistry in determining daytime surface nitrate concentrations, Atmos Chem Phys, 17, 14747-14770, 562 particulate 10.5194/acp-17-14747-2017, 2017. 563
- Pusede, S. E., Duffey, K. C., Shusterman, A. A., Saleh, A., Laughner, J. L., Wooldridge, P. J.,
 Zhang, Q., Parworth, C. L., Kim, H., Capps, S. L., Valin, L. C., Cappa, C. D., Fried, A.,
 Walega, J., Nowak, J. B., Weinheimer, A. J., Hoff, R. M., Berkoff, T. A., Beyersdorf, A. J.,
 Olson, J., Crawford, J. H., and Cohen, R. C.: On the effectiveness of nitrogen oxide
 reductions as a control over ammonium nitrate aerosol, Atmos Chem Phys, 16, 2575-2596,
 2016.
- 570 Riedel, T. P., Wagner, N. L., Dube, W. P., Middlebrook, A. M., Young, C. J., Ozturk, F., Bahreini,

- R., VandenBoer, T. C., Wolfe, D. E., Williams, E. J., Roberts, J. M., Brown, S. S., and
 Thornton, J. A.: Chlorine activation within urban or power plant plumes: Vertically resolved
 CINO₂ and Cl₂ measurements from a tall tower in a polluted continental setting, J Geophys
 Res-Atmos, 118, 8702-8715, 2013.
- Sander, S. P., et al. (2011), Chemical Kinetics and Photochemical Data for Use in Atmospheric
 Studies Evaluation Number 17, JPL Publication 10–6 Rep., NASA Jet Propul. Lab, Pasadena,
 California.
- Seinfeld, J. H., Pandis, S.N., (2006). Atmospheric Chemistry and Physics: from Air Pollution to
 Climate Change (Second edition), John Wiley & Sons, Inc., Hoboken, New Jersey.
- Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., and Williams, E.: Vertical profiles of
 NO3, N2O5, O-3, and NOx in the nocturnal boundary layer: 1. Observations during the
 Texas Air Quality Study 2000, J Geophys Res-Atmos, 109, Artn D12306
 10.1029/2003jd004209, 2004.
- Stutz, J., Wong, K. W., Lawrence, L., Ziemba, L., Flynn, J. H., Rappengluck, B., and Lefer, B.:
 Nocturnal NO₃ radical chemistry in Houston, TX, Atmos Environ, 44, 4099-4106, 2010.
- Su, X., Tie, X. X., Li, G. H., Cao, J. J., Huang, R. J., Feng, T., Long, X., and Xu, R. G.: Effect of
 hydrolysis of N₂O₅ on nitrate and ammonium formation in Beijing China: WRF-Chem model
 simulation, Sci Total Environ, 579, 221-229, 2017.
- Sun, Y. L., Du, W., Wan, Q. Q., Zhang, Q., Chen, C., Chen, Y., Chen, Z. Y., Fu, P. Q., Wang, Z. F.,
 Gao, Z. Q., and Worsnop, D. R.: Real-Time Characterization of Aerosol Particle Composition
 above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric
 Boundary Layer and Aerosol Chemistry, Environ Sci Technol, 49, 11340-11347, 2015b.
- Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and
 Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in
 Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmos Chem
 Phys, 15, 10149-10165, 2015a.
- Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos Chem Phys, 13, 4577-4592, 2013.
- Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N.,
 Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang,
 T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of
 the causes and impacts on ozone production in a polluted region of northern China, Atmos
 Chem Phys, 16, 14959-14977, 2016.
- Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N₂O₅ hydrolysis on sub-micron organic
 aerosols: the effect of relative humidity, particle phase, and particle size, Phys Chem Chem
 Phys, 5, 4593-4603, 2003.
- Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P.,
 Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large
 atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature,
 464, 271-274, 2010.
- Tsai, C., Wong, C., Hurlock, S., Pikelnaya, O., Mielke, L. H., Osthoff, H. D., Flynn, J. H., Haman,
 C., Lefer, B., Gilman, J., de Gouw, J., and Stutz, J.: Nocturnal loss of NOx during the 2010
 CalNex-LA study in the Los Angeles Basin, J Geophys Res-Atmos, 119, 13004-13025, 2014.

- Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S.,
 Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton,
 J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal
 NO₂ removal rates determined from ambient wintertime measurements, J Geophys
 Res-Atmos, 118, 9331-9350, 2013.
- Wahner, A., Mentel, T. F., and Sohn, M.: Gas-phase reaction of N₂O₅ with water vapor:
 Importance of heterogeneous hydrolysis of N₂O₅ and surface desorption of HNO₃ in a large teflon chamber, Geophys Res Lett, 25, 2169-2172, 1998.
- Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y., Peng, J. F.,
 Guo, S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J.
 J., An, Z. S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secrest, J., Du,
 Z. F., Zheng, J., Shang, D. J., Zeng, L. M., Shao, M., Wang, W. G., Huang, Y., Wang, Y., Zhu,
 Y. J., Li, Y. X., Hu, J. X., Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D.,
 Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from
 London Fog to Chinese haze, P Natl Acad Sci USA, 113, 13630-13635,


630 10.1073/pnas.1616540113, 2016.

- Wang, H. C. and Lu, K. D.: Determination and Parameterization of the Heterogeneous Uptake
 Coefficient of Dinitrogen Pentoxide (N₂O₅), Prog Chem, 28, 917-933, 2016.
- Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D.
 J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and
 Zhang, Y. H.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large
 Nitrate Formation Pathway, Environ Sci Tech Let, 4, 416-420, 2017b.
- Wang, H. C., Lu, K. D., Tan, Z. F., Sun, K., Li, X., Hu, M., Shao, M., Zeng, L. M., Zhu, T., and
 Zhang, Y. H.: Model simulation of NO₃, N₂O₅ and ClNO₂ at a rural site in Beijing during
 CAREBeijing-2006, Atmos Res, 196, 97-107, 2017a.
- Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Zhu, W., Lou, S.,
 Tang, M., Wu, Y., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N₂O₅
 Uptake and NO₃ Oxidation in the Outflow of Urban Beijing, Atmos. Chem. Phys. Discuss.,
 https://doi.org/10.5194/acp-2018-88, in review, 2018.
- Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham, Y. J.,
 Wang, Z., Yang, L. X., Chen, J. M., and Wang, W. X.: Observations of N₂O₅ and ClNO₂ at a
 polluted urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂
 product yields, Atmos Environ, 156, 125-134, 2017.
- Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang, T.: Fast
 heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes
 observed in the nocturnal residual layer over the North China Plain, Atmos Chem Phys, 17,
 12361-12378, 2017.
- Watson, J. G. and Chow, J. C.: A wintertime PM_{2.5} episode at the fresno, CA, supersite, Atmos
 Environ, 36, 465-475, 2002.
- Wen, L. A., Chen, J. M., Yang, L. X., Wang, X. F., Xu, C. H., Sui, X. A., Yao, L., Zhu, Y. H.,
 Zhang, J. M., Zhu, T., and Wang, W. X.: Enhanced formation of fine particulate nitrate at a
 rural site on the North China Plain in summer: The important roles of ammonia and ozone,
 Atmos Environ, 101, 294-302, 2015.
- 658 Ying, Q.: Physical and chemical processes of wintertime secondary nitrate aerosol formation,


- Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., 660 Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, 661 P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., 662 663 Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, 664 K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic 665 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys Res 666 667 Lett, 34, 2007.
- Zhang, R. Y., Wang, G. H., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang, W. G., Hu, M., and
 Wang, Y.: Formation of Urban Fine Particulate Matter, Chem Rev, 115, 3803-3855, 2015.
- Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,
 T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in
 Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions,
 Atmos Chem Phys, 15, 2969-2983, 2015.
- Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Wang, J. Z., Tan, K. Y., Shen,
 X. J., Che, H. C., Zhang, L., Zhang, Z. X., Qi, X. F., Zhao, H. R., Ren, S. X., and Li, Y.:
- 676 Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth
- 677 of $PM_{2.5}$ during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016, J

678 Meteorol Res-Prc, 31, 809-819, 2017.

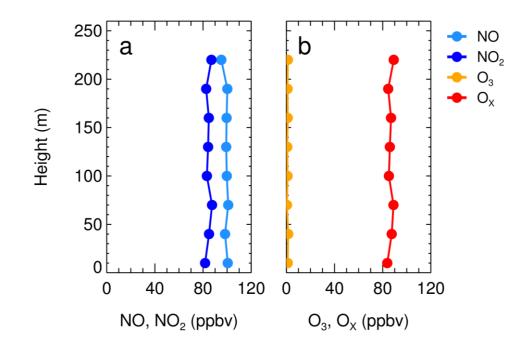

⁶⁵⁹ Front Environ Sci En, 5, 348-361, 2011.

Figure 1. Location of the monitoring sites used in this study, including PKU (red diamond), IAP (blue diamond), and other National Monitoring Sites (green circles). Vertical profiles of NO_x and O_3 were collected at a tower at the IAP. Measurements of particle number and size distribution (used to calculate N₂O₅ and particle nitrate formation) were collected from a ground site at PKU. Additional measurements on PM_{2.5} concentrations were continuously measured at national monitoring sites throughout Beijing.

Figure 2. Time series of (**a**) $PM_{2.5}$ and O_3 , (**b**) NO and NO_2 , (**c**) temperature (T) and relative humidity (RH), (**d**) wind direction (WD) and wind speed (WS) from December 16 to 22, 2016 at PKU site in Beijing, China. The shaded region represents the nighttime periods. Red line in panel (**a**) shows an example of fast $PM_{2.5}$ enhancement on the night of December 19, and the green lines are the time periods when the vertical measurements conducted in IAP site.

Figure 3. Vertical profiles of NO and NO₂ (**a**), O₃ and O_x (**b**) at 20:38-21:06 on the night of December 20, 2016.

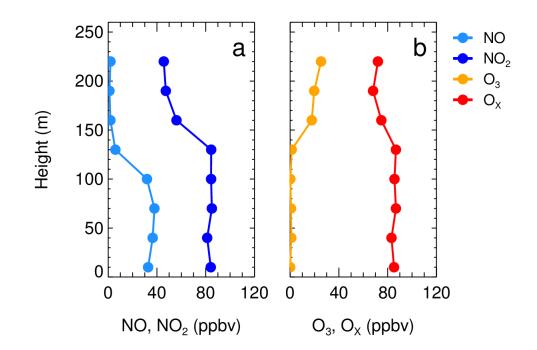
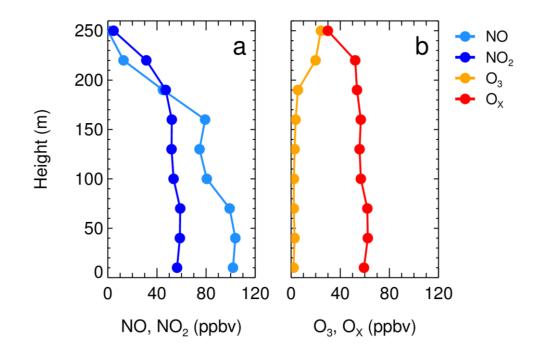
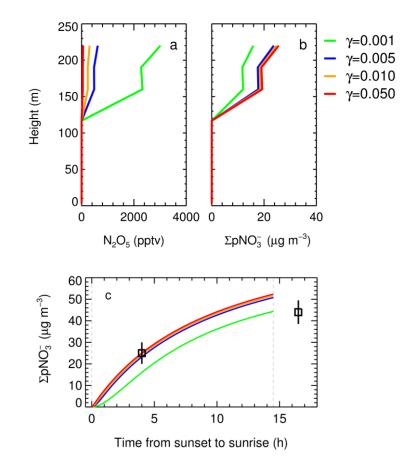


Figure 4. O_x missing case presented by the vertical profiles of (a) NO and NO₂, (b) O₃ and O_x at 20:38-21:13 on the night of December 19, 2016.

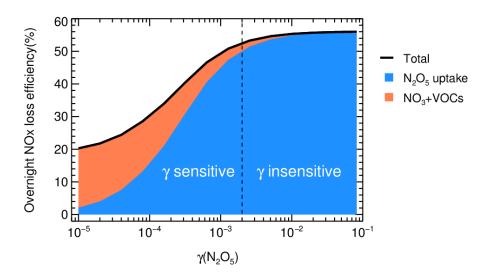
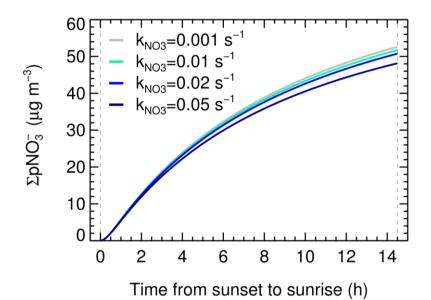


Figure 5. Vertical profiles of (a) NO and NO₂, (b) O_3 and O_x at 09:06-09:34 in the morning of December 20, 2016.



708

Figure 6. Base case (γ =0.005) and sensitivity tests of the vertical profile on the night of December 19 at different N₂O₅ uptake coefficients, including (**a**) the mixing ratio of N₂O₅ at 21:00, (**b**) the integral pNO₃⁻ production from sunset to 21:00, (**c**) the time series of the integral pNO₃⁻ formed at 240 m via N₂O₅ uptake from sunset (17:00) to sunrise (07:30, nighttime length = 14.5 h), the squares represents the pNO₃⁻ equivalent weight from the observed O_X missing in the two vertical measurements ~21:00 and ~09:30 in the following morning.

Figure 7. The dependence of overnight NO_x loss on N₂O₅ uptake on γ_{N2O5} in a typical winter pollution condition. The initial NO₂ and O₃ set to 60 ppbv and 30 ppbv, respectively, S_a set to 3000 μ m² cm⁻³, the ClNO₂ yield is zero and k_{NO3} is 0.02 s⁻¹. The reaction time set to 14.5 h. The blue and orange zone represent the contribution by NO₃+VOCs and N₂O₅ uptake, the dashed line ($\gamma = 0.002$, when N₂O₅ uptake contribute to 90% of the maximum NO_x loss) divide the loss into γ sensitive and insensitive region. The maximum nocturnal NO_x loss by NO₃-N₂O₅ chemistry is 56%.

726

Figure 8. Base case $(k_{NO3}=0.02 \text{ s}^{-1})$ and sensitivity tests of the integral pNO₃⁻ formed at 240 m via N₂O₅ uptake at different NO₃ reactivity (0.001 s⁻¹, 0.01 s⁻¹, 0.05 s⁻¹) on the whole night of December 19, 2016.

Cases	$k_{\rm NO3}({\rm s}^{-1})$	γn205	
Base case	0.02	0.005	
$k_{\rm NO3}$ test 1	0.001	0.005	
$k_{\rm NO3}$ test 2	0.01	0.005	
$k_{\rm NO3}$ test 3	0.05	0.005	
γ_{N2O5} test 1	0.02	0.001	
γ_{N205} test 2	0.02	0.01	
γ_{N2O5} test 3	0.02	0.05	

 Table 1. List of the parameter sets in base case and sensitivity tests.