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Abstract. New particle formation (NPF) in the atmosphere is globally an important source of climate relevant aerosol particles. 

Occurrence of NPF events is typically analyzed manually by researchers from particle size distribution data day by day, which 10 

is time consuming and the classification of event types may be inconsistent. To get more reliable and consistent results, the 

NPF event analysis should be automatized. We have developed an automatic analysis method based on deep learning, a subarea 

of machine learning, for NPF event identification. To our knowledge, this is the first time when NPF events have been 

successfully classified automatically into different classes from particle size distribution images. The developed method is 

based on image analysis of particle size distributions using a pre-trained deep Convolutional Neural Networks (CNN), named 15 

AlexNet, which was transfer learned to recognize NPF event classes (six different types). In transfer learning, a partial set of 

particle size distribution images were used in the training stage of the CNN and the rest of images for testing the success of 

the training. The method was utilized for a 15-year long dataset measured at San Pietro Capofiume in Italy. We studied 

performance of the training with different training and testing image number ratios as well as with different regions of interest 

in the images. The results show that clear event (i.e., Classes 1 and 2) and non-event days can be identified with an accuracy 20 

of ca. 80 %, when the CNN classification is compared with that of an expert, which is a good first result for automatic NPF 

event analysis. In the event classification, the choice between different event classes is not an easy task even for trained 

researchers, thus overlapping or confusion between different classes occurs. Hence, we cross validated the learning results of 

CNN with the expert made classification. The results show that the overlapping occurs typically between the adjacent or similar 

type of classes, e.g., a manually classified Class 1 is categorized mainly into Classes 1 and 2 by CNN, indicating that the 25 

manual and CNN classifications are very consist for the most of the days. The classification would be more consistent, by both 

human and CNN, if only two different classes are used for event days instead of three classes. Thus, we recommend that in the 

future analysis, event days should be categorized into classes of "Quantifiable" (i.e. clear events, Classes 1 and 2) and "Non-

Quantifiable" (i.e. weak events, Class 3). This would better describe the difference of those classes: both formation and growth 

rates can be determined for Quantifiable days but not both for Non-Quantifiable days. Furthermore, we investigated more 30 

deeply the days that are classified as clear events by experts and recognized as non-events by the CNN and vice versa. Clear 

misclassifications seem to occur more commonly in manual analysis than in the CNN categorization, which is mostly due to 
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the inconsistency in the human-made classification or errors in the booking of the event class. In general, the automatic CNN 

classifier has a better reliability and repeatability in NPF event classification than human-made classification and, thus, the 

transfer learned pre-trained CNNs are powerful tools to analyze long-term datasets. The developed NPF event classifier can 

be easily utilized to analyze any long-term datasets more accurately and consistently, which helps us to understand in detail 

aerosol-climate interactions and the long-term effects of climate change on NPF in the atmosphere.    5 

1 Introduction  

Aerosol particles have various effects on air quality, human health and the global climate (Nel, 2005; WHO, 2013; IPCC, 

2013). The air quality and health related problems are connected to each other, since in urban areas human exposure to elevated 

levels of particulate matter has been shown to cause respiratory problems and cardiovascular diseases (Brunekreef and Holgate, 

2002), and eventually increase mortality (Samet  et al., 2000). Very small particles like ultra-fine particles (smaller than 100 10 

nm in diameter) can be particularly harmful because they can efficiently penetrate into the respiratory system and cause 

systemic effects (Nel, 2005). Air quality also affects visibility, for example, during smog episodes in large cities in Asia (Wang 

et al., 2013). On the global scale, aerosols affect the radiative balance of the Earth and therefore the climate both directly and 

indirectly. The direct effect is caused by the aerosol particles either scattering incoming solar radiation back to space or by 

absorbing it. Indirectly aerosol affect the climate via their role in cloud formation as cloud condensation nuclei (CCN). The 15 

number concentration and chemical properties of CCN particles affect both the brightness of clouds (Twomey, 1974) and their 

lifetime (Albrecht, 1989). Increased number of CCN are associated to smaller cloud droplets, which can lead to brighter and 

longer-lived clouds (Andreae and Rosenfeld, 2008). It has been estimated that the indirect aerosol climate effects cause a net 

cooling of the climate, and can therefore cancel out some of the global warming caused by greenhouse gases (IPCC, 2013). 

 20 

Atmospheric new particle formation (NPF; formation and growth of secondary aerosol particles) is observed frequently in 

different environments in the planetary boundary layer (e.g. Kulmala et al., 2004). There are direct observations that NPF can 

increase the concentration of CCN particles regionally (Kerminen et al., 2012). Based on global aerosol model studies, it is 

estimated that 30–50% of global tropospheric CCN concentrations might be formed by atmospheric NPF (Spracklen et al., 

2008; Merikanto et al., 2009; Yu and Luo, 2009). The longest continuous observational datasets of atmospheric NPF have 25 

been collected in Finland at the SMEAR stations in Hyytiälä and Värriö starting in 1996 and 1997, respectively (Kyrö et al., 

2014; Nieminen et al., 2014), and at the GAW station in Pallas from 2000 onwards (Asmi et al., 2011). These three stations 

are located in the Northern European boreal forest, and can be considered to represent rural and remote environments. In more 

anthropogenically influenced environments long-term NPF observations have been performed in Central Europe at Melpitz 

(Wang et al., 2017a) and in San Pietro Capofiume at the Po Valley basin in Northern Italy (Laaksonen et al., 2005; Hamed et 30 

al., 2007; Mikkonen et al., 2011). In high-altitude sites, which are at least part-time in the free troposphere, there are less and 

shorter continuous measurements of NPF available. However, also in these high-altitude sites NPF has been observed to occur 
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regularly (Kivekäs et al., 2009; Schmeissner et al., 2011; Herrmann et al., 2015). Recently, long-term NPF measurements have 

also been established in several locations, e.g., in Beijing and Nanjing in China (Wang et al., 2017b; Kulmala et al., 2016; Qi 

et al., 2015) and in Korea (Kim et al., 2014; Kim et al., 2013). 

 

Currently, all the NPF studies published in the literature have utilized visual-based methods to identify NPF events from the 5 

measurement data. Typically, these methods require 1–3 researchers analyzing the data to go through the data and look for 

periods of formation and growth of new modes in the size-distribution data. These methods were first introduced for analyzing 

data from the Finnish SMEAR stations by Dal Maso et al. (2005), and have been later slightly modified to suit analyzing data 

from different environments and measurement instruments (Hamed et al., 2007; Hirsikko et al., 2007; Vana et al., 2008). While 

the visual-based methods are in principle simple and straightforward to apply, there are certain drawbacks in using them. First, 10 

they are very labor intensive, since the analysis of the aerosol size-distribution data is not automated. Second, these methods 

are somewhat subjective, i.e. different researchers might interpret the same datasets in slightly different ways. There have been 

attempts at improving these methods and making them more automatic. In their comprehensive protocol article, Kulmala et al. 

(2012) introduced a concept for automatic detection of NPF events. This was based on identifying regions of interest (ROI) 

from the time-series of measured aerosol size-distribution data. These ROI were defined as time periods when elevated 15 

concentrations of sub-20 nm particles were observed compared to the concentration of larger particles. Developing the NPF 

classification to take into account also other data measured at the same site, such as meteorological data and concentrations of 

trace gases, has allowed utilization of statistical methods to search for variables which could best explain and predict the 

occurrence of NPF. Hyvönen et al. (2005) and Mikkonen et al. (2006) applied discriminant analysis for multi-year datasets of 

aerosol size-distributions and several gas and meteorological parameters measured at Hyytiälä, Finland and San Pietro 20 

Capofiume, Italy. Both of these studies were able to construct models to predict the probability of NPF occurrence with 

reasonable accuracy, and this approach has also been used in the day-to-day planning of a complex airborne measurement 

campaign (Nieminen et al., 2015). More recently, preliminary attempt at utilizing machine learning on big datasets have been 

reported (Zaidan et al., 2017). 

 25 

There exists a long list of algorithms to automate the classification of datasets (Duda et al., 2012), such as k-means, Support 

Vector Machine (SVM), Boltzmann Machine (BM), decision trees, etc. Our method choice is the deep feedforward Neural 

Network (NN). The idea of NN is not young, as the idea was first brought to life by Hebb in 1949 (Hebb, 2005). Since then, 

this field has drawn the attention of many researchers (Farley and Clark, 1954; Widrow and Hoff, 1960; Schmidhuber, 2015) 

probably because of its apparent simplicity and versatility. The NNs are built by stacking interconnected layers of atomic units, 30 

or neurons, as depicted in Fig. 2. In each layer, each neuron computes one very simple operation – often named activation – 

which consists of computing the weighted sum of the input variables plus a threshold and then passing the results to a function 

– e.g. tanh or Rectified Linear Unit (ReLU)(Buduma and Lacascio, 2017). To put it simply, a neuron emits a signal if the 

excitation signal – the input variable – reaches a threshold otherwise it is inactive. A single neuron cannot do much on its own, 
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merely a linear discrimination, however, a set of connected and trained neurons, as a NN, can mimic human cognition abilities 

– the emergence property. The depth – or number of layers – and the topology of a NN will determine what it can be used for. 

For instance, the recurrent NNs (RNN) are well designed for speech, text and time series classification or prediction (Pascanu 

et al., 2013) and convolutional NNs (CNN) outperform any other architecture at classifying visual data, i.e. images or any 2D 

data (Krizhevsky et al., 2012). Before it can start classifying, a NN – of any kind – must be trained for the specific task it is 5 

assigned, e.g. recognize a car or a keyboard in a color image. While the topology is, for most cases, assigned a priori, the 

parameters – weights and thresholds – are to be learned. The learning stage is crucial because it determines the efficiency of 

the classifier and, therefore, the machine learning community has dedicated much effort to provide solutions of the issue – e.g. 

the backpropagation algorithm (Rumelhart et al., 1986) – and is still focusing on it decades after it all started (LeCun et al., 

2015; Schmidhuber, 2015). There are as many learning methods as there are NN topologies, however they can be sorted in a 10 

few categories. For instance, the learning method may require a labeled training set, falling into the supervised learning (SL) 

category (Duda et al., 2012; Amari, 1998), or it may learn by itself without an already classified set, in which case the method 

is referred to as unsupervised learning (UL) (Le, 2013; Radford et al., 2016). Another relevant classification of the learning 

methods is the depth of the NN. Even though there is no common consensus to define the limit between shallow and deep NN 

(DNN), it is commonly accepted to refer to deep NN as NN having at least two layers and very deep those with more than ten 15 

layers (Schmidhuber, 2015). 

  

In this study, we use a CNN because it mimics the visual cognition process of the human; Fig. 2c illustrates the structure of 

the whole CNN and Fig. 2d and 2e some layers of the CNN in detail. Instead of being fully connected, the CNN is only locally 

connected, in other words, a neuron of a layer is connected to a compact subset of neurons of the previous layer. For every 20 

subset, the neurons compute the same operation – the parameters are shared across the neurons of a layer – resulting in a 

convoluted version of the input signal; hence the name. It is a good model for human vision because it applies the convolution 

operation throughout the image field – thus it has drawn a lot of attention in the image processing community (e.g. LeCun et 

al., 1998; Cireşan et al., 2011; Chellapilla et al., 2006). However, CNN only became popular when the AlexNet outperformed 

by far all the other pattern recognition algorithms during the ImageNet Large Scale Visual Recognition Challenge, ILSVRC 25 

2012 (Krizhevsky et al., 2012). Since then, it has been improved for each classification challenge, starting by the ZFnet (Zeiler 

and Fergus, 2014) then by the deeper GoogleNet (Szegedy et al., 2015) and finally by the deepest Microsoft ResNet (He et al., 

2016). 

 

One of the main bottlenecks with an artificial intelligence is the learning stage, especially for NN. For instance, thousands of 30 

images are typically needed for learning in image recognition applications. Therefore, the idea of reusing what is already 

known instead of re-learning from scratch every time a new class has come up. The pre-training method consists in first training 

the network with an UL algorithm and then continue the training with SL (Bengio et al., 2006). Another solution is 

reinforcement learning, which is a technique involving an agent that learns policies based on interaction with its environment 
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using trial-and-error. For this method, the correct states are not known – therefore it is an UL – but a system of rewards gives 

hints whether the predictions are correct or not (Mnih et al., 2013; Sutton, 1988; Kaelbling et al., 1996; Schmidhuber, 2015). 

Finally, the transfer learning method, which we have used in this study, consists of learning the weights of an NN that contains 

a lot of classes (see “General” frame of Fig. 2b) and then using those weights either as a starting point for other learning sets 

with less classes or using partially the weights – e.g. for the first layers of the NN – and train only one part in order to specialize 5 

the NN as it is depicted the frame “Specialization” of Fig. 2b. (Yosinski et al., 2014; Cireşan et al., 2012; Pan and Yang, 2010; 

Dauphin et al., 2012; Krizhevsky et al., 2012; Weiss et al., 2016). For all kinds of NNs, the learning process is prone to learning 

too much detail – missing the generality of a semantic class – related to the examples. This phenomenon is known as overfitting 

and several methods have been developed to overcome this such as dropout (Srivastava et al., 2014; Hinton et al., 2012). 

 10 

In atmospheric science, several studies have used deep learning or other novel machine learning methods in data analysis. 

Deep learning and other machine learning algorithms are commonly used in remote sensing (Zhang et al., 2016; Lary et al., 

2016; Han et al., 2017; Hu et al., 2015). Remote sensing is very suitable for machine learning because large datasets are 

available and the theoretical knowledge is incomplete (Lary et al., 2016). For instance, Han et al. (2017) introduced a modified 

pre-trained AlexNet CNN and Hu et al. (2015) used several CNNs (e.g. AlexNet and VGGnets) for remote sensing image 15 

classification. Ma et al. (2015) used transfer learning in a Support Vector Machine (SVM) approach for classification of dust 

and clouds from satellite data. Other applications in atmospheric science include, e.g., air quality predictions (Li et al., 2016; 

Ong et al., 2016), characterization of aerosol particles with an ultra violet-laser induced fluorescence (UV-LIF) spectrometer 

(Ruske et al., 2017) and aerosol retrievals from ground-based observations (Di Noia et al., 2015; Di Noia et al., 2017). In 

addition, we recently applied different machine learning methods (e.g. neural network and SVM) for aerosol optical depth 20 

(AOD) retrieval from sun photometer data (Huttunen et al., 2016). Although machine and deep learning approaches have 

already been used in several applications in atmospheric science, the use of those novel artificial intelligence methods will 

expand rapidly in the future. Nowadays, those methods are more efficient and easier to use due to the development of user-

friendly applications and increasing computing capacity (e.g. Graphics Processing Units, GPUs), and they can be applied in 

problems that are more complicated.          25 

 

Here, we demonstrate that a novel deep learning-based method, i.e. transfer learning of a commonly used pre-trained CNN 

model (AlexNet), can be efficiently and accurately used in classifying of new particle formation (NPF) events. The method is 

based on image recognition of daily-measured particle size distribution data. To our knowledge, this is the first time when an 

automatic method has been successfully used in NPF event analysis for a long-term dataset. We will show that the deep 30 

learning-based method will increase the quality and reproducibility of event analysis compared to manual, human-made visual 

classification.  
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2 Materials and methods 

2.1 Measurement site, instrumentation and dataset 

In this study, we analyzed a long-term particle size distribution (PSD) dataset measured at the San Pietro Capofiume (SPC) 

measurement station (44° 39' N, 11° 37' E, 11 m a.s.l.), Italy. The PSD measurements started on 24 March 2002 at SPC and 

have been uninterrupted, except for occasional system malfunctions. The SPC station is located in a rural area in Po Valley 5 

about 30 km northeast from the city of Bologna. The Po Valley area is the largest industrial, trading and agricultural area in 

Italy with a high population density and hence it is one of the most polluted area in Europe. On the average at SPC, NPF events 

occur on ca. 30% of the days whilst ca. 30% are clearly non-event days and the probability for NPF events is highest in spring 

and summer seasons (Hamed et al., 2007).   

 10 

At SPC, PSDs are measured with a twin Differential Mobility Particle Sizer (DMPS) system; the first DMPS measures PSDs 

between 3 and 20 nm and the second one between 15 and 600 nm. The first DMPS consists of a 10.9 cm long Hauke-type 

differential mobility analyzer (DMA)(Winklmayr et al., 1991) and an ultrafine condensation particle counter (CPC, TSI model 

3025) whereas the second DMPS consists of a 28 cm long Hauke-type DMA and a standard CPC (TSI model 3010). One 

measurement cycle lasts for 10 min. The PSDs used in this study were calculated from the measured data using a Tichonov 15 

regularization method with a smoothness constraint (Voutilainen et al., 2001). The data from two different DMPS instruments 

was combined in the data inversion. The CPC counting efficiency and diffusional particle losses in the tubing and DMA 

systems were taken into account in the data analysis. In addition to PSD measurements, several gas and meteorological 

parameters are continuously measured at the SPC station (e.g. SO2, NO, NO2, NOx, O3, temperature, relative humidity, wind 

direction, wind speed, global radiation, precipitation, and atmospheric pressure). The measurement site and instrumentation 20 

have been described in detail in previous studies (Laaksonen et al., 2005; Hamed et al., 2007).  

 

The analyzed dataset covers 4177 days (files) from the start of the measurement in SPC on 24 March 2012 until 16 May 2017 

(totally 5534 days). The number of days at the different NPF classes and division into training and testing categories are 

summarized in Table 1. 25 

2.2 Classification of new particle formation events (current method)  

Currently, a classification of NPF events is practically made manually, i.e., researchers visually inspect contour plots of time 

series of aerosol size distribution data and time evolution of nucleation-mode particles (particle dimeter below ca. 50 nm) 

(Kulmala et al., 2012). For the dataset of this study, the manual classification of NPF events into different categories is based 

on guidelines described by Mäkelä et al. (2000) and Hamed et al. (2007). Figure 1 shows examples of measured time series of 30 

PSDs (time in x-axis, particle diameter in y-axis and particle concentration presented by different colors) for different event 

classes.   

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1189
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



7 

 

 

In the first step of event analysis, data is classified into days with NPF events and days without particle formation (non-event 

days, NE). A day is considered as a NPF event day if formation of new aerosol particles starts in the nucleation mode size 

range (<25 nm) and subsequently grows, and the formation and growth is observed for several hours. The NPF event days are 

further classified according to the clarity and intensity of the events (Hamed et al., 2007): 5 

 Class 1 events (Class_01) are characterized by high concentrations of 3–6 nm particles with only small fluctuations 

of the size distribution and no or little pre-existing particles in the smallest size ranges. Class 1 events show an 

intensive and clear formation of small particles with continuous growth of particles for seven to ten hours.  

 Class 2 events (Class_02) show the same behavior as Class 1 but with less clarity. The formation of new particles 

and their subsequent growth to larger particle sizes can be clearly observed but, e.g., fluctuations in the size 10 

distribution are larger. Furthermore, the growth lasts for a shorter time than for Class 1 being about five hours on 

average. In event Classes 1 and 2, it is easy to follow the trend of the nucleation mode and, hence, the formation and 

growth rates of the formed particles can be determined confidently.  

 Class 3 events (Class_03) include days when same evidence of new particle formation can be observed but growth 

is not clearly observed. For example, the formation of new particles and their growth to larger particle sizes may 15 

occur for a short time but is then interrupted (e.g. by a drop in the intensity of solar radiation, rain). In addition, the 

days with weak growth are classified in that category 

The classification of nucleation events is, however, subjective and overlapping or confusion within the classes may easily 

occur. To minimize the uncertainty of the classification method, Class 1 and Class 2 events are typically referred to as clear or 

intensive nucleation events (Clear Event class), where all classification stages were clearly fulfilled, whilst Class 3 events are 20 

referred to as Weak Events. Baranizadeh et al. (2014) named Clear Event and Weak Event days as "Quantifiable" and "Non-

Quantifiable" days, respectively, which describes better the difference of those classes. Both formation and growth rates can 

be determined for Quantifiable days but not both for Non-Quantifiable days. 

  

Other classes of days are: 25 

 Non-Event days (NE) (Class_NE): Days with no NPF in the nucleation mode particle size range are classified into 

Non-Event days. These days are also interesting because, e.g., differences in conditions (meteorology, gas 

concentration, precipitation) during event and non-event periods are often studied in order to get better understanding 

of processes behind NPF.  

 Class 0 (Class_00): Some of days do not fulfil the criteria to be classified either event or non-event day and they are 30 

classified as Class 0. In that class, it is difficult to determine whether a nucleation event has actually occurred or not.  

 Bad Data (BD) (Class_BD): Days with some malfunction in the measurement system (e.g. too high or low particle 

concentrations, missing data in part of the day) are classified as Bad Data. In the final data analysis, those days are 

typically ignored.   
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2.3 Event classification with a deep convolutional neural network (CNN) 

In this study, we developed a novel method to analyze NPF events automatically. The schematic of the approach is shown in 

Fig. 2. We use a large, deep convolutional neural network (CNN) named AlexNet, which has originally been trained to classify 

images into 1000 different categories (Krizhevsky et al., 2012, 2017). The AlexNet’s architecture, shown in Fig 2c, consists 

of five convolutional layers (CL, Fig. 2d), some of which are followed by max-pooling (MP) layers, and three fully connected 5 

layers (DNN, Fig. 2e) with a final 1000-way softmax, which assigns a probability (𝑃(ℓ)) to each of the classes’ label (ℓ) for 

the input image. The first five layers of the AlexNet extract abstract features that are easier to classify than the original input 

image. This abstraction is computed by chaining up CL and MP layers. The CL (depicted in Fig. 2d) computes several 

convolution of the image by several kernels – that must be learnt – and generates a multidimensional output – one dimension 

per kernel. For instance, in Fig. 2d the two kernels 𝑣1 and 𝑣2 are applied to two compact sub regions of the data (field 1 and 10 

field 2) by two units (unit 1 and unit 2), which generate two 2D outputs (𝑦1 = (𝑥1
1, 𝑥1

2) and 𝑦2 = (𝑥2
1, 𝑥2

2)). The CL is what 

makes the CNN similar to the human visualization system because it applies the same transformation throughout the field of 

view. The MP layer merely computes a smaller image from each output image of the CL, e.g., an image of 256 x 256 pixels 

generated by CL will be reduced to smaller image of 64 x 64 by calculating maximum values of the 4 x 4 patches of the original 

image. The last layers of the AlexNet is a DNN as depicted in Fig. 2e , i.e. a NN whose input and output layers are connected 15 

by hidden layers of neurons. Contrary to the CL, each neuron of a DNN’s layer is connected to all the neurons of the previous 

layer and the parameters (weights and threshold) are not shared across the layer; this is the most general setting for a 

feedforward NN. In the AlexNet, the output DNN is the decision making center, which would be the analog of the brain in the 

visual system of a human. To speed up the learning process and reduce overfitting in the fully connected layers (DNN), the 

batch normalization, the dropout regularization and the Rectified Linear Unit (ReLU, max(0, 𝑥)) methods are employed in the 20 

AlexNet. The AlexNet was a breakthrough method in image analysis when it was introduced in 2012 and thus it is widely used 

in image recognition applications (LeCun et al., 2015). This model has originally been trained on millions of images of very 

common objects, e.g., keyboards, mice, pencils, cars and many animals, as a subset of the ImageNet database (Deng et al., 

2009) and thus it must be fine-tuned to recognize other images.  

 25 

The AlexNet itself cannot recognize NPF events so we used a transfer-learning technique for fine-tuning the model for PSD 

images (daily contour plots of time series of aerosol size distributions). In the fine-tuning of CNN by transfer-learning, the 

new features are quickly learned by modifying a few of the last layers using a much smaller number of images than in the 

training of the original CNN (Weiss et al., 2016; Shin et al., 2016; Yosinski et al., 2014; Pan and Yang, 2010). The transfer 

learning process (see Fig. 2b) is a two-stage optimization method. At first, the network is trained for a learning dataset (𝑆𝑔) 30 

including the data itself (𝑥𝑘 ) and its labels (𝑑𝑘 ). This is achieved by solving an optimization problem for all the NN’s 

parameters that are represented by the vector sets 𝑉 and 𝑊, the first layers and the last layers, respectively. The optimization 

problem is defined so that the cost function ℰ reaches a minimum for optimal sets of parameters �̂� and �̂�. Once the optimal 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1189
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



9 

 

parameters are known, for almost all the elements 𝑥𝑘 ∈ 𝑆𝑔, the first output of the NN predicts the actual label 𝑑𝑘 ≃ 𝐽(𝑥𝑘|�̂�, �̂�), 

which means that the NN is ready to classify data of the same semantic field as this of the learning set. The second stage of 

transfer learning consists of optimizing only a few layers amongst the lasts – or possibly all the layers – using as an initial 

guess the optimal sets of the general learning problem. For instance, the cost function ℰ in Fig 2b may be the same for the 

general and specialized learning step, but for the first stage, all the parameters are allow to vary while only the 𝑊 may vary 5 

during the specialization. This strategy is very efficient for images because of the structure of the CNN; the first layers process 

the image by extracting some features so that it becomes more abstract and the lasts layers attribute the probabilities of the 

classes. In our setup, we modified only a few of the last layers because of the low number of available training data 𝑆𝑠. 

 

In a transfer learning process of our data set, we categorized PSD images into six different classes based on the manual event 10 

classification (Class 1, Class 2, Class 3, NE, Class 0 and BD, see Fig. 1) and used a subset of images for training and the rest 

of the images for evaluation of the training (testing). Three different fractions of images were used in the training stage (80 %, 

50 % and 20%) in order to study the effect of image set size on the NPF event classification. Images for training and testing 

were selected randomly (certain percent of each category) and this was repeated ten times to evaluate the statistical accuracy 

of the training and data classification. The transfer learning process and data analysis were computed using a Matlab program 15 

(version R2016b) with the support of the package of Neural Network Toolbox Model for AlexNet Network (version 17.2.0.0) 

using a Linux server (CPU: 2x Intel Xeon E5-2630 v3, 2.40 GHz,16 cores; RAM 264.0 GB; GPU: Nvidia Tesla K40c, CUDA 

ver. 3.5, 12 GB). We used the standard procedures (trainNetwork, classify) and options (solver: sgdm, initial learn rate: 0.001, 

max Epochs: 20, mini-batch size: 64) as described in an example for deep learning by Matlab (MathWorks, 2017). In the 

transfer learning of Matlab AlexNet, we changed two layers of the net to fit our data: the number of recognized classes was 20 

reduced to six in the last fully connected layer (fc8) and the category's names in the classification output layer (output) were 

charged to the names of our event classes. One training session lasted about from a half to one hour with the used server and 

programs. The AlexNet CNN has been originally implemented in CUDA, but it is also available in Matlab. Other programing 

languages provide also good libraries for implementing the AlexNet such as Python or C++, and dedicated frameworks such 

as TensoFlow, Theano or Caffe are good candidates for an easy implementation of the NN and the learning stage. 25 

 

 

To find out the best performance for the NPF event classification, we also tested three different sets of particle size distribution 

images (Image Set, jpg file format with bit depth of 24 bits) with different plotting areas of the daily-measured size 

distributions:  30 

Image Set 1. Original image (see Fig. 1) without the title, axis labels and numbers (i.e. axes of the plot and data inside 

them), size 1801 x 951 pixels (file size ca. 180 kB). 

Image Set 2. Only colored, measured part of original images (i.e. time 00:00 – 24:00, particle diameter 3 – 630 nm), 

size 1646 x 751 pixels (file size ca. 120 kB). 
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Image Set 3. As previous but only an active time for NPF events is considered (i.e. 06:00 – 18:00, diameter 3 – 630 

nm), size 831 x 746 pixels (file size ca. 60 kB). 

Image sets with the different size were tested because all images have to resize to 227 x 227 pixels, which is an input image 

size of the AlexNet. Resizing of images can lost some information of measured PSDs needed in the NPF identification.   

  5 

After transfer learning each dataset (three image sets with three different training-testing fractions of images, repeated 10 

times), the accuracy and training success were evaluated. We calculated the average success rate (accuracy) of the transfer 

learned CNNs by comparing CNN-based and human-made classifications of the test images. We also combined some classes 

together in the result analysis since overlapping of the classes could have easily occurred in the classification, e.g., Class 1 and 

2 were combined to a Clear Event class (Cl_1-2). 10 

2.4 Statistical methods 

The performance of the classification between different image sets and training rates in different event classes was compared 

with the Kruskall-Wallis test and with multivariate analysis of variance (ANOVA). The ANOVA was conducted with a robust 

fit function (rlm; Venables and Ripley, 2002; Huber, 1981) because the normality and homoscedasticity assumptions of 

ordinary least squares method were not completely fulfilled. All statistical analyses were performed in R-software (R Core 15 

Team, 2017). 

3 Results and discussion 

The success of the transfer learning process of CNN was evaluated by confusion matrices, which showed a classification 

accuracy of the CNN method over visual inspection, i.e., how a certain class classified by human (visually) were categorized 

in the CNN classification. An example of the confusion matrices for one training-testing run (Image Set 1, training-testing 20 

ratio of 50 %/50 %) is presented in Fig. 3. When the training data set was analyzed with the trained CNN (same data), the 

overall classification accuracy (i.e. a fraction of days with an equal classification) was ca. 98 % and accuracies at certain event 

classes varied between 94-100 % (see Fig. 3a). For all cases (all image sets and training ratios), mean accuracies of ten different 

runs varied from 93 % to 98 %. The results show that the method can easily classified training data sets with very high accuracy, 

indicating that the training process of CNN was very successful.  25 

 

Table 2 shows a summary of the classification accuracy for all cases when the method was applied for testing data sets 

(different days). The overall accuracy (all classes) is about 63 % for all studied cases. If we consider individual classes in more 

detail, the highest accuracies are in classes of NE and BD (ca. 80 %) whereas the lowest accuracies are in Classes 2, 3 and 0 

(ca. 45 %), followed by Class 1 (ca. 53 %). The highest accuracies in NE and BD classes are apparently due to easier 30 

classification compared to other classes, e.g., no particles at low particles size ranges, no intensive particle growth or absence 
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of particle at all and unusual high particles concentration in a part of data (see Fig. 1). The classification of other days is more 

challenging because differences between classes are not so distinct and the choice between classes can be difficult. When the 

clear event classes (Class 1 and 2) are combined into one category (Clear Event class, Cl_01-02), the classification accuracy 

increased to ca. 75 %. Overall, a classification accuracy for Clear Events and Non-Event categories is ca. 75-80 %, which can 

be considered a very good first result for automatic NPF event classification. In general, the classification would be more 5 

consistent, by both human and CNN, if only two different classes are used for event days: Clear and Weak events or 

"Quantifiable" and "Non-Quantifiable" events as described by Baranizadeh et al. (2014). From “Quantifiable” days, it is 

possible to quantify basic parameters of NPF event, e.g., particle formation and growth rates. Thus, we recommend that NPF 

event days should be categorized into classes of "Quantifiable" (Q) and "Non-Quantifiable" (NQ) events, in addition to Non-

Event (NE), Undefined (UD or Class 0) and Bad-Data (BD) classes in the future analysis. This would also increase the number 10 

of images of the event classes in the training of CNNs. 

 

If we look at the results in more detail, we can see variation in results between different training fractions (number of days in 

training in different event classes are shown in Table 1). In the cases of the training fractions of 80 % and 50 %, the 

classification accuracy values are quite similar but the accuracy decreases when the training fraction is only 20 % (especially 15 

for clear event days). Statistical analysis between different training-testing ratios shows that the 50% and 80% training rates 

are equally precise in all comparisons. This means that we could get adequate classification performance already with 50% 

training fraction (i.e., 135-708 images per class). However, when the size of the training set was lowered to 20% (54-283 

images per class), the classification became more uncertain in many comparisons. At 20 %, statistically significant differences 

were found when all classes were analyzed together and with classes Cl-01-02, Class 00, Class 02 and Class BD, indicating 20 

that the number of training days was too low for precise classification (e.g. Class 1 had only 54 days for training). In summary, 

a training fraction of 50 % (minimum 135 images per class) is a good compromise between accuracy, reliability and number 

of training days for the used data set. 

 

We also studied the effect of image size (Image Sets 1-3) for classification accuracy. Only when all event classes were 25 

inspected together, there was a statistically significant difference between the image sets. Image Set 3 had a slightly lower 

performance rate than the two other sets. When limiting the classes to smaller sub groups the differences were not statistically 

significant anymore. The result indicates that image sets including all daily-measured size distribution data (Image Sets 1 and 

2) are more suitable for CNN analysis than Image Set 3 with a reduced analysis period (6:00-18:00). Although images have to 

resize to the fixed input size (227 x 227 pixels) for CNN analysis, there is no need to reduce the analyzed period to cover only 30 

the active time for NPF. In fact, it is better to use all daily measured data in the analysis although resizing of images might 

lose a part of the information.    
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As described earlier, a choice between different event classes is somewhat arbitrary and not an easy task even for trained 

researchers and thus overlapping between different classes may occur. To analyze this overlapping in more detail, we plotted 

how a manually classified class is distributed into different classes by CNN classification. Figure 4 shows an example of CNN 

classification distributions for Image Set 1 with training-testing ratio of 80 %/20 %. Similar classification distribution into 

different classes can also be observed from the confusion matrix for Image Set 1 with training-testing ratio of 50 %/50 % (only 5 

one computing run) in Fig. 3b. The results show that an overlapping occurs typically between the adjacent or similar type of 

classes. For instance, a manually classified Class 1 is categorized mainly into Classes 1 and 2, Class 2 into Classes 1, 2 and 3, 

etc. The minimum overlapping is for classes NE and BD, which are the easiest classes to categorize by researchers. Similar 

overlapping is also observed in other analyzed cases (image sets and training-testing ratios). 

 10 

To study overlapping or misclassification between different classes, we look in more detail at cases when Clear Event days 

(Classes 1 and 2) by human-made classification are categorized to Non-Event days by CNN-based classification and vice 

versa. Figure 5 shows examples of those days; the left-hand plots are categorized to Clear events by human and right-hand 

plots by CNN, the first row is examples of human made misclassifications, the second row CNN misclassifications and the 

third row difficult situations for classification. For instance, Fig. 5f shows a case when the initial stage of NPF has not been 15 

observed (probably due to change of wind or a mixing of boundary layer) but clear growth of particles is observed later. In 

that case, CNN-based classification does not “recognize” the missing of initial particle formation in the smallest particle sizes 

(ca. 3-4 nm) and therefore the day is classified as a Clear event day (Class 1 and 2). An opposite situation is shown in Fig. 5e 

where a Class 1 day (classified by human) was categorized two times into Non-Event and once into Class 2 day by CNN in 

different computing runs. In that day, NPF is clear but the concentration of formed particles is lower than for typical event 20 

days and this probably affects the accuracy of the CNN-based classification. A similar misclassification can be seen in Fig 5c. 

In contrast, Figures 5a and 5b show examples of misclassifications, which are due to clear human errors, probably the 

researcher has just written down a wrong event class number. A general overview is that clear misclassifications seem to occur 

more commonly in human-made analysis than CNN-based categorization, which indicates that the developed CNN-based 

method has a better reliability and repeatability than manual human-made classification.  25 

 

Only a few reports on automatic data analysis of NPF events have been published so far. In very recent conference proceedings, 

Zaidan et al. (2017) introduced a machine learning method based on a neural network. Their method utilized particle size 

distribution data pre-processing (fitting of lognormal distributions to the data), feature calculations and extractions (e.g. mean 

size, standard deviation, etc.) and principal component analysis (PCA) before the final classification by the neural network. 30 

Their preliminary results show a classification accuracy of ca. 83 % for Hyytiälä (Finland) data in 1996-2014 when only event 

and non-event days were considered. When compared to our method, they used several pre-processing steps before 

classification by the neural network and they did not use pre-trained CNNs or image recognition in their classifier. Kulmala et 

al. (2012) introduced a procedure for automatic detection of regional new particle formation. The procedure is based on 
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monitoring the evolution of particle size distributions and it includes several steps, e.g., data noise cleaning and smoothing, 

excluding data larger than 20 nm and calculating regions of high particle concentration in particle size distributions. In the 

final step, the method automatically recognizes event regions from size distributions (i.e. regions of interest, ROI) and 

determines, e.g., NFP event start times as well as particle formation and growth rates. This method is very straightforward and 

does not include any data analysis methods based on artificial intelligence. To our knowledge, this method has not been used 5 

routinely in NPF event analysis for large datasets. Hyvönen et al. (2005) used data mining techniques to analyze aerosol 

formation in Hyytiälä, Finland and Mikkonen et al. applied similar methods to datasets recorded in SPC (2006) and in Melpitz 

and Hohenpeissenberg, Germany (2011). They studied different variables and parameters that may be behind NPF but they 

did not make automatic classification for NPF events. Furthermore, Vuollekoski et al. (2012) introduced an idea on an 

eigenvector-based approach for automatic NPF event classification but they did not report any results because the method was 10 

still under development and its performance was uncertain.       

4 Conclusions 

We have developed a novel method based on deep learning to analyze new particle formation (NPF) events. The method 

utilizes a commonly available pre-trained Convolutional Neural Network (AlexNet) that has been trained by transfer learning 

to classify particle size distribution images. To our knowledge, this is the first time when NPF events have been successfully 15 

classified automatically into different classes, including several event and non-event classes, directly from particle size 

distribution data. Although there are general guidelines for human-made NPF event classification, the classification is always 

subjective and, therefore, it can vary between researchers or even within one researcher. In many ambiguous cases, it is not 

easy to attribute an event to the "correct" event class, even for an experienced researcher. The quality of the classification can 

especially vary for long-term data sets, which have been analyzed by several researcher in different times. Furthermore, a 20 

wrong event class can be listed to database due to a human error, which reduces reliability of the classification. Therefore, an 

automatic method, which can manage the whole dataset at once with a high reproducibility, is desired for NPF event analysis. 

 

Our results show that transfer learning of a pre-trained CNN to recognize images of particle size distributions is a very powerful 

tool to analyze NPF events. The event classification can be done directly from existing data (figures) without any pre-25 

processing of the data. Although an average classification accuracy of certain classes is ca. 65 %, the overall accuracy is ca. 

80 % for Non-Event (NE) and Clear Event classes (Classes 1 and 2 combined), which is a good first result for automatic NPF 

event analysis. The most of miss-classified days have been categorized into the adjacent classes, which can be ambiguous to 

distinguish from each other. A compassion between CNN-based and human-made classification also showed that often the 

difference in categorization is due to a wrong or an incorrectly listed classification by researcher. Human-made classification 30 

can easily vary by people to people and can change over time whereas CNN-based classification is consistent all times. The 

CNN based categorization seem, at least, to be as reliable as human-made and it could be even more reliable if training image 
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sets are selected carefully. Typically, an analysis of large size distribution dataset requires manual labor and training for several 

researchers, which is very time consuming and quality of analysis may vary. The developed automatic CNN-based NPF event 

analysis can be used to study long-term effects of climate change on NPF in more efficiently, accurately and consistently, 

which helps us to understand in detail aerosol-climate interactions.  

 5 

The transfer learning of pre-trained CNNs (like Alexnet and GooLeNet) allows us to make automatic event classification 

systems effectively without long-lasting design, training and computing of CNNs. Typically, a training of a CNN needs from 

thousands up to a million images but in the transfer learning of a pre-trained CNN, a hundred images can be enough for a 

precise classification. The pre-trained CNNs, as well as other novel machine learning and artificial intelligence methods, and 

the increased computing capacity due to Graphics Processing Units (GPU) enable us to analyze very complex and large datasets 10 

as is typically in atmospheric science.  

 

Instead of the transfer learning of pre-trained CNN, several other artificial intelligence methods could also be utilized in NPF 

analysis. The Recurrent Neural Network (RNN) is a good candidate for the classification and predication of time series 

(Pascanu et al., 2013), however, not viewed as surface plots but as a sequence of particle size distributions. This allows more 15 

variability in the NPF classes, e.g. a continuum of NPF event intensity, and determining time dependent processes like particle 

formation and growth. Furthermore, the underlying weights of NNs would give insights about the size distribution evolution 

and this could be potentially used as an evolution model by substituting or complementing the general dynamic equation 

(GDE). In addition, the use of unsupervised learning method can help us describing new NPF event classes or merge classes 

based on humanly imperceptible features. Reinforcement learning (Kaelbling et al., 1996) is an interesting technique especially 20 

for the cases for which the classification is not well defined, e.g. if the classification varies from one human to another, because 

it only requires a rewarding system or policy. The rewards need to be positive if the prediction is satisfying and negative if 

not; hence, the reward values can be the difference between the number of person that classified in the predicted class and 

those who did not. However, it should be mentioned that this technique works best for prediction models, such as RNN. 

Currently, the state-of-the-art in artificial intelligence are deep CNN based algorithms AlphaGo Zero and AlphaZero developed 25 

by DeepMind (Silver et al., 2017b; Silver et al., 2017a). Those algorithms achieved superhuman performance by tabula rasa 

reinforcement learning without human data or guidance and defeated human in the game of Go and the most dedicated program 

Stockfish in chess.  

 

In the near future, we will analyze long-term changes in NPF in San Pietro Capofiume and utilize the method for other field 30 

stations (e.g. Puijo, Kuopio, Finland). We are including more parameters into automatized NPF analysis (e.g. particle formation 

and growth rates, event start and end times) and are developing methods to predict NPF events based on meteorological and 

other atmospheric data. In addition, the simulation based deep learning is a potential research topic in the future (see, e.g., 

Lähivaara et al., 2017).  
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Figures: 

 

Figure 1: Examples of particle size distributions (time in x-axis, particle diameter in y-axis and particle concentration presented by 

different colors) for different NPF event classes. Name of event class is indicated in plot title and date of measurement in brackets. 
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Figure 2: Visual summary of the classification method: a) a typical dataset with a NPF event, b) the learning process of the 

optimization problem, c) the classification flow of the Convolutional Neural Network (CNN) and the two types of layers of the CNN, 

d) the Convolutional Layer (CL) and e) the Deep Neural Network (DNN), involved in the total CNN. The classification flow (c) is 

from the AlexNet CNN (Krizhevsky et al., 2012) composed of 5 CL intertwined with Max Pooling (MP) layers followed by a fully 5 
connected DNN of 3 layers. The method and variables in the figure are described in detail in Chapter 2.3. 
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Figure 3: Confusion matrices of a) training and b) testing data sets from one run of Image Set 1 with training-testing ratio of 50 

%/50 %. Numbers (percent and absolute number of days) in rows indicate how a certain class classified by human (visually) were 

categorized in the CNN classification.  5 
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Figure 4: Probability plots of distribution of CNN classification (x-axis labels) for different human-made classifications (indicated 

in a title of the plot), for Image Set 1 with training-testing ratio of 80 %/20 %. Histograms are mean values of ten different training-

testing runs and error bars indicate standard deviations of the results.   5 
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Figure 5: Examples of particle size distributions for different days when visually categorized clear event days (Classes 1 and 2) are 

classified Non-Event days by CNN classification or vice versa. In title, numbers after Obs and Pred show NPF event classes 

determined with visual and CNN-based classification, respectively (date of measurement in brackets). Several event class numbers 

in Pred-cases are results from different calculation runs. The first row (a and b) contains examples of human made misclassifications, 5 
the second row (c and d) CNN misclassifications and the third row (e and f) ambiguous situations (low particle concentrations and 

change in air masses during day, respectively). CNN classification is from Image Set 1 with training-testing ratio of 80 %/20 %.  
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Tables: 

 

 

Table 1. Summary of number of days in different NPF event classes and division into different training and testing categories.    

 Days Days Training Testing Training Testing Training Testing 

Event class Total % 80 % 20 % 50 % 50 % 20 % 80 % 

Class_01 269 6 % 215 54 135 134 54 215 

Class_02 431 10 % 345 86 216 215 86 345 

Class_03 619 15 % 495 124 310 309 124 495 

Class_NE 1416 34 % 1133 283 708 708 283 1133 

Class_00 841 20 % 673 168 421 420 168 673 

Class_BD 601 14 % 481 120 301 300 120 481 

Total 4177 100 % 3342 835 2091 2086 835 3342 

 5 

 

 

Table 2. Summary of classification accuracy (%) of the transfer learned CNN when applied for test datasets (mean 

value ± standard deviation from ten model simulations) for three image sets with three different percentage of training 

images. Some classes have been merged together: CL_01-02 is a combination of Class_01 and Class_02, etc.  10 
 

Image Set 1 Image Set 2 Image Set 3 
 

Event class 80 % 50 % 20 % 80 % 50 % 20 % 80 % 50 % 20 % Overall 

All_Class 65 ± 1 64 ± 1 61 ± 1 65 ± 1 64 ± 1 60 ± 3 62 ± 3 63 ± 1 60 ± 2 63 ± 2 

Class_01 57 ± 17 54 ± 20 51 ± 15 63 ± 11 38 ± 10 53 ± 27 54 ± 17 54 ± 10 47 ± 22 52 ± 7 

Class_02 52 ± 9 51 ± 15 31 ± 17 40 ± 17 57 ± 14 27 ± 19 47 ± 20 45 ± 14 45 ± 21 44 ± 10 

Class_03 47 ± 11 32 ± 11 50 ± 14 46 ± 12 42 ± 14 48 ± 14 40 ± 10 44 ± 10 40 ± 16 43 ± 6 

Class_NE 83 ± 9 80 ± 8 81 ± 13 80 ± 10 80 ± 10 81 ± 18 77 ± 12 81 ± 10 79 ± 11 80 ± 2 

Class_00 44 ± 16 53 ± 13 38 ± 18 51 ± 13 48 ± 12 36 ± 28 49 ± 12 43 ± 14 41 ± 14 45 ± 6 

Class_BD 84 ± 3 85 ± 3 83 ± 3 85 ± 4 86 ± 2 80 ± 2 83 ± 4 84 ± 2 80 ± 2 83 ± 2 

Cl_01-02 81 ± 11 85 ± 9 62 ± 19 76 ± 11 78 ± 12 62 ± 19 81 ± 11 77 ± 13 71 ± 24 75 ± 8 

Cl_01-02-03 84 ± 6 79 ± 6 81 ± 6 82 ± 3 81 ± 5 80 ± 8 83 ± 6 82 ± 5 82 ± 3 81 ± 2 

Cl_03-NE 77 ± 10 69 ± 10 78 ± 12 74 ± 8 73 ± 7 77 ± 18 70 ± 10 75 ± 10 72 ± 10 74 ± 3 

Cl_03-00 63 ± 10 60 ± 7 61 ± 13 66 ± 10 63 ± 13 60 ± 18 62 ± 10 60 ± 9 58 ± 14 61 ± 2 

Cl_NE-00 90 ± 5 93 ± 3 90 ± 4 92 ± 2 91 ± 3 91 ± 5 91 ± 3 90 ± 4 90 ± 2 91 ± 1 

Cl_03-NE-00 93 ± 4 91 ± 4 94 ± 4 93 ± 3 93 ± 3 95 ± 3 92 ± 4 93 ± 3 91 ± 6 93 ± 1 
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