
We would like to thank the co-editor for comments regarding our manuscript. Below we 
have included our responses. The co-editor comments are in black text while our responses are in 
blue. 
 
Thank you for your replies. Can you please be more specific in a few of your answers to the first 
reviewer, and provide changes in the text, instead of simply a reply to the reviewer? The comments 
of the reviewer that I would like to detailed a bit more are listed below. The reason I am asking is 
that the readers might have the same questions with the reviewer, and they should find the answers 
in the text, not the reviewer's replies.  
 
Major point 3: A summary paragraph on the points you present in the answer would be useful in 
the text. This would be helpful in combination to reviewer #2 comment.  
 
We have added to the text: 
 
Page 14, Lines 415-419: “We demonstrate that interpretation of the OMI UVAI with a quantitative 
simulation of the UVAI offers information about trends in aerosol composition. We found that 
global trends in the UVAI were largely explained by trends in absorption by mineral dust, 
absorption by brown carbon, and scattering by secondary inorganic aerosols. We also identified 
areas for model development, such as dust emissions from the desiccating Aral Sea.” 
 
Section 5, a: Please state these in the text as well, and support them with references, where needed. 
Also, please address the reviewer's point of 0.1 uncertainty of UVAI, vs. the 0.02 trends. How can 
small trends be significant with such an uncertainty? This needs to be clearly stated in your reply.  
 

We could not find a reference to the 0.1 uncertainty value stated by the reviewer. That 
value does not seem applicable to the trends examined here since the observed OMI UVAI trends 
are < 0.02 yr-1 and do not encompass the 0.1 value stated by the reviewer. We thus proceed to 
estimate the uncertainty in the OMI UVAI trends. 

The UVAI is calculated directly from OMI measured radiances, meaning the primary 
source of uncertainty is the uncertainty in the OMI level 1 UV radiances which would primarily 
be due to instrument degradation over time (Povey and Grainger, 2015). Schenkeveld et al. (2017) 
found that the OMI radiances in the channel used for the UVAI have changed by only ~1-1.15% 
over the entire OMI record. Applying this change to the radiances results in a change in the 
absolute UVAI of ~10-4, which is negligible. 

 
In terms of a trend analysis of the UVAI, the main source of error is the OMI row anomaly, 

as well as the possible effect of instrument degradation on the OMI radiances used in the UVAI 
calculation.  
 
We have rephrased the paragraph on the row anomaly, and added a new paragraph on OMI 
radiances: 
 
Page 5, Lines 145-169: “The main source of error affecting a trend analysis of the UVAI is the 
OMI row anomaly which has reduced the sensor viewing capability for specific scan angles since 
2008 (http://projects.knmi.nl/omi/research/product/rowanomaly-background.php). The sudden 
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suppression of observations for specific viewing geometries (i.e. the row anomaly), could cause 
an additional spurious trend in the UVAI trend calculation. We address this concern by considering 
only scan positions 3-23 which remain unaffected by the row anomaly, and also by using the 
recently reprocessed OMAERUV UVAI that is less sensitive to scan-angle dependent cloud 
artifacts due to the implementation of a Mie-scattering based water cloud model (Torres et al., 
2018).  We focus on cloud-filtered observations by excluding scenes with OMI UVAI radiative 
cloud fraction exceeding 5% to further reduce uncertainty due to clouds. Furthermore, we focus 
on 10-years of observations so that multiple observations can reduce the random error of UVAI 
observations.  

Because the OMI UVAI is calculated directly from OMI measured radiances, instrument 
degradation over time could be a significant  source of uncertainty (Povey and Grainger, 2015). 
Schenkeveld et al. (2017) found that the OMI radiances in the channel used for the UVAI have 
changed by only ~1-1.15% over the entire OMI record. Applying this change to the radiances 
results in a change in the absolute UVAI of ~10-4, which is negligible. Schenkeveld et al. (2017) 
also calculated the trend in the ratio of the 354/380 nm radiances measured by OMI for pixels 
unaffected by the OMI row anomaly and over the Tropical Pacific where the presence of aerosol 
is expected to be minimal, to assess the change in the spectral dependence of OMI’s overall 
radiance calibration over the course of the mission. They found that the trend in the 354/380 nm 
radiance ratio over the entire OMI record was < 0.5 % per decade. We estimate the effect of 
instrument degradation on our trend analysis by calculating the change in UVAI associated with 
the 0.5 % per decade trend in the 354/380 nm radiance ratio. Applying the trend in 354/380 nm 
radiance ratio to the UVAI calculation globally resulted in a negligible change in the UVAI of 
~2x10-4 yr-1. To avoid the influence of any possible spurious trends due to instrument degradation 
on our trend analysis, we subtract the trend in global mean UVAI from the cloud-filtered UVAI 
prior to interpretation.” 
 
Section 6, e: I would appreciate expanding this answer a bit. I agree with the reply that the global 
analysis is valuable, but if you choose to not go with some regional analysis as the reviewer 
suggested, I would be interested to know why.  
 

We have already performed a detailed regional analysis of our UVAI simulation in Hammer et al. 
(2016). For this work, we prefer to share the full global analysis with the reader for transparency, 
so the reader can see both areas of agreement and disagreement. We learn from areas of 
disagreement as much as from areas of agreement as evidenced by the discussion of the feature 
near the Aral Sea.  

We write in the manuscript: 

Page 4, Lines 110-112: “In this work, we apply a simulation of the UVAI, which was developed 
and evaluated regionally and seasonally in Hammer et al. (2016), to interpret trends in recently 
reprocessed OMI UVAI observations for 2005-2015 to understand global changes in aerosol 
composition.” 
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Section 7, g: It would be useful to add in the manuscript the second sentence of the first paragraph 
of your reply, either as-is, or modified.  
 
Page 5, Lines 115-117: “By using scene-dependent OMI viewing geometry together with scene-
dependent modelled atmospheric composition we enable quantitative comparison of model results 
with observations.” 
 
 
p.6, l.159: Please add a statement in the text for this. Also note that I share the concern of the 
reviewer for non-additive variables: it is true that additivity might not matter for the trend study, 
but then the actual trend value can't be taken literally, and only qualitative conclusions can be 
derived following such an approach (increase/decrease), not quantitative. 
 

As with most geophysical datasets, there is significant seasonal variation in the UVAI 
throughout the year which is cyclical and does not represent a true change in the overall UVAI. 
Deseasonalization is a recommended method to accurately calculate a long-term trend in a 
seasonally-varying time series (Weatherhead et al., 1998, 2002; Wilks, 2011), and is widely 
utilized for the trend analysis of non-additive geophysical data (Reynolds and Reynolds, 1988; 
Prinn et al., 1992; Pelletier and Turcotte, 1997; Zhang et al., 1997; Dai, 2006; Norris and Wild, 
2007; Hsu et al., 2012b; Boys et al., 2014; Li et al., 2014; Ma et al., 2016).  
 
We have added to the text: 
 
Page 6, Lines 170-178: “We perform trend analysis on monthly mean time series data for the years 
2005-2015 using Generalized Least Squares (GLS) regression, as described by Boys et al. (2014). 
Prior to regression, the data are aggregated to monthly mean values, and the monthly time series 
data are deseasonalized by subtracting the monthly mean for the period 2005-2015 to focus on the 
long-term trend. Deseasonalization is a recommended method to accurately calculate a long-term 
trend in a seasonally-varying time series (Weatherhead et al., 1998, 2002; Wilks, 2011), and is 
widely employed for the trend analysis of geophysical data including temperature, chemical 
species concentrations, relative humidity, cloud cover, and aerosol parameters (Reynolds and 
Reynolds, 1988; Prinn et al., 1992; Pelletier and Turcotte, 1997; Zhang et al., 1997; Dai, 2006; 
Norris and Wild, 2007; Hsu et al., 2012b; Boys et al., 2014; Li et al., 2014; Ma et al., 2016).” 
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Abstract 12 

 Observations of aerosol scattering and absorption offer valuable information about aerosol 13 

composition. We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of 14 

detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the 15 

Ozone Monitoring Instrument (OMI) over 2005-2015 to understand global trends in aerosol 16 

composition. We conduct our simulation using the vector radiative transfer model VLIDORT with 17 

aerosol fields from the global chemical transport model GEOS-Chem. We examine the 2005-2015 18 

trends in individual aerosol species from GEOS-Chem, and apply these trends to the UVAI 19 

simulation to calculate the change in simulated UVAI due to the trends in individual aerosol 20 

species. We find that global trends in the UVAI are largely explained by trends in absorption by 21 

mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol. Trends 22 

in absorption by mineral dust dominate the simulated UVAI trends over North Africa, the Middle-23 

East, East Asia, and Australia. The UVAI simulation well resolves observed negative UVAI trends 24 

over Australia, but underestimates positive UVAI trends over North Africa and Central Asia near 25 

the Aral Sea, and underestimates negative UVAI trends over East Asia. We find evidence of an 26 

increasing dust source from the desiccating Aral Sea, that may not be well represented by the 27 

current generation of models. Trends in absorption by brown carbon dominate the simulated UVAI 28 

trends over biomass burning regions. The UVAI simulation reproduces observed negative trends 29 

over central South America and West Africa, but underestimates observed UVAI trends over 30 

boreal forests. Trends in scattering by secondary inorganic aerosol dominate the simulated UVAI 31 
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trends over the eastern United States and eastern India. The UVAI simulation slightly 32 

overestimates the observed positive UVAI trends over the eastern United States, and 33 

underestimates the observed negative UVAI trends over India. Quantitative simulation of the OMI 34 

UVAI offers new insight into global trends in aerosol composition. 35 

 36 

1. Introduction 37 

Atmospheric aerosols have significant climate impacts due to their ability to scatter and 38 

absorb solar radiation and to their indirect effect through modification of cloud properties. The 39 

exact magnitude of the direct radiative forcing remains highly uncertain (IPCC, 2014), although 40 

most studies agree it is significant (Andreae and Gelencsér, 2006; Mann and Emanuel, 2006; 41 

Mauritsen, 2016). Storelvmo et al. (2016) estimate that changes in global aerosol loading over the 42 

past 45 years have caused cooling (direct and indirect) that masks about one third of the 43 

atmospheric warming due to increasing greenhouse gas emissions. Aerosol absorption has been 44 

estimated to be the second largest source of atmospheric warming after carbon dioxide 45 

(Ramanathan and Carmichael, 2008; Bond et al., 2013; IPCC, 2014), although considerable 46 

uncertainty remains regarding the exact magnitude (Stier et al., 2007). The large uncertainty 47 

regarding the direct radiative impacts of aerosols on climate is driven by the large variability in 48 

aerosol physical and chemical properties, as well as their various emission sources, making it 49 

extremely difficult to fully understand their interactions with radiation (Pöschl, 2005; Moosmüller 50 

et al., 2009; Curci et al., 2015; Kristiansen et al., 2016). Global observations of trends in aerosol 51 

scattering and absorption would offer valuable constraints on trends in aerosol sources and 52 

composition. 53 

The emissions of aerosols and their precursors have changed significantly over the past 54 

decade. In North America and Europe, the anthropogenic emissions of most aerosol species (e.g. 55 

black carbon, organic aerosols) and aerosol precursors (e.g. sulfur dioxide and nitrogen oxides) 56 

have decreased due to pollution controls (Leibensperger et al., 2012;  Klimont et al., 2013; Curier 57 

et al., 2014; Simon et al., 2014; Xing et al., 2015; Li et al., 2017a). By contrast, emissions of 58 

aerosols and aerosol precursors have increased in developing countries due to increased industrial 59 

activity, particularly in China and India. Chinese emissions of black carbon (BC), organic carbon 60 

(OC), and nitrogen oxides (NOx) have been increasing over the past decade (Zhao et al., 2013; Cui 61 

et al., 2015), although in the most recent years NOx emissions have been declining, driven by 62 
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denitration devices at power plants (Liu et al., 2016). Due to the wide implementation of flue-gas 63 

desulfurization equipment on most power plants in China, emissions of sulfur dioxide (SO2) in 64 

some regions have been decreasing since about 2006-2008 (Lu et al., 2011; Wang et al., 2015; 65 

Fioletov et al., 2016). Indian emissions of anthropogenic aerosols and their precursors have been 66 

increasing over the past decade (Lu et al., 2011; Klimont et al., 2017). There have also been 67 

significant changes in global dust and biomass burning emissions. Shao et al. (2013) use synoptic 68 

data to estimate a global decrease in dust emissions between 1974 and 2012, driven largely by 69 

reductions from North Africa with weaker contributions from Northeast Asia, South America, and 70 

South Africa. By examining trends in burned area, Giglio et al. (2013) estimate a decrease in global 71 

biomass burning emissions between 2000 and 2012. Trends in aerosol composition produced by 72 

these changing emissions may be detectable from satellite observations of aerosol scattering and 73 

absorption. 74 

Detection of aerosol composition from passive nadir satellite observations is exceedingly 75 

difficult; few methods exist. The aerosol-type classification provided by retrievals from the MISR 76 

instrument, enabled by multi-angle viewing, is one such source of information about aerosol 77 

composition from constraints on particle size, shape, and single scattering albedo (SSA) (Kahn 78 

and Gaitley, 2015). MISR retrievals have been used to classify particles relating to events such as 79 

biomass burning, desert dust, volcanic eruptions, and pollution events (e.g. Liu et al., 2007; 80 

Kalashnikova and Kahn, 2008; Dey and Di Girolamo, 2011; Scollo et al., 2012; Guo et al., 2013). 81 

The most commonly used satellite product for aerosol information is aerosol optical depth (AOD), 82 

the columnar extinction of radiation by atmospheric aerosols. AOD can be retrieved from satellite 83 

measurements of top of atmosphere radiance in combination with prior knowledge of aerosol 84 

optical properties. Several studies have examined trends in satellite AOD. Following trends in 85 

emissions, over the past decade positive trends in satellite AOD have been observed over Asia and 86 

Africa corresponding to regions experiencing industrial growth (de Meij et al., 2012; Chin et al., 87 

2014a; Mao et al., 2014; Mehta et al., 2016), while negative trends in satellite AOD have been 88 

observed over North America and Europe, largely due to pollution controls (Hsu et al., 2012; de 89 

Meij et al., 2012; Chin et al., 2014b; Mehta et al., 2016). Studies such as these demonstrate the 90 

information about the evolution of aerosol abundance offered by total column AOD retrievals, 91 

however measurements of absorption would complement the scattering information in AOD 92 

retrievals by providing independent information on aerosol composition.  93 
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The Ultraviolet Aerosol Index (UVAI) is a method of detecting aerosol absorption from 94 

satellite measured radiances (Herman et al., 1997; Torres et al., 1998). Because the UVAI is 95 

calculated from measured radiances, a priori assumptions about aerosol composition are not 96 

required for its calculation, thus yielding independent information on aerosol scattering (Herman 97 

et al., 1997; Torres et al., 1998, 2007; de Graaf et al., 2005; Penning de Vries et al., 2009) and 98 

absorption. The UVAI has been widely applied to examine mineral dust (Israelevich et al., 2002; 99 

Schepanski et al., 2007; Badarinath et al., 2010; Huang et al., 2010) and biomass burning aerosols 100 

(Duncan et al., 2003; Guan et al., 2010; Torres et al., 2010; Kaskaoutis et al., 2011; Mielonen et 101 

al., 2012), including brown carbon (Jethva and Torres, 2011; Hammer et al., 2016). The UVAI is 102 

not typically used to examine scattering aerosol, however aerosol scattering causes a net decrease 103 

in the overall value of the UVAI, meaning that the UVAI could be used to detect changes due to 104 

both aerosol absorption and scattering. Prior interpretation of the UVAI has been complicated by 105 

its dependence on geophysical parameters, such as aerosol layer height (Herman et al., 1997; 106 

Torres et al., 1998; de Graaf et al., 2005). Examining trends in the UVAI would provide an exciting 107 

opportunity to investigate the evolution of aerosol absorption and scattering over time, if the 108 

multiple parameters affecting the UVAI could be accounted for through simulation. 109 

In this work, we apply a simulation of the UVAI, which was developed and evaluated 110 

regionally and seasonally in Hammer et al. (2016), to interpret trends in recently reprocessed OMI 111 

UVAI observations for 2005-2015 to understand global changes in aerosol composition. We 112 

interpret observed UVAI values by using a radiative transfer model (VLIDORT) to calculate 113 

UVAI values as a function of simulated aerosol composition from the global 3-D chemical 114 

transport model GEOS-Chem. By using scene-dependent OMI viewing geometry together with 115 

scene-dependent modelled atmospheric composition we enable quantitative comparison of model 116 

results with observations. Comparison of trends in observed OMI UVAI values to the trends in 117 

simulated UVAI values, which are calculated using known aerosol composition, enables 118 

qualification of how changes in aerosol absorption and scattering could influence the observed 119 

UVAI trends and identification of model development needs. We conduct our analysis at the global 120 

scale to understand trends worldwide. Section 2 describes the OMI UVAI observations and our 121 

UVAI simulation. Section 3 examines the trends in emissions of GEOS-Chem aerosols and their 122 

precursors for 2005-2015 to provide context for the trends in our simulated UVAI. Section 4 123 

compares the mean values over 2005-2015 of the OMI UVAI and our simulated UVAI. Section 5 124 
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compares the 2005-2015 trends in OMI and simulated UVAI values. In section 6 we examine the 125 

sensitivity of the UVAI to changes in the abundance of individual aerosol species. Trends in our 126 

UVAI simulation are interpreted by applying the trends in the GEOS-Chem aerosol species to 127 

calculate the associated change in UVAI. Section 7 reports the conclusions. 128 

 129 

2. Methods 130 

2.1 OMI Ultraviolet Aerosol Index 131 

The OMI Ultraviolet Aerosol Index is a method of detecting absorbing aerosols from 132 

satellite measurements in the near-UV wavelength region and is a product of the OMI Near-UV 133 

algorithm (OMAERUV) (Herman et al., 1997; Torres et al., 1998, 2007). The OMAERUV 134 

algorithm uses the 354 nm and 388 nm radiances measured by OMI to calculate the UVAI as a 135 

measure of the deviation from a purely Rayleigh scattering atmosphere bounded by a Lambertian 136 

reflecting surface. Positive UVAI values indicate absorbing aerosol while negative values indicate 137 

non-absorbing aerosol. Near-zero values occur when clouds and Rayleigh scattering dominate. 138 

Negative UVAI values due to aerosol scattering are often weak and have historically been affected 139 

by noise in previous datasets (Torres et al., 2007; Penning de Vries et al., 2015). Because UVAI 140 

values are calculated from top of atmosphere (TOA) radiance which contains total aerosol effects, 141 

the presence (or lack) of scattering aerosol along with absorbing aerosol can either weaken (or 142 

strengthen) the absorption signal. Therefore the UVAI could be used to detect changes over time 143 

due to both aerosol absorption and scattering.  144 

The main source of error affecting a trend analysis of the UVAI is the OMI row anomaly 145 

which has reduced the sensor viewing capability for specific scan angles since 2008 146 

(http://projects.knmi.nl/omi/research/product/rowanomaly-background.php). The sudden 147 

suppression of observations for specific viewing geometries (i.e. the row anomaly), could cause 148 

an additional spurious trend in the UVAI trend calculation. We address this concern by considering 149 

only scan positions 3-23 which remain unaffected by the row anomaly, and also by using the 150 

recently reprocessed OMAERUV UVAI that is less sensitive to scan-angle dependent cloud 151 

artifacts due to the implementation of a Mie-scattering based water cloud model (Torres et al., 152 

2018).  We focus on cloud-filtered observations by excluding scenes with OMI UVAI radiative 153 

cloud fraction exceeding 5% to further reduce uncertainty due to clouds. Furthermore, we focus 154 
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on 10-years of observations so that multiple observations can reduce the random error of UVAI 155 

observations.  156 

Because the OMI UVAI is calculated directly from OMI measured radiances, instrument 157 

degradation over time could be a significant source of uncertainty (Povey and Grainger, 2015). 158 

Schenkeveld et al. (2017) found that the OMI radiances in the channel used for the UVAI have 159 

changed by only ~1-1.15% over the entire OMI record. Applying this change to the radiances 160 

results in a change in the absolute UVAI of ~10-4, which is negligible. Schenkeveld et al. (2017) 161 

also calculated the trend in the ratio of the 354/380 nm radiances measured by OMI for pixels 162 

unaffected by the OMI row anomaly and over the Tropical Pacific where the presence of aerosol 163 

is expected to be minimal, to assess the change in the spectral dependence of OMI’s overall 164 

radiance calibration over the course of the mission. They found that the trend in the 354/380 nm 165 

radiance ratio over the entire OMI record was < 0.5 % per decade. We estimate the effect of 166 

instrument degradation on our trend analysis by calculating the change in UVAI associated with 167 

the 0.5 % per decade trend in the 354/380 nm radiance ratio. Applying the trend in 354/380 nm 168 

radiance ratio to the UVAI calculation globally resulted in a negligible change in the UVAI of 169 

~2x10-4 yr-1. To avoid the influence of any possible spurious trends due to instrument degradation 170 

on our trend analysis, we subtract the trend in global mean UVAI from the cloud-filtered UVAI 171 

prior to interpretation. 172 

We perform trend analysis on monthly mean time series data for the years 2005-2015 using 173 

Generalized Least Squares (GLS) regression, as described by Boys et al. (2014). Prior to 174 

regression, the data are aggregated to monthly mean values, and the monthly time series data are 175 

deseasonalized by subtracting the monthly mean for the period 2005-2015 to focus on the long-176 

term trend. Deseasonalization is a recommended method to accurately calculate a long-term trend 177 

in a seasonally-varying time series (Weatherhead et al., 1998, 2002; Wilks, 2011), and is widely 178 

employed for the trend analysis of geophysical data including temperature, chemical species 179 

concentrations, relative humidity, cloud cover, and aerosol parameters (Reynolds and Reynolds, 180 

1988; Prinn et al., 1992; Pelletier and Turcotte, 1997; Zhang et al., 1997; Dai, 2006; Norris and 181 

Wild, 2007; Hsu et al., 2012b; Boys et al., 2014; Li et al., 2014; Ma et al., 2016). Each pixel is 182 

required to have data for at least 60% of the time-period before regression is performed. In the 183 

following section, we discuss our UVAI simulation and the implementation of the new UVAI 184 

algorithm in the simulation.  185 
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2.2 Simulated UVAI 186 

We simulate the UVAI using the VLIDORT radiative transfer model (Spurr, 2006), 187 

following Buchard et al. (2015) and Hammer et al. (2016). We calculate the top of atmosphere 188 

radiances at 354 nm and 388 nm needed for the UVAI calculation by supplying VLIDORT with 189 

the OMI viewing geometry for each scene, as well as the GEOS-Chem simulation of vertical 190 

profiles of aerosol extinction, spectrally dependent single scattering albedo, and the corresponding 191 

spectrally dependent scattering phase function. Thus these parameters account for the sensitivity 192 

of the UVAI to aerosol layer height and spectrally dependent aerosol optical properties. 193 

 We introduce to the UVAI simulation a Mie-scattering based water cloud model 194 

(Deirmendjian, 1964) for consistency with the reprocessed OMI UVAI dataset. Following Torres 195 

et al. (2018), we compute the radiances used in the UVAI calculation as a combination of clear 196 

and cloudy sky conditions. We use the same cloud fractions and cloud optical depths used in the 197 

OMI UVAI algorithm for coincident OMI pixels. We avoid cloudy scenes by considering only 198 

pixels with OMI radiative cloud fraction of less than 5%. For the UVAI calculation we use the 199 

surface reflectance fields provided by OMI. We calculated the 2005-2015 trends in these surface 200 

reflectance fields, and found that they were statistically insignificant globally and on the order of 201 

10-5 yr-1. We calculated the change in UVAI due to a change in surface reflectance of this order of 202 

magnitude, and found that the change in UVAI was negligible. We also calculated the change in 203 

UVAI due to changes in simulated aerosol altitude, but found that the trends in aerosol altitude 204 

were negligible (order 10-5 hPa yr-1). Therefore we focus our analysis on trends in aerosol 205 

composition which have a larger effect on the UVAI as demonstrated below. 206 

 We use the GEOS-Chem model v11-01 (http://geos-chem.org) as input to the UVAI 207 

simulation, and to calculate the sensitivity of the UVAI simulation to aerosol composition. The 208 

simulation is driven by assimilated meteorological data from MERRA-2 Reanalysis of the NASA 209 

Global Modeling and Assimilation Office (GMAO). Our simulation is conducted at a spatial 210 

resolution of 2° x 2.5° with 47 vertical levels for the years 2005-2015. We supply VLIDORT with 211 

GEOS-Chem aerosol fields coincident with OMI observations. 212 

 GEOS-Chem contains a detailed oxidant-aerosol chemical mechanism (Bey et al., 2001; 213 

Park et al., 2004). The aerosol simulation includes the sulfate-nitrate-ammonium system 214 

(Fountoukis and Nenes, 2007; Park et al., 2004; Pye et al., 2009), primary carbonaceous aerosol 215 

(Park et al., 2003), mineral dust (Fairlie et al., 2007), and sea salt (Jaeglé et al., 2011). Semivolatile 216 
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primary organic carbon and secondary organic aerosol formation is described in Pye et al. (2010). 217 

We update the original semi-volatile partitioning of secondary OA (SOA) formed from isoprene 218 

with the irreversible uptake scheme in Marais et al. (2016). HNO3 concentrations are reduced 219 

following Heald et al. (2012). Aerosol optical properties are based on the Global Aerosol Data Set 220 

(GADS) (Koepke et al., 1997) as originally implemented by Martin et al. (2003), with updates for 221 

organics and secondary inorganics from aircraft observations (Drury et al., 2010), for mineral dust 222 

(Lee et al., 2009; Ridley et al., 2012), and for absorbing brown carbon (Hammer et al., 2016). Here 223 

we update the mineral dust optics at ultraviolet wavelengths using a refractive index that minimizes 224 

the difference between the mean simulated and OMI UVAI values to allow focus on trends. 225 

Aerosols are treated as externally mixed. 226 

 Anthropogenic emissions are from the EDGARv4.3.1 global inventory (Crippa et al., 2016) 227 

with emissions overwritten in areas with regional inventories for the United States (NEI11;Travis 228 

et al., 2016), Canada (CAC), Mexico (BRAVO; Kuhns et al., 2005), Europe (EMEP; 229 

http://www.emep.int/), China (MEIC v1.2; Li et al., 2017a) and elsewhere in Asia (MIX; Li et al., 230 

2017a). Emissions from open fires for individual years from the GFED4 inventory (Giglio et al., 231 

2013) are included. The long-term concentrations from this simulation have been extensively 232 

evaluated versus ground-based PM2.5 composition measurements where available, and versus 233 

satellite-derived PM2.5 trends (Li et al., 2017b). 234 

 The Supplement evaluates trends in simulated SO2, NO2, and AOD versus satellite 235 

retrievals from multiple instruments and algorithms. We find broad consistency between our 236 

simulated NO2 and SO2 column trends with those from OMI (Figures S1 and S2). Our simulated 237 

AOD trends are generally consistent with the trends in satellite AOD retrievals, except for positive 238 

trends in AOD over western North America and near the Aral Sea in most retrieval products, and 239 

a negative trend in AOD over Mongolia/Inner Mongolia in all retrieval products (Figure S3). 240 

 We filter our GEOS-Chem aerosol simulated fields based on the coincident OMI pixels, 241 

which are regridded to the model resolution of 2° x 2.5°. This allows for the direct comparison 242 

between our GEOS-Chem simulation and the OMI UVAI observations. 243 

 244 

3. Trend in emissions of GEOS-Chem aerosols and their precursors 245 

Figure 1 shows the trends in emissions of aerosols and their precursors from our GEOS-246 

Chem simulation calculated from the GLS regression of monthly time series values for 2005-2015. 247 
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Cool colors indicate negative trend values, warm colors indicate positive trend values, and the 248 

opacity of the colors indicates the statistical significance of the trends. The trends in emissions of 249 

sulfur dioxide (SO2) and nitrogen oxides (NOx) follow similar patterns (Figure 1a and 1b, 250 

respectively). Negative trends (–1 to -0.01 kg km-2 yr-1) are present over North America and 251 

Europe, corresponding to pollution controls (Leibensperger et al., 2012; Klimont et al., 2013; 252 

Curier et al., 2014; Simon et al., 2014; Xing et al., 2015; Li et al., 2017a). Positive trends (0.5 to 1 253 

kg km-2 yr-1) in both species are present over India and eastern China, however the positive trends 254 

in emissions of SO2 over eastern China are interspersed with negative trends (-1 to -0.5 kg km-2 255 

yr-1) in SO2 emissions, corresponding to the deployment of desulfurization equipment on power 256 

plants in recent years (Lu et al., 2011; Klimont et al., 2013; Wang et al., 2015). Ammonia (NH3) 257 

emissions (Figure 1c) have positive trends (0.001 to 0.05 kg km-2 yr-1) over most of South America, 258 

North Africa, the Middle-East, and most of Asia with larger trends (0.1 to 0.5 kg km-2 yr-1) over 259 

India and eastern China. There are positive trends (0.001 to 0.05 kg km-2 yr-1) in black carbon (BC) 260 

emissions (Figure 1d) over North Africa, Europe, the Middle-East, India, and China, and negative 261 

trends (-0.05 to -0.001 kg km-2 yr-1) over North America, Europe, West Africa, and central South 262 

America. The trends in primary organic aerosol (POA) emissions (Figure 1e) follow a similar 263 

pattern as the trends in BC emissions, except there are negative trends (-0.1 to -0.05 kg km-2 yr-1) 264 

over eastern China, and the negative trends (-1 to -0.1 kg km-2 yr-1)  over West Africa and central 265 

South America are larger in magnitude reflecting regional changes in fire activity (Chen et al., 266 

2013; Andela and van der Werf, 2014). There are also positive trends (0.001 to 0.05 kg km-2 yr-1) 267 

over the northern United States and Canada. The trends in dust emissions (Figure 1f) show the 268 

largest magnitude of all the various species, although many have low statistical significance, with 269 

areas of positive and negative trends (> 1 and < -1 kg km-2 yr-1) over North Africa, positive trends 270 

(> 1 kg km-2 yr-1) parts of the Middle-East, and negative trends (< -1 kg km-2 yr-1) over northern 271 

China and southern Australia. 272 

 273 

4. Mean UVAI values for 2005-2015 274 

 We examine the seasonal long-term mean UVAI values for insight into the spatial 275 

distribution of the aerosol absorption signals. Figures 2 and 3 show the seasonal mean UVAI values 276 

for 2005-2015 for OMI and the simulation, respectively. Positive UVAI values between 0.2 and 277 

1.5 indicating aerosol absorption are present over major desert regions globally for both OMI and 278 
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the simulation, particularly over the Saharan, Iranian, and Thar deserts. These positive signals are 279 

driven by the absorption by mineral dust (Herman et al., 1997; Torres et al., 1998; Buchard et al., 280 

2015). The simulation underestimates some of the smaller dust features captured by OMI, such as 281 

over western North America, South America, Australia, and parts of Asia, perhaps reflecting an 282 

underestimate in the simulated mineral dust lifetime (Ridley et al. 2012) and missing dust sources 283 

(Ginoux et al., 2012; Guan et al., 2016; Huang et al., 2015; Philip et al., 2017). The seasonal 284 

variation in the observed and simulated UVAI is similar albeit with larger simulated values in 285 

spring (MAM) over North Africa. In all seasons, the UVAI values driven by absorption by dust in 286 

the simulation are concentrated mostly over North Africa, while for OMI the UVAI values are 287 

more homogeneous over the Middle-East and Asia as well. Positive UVAI values of ~0.2-1 over 288 

West and central Africa appearing in both the OMI and simulated values correspond to absorption 289 

by brown carbon from biomass burning activities in these regions (Jethva and Torres, 2011; 290 

Hammer et al., 2016). Over ocean most data are removed by our strict cloud filter. 291 

 292 

5. Trend in UVAI values between 2005-2015 293 

 Figure 4 shows the trend in OMI and simulated UVAI values (coincidently sampled from 294 

OMI) calculated from the GLS regression of monthly UVAI time series values over 2005-2015. 295 

Several regions exhibit consistency between the OMI and simulated UVAI trends. There are 296 

statistically significant, positive trends in both OMI and simulated UVAI values over the eastern 297 

United States (OMI: 1.0 x10-5 to 2.5x10-4 yr-1, simulated: 2.5x10-4 yr-1 to 5.0 x10-4 yr-1), and 298 

Canada and parts of Russia (OMI: 1.0 x10-5 to 2.5x10-4 yr-1, simulated: 5.0 x10-4 to 2.0x10-3 yr-1).  299 

Positive UVAI trends (1.0 x10-5 to 2.5x10-4 yr-1) in both OMI and simulated values are present 300 

over Europe, although the simulated trends have low statistical significance. Statistically 301 

significant, positive UVAI trends (5.0 x10-4 to 2.0 x10-3 yr-1) in OMI values are apparent over 302 

North Africa, which generally are captured by the simulation but with low statistical significance. 303 

Negative UVAI trends (-1.5x10-3 yr-1 to -1.0x10-5 yr-1) in both OMI and simulated values are 304 

apparent over most of South America, southern Africa, and Australia. Negative UVAI trends (-305 

2x10-3 to -5.0x10-4 yr-1) in both OMI and simulated values are present over West Africa, with low 306 

statistical significance that could be related to the filtering of persistent clouds. OMI and simulated 307 

UVAI values show negative trends (-2x10-3 to -5.0x10-4 yr-1) over India, although the simulated 308 

trends have lower statistical significance.  309 
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 Some regions have trends in OMI UVAI values which are not captured by the simulation. 310 

Statistically significant, positive UVAI trends (2.5x10-4 yr-1 to 1.5 x10-3 yr-1) over the western 311 

United States are apparent in the OMI values but not in the simulation. Zhang et al. (2017) found 312 

positive trends in aerosol absorption optical depth from OMI retrievals that they attributed to 313 

positive trends in mineral dust over the region, which were not captured by their GEOS-Chem 314 

simulation. Statistically significant, positive UVAI trends (5.0 x10-4 to 2.0 x10-3 yr-1) in OMI 315 

values exist over the Middle-East, while the simulation has negative trends with low statistical 316 

significance. The OMI UVAI reveals a region of statistically significant, negative trends (-2x10-3 317 

to -5.0x10-4 yr-1) over Mongolia/Inner Mongolia which is not captured by the simulation. There is 318 

also a small area of statistically significant, positive UVAI trends (1.5 x10-3 to 2.0 x10-3 yr-1) in 319 

OMI values of over Central Asia between the Caspian Sea and the Aral Sea which is not captured 320 

by the simulation. Trends in surface reflectance from the diminishing Aral Sea cannot solely 321 

explain the UVAI trends since they extend over the Caspian Sea. Trends in mineral dust are a more 322 

likely explanation as discussed further below. 323 

 Figures 5 and 6 show the seasonality of the OMI and simulated UVAI trends respectively. 324 

The positive UVAI trends over the eastern United States is strongest in summer (JJA) for both 325 

OMI and the simulation. The positive UVAI trends over North Africa and the Middle-East are 326 

present for all seasons for OMI and for most seasons in the simulation, except in JJA for North 327 

Africa and spring (MAM) for the Middle-East. The simulation underestimates the observed UVAI 328 

trend over North Africa in SON, perhaps related to an underestimate in trends in mineral dust 329 

emissions in the simulation during this season. He et al. (2014) examined the 2000-2010 trends in 330 

global surface albedo using the Global Land Surface Satellites (GLASS) dataset and found no 331 

significant trends over this region during SON. The negative trend in UVAI values over West 332 

Africa is most apparent in the fall (SON) and winter (DJF) for both OMI and the simulation. The 333 

negative OMI UVAI trends over Mongolia/Inner Mongolia and the positive OMI UVAI trends 334 

near the Aral Sea are strongest in JJA and weakest in DJF, providing evidence for a mineral dust 335 

source. The OMI UVAI trend over Mongolia/Inner Mongolia may be part of a longer term trend. 336 

Guan et al. (2017) examined dust storm data over northern China (including Inner Mongolia) for 337 

the period 1960-2007, and found that dust storm frequency has been declining over the region due 338 

to a gradual decrease in wind speed. The current generation of chemical transport models is 339 

unlikely to represent the source near the Aral Sea without an explicit parameterization of the drying 340 
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sea. The desiccation of the Aral Sea over recent decades has resulted in a steady decline in water 341 

coverage over the area (Shi et al., 2014; Shi and Wang, 2015) and has led to the dried up sea bed 342 

becoming an increasing source of dust activity in the region (Spivak et al., 2012). Indoitu et al. 343 

(2015) found that most dust events are directed towards the west, consistent with the OMI 344 

observations. An increase in surface reflectance due to the drying up of the sea bed could also 345 

positively influence trends in UVAI. He et al. (2014) found a positive trend over 2000-2010 in 346 

surface albedo over the region in JJA and SON, corresponding to when the OMI UVAI trends are 347 

strongest. 348 

 349 

6. Contribution of individual aerosol species to the simulated UVAI 350 

 To further interpret the UVAI trends, we examine the trends in aerosol concentrations from 351 

our GEOS-Chem simulation (Figure 7). Figure 7a shows the trends in secondary inorganic aerosol 352 

(SIA). There are statistically significant, negative trends over the eastern United States (-1 to -0.05 353 

µg m-2 yr-1) and statistically significant, positive trends over the Middle-East (0.05 to 0.5 µg m-2 354 

yr-1), India (0.05 to 1 µg m-2 yr-1), South America, and southern Africa (0.05 to 0.25 µg m-2 yr-1). 355 

Figure 7b shows the trends in dust. Similar to the trends in emissions, the trends in dust 356 

concentrations are of the largest magnitude of the various species, however often with low 357 

statistical significance. There are positive trends over the Middle-East (> 2 µg m-2 yr-1), India (0.05 358 

to 2 µg m-2 yr-1), and north west China (1 to 2 µg m-2 yr-1). There are also positive trends (0.05 to 359 

0.25 µg m-2 yr-1) with low statistical significance over the United States, northern South America, 360 

southern Africa, and northern Australia. There is a combination of positive and negative trends (> 361 

2 and < -2 µg m-2 yr-1) over North Africa, and negative trends over China and Mongolia (< -2 µg 362 

m-2 yr-1) and Australia (-1 to -0.5 µg m-2 yr-1). Figures 7c and 7d show the trends in total organic 363 

aerosol (OA) and the absorbing brown carbon (BrC) component of OA, respectively. Positive 364 

trends over Canada and parts of Russia (0.05 to 0.5 µg m-2 yr-1) in total OA are mainly due to the 365 

positive trend in BrC. Statistically significant, negative trends in total OA (-1 to -0.05 µg m-2 yr-1) 366 

over the eastern United States are dominated by scattering organic aerosol. Statistically significant, 367 

negative trends (-2 to -0.05 µg m-2 yr-1) over West Africa and South America for total OA are 368 

dominated by the trend in absorbing BrC. Figures 5e and 5f show the trends in black carbon (BC) 369 
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and salt, respectively. There are positive trends (0.05 to 0.25 µg m-2 yr-1) in BC with low statistical 370 

significance over India and China. Sea salt trends are negligible. 371 

 To gain further insight into how changes in aerosols effect the trends in simulated UVAI, 372 

we examine the sensitivity of the UVAI to changes in individual aerosol species. Figure 8 shows 373 

the change in annual mean UVAI due to doubling the concentration of individual aerosol species. 374 

This information facilitates interpretation of the observed UVAI trends by identifying the chemical 375 

components that could explain the observed trends. Doubling scattering SIA concentrations 376 

(Figure 8a) decreases the UVAI between -0.25 and -0.1 over most of the globe, with the largest 377 

changes over the Eastern United States, Europe, parts of the Middle-East, India, and south east 378 

China. Doubling dust concentrations (Figure 8b) produces the largest changes in UVAI, causing 379 

increases between 0.5 and 1 over North Africa, and smaller increases between 0.2 and 0.5 over the 380 

Middle-East, Europe, and parts of Asia and Australia. Figures 8c and 8d show the changes in 381 

UVAI due to doubling total OA concentrations and the absorbing BrC component, respectively. 382 

The doubling of BrC increases the UVAI between 0.1 and 0.5 over Canada, West and central 383 

Africa, India, parts of Russia, eastern China, and central South America. Doubling total OA 384 

concentrations over central South America causes a net decrease of ~ -0.1 as the scattering 385 

component of total OA cancels out the absorption by BrC. Doubling BC concentrations (Figure 386 

8e) increases the UVAI of 0.1 over central Africa, India, and south east China, while doubling sea 387 

salt concentrations (Figure 8f) has negligible effect on the UVAI. 388 

 Figure 9 shows the change in simulated UVAI due to the 2005-2015 trends in individual 389 

aerosol species from our GEOS-Chem simulation. The change for each species is calculated by 390 

applying the aerosol concentration trends for the individual aerosol type while leaving the 391 

concentrations unchanged for the other aerosol species, then taking the difference between this 392 

perturbed UVAI simulation and an unperturbed simulation. Negative trends in scattering SIA 393 

(Figure 9a) increase the UVAI by 1.0x10-4 to 7.5x10-3 yr-1 over the eastern United States and by 394 

1.0x10-4 to 2.5x10-3 yr-1 over Europe, corresponding to regions of positive UVAI trends in both 395 

OMI and the simulation (Figure 4). Increasing SIA decreases the UVAI by -2.5x10-3 yr-1 to -396 

1.0x10-4 yr-1 over the Middle-East, India, and east China. Trends in dust concentrations (Figure 397 

9b) cause the largest change in UVAI with regional increases > 1x10-2 yr-1 and regional decreases 398 

< -1x10-2 yr-1. Simulated UVAI trends due to mineral dust are mostly negative over North Africa, 399 

East Asia, and Australia, while mostly positive over the Middle-East. Noisy trends in regional 400 
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meteorology cause heterogeneous trends in dust and in the UVAI, with low statistical significance. 401 

Figures 9c and 9d show the change in UVAI due to the trends in total OA and the absorbing BrC 402 

component of total OA, respectively. Most of the changes in UVAI due to the trends in total OA 403 

are caused by the trends in the absorbing BrC component, with increases in the UVAI between 404 

2.5x10-3 and 1x10-2 yr-1 over Canada and parts of Russia, corresponding to regions of positive 405 

UVAI trends for both OMI and the simulation (Figure 4). There are decreases in the UVAI < -406 

1x10-2 yr-1 over central South America and West Africa due to the negative trends in BrC, 407 

corresponding to regions of negative UVAI trends for both OMI and the simulation (Figure 4). 408 

Over the eastern United States there is a mixture of increases and decreases in the UVAI due to 409 

the trends in scattering organic aerosol. Positive trends in BC increase the UVAI (Figure 9e) by 410 

1.0x10-4 to 2.5x10-3 yr-1 over India and China. There are no obvious changes in the UVAI due to 411 

the trends in sea salt (Figure 9f).  412 

 413 

7. Conclusions 414 

 Observations of aerosol scattering and absorption offer valuable information about aerosol 415 

composition. We simulated the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol 416 

absorption using satellite measurements, to interpret trends in OMI observed UVAI over 2005-417 

2015 to understand global trends in aerosol composition. We conducted our simulation using the 418 

vector radiative transfer model VLIDORT with aerosol fields from the global chemical transport 419 

model GEOS-Chem.  420 

We demonstrated that interpretation of the OMI UVAI with a quantitative simulation of 421 

the UVAI offers information about trends in aerosol composition. We found that global trends in 422 

the UVAI were largely explained by trends in absorption by mineral dust, absorption by brown 423 

carbon, and scattering by secondary inorganic aerosols. We also identified areas for model 424 

development, such as dust emissions from the desiccating Aral Sea. 425 

We examined the 2005-2015 trends in individual aerosol species from GEOS-Chem, and 426 

applied these trends to the UVAI simulation to calculate the change in simulated UVAI due to the 427 

trends in individual aerosol species. The two most prominent positive trends in the observed UVAI 428 

were over North Africa and over Central Asia near the desiccating Aral Sea. The simulated UVAI 429 

attributes the positive trends over North Africa to increasing mineral dust, despite an 430 

underestimated simulated trend in fall (SON) that deserves further attention. The positive trends 431 
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in the observed UVAI over Central Asia near the shrinking Aral Sea are likely due to increased 432 

dust emissions, a feature that is unlikely to be represented in most chemical transport models. The 433 

most prominent negative trends in the observed UVAI were over East Asia, South Asia, and 434 

Australia. The simulation attributed the negative trends over East Asia and Australia to decreasing 435 

mineral dust, despite underestimating the trend in East Asia. The simulation attributed the negative 436 

trend over South Asia to increasing scattering secondary inorganic aerosols, a trend that the 437 

observations imply could be even larger. We found the positive trends in the UVAI over the eastern 438 

United States that were strongest in summer (JJA) in both the observations and the simulation were 439 

driven by negative trends in scattering secondary inorganic aerosol and organic aerosol. Observed 440 

negative trends in winter (DJF) were less well simulated. Over West Africa and South America, 441 

negative trends in UVAI were explained by negative trends in absorbing brown carbon. Thus, 442 

trends in the observed UVAI offer valuable information on the evolution of global aerosol 443 

composition that can be understood through quantitative simulation of the UVAI.  444 

Looking forward, the availability of the UVAI observations from 1979 to the present offer 445 

a unique opportunity to understand long-term trends in aerosol composition. The recent launch of 446 

the TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012) and the 447 

forthcoming geostationary constellation offer UVAI observations at finer spatial and temporal 448 

resolution. The forthcoming Multi-Angle Imager for Aerosols (MAIA; Diner et al., 2018) satellite 449 

instrument offers an exciting opportunity to derive even more information about aerosol 450 

composition by combining measurements at ultraviolet wavelengths with multi-angle observations 451 

and polarization sensitivity. 452 
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Figures 834 
 835 

 836 
Figure 1: Trend in emissions of a) sulfur dioxide (SO2) (kg SO2 km-2 yr-1), b) nitrogen oxides 837 
(NOx) (kg NO km-2 yr-1), ammonia (NH3) (kg NH3 km-2 yr-1), black carbon (BC) (kg C km-2 yr-1), 838 
primary organic carbon (POA) (kg C km-2 yr-1), and dust (kg km-2 yr-1) used in our GEOS-Chem 839 
simulation. The trends are calculated from the Generalized Least Squares regression of monthly 840 
time series values over 2005-2015.  841 
 842 
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 843 
Figure 2: Seasonal mean UVAI values for the 2005-2015 period as observed by OMI for MAM 844 
(May, April, March), JJA (June, July August), SON (September, October, November), and DJF 845 
(December, January, February). Gray indicates persistent cloud fraction greater than 5%. 846 
 847 
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 856 
Figure 3: Seasonal mean UVAI values for the 2005-2015 period from our simulation coincidently 857 
sampled from OMI for MAM (May, April, March), JJA (June, July August), SON (September, 858 
October, November), and DJF (December, January, February). Gray indicates persistent cloud 859 
fraction greater than 5%. 860 
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 861 
Figure 4: Trends in OMI (top panel) and simulated (bottom panel) UVAI values coincidently 862 
sampled from OMI calculated from the Generalized Least Squares regression of monthly time 863 
series values over 2005-2015. The opacity of the colors indicates the statistical significance of the 864 
trend. Gray indicates persistent cloud fraction greater than 5%. 865 
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 866 
Figure 5: Seasonality of the trends in OMI UVAI values calculated from the Generalized Least 867 
Squares regression of monthly time series values over 2005-2015 for MAM (May, April, March), 868 
JJA (June, July August), SON (September, October, November), and DJF (December, January, 869 
February). The opacity of the colors indicates the statistical significance of the trend. Gray 870 
indicates persistent cloud fraction greater than 5%. 871 
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 872 
Figure 6: Seasonality of the trends in simulated UVAI values coincidently sampled from OMI 873 
calculated from the Generalized Least Squares regression of monthly time series values over 2005-874 
2015 for MAM (May, April, March), JJA (June, July August), SON (September, October, 875 
November), and DJF (December, January, February). The opacity of the colors indicates the 876 
statistical significance of the trend. Gray indicates persistent cloud fraction greater than 5%. 877 
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 878 
Figure 7: Trend in GEOS-Chem aerosol concentrations for a) secondary inorganic aerosol (SIA), 879 
b) dust, c) total organic aerosol (OA), d) brown carbon (BrC), e) black carbon (BC), and f) sea 880 
salt. The trends are calculated from the GLS regression of monthly aerosol concentration time 881 
series values over 2005-2015. The opacity of the colors indicates the statistical significance of the 882 
trend. Gray indicates persistent cloud fraction greater than 5%. 883 
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 884 
Figure 8: Annual mean change in simulated UVAI values for 2008 due to the doubling of 885 
concentrations of a) secondary inorganic aerosol (SIA), b) dust, c) total organic aerosol (OA), d) 886 
brown carbon (BrC), e) black carbon (BC), and f) sea salt from the GEOS-Chem simulation. Gray 887 
indicates persistent cloud fraction greater than 5%. 888 
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 889 
Figure 9: Change in simulated UVAI values due to the 2005-2015 trends in a) secondary inorganic 890 
aerosols (SIA), b) dust, c) total organic aerosol (OA), d) brown carbon (BrC), e) black carbon 891 
(BC), and f) sea salt from the GEOS-Chem simulation. Gray indicates persistent cloud fraction 892 
greater than 5%. 893 


