Response to Reviewers

We thank the reviewers for their careful reading and their constructive comments on our manuscript. As detailed below, the reviewer's comments are shown as italicized font, our response to the comments are normal font. New or modified text is in blue. All of the line numbers refer to Manuscript ID: acp-2017-1217.

Reviewer: #1

The topic of the heterogeneous process of NOx is of interest to the community, and the vertical measurements of chemical composition in winter haze are particularly valuable. My main concern, however, on the present work is that the model was poorly constrained by observations and had to reply on too many assumptions. The vertical measurements only included O₃, NO, and NO₂ which enabled calculation of NO₃ production, but several key parameters, such as N₂O₅, VOCs and aerosol surface area density, for loss of NO₃, N₂O₅ production and subsequent loss to nitrate were not measured, making it very difficult, if not impossible, to evaluate nighttime reactions of NOx and for nitrate formation. In addition, the analysis was only based on one profile measured in the early evening, and too many assumptions in the model calculations were not well justified. All these make it very difficult to judge the validity of the conclusions drawn from the analysis. The authors are advised to carefully consider and reduce these uncertainties which could lead to large bias and possible errors.

1). L16. Please elaborate what the simultaneous measurements were conducted.

Changed as following: "Simultaneous ground-based and tower-based measurements of NO_x and O_3 were conducted..."

2). L22. Please define the potential of pNO_3^- .

This sentence change to: "The nighttime integrated production of pNO3⁻ for ..."

Here we deleted "potential".

3). L57-58. It is not clear how the N_2O_5 uptake coefficient in winter will be different from summer.

Since the properties of the aerosol particles (e.g., organic compounds, particle nitrate, liquid water contents, solubility, viscosity, etc.) and meteorological conditions and (e.g. temperature, relative humidity etc.) are different in summer and winter, these

differences will led to changes of the N_2O_5 uptake coefficient. The explanation was added in Line 57-58: "This is because the properties of aerosol particles (e.g., organic compounds, particulate nitrate, liquid water contents, solubility, and viscosity) and meteorological conditions (e.g., temperature and relative humidity) differ between summer and winter (Chen et al., 2015; Zhang et al., 2007)."

4). L96. The abbreviation of 'IAP' should be spelled out upon the first mention in the text.

Changed accordingly.

5). L110. Please specify which instruments were installed on board a movable cabin.

Specified in the Line 110: "NO_x and O₃ instruments were installed on board a movable cabin on the tower..."

6). L111-113. Describe in more detail about the two light-weight instruments for vertical measurements of O_3 , NO and NO₂. How were they calibrated, was there any intercomparison with conventional monitors?

The detailed description after Line 113 was added: "NO_x calibration was performed in the lab using a gas calibrator (TE-146i, Thermo Electron, USA) associated with a NO standard (9.8 ppmv). The O₃ calibration was done with an O₃ calibrator (TE 49i-PS), which was traceable to NIST (National Institute of Standards and Technology) standards annually. Before the campaign, the NO_x monitor was compared with a Cavity Attenuated Phase Shift (CAPs) Particle Light Extinction Monitor, and the O₃ monitor was compared to a commercial O₃ analyzer (TE-49i, Thermo Electron, USA). Good agreement was found between the portable instruments and the conventional monitors."

7). L124. Were the daily cycles conducted in the same time periods for every day?

Yes, we conducted the daily cycle measurement in the similar time periods for the three days.

8). L129-131. The assumptions of no NO influence, no physical mixing, and no transport of the air mass may not be valid here. Without continuous or intermittent measurement as constraints, it is difficult to know the evolution of the air masses, as such one cannot testify the validity of these assumptions.

Since high O_3 concentrations (20 ppbv) at the high altitude (>150 m) were observed at night, the NO concentrations have to be zero for this kind of condition. We were using a box model for the interpretation of the observed dataset. In the framework of box model analysis, the assumption is the analyzed air mass were well mixed. The assumption of well mixing is plausible since the influence of physical mixing on the reaction rate of NO + O₃ could be neglected.

9). L143-147. The low theoretical equilibrium ratio of NO_3 to N_2O_5 at the lowtemperature condition may not necessarily mean that the N_2O_5 formation dominates the NO_3 loss. More evidence is needed here. The kNO₃ value of 0.02 s⁻¹ assumed in the present study was much higher than other studies, for example, Brown et al., 2016, in which the NO₃ reaction with VOC contributes more than half of the total NO₃ loss.

Yes, high N_2O_5/NO_3 is not means N_2O_5 heterogeneous uptake dominate the NO_3 loss. While during the polluted period in winter Beijing ($NO_2 = 45$ ppbv, Temperature = 273 K, Sa = 3000 μ m² cm⁻³), the pseudo first order loss rate of N₂O₅ heterogeneous uptake will be 1×10^{-3} s⁻¹, corresponding to the N₂O₅ uptake coefficient of 5×10^{-3} , and contributed to NO₃ loss rate of 0.4 s⁻¹, which is much higher than the direct NO₃ loss by the reaction of NO₃ with VOCs, even the k_{NO3} set to a high value of 0.02 s⁻¹. Therefore we believe the N₂O₅ formation dominates the NO₃ loss in this study. With respect to k_{NO3} , Brown et al., (2016) shows the wintertime average k_{NO3} in Hong Kong was about 6×10^{-3} s⁻¹, and dominated by monoterpenes. Previous work showed the average kNO₃ is about 0.011 s⁻¹ in rural Beijing in summertime, and BVOCs is the dominating part (Wang et al., 2017; Wang et al., 2018). During wintertime, the BVOCs emission would decrease due to lower temperature and weak solar radiation, the $k_{\rm NO3}$ set to 0.02 s⁻¹ in this study represents an upper value to some extent. The differences of this study with the campaign conducted in Hong Kong (Brown et al., 2016) may cause by the higher temperature and much lower aerosol surface area in Hong Kong (Temperature = 285 K, $Sa \approx 200 \ \mu m^2 \ cm^{-3}$).

In Line 145, we rewrite the part as following: "During the polluted period in winter Beijing (here $NO_2 = 45$ ppbv, Temperature = 273 K, Sa = 3000 µm² cm⁻³), the ratio of N₂O₅ to NO₃ is large enough, i.e., 450, the pseudo first order loss rate of N₂O₅ heterogeneous uptake will be 1×10^{-3} s⁻¹ with the N₂O₅ uptake coefficient of 5×10^{-3} . N₂O₅ uptake would contribute an NO₃ loss rate of 0.4 s⁻¹, and much higher than the direct NO₃ loss by the reaction of NO₃ with VOCs, even the k_{NO3} set to a high value of 0.02 s⁻¹. Therefore, N₂O₅ uptake was proposed to be dominantly responsible for the NO₃ loss and the initial s(t) was set to 1"

10). L148-150. It is not clear how the author determined the initial concentration of NO_2 and O_3 , which could affect the integrated concentrations. Were you using the

iterative method suggested by Wagner et al., 2013? The retrieved results should be included in the supplementary. Any measurement constraints were used to validate this calculation?

Yes, we used the iterative method suggested by Wagner et al., 2013. The initial NO₂ and O₃ concentration were derived according to Eq. 1 and Eq. 2, O₃ and NO₂ are integrated backward in time to sunset. The average initial NO₂ and O₃ above 150 m at sunset time is about 61 ± 3 ppbv and 27 ± 6 ppbv, respectively. The measured NO₂ concentration in PKU site at sunset time (local time, 16:55) is 61 ppbv and show good consistent with the model result.

Changed as following in Line 299: "The average initial NO₂ and O₃ above 150 m at sunset time is about 61 ± 3 ppbv and 27 ± 6 ppbv, respectively. The measured NO₂ concentration in PKU site at sunset time (local time, 16:55) is 61 ppbv and show good consistent with the model result."

11). L146. "than" should be "that".

Corrected accordingly.

12). L162. Please clarify the exact time period for the model running from sunset to sunrise.

Here we clarified as: "Sunset and sunrise time during the measurement is 16:55 and 07:30 (Chinese National Standard Time, CNST) and the length of night was about 14.5 h, the model is run from sunset to sunrise with the running time set to 14.5 h."

13). L164-168. There are some flaws in the Eq.1 to 5 of the box model. To simplify the differential equation, the author assumes an equilibrium between NO_3 and N_2O_5 in Eq. 3 and 4, which means the loss rate of NO_2 through R2 and production rate from R3 should be equal. Therefore, the NO_2 loss rate will equal to the reaction rate of R1, which contradicts Eq. 2. As suggested by Wagner et al., 2013, "the assumption of equilibrium leads to an error which accumulates as the equations are integrated". This could affect the results when retrieving the initial NO_2 concentration and subsequent model simulation. To be more accurate, I suggest the author use the explicit equations suggested by Wagner et al., 2013.

Thanks for the suggestion, we corrected these equations accordingly, and the fixed k_{NO3} and k_{N2O5} first, set s(t) to 1 in the first step and then iterate the s(t) till the difference between two iteration less than 0.005. The explicit equations changed as:

"(Eq. 1) $\frac{d[O_3]}{dt} = -k_{NO2+O3}[O_3][NO_2]$

$$(Eq. 2) \quad \frac{d[NO_2]}{dt} = -(1 + s(t)) \times k_{NO2+O3}[O_3][NO_2]$$

$$(Eq. 3) \quad \frac{d[NO_3+N_2O_5]}{dt} = k_{NO2+O3}[O_3][NO_2] - k_{N2O5}[N_2O_5] - k_{NO3}[NO_3]$$

$$(Eq. 4) \quad \frac{[N_2O_5]}{[NO_3]} = k_{eq}[NO_2]$$

$$(Eq. 5) \quad s(t) = \frac{\int_0^t k_{N2O5} \cdot [N_2O_5]dt + [N_2O_5]t}{[O_3](0) - [O_3](t)}$$

$$(Eq. 6) \quad k_{N2O5} = \frac{C \times S_a \times \gamma_{N2O5}}{4}$$

14). L169-L179. The surface area was calculated based on the measurement of particle size distribution from 0.01 to 0.6 μ m and could be underestimated due to the lack of information of larger particles, resulting in large uncertainty in the calculated uptake coefficients. It is necessary to provide an uncertainty estimation of how much this will affect the results.

During the study period, the particle number and size distribution (PNSD) larger than 0.7 μ m is unavailable, it is different to quantify the contribution from lager particles. While during the following polluted episode (2017-01-01 to 2017-01-07), PNSD of PM_{2.5} data are available, we found particle smaller than 0.7 μ m dominated more than 95% aerosol surface area, the similar result also represented in Germany and summer Beijing (Crowley et al., 2010; Wang et al., 2018). The underestimation of *S*_a in this study (5%) could lead to the overestimation of N₂O₅ 3.6% - 4.2%, and underestimation of pNO₃⁻ with 0.2% - 2.5% considering the N₂O₅ uptake coefficient varied from 1×10⁻³ to 0.05.

We added the description in Line 179: "Although the PNSD information for particles larger than 0.7 μ m was not valid during the study period, the particles smaller than 0.7 μ m dominated more than 95% of the aerosol surface area in a subsequent pollution episode (01/01/2017 to 01/07/2017), and similar results also were reported in other studies (e.g., Crowley et al., 2010a; Wang et al., 2018). The possible lower bias of *S*_a (5%) only led to a small overestimation of N₂O₅, i.e., 3.6%–4.2%, and an underestimation of pNO₃⁻ of 0.2%–2.5% when γ_{N2O5} varied from 1×10⁻³ to 0.05."

15). L240-241, L245-247, L257-258. The author attributed the lower Ox level at high altitude on the night of December 19 to missing sinks of Ox with high N_2O_5 uptake, but it could also be a result of the continuous emissions of NOx near the ground leading to accumulation of NO_2 within the nocturnal boundary layer with a height around 100m. So the Ox level in the residual layer and surface doesn't have to be conserved. Here it would be good to show vertical information on meteorological parameters.

The emission of NO would not influence the sum of Ox (= O_3 +NO₂). The emission of NO₂ would led to higher O_x at the surface layer. Nevertheless, the vertical profile measurement showed no vertical gradient of NO₂ lower than 150 m so that we do not think there could be a significant emission of NO₂. And therefore, the O_x level shall be conserved between the nocturnal boundary layer and the residual layer since no O₃ is produced at night. In addition, the nocturnal boundary layer is determined to be about 340 m through the vertical profile of temperature during the same period in Beijing (Zhong et al., 2017).

16). L264-265, Wrong figure number referenced here.

Corrected accordingly.

17). L265. Please explicitly define the equation used for calculating the nitrate accumulation.

We listed the calculation equation as following:

"
$$\sum pNO_3^- = \int_0^t (2-f) \cdot k_{N2O5} \cdot [N_2O_5] dt$$
 (7) "

18). L262-267. This model simulation assumes an ideal condition with no NO concentration above 150 m from the sunset to 21:00, which cannot be substantiated. Thus the calculated accumulation of nitrate is questionable.

Due to the strong thermal inversion during winter haze episode (e.g. Zhong et al., 2017), the isolation is existed more easily in vertical scale in urban Beijing, the air mass in upper layer is not easily affected by surface NO emission. The theoretical framework of the box model we used is same as Wagner et al., (2013) and Yun et al., (2018). The model allow us to accumulate the pNO_3^- till sunrise, which shows an upper limit of the nitrate production via N_2O_5 uptake in the upper layer. In addition, at sunset time, we observed significant O_3 presented at the near surface layer. Before O_3 is fully titrated away, the NO concentrations shall be zero for the sunset time.

19). L281-282. Please elaborate how to deal with calculations of mixing.

We rewrite the vertical mixing in L279-283 as following: "Zhong et al. (2017) showed that the NBL and PBL both were at 340 m from December 19 to 20, 2016 in Beijing. Daytime vertical downward transportation was helpful in mixing the air mass within the PBL. Assuming the newly formed pNO_3^- aloft from 150 m to 340 m is 50 µg m⁻³ during the nighttime and well mixed within the PBL by the next morning, the enhancement to the surface layer (ΔpNO_3^-) can be simplified to the calculation in

Eq. 8 as following:

$$\Delta p NO_3 = \frac{\int_0^{150} P(p NO_3) dH + \int_{150}^{340} P(p NO_3) dH}{340}$$
(8)

Here, $P(pNO_3^-)$ is the integral production of pNO_3^- and H represents height. Owing to high NO below 150 m, the pNO_3^- formation via N₂O₅ uptake was zero. The enhancement of pNO_3^- from 150 m to 340 m was calculated as 28 µg m⁻³,"

20). L282-285. If the author's hypothesis is true, it should be able to observe a sharp increase of particulate nitrate at the ground site in the morning of December 20. Any evidence on that?

The particulate nitrate measurement is not available in this study, but as labelled in Figure 2(a), the red line showed PM concentration had a sharp increase of ~60 μ g m⁻³, which was purposed to be consist with the result considering a large proportion of particulate nitrate in PM mass concentration, especially during winter polluted episode in Beijing (e.g., Zheng et al., 2015).

21). L309. Eq.6 is incorrect. The particle nitrate formation is twice of N_2O_5 loss if assuming ClNO₂ yield is zero.

Thanks, we corrected accordingly.

22). L328, "coral" should be "coal".

Corrected accordingly.

23). L342-343. A possible reason for the small difference on kNO₃ variation could be the NO₃ change (via VOC loss) were unaccounted for in Eq.2 that used to retrieve the initial concentration. Comparison between the full differential equations and simplified calculation is required to validate the results.

The full differential equations was used to recalculate the pNO₃⁻ variation on k_{NO3} . The s(t) decreased from 1 to 0.99 even k_{NO3} set to 0.05, and the difference between the full differential equations and simplified calculation is negligible, suggested that the calculation result is valid.

24). L351, delete "to be zero".

Corrected accordingly.

25). L357, add "that" after "found".

Corrected accordingly.

Reviewer: #2

The authors explore the mechanisms for particulate nitrate (pNO_3^-) during wintertime haze events in Beijing, China. Comparing simultaneous ground-based and tower-based observations, the authors investigated the significance of pNO_3^- via N_2O_5 heterogeneous uptake as a function of altitude. The work shows the effects of the $pNO_3^$ formed aloft on the surface $PM_{2.5}$ the following the morning. Given the significance of this work, I recommend this manuscript for publication after significant revisions.

We thank for the Reviewer #2's constructive comments and suggestions to improve the quality of our manuscript.

1). although the experiment design is well thought and the analysis appears to be solid, the technical writing needs significant improvement. I recommend the authors to use professional technical writing services in English to improve the penmanship and eliminate any grammatical errors. Example sentences to be reviewed carefully and reformulated are line 66-70, line 178-179, 180-183, 186-190, 194-195, 205-213, 242-244, 275-278, 292-295 etc.

The resubmitted manuscript has been edited by a professional service in English.

2). I am assuming eq.1 (line 164) is for the nitrate radical production rate (PNO₃), not the rate of change in O_3 . As the authors mentioned the availability of O_3 is driven by its reaction with NO.

Yes, Eq. 1 is the production of nitrate radical, but O_3 is also one reactant of this reaction. As the production of NO₃ takes place, the O_3 is consumed. This reaction is more important for O_3 losses for the conditions of the high-altitude (>150 m) air masses of which the reaction pathway of O_3 + NO is negligible due to the presence of zero NO.

3). Use subscript for Ox throughout the text

Corrected accordingly.

4). the authors define and discuss "particle nitrate convert efficiency" (sigma) in line 305-310. Chang et al. 1 gives an excellent review of N_2O_5 chemistry and I suggest the authors read this as they discuss and introduce parameters regarding N_2O_5 conversion. I do not believe it is necessary to introduce a new parameter "particle nitrate convert efficiency" in this case.

Thanks for your suggestion, Chang et al. (2011) reviewed the N₂O₅ chemistry systematically and comprehensively. With respect to N₂O₅ conversion, Chang et al., focused on the contribution to overnight NO_x loss. Here we revised the parameter to "Overnight NO_x loss efficiency (ϵ)", which also indicates the nitrate formation capacity. The equation changed as following:

(Eq. 9) $\epsilon = \frac{\int_0^t 2 \times k_{N205} \cdot [N_2 O_5] dt + \int_0^t k_{N03} \cdot [NO_3] dt}{[NO_2](0)}$

Here the consumed NO₃ with VOCs and N_2O_5 uptake regarded as the effective NO_x loss. The Figure 7 changed the Y-axis and we did not normalize the loss efficiency, which shows the similar result with previous figure version."

Figure 7. The dependence of overnight NO_x loss on N₂O₅ uptake on γ_{N2O5} in a typical winter pollution condition. The initial NO₂ and O₃ set to 60 ppbv and 30 ppbv, respectively, S_a set to 3000 µm² cm⁻³, the ClNO₂ yield is zero and k_{NO3} is 0.02 s⁻¹. The reaction time set to 14.5 h. The blue and orange zone represent the contribution of NO₃+VOCs and N₂O₅ uptake, the dashed line ($\gamma = 0.002$, when N₂O₅ uptake contribute to 90% of the maximum NO_x loss) divide the loss into γ sensitive and insensitive region. The maximum nocturnal NO_x loss by NO₃-N₂O₅ chemistry is 56%.

5). In that regard, the authors need to extend the literature search and include more references on N_2O_5 heterogeneous uptake and wintertime haze events outside the Beijing area. For more references on relevant topic, review publications of Chang et

al. 1-2, Lurmann et al. 3, Brown et al. 4, Green et al. 5, Wang et al. 6, Prabhakar et al. 7 etc.

1. Chang, W.; Bhave, P.; Brown, S.; Riemer, N.; Stutz, J.; Dabdub, D., Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N₂O₅: A review. Aerosol Sci. Technol. **2011**, 45 (6), 665-695. DOI 10.1080/02786826.2010.551672.

2. Chang, W. L.; Brown, S. S.; Stutz, J.; Middlebrook, A. M.; Bahreini, R.; Wagner, N. L.; Dubé, W. P.; Pollack, I. B.; Ryerson, T. B.; Riemer, N., Evaluating N₂O₅ heterogeneous hydrolysis parameterizations for CalNex 2010. J. Geophys. Res.: Atmos. **2016**, 121 (9), 5051-5070. DOI 10.1002/2015JD024737.

3. Lurmann, F. W.; Brown, S. G.; McCarthy, M. C.; Roberts, P. T., Processes influencing secondary aerosol formation in the San Joaquin Valley during winter. J. Air Waste Manage. Assoc. 2006, 56 (12), 1679-1693. DOI 10.1080/10473289.2006.10464573.

4. Brown, S. G.; Roberts, P. T.; McCarthy, M. C.; Lurmann, F. W.; Hyslop, N. P., Wintertime vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin Valley during the California Regional Coarse PM/Fine PM Air Quality Study. J. Air Waste Manage. Assoc. 2006, 56 (9), 1267-1277. DOI 10.1080/10473289.2006.10464583.

5. Green, M. C.; Chow, J. C.; Watson, J. G.; Dick, K.; Inouye, D., Effects of snow cover and atmospheric stability on winter PM_{2.5} concentrations in Western U.S. valleys. J. Appl. Meteor. Climatol. **2015**, 54 (6), 1191-1201. DOI 10.1175/JAMC-D-14-0191.1.

6. Wang, G.; Zhang, R.; Gomez, M. E.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; Li, J.; Cheng, C.; Hu, T.; Ren, Y.; Wang, Y.; Gao, J.; Cao, J.; An, Z.; Zhou, W.; Li, G.; Wang, J.; Tian, P.; Marrero-Ortiz, W.; Secrest, J.; Du, Z.; Zheng, J.; Shang, D.; Zeng, L.; Shao, M.; Wang, W.; Huang, Y.; Wang, Y.; Zhu, Y.; Li, Y.; Hu, J.; Pan, B.; Cai, L.; Cheng, Y.; Ji, Y.; Zhang, F.; Rosenfeld, D.; Liss, P. S.; Duce, R. A.; Kolb, C. E.; Molina, M. J., Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences **2016**, 113 (48), 13630. DOI.

7. Prabhakar, G., C. Parworth, X. Zhang, H. Kim, D. Young, A.J. Beyersdorf, L.D. Ziemba, J.B. Nowak, T.H. Bertram, I.C. Faloona, Q. Zhang, and C.D. Cappa, Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations. Atmos. Chem. Phys. Discuss., 2017. 2017: p. 1-58

Thanks for the suggestion and we compared our results with these references that concern the winter haze event in other region, and cited these work in the revised manuscript.

References

Wang, H. C., Lu, K. D., Tan, Z. F., Sun, K., Li, X., Hu, M., Shao, M., Zeng, L. M., Zhu, T., and Zhang, Y. H.: Model simulation of NO3, N2O5 and ClNO2 at a rural site in Beijing during CAREBeijing-2006, Atmos Res, 196, 97-107, 2017a.

Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Zhu, W., Lou, S., Tang, M., Wu, Y., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N2O5 Uptake and NO3 Oxidation in the Outflow of Urban Beijing, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-88, in review, 2018.

Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany, Atmos Chem Phys, 10, 2795-2812, 2010.

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos Chem Phys, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015.

Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Wang, J. Z., Tan, K. Y., Shen, X. J., Che, H. C., Zhang, L., Zhang, Z. X., Qi, X. F., Zhao, H. R., Ren, S. X., and Li, Y.: Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth of PM2.5 during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016, J Meteorol Res-Prc, 31, 809-819, 10.1007/s13351-017-7088-0, 2017.

	Lange High particulate nitrate formation from the NeO.*	带格式的
1	LargeHigh particulate nitrate formation fromvia N2O5*	
2	uptake in a chemically reactive layer aloft during wintertime	
3	in Beijing .	
4	Haichao Wang ¹ , Keding Lu ¹ *, Xiaorui Chen ¹ , Qindan Zhu ^{1, #} , Zhijun Wu ¹ , Yusheng	
5	Wu ¹ , Kang Sun ²	
6	¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of	
7	Environmental Sciences and Engineering, Peking University, Beijing, China	
8	² China National Environmental Monitoring Centre, Beijing, China	
9	[#] Now at the Department of Chemistry, University of California, Berkeley, CA 94720, USA	
10		
11	*Correspondence to: Keding Lu (k.lu@pku.edu.cn)	
12		
13	Abstract.	
14	Particulate nitrate (pNO3-) is a dominant component of secondary aerosols in urban	
15	areas. Therefore, it is critical to explore its formation mechanism to assist with the	
16	planning of haze abatement strategies. Simultaneous ground-based and tower-based	
17	measurements of NO_x and O_3 were conducted during a winter heavy-haze episode	
18	(December 18 to 20, 2016) in urban Beijing, China. We found that pNO ₃ formation via	带格式的
19	N_2O_5 heterogeneous uptake was negligible at ground level, dueowing to the presence	
20	of high NO concentrations $\frac{1}{1}$ which limited the production of N ₂ O ₅ . In contrast,	
21	the contribution from N_2O_5 uptake was larger at higher altitudes (e.g., >150 m), which	
22	was supported by the observed large low total oxidant (NO ₂ + O ₃) missing aloft	带格式的
23	compared withlevel at higher altitudes than at ground level. The Modeling results show	
24	<u>that the nighttime integrated production potential of pNO_3 for the higher altitude air</u>	
25	mass overheadabove urban Beijing was estimated to be 50 μg m^3, and enhanced the	
26	surface-layer pNO ₃ , the next morning significantly with by 28 µg m ⁻³ , after through	带格式的

带格式的:两端对齐

带格式的:非上标/ 下标

带格式的: 非上标/ 下标

1	带格式的:	非上标/ 下标
-	带格式的:	非上标/ 下标

27	vertical mixing. The overnight NO _x loss via NO ₃ -N ₂ O ₅ chemistry was efficient aloft (>
28	50%). The nocturnal boundary layer broken in the next morning. In this case, the
29	$\frac{1}{1000}$ oxidation of NO _x -to nitrate was NO _x loss was easily maximized once the N ₂ O ₅ uptake
30	coefficient was over 0.0017, since N_2O_5 -uptake dominated the fate of NO_3 - and N_2O_5
31	with the presence of large aerosol surface concentrations, 2×10^{-3} on polluted days in
32	wintertime. These results highlight that pNO_3 formation via N_2O_5 heterogeneous
33	hydrolysis atin higher altitude air masses-aloft could be an important source for haze
34	formation in the urban airshed during wintertime. Accurately describing the formation
35	and development of reactive air masses aloft is a critical task for improving current

- 36 chemical transport models.
- 37

38 1. Introduction

39 Winter particulate mattersmatter (PM) pollution events occur frequently in China, and have drawn widespread and sustained attention in recent years (Guo et al., 2014; Zhang 40 et al., 2015; Huang et al., 2014).; Wang G et al., 2016). PM pollution reduced reduces 41 42 visibility (Lei and Wuebbles, 2013) and hadhas harmful effects on public health (Cao 43 et al., 2012). Particulate nitrate (pNO3⁻) is an important component of secondary inorganic aerosols, and contributed tocontributes 15%-40% of the PM2.5 mass 44 concentration in China (Sun et al., 2013, 2015a, 2015b; Chen et al., 2015; Zheng et al., 45 2015; Wen et al., 2015). The main atmospheric pathways of nitrate formation are (1) 46 the reaction of OH with NO2 and (2) N2O5 heterogeneous hydrolysis (Seinfeld and 47 48 Pandis, 2006). The first-reaction (of OH +with NO2) was is a daytime pathway-since, as OH is severely limited at night, and N2O5 uptake was refer to is a nighttime pathway. 49 50 as NO3 and N2O5 is are easily photo-labile. NitrateParticulate nitrate formation via N2O5 heterogeneous hydrolysis in summer 51

- 52 <u>in north China</u> was proved efficient by ground-<u>-</u>based observation in summer in North
- 53 China (H.C. (Wang <u>H</u>et al., 2017b; Z. Wang <u>Z</u>et al., 2017), which is) and found
- 54 comparable withto or even highhigher than the daytime formation. Several model
- studies showed that N_2O_5 hydrolysis is responsible for nocturnal pNO₃⁻ enhancement

带格式的: 非上标/ 下标

带格式的: 非上标/ 下标

带格式的: 缩进: 首行缩进: 1.5 字符

56	in <u>summer</u> Beijing (Pathak et al., 2009, 2011; H.C. Wang <u>H</u> et al., 2017a). Although the
57	$pNO_3^{\text{-}}$ formation via N_2O_5 uptake is significant in summertime, the importance of this
58	pathway in wintertime wasis not well characterized. As there are manyMany
59	differences of $\underline{n} N_2O_5$ chemistry <u>exist</u> between winter and summer. First, as the key
60	precursor of NO ₃ and N ₂ O ₅ , O ₃ level are has a much lower concentration in winter than
61	in summer-due, owing to the short daytime length and weak solar radiation. Second,
62	colder temperatures and high NO_2 levels favor partitioning towards $N_2O_5.$ Third,
63	nighttime lasts much longer in winter, making N2O5 heterogeneous hydrolysis
64	potentially more important in pNO3 ⁻ formation. Finally, the N2O5 uptake coefficient,
65	the most important parameter in N_2O_5 heterogeneous hydrolysis, is likely very different
66	from that in summer. Since This is because the particle characteristics and
67	meteorological conditions (e.g. properties of aerosol particles (e.g., organic compounds,
68	particleparticulate nitrate, liquid water contents, solubility, and viscosity) and
69	meteorological conditions (e.g., temperature and relative humidity) are different
70	indiffer between summer and winter (Chen et al., 2015; Zhang et al., 2007). These
71	differences effects would result in large variations in the N_2O_{5} uptake coefficient has
72	large variation (Wahner et al., 1998; Mentel et al., 1999; Kane et al., 2001; Hallquist et
73	al., 2003; Thornton et al., 2003; Bertram and Thornton, 2009; Grzinie et al., 2015;
74	Wagner et al., 2013 Wagner et al., 2013; Grzinic et al., 2015). Several parameterization
75	methods have been unsuccessful in predicting N2O5 uptake coefficient accurately
76	(Chang et al., 2011; Chang et al., 2016).
77	In addition to the seasonal differences , previous studies have also shown a potential
78	altitude dependence in pNO3° production. In the evening, vertical mixing is strong
79	suppressed in formation via N_2O_5 uptake, modeling and field studies showed greater
80	<u>levels of NO₃ and N₂O₅ at higher altitudes within the nocturnal boundary layer (NBL)</u>
81	due), owing to the reduction of sunlight diminishes the heatingstratification of the
82	earth's-surface, leading to vertical layer occur with NO3-and N2O5-gradient (NO and
83	volatile organic compounds (VOCs) emissions, which lead to gradients in the loss rates
84	for these compounds as a function of altitude (e.g., Brown et al., 2007), as well as the
85	particle-; Geyer and Stutz, 2004; Stutz et al., 2004). The pNO ₃ ⁻ formation via N ₂ O ₅
•	

带格式的:字体: Times New Roman, 小四

带格式的: 非上标/ 下标

86	uptake contributes to the gradients in the compounds percentage and size distribution
87	of the particle (Ferrero et al., 2010; 2012). On nights when NO ₃ radical production in
88	the surface layer is negligible $\frac{due_{owing}}{due_{owing}}$ to high NO emissions, N ₂ O ₅ uptake $\frac{may_{can}}{due_{owing}}$
89	still be active aloft without NO titration (Pusede et al., 2016; Baasandorj et al., 2017).
90	The N_2O_5 uptake aloft leads to elevated $pNO_3^{-}\ \mbox{formed}\ \mbox{formation}\ \mbox{in the upper layer}$
91	with <u>as well as</u> effective <u>NO_xNO_x</u> removal (Watson et al- <u>,</u> 2002; S. <u>G</u> . Brown et al.,
92	2006; Lurmann et al., 2006: Pusede et al., 2016; Baasandorj et al., 2017)), which was
93	reported with field Field observations at a high altitude site insites of Kleiner Feldberg,
94	Germany (Crowley et al., 2010a);); the London British Telecommunications tower, UK
95	(Benton et al., 2010); and Boulder-Atmospheric Observatory (BAO) tower in
96	Colorado, CO, USA (Wagner et al., 2013) and so on showed the elevated N2O5
97	concentrations aloft. Model studies also proposed nitrate formation showed that pNO3-
98	varied inat different heightheights and stressed the importance of the heterogeneous
99	formation mechanism (Kim et al., 2014; Ying, 2011; Su et al., 2017). The mass fraction
100	and concentration of $pNO_{3_{\bullet}}$ in Beijing was reported higher aloft (260 m) than at the
101	ground level in Beijing (Chan et al., 2005; Sun et al., 2015b), and theywhich was
102	explained theby favorable gasparticle partitioning aloft under lower temperature
103	conditions. The active nighttime chemistry in the upper level plays an important role in
104	surface PM pollution through mixing and dispersing within the planet boundary layer
105	(PBL) (Prabhakar et al., 2017), especially in valley terrain regions coupled with
106	meteorological processes (Baasandorj et al., 2017; Green et al., 2015).
107	To explore the possible sources of pNO_3 and the dependence of its formation on
108	altitude in wintertime in Beijing, we conducted vertical profile measurements of NO,
109	NO ₂ , and O ₃ with a tower platform in combination with simultaneous ground
110	measurements of these parameters in urban Beijing. A box model was used to
111	investigate the reaction rate of N_2O_5 heterogeneous hydrolysis and $\underline{\text{its}}$ impact on $pNO_3^{\text{-}}$
•	

Additionally, the dependence of NO_x removal and pNO_3^- formation on the N₂O₅ uptake

114 coefficient was probed.

115

112

带格式的: 非上标/ 下标

formation at different altitudes during a heavy haze episode over urban Beijing.

116 2. Methods

117 2.1 Field measurement

- 118 Ground measurementmeasurements (15 m above the ground) waswere carried out inon
- the campus of Peking University (PKU; 39°59'21"N, 116°18'25"E) in Beijing, China.
- 120 The locationvertical measurements were conducted at the Institute of Atmospheric
- 121 Physics (IAP), Chinese Academy of Sciences (39°58'28"N, 116°22'16"E). The IAP site
- 122 is within 4 km of the PKU site was. The locations of the PKU and IAP sites are shown
- 123 in Fig. 1, as well as the vertical measurement site (IAP, introduced below). At. At the
- 124 PKU site, dry-state mass concentration of PM_{2.5} was measured byusing a TEOM 1400A
- 125 analyzer. NO_x was measured byvia a chemiluminescence analyzer (Thermo Scientific,
- 126 TE-42i-TR), and O₃ was measured bywith a UV photometric O₃ analyzer (Thermo
- 127 Scientific, TE-49i). Dry-state particle number and size distribution (PNSD) was
- measured from 0.01 to $0.67 \,\mu\text{m}$ with a Scanning Mobility Particle Sizer (SMPS₅₁ TSI
- Iz9 Inc. 3010). These The instrumental parameters were listed are summarized in Table S1.
- 130 The data were collected from December 16 to 22, 2016. Additionally, relative humidity
- 131 (RH), temperature (T), <u>and wind direction and speed data</u> were available during the
- 132 measurement period.

133 Vertical profile measurements were conducted from December 18 to 20, 2016-at, 134 from the tower-based platform (maximum height: 325 m) on the IAP campus-of the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, 39°58'28"N, 135 136 116°22'16"E), during a heavy PM pollution episode. The IAP site is just with 4 km 137 distance from the PKU site. The measurement NOx and O3 instruments were installed 138 on boardaboard a movable cabin on the tower. The ambient NO_x and O₃-concentrations were measured with two low-power, light-weightlightweight instruments (Model 405 139 140 nm and Model 106-L₃₂ 2B Technologies, USA). The Model 405 nm instrument measures NO₂ directly based on the absorbance at 405 nm, and NO is measured by 141 adding excess O3 (conversion efficiency ~100%). The limit of detection of both NO 142 and NO₂ is 1 part per billion volume (ppbv), with an accuracy of 2 ppbv or 2% of the 143 144 reading, and the time resolution is 10 s- (Birks et al., 2018). The Model 106-L 【**带格式的:**字体:倾斜,下标

带格式的:字体:倾斜,下标

145 instrument measures O₃ based on the absorbance at 254 nm, with a precision of 1 ppbv, 146 or 2% of the reading, and a limit of detection of 3 ppbv. NOx calibration was performed 147 in the lab using a gas calibrator (TE-146i, Thermo Electron, USA) associated with a NO standard (9.8 ppmv). The O3 calibration was done with an O3 calibrator (TE 49i-148 PS), which was traceable to NIST (National Institute of Standards and Technology) 149 standards annually. Before the campaign, the NO_x monitor was compared with a Cavity 150 151 Attenuated Phase Shift (CAPs) Particle Light Extinction Monitor, and the O₃ monitor 152 was compared to a commercial O3 analyzer (TE-49i, Thermo Electron, USA). Good agreement was found between the portable instruments and the conventional monitors. 153 154 Height information was retrieved fromvia the observed atmospheric pressure measured by the Model 405 nm instrument. The cabin ascended and descended at a rate of 10 m 155 156 min⁻¹, with a height limit of 260 m atduring the daytime and 240 m at night. The cabin 157 stopped after reaching the peak, and parameters were measured continually forduring the last 10 min of each cycle. One vertical cycle lasted for approximately 1 h. We 158 159 measured two cycles per day, one in the morning and the other in the evening, with six 160 measurement cycles conducted in total during the campaign.

161

162 **2.2 Box model simulation**

163 A box model was used to model the NO3 and N2O5 mixing ratios and the nitrate 164 formation potential in vertical scale at the IAP site. A simple chemical mechanism (see 165 R1-_R5) iswas used to model the nighttime NO3 and N2O5 chemistry inunder NO free 166 -air-masses, and the physical-mass conditions. Physical mixing, dilution, deposition, or 167 interruption during the transport of the air mass were was not considered. Here, frepresents the ClNO₂ yield from N₂O₅ uptake. Homogeneous hydrolysis of N₂O₅ and 168 169 NO3 heterogeneous areuptake reaction were neglected in this analysis because there is littleof the low level of absolute humidity and the extremely low NO3 concentration 170 171 during wintertime (Brown and Stutz, 2012). The corresponding rate constants of R1-172 R3 are those reported by Sander et al_{$\frac{1}{1}$} (2011).

173 (R1) NO₂ + O₃ \rightarrow NO₃ + O₂

6

(R1)

带格式的: 非上标/ 下标

带格式的: 缩进: 左 3 字符, 首行缩进: 0 字符

174	$(R2) NO_2 + NO_3 + M \rightarrow N_2O_5 + M $ (R2)
175	$(R3) N_2O_5 + M \rightarrow NO_2 + NO_3 + M $ (R3)
176	$(\mathbf{R4}) \longrightarrow \mathbf{NO}_3 + \mathbf{VOCs} \longrightarrow \mathbf{Products} $ (R4)
177	(R5)—N ₂ O ₅ + (H ₂ O or Cl ⁻) → (2- <i>f</i>) NO ₃ ⁻ + <i>f</i> ClNO ₂ (R5)
178	Following the work of Wagner et al _{$\frac{1}{12}$} (2013), the box model can be solved by
179	four <u>using six</u> equations (EqEqs. 1-4_6). In the framework, O_3 is only losseslost via the
180	reaction of NO ₂ + <u>+</u> O ₃ and the change of in the O ₃ concentration can express as Eq. 1.
181	Since the ratio be expressed as Eq. 1. Eq. 2 can express the losses of NO ₂ . Here, the $s(t)$
182	is between 0 and 1 and expressed as Eq. 5. The s(t) favors 0 when direct loss of $\underline{NO_3}$
183	dominates and favors 1 when N_2O_5 to NO_3 -was calculated to be larger than 150:1 in a
184	typical urban region in wintertime (NO ₂ =15 ppbv, nighttime temperature = 0° C), N ₂ O ₅
185	is proposed to be dominate the uptake dominates NO_3 loss, than means two molecules
186	of NO ₂ -lost (convert to nitrate or CINO ₂) for one molecule NO ₃ -formed (Eq. 2). In the <u>.</u>
187	The model we need to knowcalculation had two steps. The first step was to calculate
188	the mixing ratio of NO_2 and O_3 at time zero (hereherein designated as sunset).
189	According to Eqs. 1 and 2, the initial NO ₂ (t=0) and O ₃ (t=0) concentrations can then
190	be integrated backward in time starting with the measured concentrations of NO_2 and
191	O_3 at each height. During the pollution period in winter in Beijing (NO ₂ = 45 ppbv,
192	<u>Temperature = 273 K, $S_a = 3000 \ \mu\text{m}^2 \text{ cm}^{-3}$), the ratio of N₂O₅ to NO₃ is large enough.</u>
193	i.e., 450. The pseudo-first-order loss rate of N_2O_5 heterogeneous uptake will be 1×10^{-3}
194	<u>s⁻¹</u> , with a N ₂ O ₅ uptake coefficient of 5×10^{-3} . N ₂ O ₅ uptake would contribute an NO ₃
195	loss rate of 0.4 s ⁻¹ , which is much higher than the direct NO ₃ loss through the reaction
196	of NO ₃ with VOCs, even with the k_{NO3} set to a high value of 0.02 s ⁻¹ . Therefore, N_2O_5
197	uptake was proposed to be dominantly responsible for the NO ₃ loss and the initial s(t)
198	<u>was</u> set to sunset). According to $\underline{1}$. Eq. 1 and Eq. 2, 3 can describe the NO ₂ (t=0) and O ₃
199	(t=0) <u>sum</u> concentration can derived from the duration time and the vertical measured
200	$\frac{NO_2}{NO_2}$ and O_3 at each height of NO_3 and N_2O_5 . Assuming the equilibrium between NO_3
201	and N_2O_5 is maintained after a time period, the sum concentration of NO_3 and N_2O_5 can
202	be described by Eq. 3. Using based on the temperaturedependent equilibrium rate
203	constant (k_{eq}) and the modeled NO ₂ at a certain time, Eq. 4 can be used to determine
	7

带格式的:字体:倾斜

204	the ratio of N_2O_5 and to NO_3 . Combined, EqEqs. 1–4 allow for the calculation of N_2O_5
205	concentrations, given a constant of NO ₃ and N_2O_5 rate constant (k_{NO3} and k_{N2O5}).
206	Modeled NO3 and N2O5 concentrations considering stable NO3 and N2O5 loss rate
207	constants (k_{NO3} and k_{N205} , respectively). In the second step, a new s(t) was calculated
208	using the data from the first step (Eq. 5), new initial NO ₂ and O_3 concentrations were
209	then approximated, and NO_3 and N_2O_5 values were derived using the same method as
210	used in the first step. This process was repeated until the difference between the two s(t)
211	values was less than 0.005. The number of adjustments to a new s(t) could not be
212	calculated more than 10 times. Otherwise, the calculating process would become non-
213	convergent.
214	<u>The modeled</u> N ₂ O ₅ concentrations and given k_{N2O5} are were then used to estimate
215	pNO3 ⁻ formation, here the. The HNO3 produced in R4 iswas not accounted, as a large
216	partconsidered because many of the products are organic nitrates (Brown and Stutz,
217	2012). Here, k_{NO3} and k_{N2O5} denotes denote the pseudo-first-order reaction rate
218	constantconstants of the total NO3 reactivity caused by ambient volatile organic
219	compounds (VOCs) and N ₂ O ₅ heterogeneous uptake, respectively. k_{N2O5} is given in Eq.
220	<u>56</u> . S_a is the aerosol surface area, <i>C</i> is the mean molecular speed of N ₂ O ₅ , and $\gamma_{N_{2}O_5}$ is
221	the N2O5 uptake coefficient. The Sunset and sunrise times during the measurements
222	were 16:55 and 07:30 (Chinese National Standard Time, CNST), and the model is was
223	run from sunset to sunrise, where with the length of night was about running time set to
224	14.5 h.
225	$\frac{(\text{Eq. 1})}{dt} = -\frac{k_{\text{NO2+O3}}}{k_{\text{NO2+O3}}} [0_3] [\text{NO}_2] $
226	(1)

带格式的:	非上标/下	示标	
带格式的: 行,段后:	左, 缩进: 0.5 行	左 3 字符,	段落间距段前: 0.5
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
\succ	字体颜色:	文字 1	
	字体颜色:	文字 1	
带格式的:		文字 1	
带格式的:		文字 1	
	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:		文字 1	
	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:		文字 1	
	字体颜色:	文字 1 文字 1	
带格式的: 带格式的:		文字 1 文字 1	
带格式的: 带格式的:		文子 1 文字 1	
带格式的:带格式的:	字体颜色: 字体颜色:	文子 1 文字 1	
带格式的:		文子 1 文字 1	
带格式的:		文字 1	
带格式的:		文字 1	
带格式的:		文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:		文字 1	
带格式的:		文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	
带格式的:	字体颜色:	文字 1	

231
$$\frac{[N_2O_5]}{[NO_3]} = k_{eq}[NO_2]$$
(4)
232
$$(Eq. 5) - k_{N2O5} = \frac{C \times S_a \times \gamma_{N2O5}}{4}$$
233
$$s(t) = \frac{\int_0^t k_{N2O5} \cdot [N_2O_5] dt + [N_2O_5]_t}{[O_3](0) - [O_3](t)}$$
(5)
234
$$k_{N2O5} = \frac{C \times S_a \times \gamma_{N2O5}}{4}$$
(6)

235 Dry-state S_a at the PKU site was calculated based on the PNSD measurement, which was corrected to ambient (wet) Sa for particle hygroscopicity byvia a growth factor (Liu 236 et al., 2013). The uncertainty of the wet S_a was estimated to be ~30%, which was 237 238 associated from with the error from dry PNSD measurement (~20%) and the growth 239 factor (~20%). Nighttime averaged S_a on the night of December 19 is was about 3000 240 µm² cm⁻³. PM measurements byat the National Monitoring Sites proved this heavy haze 241 pollution episode was a typical regional event (Fig. S1). Furthermore, synchronous 242 study on the night of December 19, 2016-shown, showed small variation of in the 243 vertical particle number concentration, with thea boundary layer height below of 340 m 244 (Zhong et al., 2017). Therefore, the Sa measured at the PKU site is representative to can represent the urban Beijing conditions in horizontal and applied in the model is 245 246 reasonablevertical scale (< 340 m). Although the PNSD information for particles larger than 0.7 µm was not valid during the study period, the particles smaller than 0.7 µm 247 248 dominated more than 95% of the aerosol surface area in a subsequent pollution episode (01/01/2017 to 01/07/2017), and similar results also were reported in other studies (e.g., 249 Crowley et al., 2010a; Wang et al., 2018). The possible lower bias of S_a (5%) only led 250 251 to a small overestimation of N2O5, i.e., 3.6%-4.2%, and an underestimation of pNO3= 252 of 0.2%–2.5% when γ_{N205} varied from 1×10⁻³ to 0.05. 253 The N2O5 uptake coefficient was regard as the main uncertainty of the N2O5 loss, 254 along with the and CINO2 yield lead to the uncertainties are key parameters in the

estimation of particulate nitrate pNO₃⁻ formation (Thornton et al., 2010; Riedel et al., 2013; Wagner et al., 2013; Phillips et al., 2016). Wagner et al., (2013) shows the

256 2013; Wagner et al., 2013; Phillips et al., 2016). Wagner et al., 2013) shows the 257 significant particular nitratepNO₃^z suppression of N₂O₅ uptake aloft in the wintertime

in Denver, CO, USA, with the uptake coefficient of aboutis 0.005 when particulate

259 nitrate fraction the percentage of pNO3= in the PM2.5 mass concentration aboutis 40%. 260 ConsideredAs the highproportion of nitrate in the particle nitrate content mass 261 concentration is similarly high in North China induring wintertime is similar to that in Denver (Sun et al., 2013, 2015a; Chen et al., 2015; Zheng et al., 2015; Wen et al., 2015), 262 hereherein we used a constant fixed the uptake coefficient ofto 0.005 asfor the base 263 264 model initial input in the base case, and the uncertainty of N2O5-uptake coefficients will 265 be discussed later. Since. Because the model input of ClNO₂ yield only affect affects the 266 value of produced particulate nitratepNO3² concentration, and would not change the 267 modeled N2O5 concentration, here we set the initial fCINO2 to zero. The impact of CINO2 yield will be further discussed later. 268

Respect to k_{NO3}, the The average value in summertime was estimated to be 0.024of 269 270 kNO3 of about 0.011 s⁻¹ in 2006 (H.C. summer Beijing was calculated in a previous work, 271 with BVOCs contributing significantly (Wang H et al., 2017a). While in wintertime, the k_{NO3} should be smaller as the ; Wang et al., 2018). The intensity of plantbiogenic 272 273 VOCs emissions reduced indecreased in wintertime, owing to the lower temperature 274 and weak solar radiation. The, thus the k_{NO3} should be smaller than it is in summer. In this work, the model input $\frac{k(NO_3)k_{NO3}}{k_{NO3}}$ was set to an relative moderate a relatively high 275 276 value of 0.02 s⁻¹ (equivalent to 0.2 ppbv isoprene + 40 parts per trillion volume (pptv) 277 monoterpene + 1.0 ppbv cis-2-butene), to constrain the impact of N₂O₅ uptake in the 278 model. A series of sensitivity tests werewas conducted to study the uncertainties toof the model simulation, and the detailed test set weresets are listed in Table 1, included 279 the test of N₂O₅ uptake coefficient and k_{NO3} . The γ_{N2O5} sensitivity tests were set to a 280 lower limit of from 0.001 to a upper limit of 0.05, as well as and the k_{NO3} tests were set 281 to $0.001 \underline{s^{-1}}$, $0.01 \underline{s^{-1}}$, and $0.1 s^{-1}$. 282 3. Results and discussion 283

284 **3.1 Ground-based observations.**

285 A severe winter PM pollution event was captured from the ground observationslasted

- from December 16 to 22, 2016, in Beijing. Figure 2a shownshows the time series of
- 287 PM_{2.5} and other relevant parameters based on ground measurements at the PKU site.

带格式的: 非上标/ 下标

_(带格式的:	字体:	倾斜
ſ	世故 ざめ・	宝休・	価纠

288 The mass concentration of PM2.5 began to increase on from December 16 and reached 289 the maximum value of, reaching 480 µg m⁻³ on December on 20. A fast PM growth 290 event happened on the night of December 19-20 (colored red in Fig. 2a), the PM25 291 mass concentration increased continuously throughout the nightwas captured, with an overall increment of 100 µg m⁻³. During the on the night of December 19 (Fig. 2a). 292 Throughout the pollution episode, the meteorological condition is featured 293 294 with conditions included high RH (50% \pm 16%) and low temperature (2 \pm 3 °C°C). The 295 slow surface wind speed (< 3 m s⁻¹), indicated implied the atmosphere was static 296 stabilizedstable (Fig. 2c, 2dd). The daytime O3 concentration was low-due, owing to 297 high NO emission and weak solar radiation. After sunset, O3 at surface layer was rapidly titrated to zero by the elevated NO. The presence of high NO concentrations 298 299 would have strongly suppressed the concentration of NO₃, and further 300 suppressedsuppressing N2O5 near the ground. Figure 2b depicted largedepicts the high amounts of NO and NO2 that were observed throughout at ground level during the whole 301 PM pollution episode, suggesting that pNO3⁻ production via N2O5 uptake was not 302 303 important near the ground during the winter haze episode.

(带格式的: 非上标/ 下标

带格式的:段落间距段前: 0.5 行,段后: 0.5 行

带格式的: 字体: 倾斜, 下标

305 3.2 Tower observations.

304

- Six vertical measurements of the total oxidants ($O_x \leftarrow = O_3 + NO_2$) below 50 m) was 306 consist were consistent with thatthose measured at ground level and are shown in Fig. 307 S2, confirmed confirming that the two sites are comparable at ground level at last. On 308 309 the night of December 20 (Fig. 3a), the NO2 and NO from 0-240 m were abundant and 310 conservative around 21:00, with the concentration concentrations of 80 ppbv and 100 311 ppbv, respectively. The O₃ concentrations keepremained zero during the nighttime (Fig. 312 3b). The vertical profile on December 20 suggests that at least below 240 m, the N₂O₅ chemistry is also was not important like, which is consistent with the results at ground 313 level as mentioned above. The case on the night of December 18 iswas similar to that 314 315 on the night of December 20-
- 316 The, whereas the vertical measurementprofile on December 19 didwas not like those

【**带格式的:**缩进:首行缩进: 0 字符

317	happened similar to that on December 18 and 20. Figure 4a shows the vertical profiles
318	around 21:00 on December 19-that; NO was abundant from the ground to 100 m, then
319	gradually decreased to zero from 100 m to 150 m, and stayremained at zero above 150
320	m. The observed NO_2 concentration was 85 \pm 2 ppbv below 100 m, which gradually
321	decreased from 100 m to 150 m, and was 50 \pm 2 ppbv from 150 m to 240 m. The
322	observed O_3 concentrations <u>below 150 m</u> were below the <u>instrumentinstrumental</u> limit
323	of detection below 150 m (Fig. 4b). Above 150 m, the O_3 concentration was 20 \pm 2
324	ppbv, corresponding to the greatly diminished NO concentration. With respect to the
325	total oxidants ($O_x = O_3 + NO_2$), the mixing ratio of O_x was 85 ± 2 ppbv at lower altitudes,
326	while whereas the Q_x concentration at higher altitudes was 15 ppbv lower than that at
327	lower altitude altitudes (Fig. 4b). The $\Theta_{x} O_{x}$ missing at from the higher altitude air mass
328	indicated an additionally additional nocturnal removal of O_x aloft.

329 Figure 5 depicted depicts the vertical measurement profiles of NO_x, O₃, and O_x at 09:30 on the morning of December 20-has, which have similar features withto those 330 observed at 21:00 on December 19, and the NBL. The vertical profiles suggested 331 332 stratification still not be broken. existed at that time. The Θ_x amount of O_x missing aloft in the morning increased to 25 ppbv at 240-260 m, demonstrated demonstrating that an 333 334 additional 25 ppbv of Ox was removed or converted to other compounds at higher altitudes than at the surface layer onduring the night offrom December 19-to 20. Figure 335 S3 shows the vertical profiles of NO, NO₂, O_{3_2} and O_x at ~12:00 on December 18, when 336 the solar radiation iswas strong enough to drivemix the trace gas mixinggases well in 337 the vertical direction. NOx and O3 were observed found to be well mixed indeed, with 338 339 small variation from the ground level to 260 m.

340

T

341 **3.3 Particulate nitrate formation aloft.**

342 N₂O₅ uptake is one of the two most important pathways of the ambient $\frac{NO_x-losses,NO_x}{NO_x}$

- $\frac{1}{1000}$ and $\frac{1}{1000}$ and $\frac{1}{1000}$ an important pathway of pNO₃⁻ formation (Wagner et al., 2013;
- Stutz et al., 2010; Tsai et al., 2014). At higher altitudes (e.g_{-..} > 150 m), NO₃ and N₂O₅
- chemistry can be initiated in the co-presence of high NO₂ and significant O₃ levels.

1	带格式的:	字体:	倾斜,	下标	
-(带格式的:	字体:	倾斜,	下标	
-(带格式的:	字体:	倾斜,	下标	

带格式的:	字体:	倾斜,	下标
-------	-----	-----	----

带格式的:字体:倾斜,下标

1	带格式的:	字体:	倾斜,	下标		\supset
1	带格式的:	字体:	倾斜,	下标		

346 Therefore, N₂O₅ uptake could represent a plausible explanation for the O_x observed Θ_x 347 missing infrom the higher-altitude air masses on the night of December 19. To explore 348 this phenomenon, a time-step box model was used to simulate the NO3 and N2O5 chemistry based on the observed vertical profiles of NO2 and O3 on the night of 349 350 December 19.

351 In the base case, the average initial NO2 and O3 levels above 150 m at sunset were 352 about 61 \pm 3 ppbv and 27 \pm 6 ppbv, respectively. The measured NO₂ concentration at 353 the PKU site at sunset (local time, 16:55) was 61 ppbv and showed good consistency 354 with the model result. The modeled N₂O₅ concentration iswas zero below 150 m, as the high level of NO consumed NO3 formation fast. Whilemade for quick consumption of 355 the NO₃ formed. In contrast, the modeled N₂O₅ concentrations at 21:00 above 150 m 356 were in the range of 400-_600 parts per trillion volume (pptv) above 150 m-_(Fig. 5a). 357 358 pNO₃6a). Particulate NO₃⁻ accumulation via N₂O₅ heterogeneous hydrolysisuptake from sunset to the measurement time, which can be calculated using Eq. 7, was 359 significant, yielding above 150 m, with a maximum of 24 µg m⁻³ within 4.5 hours 360 361 after sunset (Fig. 5(b)).6b).

362

$$\sum pNO_{3}^{-} = \int_{0}^{1} (2-f)$$

(7)

The box model enabled the analysis of the integrated pNO3 and ClNO2 via N2O5 363 uptake overthroughout the whole night. As shown in Fig. 5c6c, the modeled integrated 364 pNO₃, went up to as high as 50 µg m⁻³. The integrated pNO₃, at sunrise was equal to the 365 loss of 27 ppbv $\Theta_{x, shows a} O_{x, showing}$ good agreement with the observed $\Theta_{x} O_{x}$ 366 367 missing aloft atin the morning hours. During the nighttime, the pNO₃-formed pNO₃-formed aloft via N2O5 uptake would leadled to the much higher particle nitrate concentration 368 369 much higher than that in the surface layer, which has been reported in many field 370 observations (Watson et al., 2002; S. G. Brown et al., 2006; Lurmann et al., 2006; Ferrero et al., 2012; Sun et al., 2015b). In addition, during the morning time when NBL 371 was broken, the The elevated pNO3- aloft will vertically mixed was well dispersed 372 373 through vertical mixing and enhanced the surface-layer PM concentration-at surface

374 layer; this phenomenon was also been observed in previous studies (Watson et al-.... 带格式的: 非上标/ 下标

带格式的: 非上标/ 下标

-{	带格式的:	非上标/	下标	
	带格式的:	非上标/	下标	

375	2002; SG. Brown et al., 2006; Lurmann et al., 2006). In this case, the planetary
376	boundary layer (PBL) height during the daytime is about 340 m on December 20
377	(Zhong et al., 2017). Assuming that the height of NBL and planetary boundary layer
378	(PBL) are the same, and the air mass was well mixed in the following morning in the
379	PBL. The-: Prabhakar et al., 2017). Zhong et al. (2017) showed that the NBL and PBL
380	both were at 340 m from December 19 to 20, 2016 in Beijing. Daytime vertical
381	downward transportation was helpful in mixing the air mass within the PBL. Assuming
382	the newly formed pNO ₃ ⁻ aloft from 150 m to 340 m is 50 μ g m ⁻³ during the nighttime
383	N_2O_5 uptake aloft would be enhanced the ground $pNO_3\mass$ concentration
384	significantly with and well mixed within the PBL by the next morning, the enhancement
385	to the surface layer (ΔpNO_{3}) can be simplified to the calculation in Eq. 8 as following:

386

$$\Delta p NO_3 = \frac{\int_0^{150} P(p NO_3) dH + \int_{150}^{340} P(p NO_3) dH}{340}$$
(8)

Here, $P(pNO_3^-)$ is the integral production of pNO_3^- and H represents height. Owing to high NO below 150 m, the pNO_3^- formation via N_2O_5 uptake was zero. The enhancement of pNO_3^- from 150 m to 340 m was calculated as 28 µg m⁻³ in the morning, which is in good agreement with the observed PM peak in the morning on December 20, with the PM enhancement of ~60 µg m⁻³. The result demonstrated that the nocturnal N_2O_5 uptake aloft and downward transportation are really importance inwere critical for understanding the PM growth process.

394

395 **3.4 Sensitivity studies.**

Previous studies have emphasized that the N_2O_5 uptake coefficient varies greatly (0.001–0.1) in different ambient conditions (<u>Chang et al., 2011;</u> Brown and Stutz, 2012; <u>H.C.</u>-Wang <u>H</u> et al., 2016), which is the main source of uncertainties in the model. <u>Sensitivity tests illustrate that</u><u>this model</u>. In the present research, <u>sensitivity studies</u> showed the modeled N_2O_5 concentration <u>varied</u><u>dropping</u> from 3 ppbv to 60 pptv when the N_2O_5 uptake coefficients <u>were variedincreased</u> from 0.001 to 0.05 (Fig. 6a), <u>as</u> the N_2O_5 concentration is very <u>sensitivitysensitive</u> to the loss from heterogeneous

403	reactionreactions. Compared withto the base case, the accumulated pNO ₃ is was	带格式的: 非上标/ 下标
404	evidently lower at $\gamma = 0.001$ with the accumulated pNO ₃ of 44 µg m ⁻³ , thus the low	带格式的: 非上标/下标
405	N_2O_5 uptake coefficient condition is corresponding corresponded to several kinds of	
406	aerosols, such as secondary organic aerosolaerosols (Gross et al., 2009), humic	
407	acidacids (Badger et al., 2006)), and certain solid aerosols (Gross et al., 2008). When	
408	the N_2O_5 uptake coefficient enlargesincreased from 0.005 to 0.05 (Fig. 6b, c), the	
409	increase in integral pNO3 ⁻ almost not change with was negligible increasing, indicating.	
410	This indicates that the conversion capacity of N_2O_5 uptake to $pNO_3^{\text{-}}$ was almost	
411	maximized at certain CINO ₂ yield, the convert capacity. The conversion of NO_x to	带格式的:字体:倾斜,下标
412	nitrate was not limited by <u>the N_2O_5 heterogeneous</u> reaction rate, but <u>by</u> the formation	
413	of NO ₃ by via the reaction of NO ₂ with O_3 during the polluted night.	
414	For describing the nocturnal NO_x convertigence capacity to particulate nitrate and	带格式的: 字体:倾斜,下标
415	$\underline{pNO_{3}}^{-}$ formation via $\underline{NO_{3}}$ and $\underline{N_{2}O_{5}}$ uptake coefficient, here we defined chemistry, the	
416	particle nitrate convertovernight NO _x loss efficiency (ϵ) as was calculated using Eq. 6.	
417	The Δt represents the time duration from time zero at sunset till the ending time at	
418	sunrise9.	
419	$(\text{Eq. 6}) \qquad \varepsilon = \frac{\sum_{0}^{\Delta t} k_{N2Os}[N_2O_s]}{\sum_{0}^{\Delta t} 2 \times k_{NO2+Os}[O_s][NO_2]}$	
420 421	In the case, $\varepsilon = \frac{\int_0^t 2 \times k_{N205} \cdot [N_2O_5] dt + \int_0^t k_{N03} \cdot [NO_3] dt}{[NO_2](0)}$ (9)	
422	The case modeled typical winter haze pollution conditions in Beijing from sunset to	
423	sunrise, with the initial model values of NO ₂ and O ₃ set to 60 ppbv and 30 ppbv,	
424	respectively. $S_{a_{a}}$ is to 3000 μ m ² cm ⁻³ , the ClNO ₂ yield is zero and k_{NO3} is 0.02 s ⁻	带格式的: 字体: 非倾斜
425	4 -was zero, and k_{NO3} was 0.02 s ⁻¹ . The reaction time was set to 14.5 h to represent an	
426	overnight period in wintertime. The consumed NO ₃ by the reaction with VOCs and	
427	N_2O_5 by uptake reaction were regarded as valid NO_x loss. Figure 7 shows the	
428	dependence of the particle nitrate convert efficiency varied from 10 ⁻⁵ to 0.1. overnight	
429		
	<u>NO_x</u> loss efficiency on N ₂ O ₅ uptake, as it varied from 1×10^{-5} to 0.1. This is an increase	
430	<u>NO_x loss efficiency on N₂O₅ uptake, as it varied from 1×10⁻⁵ to 0.1. This is an increase</u> from 20% to 56%, with increasing γ_{N2O5} , and the maximum NO _x loss efficiency was	

432 via NO₃-N₂O₅ was fixed when all the NO_x loss was through N₂O₅ uptake, which is 433 limited by the reaction time and the formation rate of NO3 (R1). In this case, the N2O5 434 uptake was contributed about 90% of the overnight NO_x loss (50.4%) when γ_{N205} was equal to 0.002. When γ_{N205} is lower was less than 0.0017, the particle nitrate formation 435 enhanced 2×10^{-3} , NO_x removal increased rapidly with the increasing of N₂O₅ uptake 436 coefficient, here we γ_{N205} , which was defined as the γ_{N205} -sensitive region. When γ_{N205} 437 438 $\geq 2 \times 10^{-3}$, the contribution of N₂O₅ uptake to NO_x loss was over 90% and became 439 insensitive, this region was defined as the γ_{N205} sensitive region when $\gamma_{N205} < 1.7 \times 10^{-3}$. 440 While $\gamma_{N205} \ge 1.7 \times 10^{-3}$ is defined as γ_{N205} insensitive region, since the convert efficient is over 90% and not sensitive to the variation of N2O5 uptake coefficient. -insensitive 441 442 region. According to EqEqs. 3 and Eq. 5, higher aerosol surface concentration, higher 443 and NO_{x₇} and lower k_{NO3} and temperature would further enlargingincrease the 444 insensitivity region with lower γ_{N205} value, and make<u>allow</u> the N₂O₅ uptake to be more easily located in the yN2O5-insensitive region. Here, the critical value of the N2O5 uptake 445 coefficient (1.72×10-3) is relativewas relatively low compared withto that 446 447 recommended by the IUPAC (International Union of Pure and Applied Chemistry) recommended on the surface of mineral dust (0.013, 290-300K_300 K) (Crowley et al., 448 449 2010b) or determined in many field experiments (e.g-, S. S. Brown et al., 2006; 2009; 450 Wagner et al., 2013; Morgan et al., 2015; Phillips et al., 2016; Z. Wang Z et al., 2017; Brown et al., 2016; H.C. Wang H et al., 2017b; X.F. Wang X et al., 2017), suggesting). 451 <u>This suggests that</u> the particulate nitrate NO_x loss and pNO₃⁻ formation via N₂O₅ uptake 452 453 waswere easily maximized in polluted the pollution episode, and further 454 worsenworsening the PM pollution. In the base case, the modeled particulate nitratepNO₃= formation via N₂O₅ uptake 455

is was an upper limit result, as the ClNO₂ yield was set to zero. Since large coral<u>High</u>
coal combustion emitted chloride into the atmosphere inof Beijing during the heating
period in Beijing (Sun et al., 2013), associated with<u>like</u> the emission byemissions from
power plants in Northnorth China. The<u>This</u> enhanced anthropogenic emission of
chloride provides abundant chloride-containing aerosolaerosols to form ClNO₂ via
N₂O₅ uptake aloft, implying that significant ClNO₂ formed in the upper layer of the

带格式的:非上标/下标

-(带格式的:	字体:倾斜,卜标
-(带格式的:	字体:倾斜
-{	带格式的:	非上标/ 下标

462 NBL (Tham et al., 2016; Z-Wang Z et al., 2017). Assuming the ClNO₂ yield is the 463 average value of 0.28 determined at high altitude in Northnorth China (Z.-Wang Z et al., 2017), the pNO₃- produced pNO₃-throughout the whole night will have decreased 464 by 7 µg m⁻³. The ClNO₂ formation aloft throughout the night reach up toreached 2.5 465 ppbv, which is comparable with that observed in the field measurement in Northnorth 466 China (Tham et al., 2016; Z. Wang et al., 2017; X.F. Wang Z et al., 2017).; Wang X et 467 468 al., 2017). As the error of pNO₃⁻ formation simulation was subject to the ClNO₂ yield, 469 a higher yield would increase the model uncertainty directly, hence probing the CINO2 470 yield areis warranted in future studies. As for NO3 reactivity, FigureFig. 7 shows the 471 sensitivity tests of the integral pNO₃⁻ formation $\frac{\text{infor}}{\text{infor}}$ the whole night at k_{NO3} values = 0.001 s⁻¹, 0.01 s⁻¹, 0.02 s⁻¹, and 0.05 s⁻¹. The integral pNO₃⁻ formation was-decreased 472 473 when k_{NO3} varyvaried from 0.001 s⁻¹ to 0.1 s⁻¹, but the variation ratio to the base case 474 was within ±5%. The result shows the NO3-N2O5 loss via NO3 reactreaction with VOCs 475 induring the polluted wintertime iswas not important, which may only lead to relative<u>relatively</u> small uncertainties toin the integral pNO₃⁻ formation calculation. 476 477 Nevertheless, if N₂O₅ uptake was extremely low (e.g- γ_{N2O_5} < 10⁻⁴), the uncertainty 478 cased byof NO3 oxidation will be enlarged would increase significantly.

-{	带格式的:	字体:倾斜
-(带格式的:	非上标/ 下标

带格式的:	字体:倾斜
带格式的:	非上标/ 下标
带格式的:	非上标/ 下标
	带格式的: 带格式的: 带格式的:

带格式的: 非上标/ 下标

480 4. Conclusion

479

481 During the wintertime, ambient O₃ is often fully titrated to be zero at the ground of level in urban Beijing dueowing to its fast reaction with NO emissions. Consequently, the 482 483 near-surface air masses wereare chemically inert. Nevertheless, the chemical 484 information of the air masses at higher altitudes was indicative of a reactive layer above 485 urban Beijing, which potentially drives fast pNO3⁻ production via N2O5 uptake- and contributes to the surface PM mass concentration. In this study, we evidenced of an 486 additional O_x missing (25 ppbv) aloft with 25 ppb throughout the night. Based on model 487 simulation, we found that the particulate nitrate formed above 150 m can reach up to 488 489 reached 50 µg m⁻³; and enhanceenhanced the surface level PM concentration significantly withby 28 µg m⁻³ with downward mixing after break-up of the NBL 490

带格式的: 字体: 倾斜, 下标

491 breaking in the morning. Our study also demonstrated that during the heavy PM 492 pollution period, the particulate nitrate formation capacity via N2O5 uptake iswas easily 493 maximized in the upper layer, even with N₂O₅ uptake is as low as $\frac{1.72 \times 10^{-3}}{1.72 \times 10^{-3}}$, indicating. This indicates that the mixing ratio of NO₂ aloft arewas directly linked to nitrate 494 495 formation, and reduction of NOx is helpful to decrease in decreasing nocturnal nitrate formation. Overall, this study highlights the importance of the interplay between 496 497 chemical formation aloft and dynamic processes for probing the ground-level PM pollution problem. In the future, direct observations of N2O5 and associated parameters 498 should be performed to explore the physical and chemical properties of this overhead 499 500 nighttime reaction layer, and reachedto reach a better understanding of the winter haze formation. 501 502 503 Acknowledgements.

带格式的: 字体: 倾斜, 下标

This work was supported by the National Natural Science Foundation of China (Grant 505 506 No. 91544225, 41375124, 21522701-and 41571130021)., 41571130021), the National Key Technology Research and Development Program of the Ministry of Science and 507 508 Technology of China (Grant No. 2014BAC21B01). The authors gratefully acknowledge the science team of Peking University for their general support, as well 509 510 as the team running the tower platform, which enabled the vertical profile observations. 511

504

带格式的:两端对齐,行距:1.5倍行距,无孤行控制

512 References.

- Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly, K.,
 Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.:
 Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool
- Conditions: Evolution of Wintertime PM_{2.5} Pollution Events and N₂O₅ Observations in Utah's
 Salt Lake Valley, Environ Sci Technol, 51, 5941-5950, 2017.
- Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N₂O₅
 by aerosol particles containing mixtures of humic acid and ammonium sulfate, J Phys Chem
 A, 110, 6986-6994, 2006.
- Benton, A. K., Langridge, J. M., Ball, S. M., Bloss, W. J., Dall'Osto, M., Nemitz, E., Harrison, R.
 M., and Jones, R. L.: Night-time chemistry above London: measurements of NO₃ and N₂O₅
 from the BT Tower, Atmos Chem Phys, 10, 9781-9795, 2010.
- Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct
 measurement of N₂O₅ reactivity on ambient particles, Atmos Meas Tech, 2, 231-242, 2009.
- Birks, J. W., Andersen, P. C., Williford, C. J., Turnipseed, A. A., Strunk, S. E., Ennis, C. A., and
 Mattson, E.: Folded Tubular Photometer for atmospheric measurements of NO₂ and NO,
 Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-24, in review, 2018.
- Brown, S. G., Roberts, P. T., McCarthy, M. C., Lurmann, F. W., and Hyslop, N. P.: Wintertime
 vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin
 Valley during the California Regional coarse PM/fine PM Air Quality Study, J Air Waste
 Manage, 56, 1267-1277, 2006.
- Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R.,
 Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M.,
 Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined
 from aircraft measurements during the Second Texas Air Quality Study: Comparison to current
 model parameterizations, J Geophys Res-Atmos, 114, 2009.
- Brown, S. S., Dube, W. P., Osthoff, H. D., Wolfe, D. E., Angevine, W. M., and Ravishankara, A. R.:
 High resolution vertical distributions of NO₃ and N₂O₅ through the nocturnal boundary layer,
 Atmos Chem Phys, 7, 139-149, 2007.
- Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R.,
 Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong
 Kong, J Geophys Res-Atmos, 121, 2457-2475, 2016.
- Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J.,
 Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability
 in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70,
 2006.
- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem Soc Rev, 41, 6405 6447, 2012.
- Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter Constituents and
 Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ Health Persp, 120,
 373-378, 2012.
- Chan, C. Y., Xu, X. D., Li, Y. S., Wong, K. H., Ding, G. A., Chan, L. Y., and Cheng, X. H.:
 Characteristics of vertical profiles and sources of PM_{2.5}, PM₁₀ and carbonaceous species in
 Beijing, Atmos Environ, 39, 5113-5124, 2005.

- <u>Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous</u>
 <u>Atmospheric Chemistry, Ambient Measurements, and Model Calculations of N2O5: A Review,</u>
 <u>Aerosol Sci Tech, 45, 665-695, 10.1080/02786826.2010.551672, 2011.</u>
- 559 Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dube, W.
 560 P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N2O5 heterogeneous hydrolysis
 561 parameterizations for CalNex 2010, J Geophys Res-Atmos, 121, 5051-5070,
 562 10.1002/2015jd024737, 2016.
- 563 Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z.
 564 F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron
 565 aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit,
 566 Atmos Chem Phys, 15, 12879-12895, 2015.
- 567 Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J.,
 568 Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric
 569 chemistry: Volume V heterogeneous reactions on solid substrates, Atmos Chem Phys, 10,
 570 9059-9223, 2010b.
- 571 Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and
 572 Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany,
 573 Atmos Chem Phys, 10, 2795-2812, 2010a.
- Ferrero, L., Cappelletti, D., Moroni, B., Sangiorgi, G., Perrone, M. G., Crocchianti, S., and
 Bolzacchini, E.: Wintertime aerosol dynamics and chemical composition across the mixing
 layer over basin valleys, Atmos Environ, 56, 143-153, 2012.
- Ferrero, L., Perrone, M. G., Petraccone, S., Sangiorgi, G., Ferrini, B. S., Lo Porto, C., Lazzati, Z.,
 Cocchi, D., Bruno, F., Greco, F., Riccio, A., and Bolzacchini, E.: Vertically-resolved particle
 size distribution within and above the mixing layer over the Milan metropolitan area, Atmos
 Chem Phys, 10, 3915-3932, 2010.
- Geyer, A., and Stutz, J.: Vertical profiles of NO3, N2O5, O-3, and NOx in the nocturnal boundary
 layer: 2. Model studies on the altitude dependence of composition and chemistry, J Geophys
 Res-Atmos, 109, Artn D12307 Doi 10.1029/2003jd004211, 2004.
- 584 Green, M. C.; Chow, J. C.; Watson, J. G.; Dick, K.; Inouye, D., Effects of snow cover and atmospheric stability on winter PM2.5 concentrations in Western U.S. valleys. J. Appl. Meteor.
 586 Climatol. 2015, 54 (6), 1191-1201. DOI 10.1175/JAMC-D-14-0191.1.
- Gross, S. and Bertram, A. K.: Reactive uptake of NO₃, N₂O₅, NO₂, HNO₃, and O₃ on three types of
 polycyclic aromatic hydrocarbon surfaces, J Phys Chem A, 112, 3104-3113, 2008.
- Gross, S., Iannone, R., Xiao, S., and Bertram, A. K.: Reactive uptake studies of NO₃ and N₂O₅ on
 alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry, Phys
 Chem Chem Phys, 11, 7792-7803, 2009.
- Grzinic, G., Bartels-Rausch, T., Berkemeier, T., Turler, A., and Ammann, M.: Viscosity controls
 humidity dependence of N2O5 uptake to citric acid aerosol, Atmos Chem Phys, 15, 1361513625, 2015.
- Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M.,
 Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze formation in China,
 P Natl Acad Sci USA, 111, 17373-17378, 2014.
- Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N₂O₅ on sub-micron
 sulfate aerosols, Phys Chem Chem Phys, 5, 3453-3463, 2003.

- Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik,
 J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M.,
 Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
 Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.:
 High secondary aerosol contribution to particulate pollution during haze events in China,
- Nature, 514, 218-222, 2014.
 Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N₂O₅ by (NH₄)²SO₄,
 NH₄HSO₄, and H₂SO₄ aerosols, J Phys Chem A, 105, 6465-6470, 2001.
- Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., and Stanier, C. O.: Modeled aerosol nitrate
 formation pathways during wintertime in the Great Lakes region of North America, J Geophys
 Res-Atmos, 119, 12420-12445, 2014.
- Lei, H. and Wuebbles, D. J.: Chemical competition in nitrate and sulfate formations and its effect
 on air quality, Atmos Environ, 80, 472-477, 2013.
- Lurmann, F. W., Brown, S. G., McCarthy, M. C., and Roberts, P. T.: Processes influencing secondary
 aerosol formation in the San Joaquin Valley during winter, J Air Waste Manage, 56, 1679-1693,
 2006.
- Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen
 pentoxide on aqueous aerosols, Phys Chem Chem Phys, 1, 5451-5457, 1999.
- Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn,
 M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of
 aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in
 northwestern Europe, Atmos Chem Phys, 15, 973-990, 2015.
- Pathak, R. K., Wang, T., and Wu, W. S.: Nighttime enhancement of PM_{2.5} nitrate in ammonia-poor
 atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous
 hydrolysis of N2O5 and HNO3 partitioning, Atmos Environ, 45, 1183-1191, 2011.
- Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of
 China: nitrate formation in an ammonia-deficient atmosphere, Atmos Chem Phys, 9, 17111722, 2009.
- Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F.,
 Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake
 coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate,
 Atmos Chem Phys, 16, 13231-13249, 2016.
- Prabhakar, G., Parworth, C. L., Zhang, X. L., Kim, H., Young, D. E., Beyersdorf, A. J., Ziemba, L.
 D., Nowak, J. B., Bertram, T. H., Faloona, I. C., Zhang, Q., and Cappa, C. D.: Observational
 assessment of the role of nocturnal residual-layer chemistry in determining daytime surface
 particulate nitrate concentrations, Atmos Chem Phys, 17, 14747-14770, 10.5194/acp-1714747-2017, 2017.
- Pusede, S. E., Duffey, K. C., Shusterman, A. A., Saleh, A., Laughner, J. L., Wooldridge, P. J., Zhang,
 Q., Parworth, C. L., Kim, H., Capps, S. L., Valin, L. C., Cappa, C. D., Fried, A., Walega, J.,
 Nowak, J. B., Weinheimer, A. J., Hoff, R. M., Berkoff, T. A., Beyersdorf, A. J., Olson, J.,
 Crawford, J. H., and Cohen, R. C.: On the effectiveness of nitrogen oxide reductions as a
- 641 control over ammonium nitrate aerosol, Atmos Chem Phys, 16, 2575-2596, 2016.
- Riedel, T. P., Wagner, N. L., Dube, W. P., Middlebrook, A. M., Young, C. J., Ozturk, F., Bahreini,
 R., VandenBoer, T. C., Wolfe, D. E., Williams, E. J., Roberts, J. M., Brown, S. S., and Thornton,

- J. A.: Chlorine activation within urban or power plant plumes: Vertically resolved ClNO₂ and
 Cl₂ measurements from a tall tower in a polluted continental setting, J Geophys Res-Atmos,
 118, 8702-8715, 2013.
- Sander, S. P., et al. (2011), Chemical Kinetics and Photochemical Data for Use in Atmospheric
 Studies Evaluation Number 17, JPL Publication 10–6 Rep., NASA Jet Propul. Lab, Pasadena,
 California.
- Seinfeld, J. H., Pandis, S.N., (2006). Atmospheric Chemistry and Physics: from Air Pollution to
 Climate Change (Second edition), John Wiley & Sons, Inc., Hoboken, New Jersey.
- Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., and Williams, E.: Vertical profiles of
 NO3, N2O5, O-3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas
 Air Quality Study 2000, J Geophys Res-Atmos, 109, Artn D12306 10.1029/2003jd004209,
 2004.
- Stutz, J., Wong, K. W., Lawrence, L., Ziemba, L., Flynn, J. H., Rappengluck, B., and Lefer, B.:
 Nocturnal NO₃ radical chemistry in Houston, TX, Atmos Environ, 44, 4099-4106, 2010.
- Su, X., Tie, X. X., Li, G. H., Cao, J. J., Huang, R. J., Feng, T., Long, X., and Xu, R. G.: Effect of
 hydrolysis of N₂O₅ on nitrate and ammonium formation in Beijing China: WRF-Chem model
 simulation, Sci Total Environ, 579, 221-229, 2017.
- Sun, Y. L., Du, W., Wan, Q. Q., Zhang, Q., Chen, C., Chen, Y., Chen, Z. Y., Fu, P. Q., Wang, Z. F.,
 Gao, Z. Q., and Worsnop, D. R.: Real-Time Characterization of Aerosol Particle Composition
 above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric
 Boundary Layer and Aerosol Chemistry, Environ Sci Technol, 49, 11340-11347, 2015b.
- Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and
 Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in Beijing,
 China: seasonal variations, meteorological effects, and source analysis, Atmos Chem Phys, 15,
 10149-10165, 2015a.
- Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol
 composition, sources and processes during wintertime in Beijing, China, Atmos Chem Phys,
 13, 4577-4592, 2013.
- Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N.,
 Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang,
 T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the
 causes and impacts on ozone production in a polluted region of northern China, Atmos Chem
 Phys, 16, 14959-14977, 2016.
- Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N₂O₅ hydrolysis on sub-micron organic aerosols:
 the effect of relative humidity, particle phase, and particle size, Phys Chem Chem Phys, 5,
 4593-4603, 2003.
- Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P.,
 Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large
 atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464,
 271-274, 2010.
- Tsai, C., Wong, C., Hurlock, S., Pikelnaya, O., Mielke, L. H., Osthoff, H. D., Flynn, J. H., Haman,
 C., Lefer, B., Gilman, J., de Gouw, J., and Stutz, J.: Nocturnal loss of NOx during the 2010
 CalNex-LA study in the Los Angeles Basin, J Geophys Res-Atmos, 119, 13004-13025, 2014.
- 687 Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S.,

- 688 Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton,
- J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal
 NO₂ removal rates determined from ambient wintertime measurements, J Geophys Res-Atmos,
 118, 9331-9350, 2013.
- Wahner, A., Mentel, T. F., and Sohn, M.: Gas-phase reaction of N₂O₅ with water vapor: Importance
 of heterogeneous hydrolysis of N₂O₅ and surface desorption of HNO₃ in a large teflon chamber,
 Geophys Res Lett, 25, 2169-2172, 1998.
- 695 Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y., Peng, J. F., 696 Guo, S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J. 697 J., An, Z. S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secrest, J., Du, 698 Z. F., Zheng, J., Shang, D. J., Zeng, L. M., Shao, M., Wang, W. G., Huang, Y., Wang, Y., Zhu, 699 Y. J., Li, Y. X., Hu, J. X., Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., 700 Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from 701 London Fog to Chinese haze, P Natl Acad Sci USA, 113, 13630-13635, 702 10.1073/pnas.1616540113, 2016.
- Wang, H. C. and Lu, K. D.: Determination and Parameterization of the Heterogeneous Uptake
 Coefficient of Dinitrogen Pentoxide (N₂O₅), Prog Chem, 28, 917-933, 2016.
- Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D.
 J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang,
 Y. H.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate
 Formation Pathway, Environ Sci Tech Let, 4, 416-420, 2017b.
- Wang, H. C., Lu, K. D., Tan, Z. F., Sun, K., Li, X., Hu, M., Shao, M., Zeng, L. M., Zhu, T., and
 Zhang, Y. H.: Model simulation of NO₃, N₂O₅ and ClNO₂ at a rural site in Beijing during
 CAREBeijing-2006, Atmos Res, 196, 97-107, 2017a.
- Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Zhu, W., Lou, S.,
 Tang, M., Wu, Y., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N₂O₅
 Uptake and NO₃ Oxidation in the Outflow of Urban Beijing, Atmos. Chem. Phys. Discuss.,
 https://doi.org/10.5194/acp-2018-88, in review, 2018.
- Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham, Y. J.,
 Wang, Z., Yang, L. X., Chen, J. M., and Wang, W. X.: Observations of N₂O₅ and ClNO₂ at a polluted urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂
 product yields, Atmos Environ, 156, 125-134, 2017.
- Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang, T.: Fast
 heterogeneous N₂O₅ uptake and CINO₂ production in power plant and industrial plumes
 observed in the nocturnal residual layer over the North China Plain, Atmos Chem Phys, 17,
 12361-12378, 2017.
- Watson, J. G. and Chow, J. C.: A wintertime PM_{2.5} episode at the fresno, CA, supersite, Atmos
 Environ, 36, 465-475, 2002.
- Wen, L. A., Chen, J. M., Yang, L. X., Wang, X. F., Xu, C. H., Sui, X. A., Yao, L., Zhu, Y. H., Zhang,
 J. M., Zhu, T., and Wang, W. X.: Enhanced formation of fine particulate nitrate at a rural site
 on the North China Plain in summer: The important roles of ammonia and ozone, Atmos
 Environ, 101, 294-302, 2015.
- Ying, Q.: Physical and chemical processes of wintertime secondary nitrate aerosol formation, Front
 Environ Sci En, 5, 348-361, 2011.
 - 23

- 732 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
- Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo,
 P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S.,
- 735 Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
- K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y.,
- 737 Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic
- aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys ResLett, 34, 2007.
- Zhang, R. Y., Wang, G. H., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang, W. G., Hu, M., and
 Wang, Y.: Formation of Urban Fine Particulate Matter, Chem Rev, 115, 3803-3855, 2015.
- 742 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,
- 743 T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in
 744 Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos
- 745Chem Phys, 15, 2969-2983, 2015.
- Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Wang, J. Z., Tan, K. Y., Shen,
 X. J., Che, H. C., Zhang, L., Zhang, Z. X., Qi, X. F., Zhao, H. R., Ren, S. X., and Li, Y.:
 Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth of
- PM_{2.5} during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016, J Meteorol
 Res-Prc, 31, 809-819, 2017.

Figure 1. Location of the monitoring sites used in this study, including PKU (red diamond), IAP (blue diamond), and other National Monitoring Sites (green circles). Vertical profiles of NO_x and O_3 were collected at a tower at the IAP. Measurements of particle number and size distribution (used to calculate N_2O_5 and particle nitrate formation) were collected from a ground site at PKU. Additional measurements on PM_{2.5} concentrations were continuously measured at national monitoring sites

758 throughout Beijing.

759

带格式的: 字体: 倾斜, 下标

Figure 2. Time series of (a) PM_{2.5} and O₃, (b) NO and NO₂, (c) temperature (T) and relative humidity (RH), (d) wind direction (WD) and wind speed (WS) from December

16 to 22, 2016 (CNST, Chinese National Standard Time) at PKU site in Beijing, China.
The shaded region represents the nighttime periods. Red line in panel (a) shows an

example of fast $PM_{2.5}$ enhancement on the night of December 19, and the green lines

are the time periods when the vertical measurements conducted in IAP site.

 768
 Figure 3. Vertical profiles of NO and NO2 (a), O3 and Ox (b) at 20:38-21:06 on the
 带格式的: 字体: 倾斜, 下标

 769
 night of December 20, 2016.
 带格式的: 字体: 倾斜, 下标

Figure 4. $\Theta_x O_x$ missing case presented by the vertical profiles of (a) NO and NO₂, (b)

 O_3 and $\Theta_x O_x$ at 20:38-21:13 on the night of December 19, 2016.

Figure 5. Vertical profiles of (a) NO and NO₂, (b) O₃ and $\Theta_x O_x$ at 09:06-09:34 in the morning of December 20, 2016.

Figure 6. Base case (γ =0.005) and sensitivity tests of the vertical profile on the night of December 19 at different N₂O₅ uptake coefficients, including (**a**) the mixing ratio of N₂O₅ at 21:00, (**b**) the integral pNO₃⁻ production from sunset to 21:00, (**c**) the time series of the integral pNO₃⁻ formed at 240 m via N₂O₅ uptake from sunset (17:00) to sunrise (07:30, nighttime length = 14.5 h), the squares represents the pNO₃⁻ equivalent weight from the observed O_X missing in the two vertical measurements ~21:00 and ~09:30 in the following morning.

788

780

792 uptake on $\gamma_{N205-in}$ a typical winter pollution condition. The initial <u>NO₂ and O₃ set to</u> 793 <u>60 ppbv and 30 ppbv, respectively,</u> S_a set to 3000 μ m² cm⁻³, the ClNO₂ yield is zero and 794 k_{NO3} is 0.02 s⁻¹. The reaction time set to 14.5 h. The blue and orange region showszone 795 represent the convert efficiency is sensitive contribution by NO3+VOCs and N2O5 796 uptake, the dashed line ($\gamma = 0.002$, when $\gamma < 0.0017$, while the blue region shows N₂O₅ 797 uptake contribute to 90% of the convert efficiency is over 90% maximum NO_x loss) 798 <u>divide the loss into γ sensitive</u> and insensitive when $\gamma \ge 0.0017$. region. The maximum 799 nocturnal NO_x loss by NO₃-N₂O₅ chemistry is 56%. 800

带格式的: 字体: 倾斜

801

Figure 8. Base case $(k_{NO3}=0.02 \text{ s}^{-1})$ and sensitivity tests of the integral pNO₃⁻ formed at

带格式的:字体:倾斜

- 240 m via N_2O_5 uptake at different NO_3 reactivity (0.001 s⁻¹, 0.01 s⁻¹, 0.05 s⁻¹) on the
- 804 whole night of December 19, 2016.

Cases	$k_{\rm NO3}({\rm s}^{-1})$	γn205	带格式的: 字体: 倾斜
Base case	0.02	0.005	
k _{NO3} test 1	0.001	0.005	
$k_{\rm NO3}$ test 2	0.01	0.005	
$k_{\rm NO3}$ test 3	0.05	0.005	
γ _{N2O5} test 1	0.02	0.001	
γ _{N2O5} test 2	0.02	0.01	
γ _{N2O5} test 3	0.02	0.05	

Table 1. List of the parameter sets in base case and sensitivity tests.