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Abstract 

Eastern China (27°N–41°N, 110°E–123°E) is heavily polluted by nitrogen dioxide (NO2), 20	
particulate matters with aerodynamic diameter below 2.5 µm (PM2.5) and other air pollutants. 
These pollutants vary in a variety of temporal and spatial scales, with many temporal scales 
non-periodic and non-stationary, challenging proper quantitative characterization and 
visualization. This study uses a newly compiled EOF-EEMD analysis-visualization package 
to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations 25	
with meteorological processes over Eastern China in Fall-Winter 2013. Applying the package 
to observed hourly pollutant data reveals a primary spatial pattern representing Eastern 
China-wide synchronous variation in time, which is dominated by diurnal variability with a 
much weaker day-to-day signal. A secondary spatial mode, representing north-south opposing 
changes in time with no constant period, is characterized by wind-related dilution or buildup 30	
of pollutants from one day to another.  

We further evaluate simulations of GEOS-Chem and WRF/CMAQ in capturing the 
spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17	µg/
𝑚3 and PM2.5 by 35 µg/𝑚3 on averaged over Fall-Winter 2013. It reproduces the diurnal 
variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the 35	
observed north-south contrasting mode for both pollutants but not the Eastern China-



synchronous mode (especially for NO2). The model errors are due to a first model layer too 
thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime 
nitrogen chemistry in the first layer, and missing secondary organic aerosols and 
anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too weak 40	
boundary layer mixing – especially in the nighttime, CMAQ overestimates NO2 by about 30 
µg/𝑚3  and PM2.5 by 60 µg/𝑚3 . For the day-to-day variability, CMAQ reproduces the 
observed Eastern-China synchronous mode but not the north-south opposing mode of NO2. 
Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results 
shed light on model improvement. The EOF-EEMD package is freely accessible. 45	

1. Introduction	

Eastern China (EC, 25°N–41°N, 110°E–123°E) is heavily polluted by anthropogenic 
emissions in recent years (Cui et al., 2016; Klimont et al., 2017; Lin et al., 2015; Richter et 
al., 2005; Zhang et al., 2016b). Pollutants from this region have also raised concerns on long-
range transport to downwind areas (Cooper et al., 2010; Jiang et al., 2015; Lin et al., 2014, 50	
2008; Zhang et al., 2014). Since 2013, the Ministry of Environmental Protection (MEP) of 
China has greatly expanded its air pollution monitoring network to measure hourly near-
surface mass concentrations of particulate matter with aerodynamic diameter less than 2.5 µm 
(PM2.5), PM10, nitrogen dioxide (NO2), carbon monoxide, ozone, and sulfur dioxide. These 
measurements have been used for air pollution analyses and model evaluation (Wang et al., 55	
2014; Xie et al., 2015; Zhang et al., 2016b; Zhao et al., 2016). 

Over Eastern China, NO2 and PM2.5 concentrations vary diurnally and from one day to 
another. NO2 is short lived (hours), and its diurnal cycle is affected by rush hour traffic 
emissions (Chen et al., 2015; Hu et al., 2014), other emission sources, planetary boundary 
layer (PBL) mixing (Lin and McElroy, 2010), and chemistry (Lin et al., 2012). Although 60	
previous studies in the US, Germany and Japan have suggested a weekly cycle of NO2 due to 
variations in industrial/traffic emissions, such an emission-driven weekly cycle is not visible 
over the developing countries such as China and India (Beirle et al., 2003; Boersma et al., 
2009; Cui et al., 2016; Hu et al., 2014; Kaynak et al., 2009). Instead, ground-based 
observations show that the day-to-day variation in NO2 over China is associated with changes 65	
in meteorological parameters such as wind speed, relative humidity (RH), surface pressure 
and temperature (He et al., 2017; Zhang et al., 2015).  

For PM2.5 over China, both the diurnal and the day-to-day variations are complicated by its 
relatively long lifetime, its various components from different sources, and meteorology. Liu 
(2016) suggested three types of PM2.5 diurnal cycle within a year, with the peak concentration 70	
occurring at distinctive hours in different seasons. In the summertime (April to August), the 
diurnal cycle may follow human activities (Gong et al., 2007; Liu et al., 2016), which is 
different from the diurnal cycles in the biomass burning season or in winter. Other studies 
suggested weak diurnal cycles of PM2.5 in urban or suburban areas (Chen et al., 2015; Hu et 
al., 2014). Moreover, some studies pointed to lack of weekly cycle of PM2.5 (Liu et al., 2016), 75	
while others suggested contrasting weekly cycles (for Beijing, Chen et al., 2015; Hu et al., 
2014). In winter, the frequent and irregular weather systems prohibit a clear weekly cycle 
(Gong et al, 2007). 



This study analyzes the spatiotemporal variability of NO2 (with the shortest lifetime of hours 
and the greatest variability among the pollutants measured by the official monitoring 80	
network) and PM2.5 (the dominant air pollutant for premature mortality (Forouzanfar et al., 
2015) over Eastern China in Fall-Winter 2013. Given the complex and non-stationary nature 
of pollutant variability over Eastern China, here we compile an EOF-EEMD analysis-
visualization package to simultaneously distinguish and visualize the spatial and temporal 
variability of pollutants. In sequence, the package consists of an Empirical Orthogonal 85	
Function (EOF) analysis (Lorenz, 1956) to separate spatial and temporal patterns, an 
Ensemble Empirical Mode Decomposition (EEMD) analysis (Wu et al., 2009) to separate 
different temporal modes, a Hilbert Transform (HT), a Marginal Spectrum Analysis (MSA), 
and a visualization step to present all physically meaningful spatial and temporal modes in a 
two-dimensional plot. In particular, EEMD (Huang, 2005; Huang et al., 1998, 1999; Huang 90	
and Attoh-Okine, 2005; Wu et al., 2009) is an effective tool to extracting signals from noisy 
nonlinear and non-stationary processes (Wu et al., 2009). EEMD and its variants (e.g., Multi-
dimensional Ensemble Empirical Mode (MEEMD)) have been widely used in climate studies 
(Feng et al., 2014; Huang et al., 2012a, 2012b; Vecchio and Carbone, 2010; Wu et al., 2011, 
2016). The EOF-EEMD package thus allows for quantitative manifestation of the spatial, 95	
(regular) diurnal and (irregular) day-to-day variations of pollutants and meteorological 
drivers.  

We further use the EOF-EEMD package to evaluate how well chemical transport models 
(CTMs) can reproduce the observed pollution variability. Although popularly used in air 
pollution diagnosis, forecast/projection, and remote sensing (Geng et al., 2015; Lin et al., 100	
2015), models are subject to errors in emissions, chemistry, transport, PBL mixing and other 
processes (Lin et al., 2008, 2012; Zhang et al., 2016b). This study evaluates two 
representative models, including GEOS-Chem and WRF/CMAQ, with a note that such 
evaluation can be applied to other models.  

The rest of the paper is organized as follows. Section 2 introduces in-situ measurements of 105	
NO2, PM2.5 and meteorological parameters, model simulations, and the EOF-EEMD analysis-
visualization package. Section 3 analyzes the observed spatiotemporal variations of NO2 and 
PM2.5, including their relationships with meteorological parameters. Section 4 evaluates the 
modeled spatiotemporal variations of NO2 and PM2.5. Section 5 concludes the present study 
with further discussion on the applicability of the EOF-EEMD package. 110	

2. Data and Methods	

2.1 Spatial and temporal domain 

We focus on pollution over Eastern China (25°N–41°N, 110°E–123°E). Guided by an EOF 
analysis, we contrast pollution over the southern (SEC, south of 35°N) and northern (NEC) 
parts to address the regional differences in day-to-day pollution variability. Such latitudinal 115	
separation coincides with the Huaihe River climate transitional zone (Ye and Li, 2017). The 
orange lines in Fig. 1 separate the two regions.  



Our study period is from October 25th to December 25th 2013, with a total of 1488 hours in 
62 days. Most air pollution data are missing in January and February 2014 because of 
instrumental failure or data retrieval failure; and data before October 25th are not available. 120	

2.2 NO2 and PM2.5 observations 

We retrieve hourly measurements of NO2 and PM2.5 from 193 air quality monitoring stations 
of the MEP. Most stations are located in the urban areas, and only six stations are suburban. 
As almost every station has missing values in more than one day, we exclude stations that 
have missing values at ≥ 30% of the 1488 hours or during consecutive 72 hours. We thus 125	
select 163 stations for NO2 and 159 stations for PM2.5 in the same 42 cities. The dots in Fig. 
1a, b depict the stations and cities, respectively. The blue dots show stations/cities with both 
valid NO2 and PM2.5, the green dots with NO2 only, and the purple dots with PM2.5 only. The 
slight difference between NO2 and PM2.5 stations does not affect our analysis of the regional 
pattern of pollutants.  130	

2.2.1 Correction of raw NO2 measurements 

At the monitoring sites, NO2 is measured via molybdenum-catalyzed conversion to nitric 
oxide (NO) and a subsequent chemiluminescence measurement. The measurement technique 
suffers from interference by more oxidized nitrogen species, since the heated molybdenum 
surface exhibits low chemical selectivity (Boersma et al., 2009; Lamsal et al., 2008; Zhang et 135	
al., 2016a)  

Here we follow Lamsal et al. (2008) to correct for the interference, by introducing a 
correction factor (CF) based on GEOS-Chem simulated nitrogen species (NO2, HNO3, PAN 
and all alkyl nitrates 𝐴𝑁 ): 

CF = 𝑁𝑂2
𝑁𝑂2+ 𝐴𝑁+0.95𝑃𝐴𝑁+0.35𝐻𝑁𝑂3

   (1) 140	

We multiply CF with the raw NO2 data to obtain “corrected” NO2 concentrations. Our 
sensitivity test suggests that assuming PAN and HNO3 to be fully converted to NO2 (i.e., 
assuming the coefficients to be unity for both PAN and HNO3 in Eq. 1) does not affect our 
spatiotemporal analysis of NO2. Hereafter the NO2 “corrected” by Eq. 1 is discussed, unless 
stated otherwise. 145	

Figure 2 compares the regional mean hourly time series of raw and “corrected” NO2. The 
correction reduces NO2 concentrations by about 2–30 µg/𝑚3 over the whole period, and is 
higher at times when nitrogen is more oxidized. It slightly reduces the relative contribution of 
day-to-day variability to the total variance of NO2 under the EOF-EEMD analysis (not 
shown), because excluding those more oxidized species shortens the lifetime of NO2. 150	

2.2.2 Filling in missing values for EOF-EEMD analysis 



Prior to an EOF-EEMD analysis, we fill in missing values in hourly pollution observations. If 
data are missing for more than 12 consecutive hours, we fill in the missing value in each hour 
with data on that hour averaged over all days; as such, the diurnal cycle is maintained. In 
other cases, linear interpolation from adjacent valid data is applied. Our interpolation does 155	
not introduce significant artificial information for spatiotemporal analysis, as validated by a 
sensitivity test with GEOS-Chem model data. Specifically, the EOF-EEMD results based on 
the original GEOS-Chem data (i.e., no missing values) are similar to the results based on 
model data sampled at times of valid observations with missing values filled in the same 
manner as for the observation data.  160	

2.2.3 Conversion from station- to city-based datasets 

Since different cities have different numbers of stations, we calculate city mean observations 
by averaging across all stations of each city. Compared to a station-based analysis, the city-
based EOF-EEMD results reduce the spatial noises leading to more distinctive temporal 
patterns. All analyses hereafter is based on city mean data. The longitude/latitude of each city 165	
center is used to identify respective model grid cell. 

2.3 Meteorological observations 

We use 3-hourly measurements of 2-meter air temperature, 2-meter relative humidity and 10-
meter wind speed from meteorological stations recorded at the National Oceanic and 
Atmospheric Administration National Centers for Environment Information (NOAA NCEI).  170	
We do not use surface pressure additionally, because it is highly correlated to air temperature 
and relative humidity on the day-to-day scale. The locations of these stations do not always 
coincide with air pollution stations. Thus, we select 36 meteorological stations within 10 km 
of air pollution stations (red hollow dots in Fig. 1). Despite the difference (in number and 
location) between pollution and meteorological stations, an analysis of the regional-temporal 175	
patterns of pollutants and meteorology is still informative (see Sect. 3.2). 

To fill in missing values, we apply an interpolation process that accounts for diurnal 
variability, using information in an adjacent day. For example, if temperature on October 26th 
12:00 is missing, we calculate the temperature difference between 9:00 and 12:00 on 25th as 
well as the difference between 15:00 and 12:00 on 25th. We then use these differences to 180	
adjust the temperatures at 9:00 and 15:00 on 26th, respectively, and finally use the mean of 
the two adjusted temperatures as the temperature on 26th 12:00. 

For consistency with the hourly pollution data, we linearly interpolate the 3-hourly 
meteorological measurements to each hour. This interpolation does not distort the EOF-
EEMD analysis, as confirmed by comparing the statistical analysis on 1-hourly GEOS-FP 185	
meteorological parameters versus an analysis on 3-hourly GEOS-FP data. Note that the 
GEOS-FP meteorology is used to drive GEOS-Chem. 

2.4 Model simulations 

2.4.1 GEOS-Chem 



We use the nested GEOS-Chem CTM version 9-02 (Zhang et al., 2016a) to simulate NO2, 190	
PM2.5 and other pollutants over China in October–December 2013. The model resolution is 
0.3125° long. × 0.25° lat. grid with 47 vertical layers, and the lowest 10 layers are of ~ 130 m 
thickness each. The model is driven by the GEOS-FP assimilated meteorology from the 
National Aeronautics and Space Administration (NASA) Global Modeling and Assimilation 
Office, with the full Ox-NOx-VOC-CO-HOx gaseous chemistry (Mao et al., 2013) and online 195	
aerosol calculations. Vertical mixing in the PBL adopts a non-local scheme (Holtslag and 
Boville, 1993; Lin et al., 2010). Model convection is simulated with the Relaxed Arakawa-
Schubert scheme (Rienecker et al., 2008).  

Chinese anthropogenic emissions of NOx and other pollutants adopt the monthly MEIC 
inventory with a base year of 2010 (www.meicmodel.org) (Geng et al., 2017). We further use 200	
the monthly DOMINO v2 NO2 data to scale monthly anthropogenic NOx emissions from 
2010 to the simulation year (Lin et al., 2015). The emission scaling improves the simulation 
of NO2 (Cui et al., 2016). Other model setups are referred to Lin et al. (2015) and Yan et al. 
(2016).  

GEOS-Chem modeled PM2.5 includes secondary inorganic aerosols (sulfate, nitrate and 205	
ammonium), black carbon, primary organic carbon, natural dust, and sea salt. Secondary 
organic aerosols are not included in this study, considering the severe underestimate in China 
due to missing precursor emissions and formation pathways (Fu et al., 2012; Zhang et al., 
2016a). Anthropogenic dust are also not included.  

The nested model simulation is from 15th October to 25th December in 2013, allowing for a 210	
10-day spin-up period. Its lateral boundary conditions of chemicals are updated every 3 h by 
results from a corresponding global simulation on a 2.5° long. × 2° lat. grid.  Modeled NO2 
and PM2.5 in the first layer are sampled at city centers and times with valid observations, 
unless stated otherwise. 

2.4.2 CMAQ 215	

We use the Weather Research and Forecasting (WRF) model v3.5.1 (http://www.wrf-
model.org/) to drive CMAQ v5.0.1 (http://www.cmascenter.org/cmaq/). The simulation 
covers East Asia at a horizontal resolution of 36 × 36 km2 with 14 vertical layers. The lowest 
six layers are of ~ 80 m thickness each, and about eight layers are below 1 km. The gas-phase 
chemistry uses the CB05 mechanism with active chlorine chemistry and updated toluene 220	
mechanism (Whitten et al., 2010). The aqueous-phase chemistry adopts the updated Regional 
Acid Deposition Model (RADM) (Chang et al., 1987; Walcek and Taylor, 1986). The aerosol 
chemistry follows AERO6. PBL mixing in both WRF and CMAQ adopts the ACM2 scheme 
(Pleim, 2007). Other model physics are detailed in Zheng et al. (2015). 

Chinese anthropogenic emissions are from MEIC (www.meicmodel.org). Emissions in 2013 225	
are extrapolated from the base year (2012) based on country-level statistics (Zheng et al., 
2015). Anthropogenic emissions in other Asian countries and biomass burning emissions are 



taken from the MIX emission inventory prepared for the Model Inter-Comparison Study Asia 
Phase III (MICS-ASIA III).  

The PM2.5 species in AERO6 include fine mode sulfate, nitrate, ammonium, primary and 230	
secondary organic aerosols, black carbon, sodium, calcium, aluminum, particulate chloride, 
and remaining unspeciated fine mode primary PM 
(http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQv5.0_PMother_speciati
on).  

The simulation is from 15th October to 25th December 2013, allowing for a 10-day spin-up 235	
period. Initial conditions and boundary conditions are from GEOS-Chem (Zheng et al., 
2015). Modeled NO2 and PM2.5 in the first layer are sampled at city centers and times with 
valid observations, unless stated otherwise. 

2.5 EOF-EEMD analysis-visualization package 

As shown in Fig. 3, our EOF-EEMD analysis-visualization package consists, in order, of an 240	
EOF analysis (Lorenz, 1956), an EEMD analysis (Wu et al., 2009), a Hilbert Transform (HT) 
with Marginal Spectrum Analysis (MSA), and a visualization step to quantitatively depict the 
spatial-temporal scales of measurement or model data.  

The basic purpose of our package is to quickly and simultaneously identify and visualize 
various spatial and temporal scales of interest in the observation or model datasets. As shown 245	
by Feng et al. (2014) and Wu et al. (2016), combining EOF with EEMD to decompose the 
datasets leads to a faster calculation than MEEMD by one or two orders, because here the 
EEMD is applied to the temporal components (i.e., PCs) out of an EOF analysis rather than to 
all dimensions. Also, our EOF-EEMD package conducts additional HT-MSA and provides 
visualization of all spatial and temporal scales of interest. 250	

- EOF analysis to decompose a two-dimensional dataset (time series at multiple 
locations) into spatial and temporal components. 

Suppose there are 𝑛 locations, each having a time series of length 𝑝. The associated dataset 𝐙 
is an n×p matrix. An EOF analysis of 𝐙 gives: 

𝐙 = 𝐔 𝐖𝐓  (2) 255	

Here 𝚺 is a diagonal q×q matrix containing the first q singular values of 𝐙, and it represents 
the contribution of each pattern to the total variance of 𝐙. The diagonal values of 𝚺 is in a 
descending order, thus the first several modes are the dominant ones. 𝐔 is an n×q matrix 
representing the spatial component, and each column of 𝐔 represents a spatial mode. 𝐖 is a 
p×q matrix representing the temporal component, and each column of 𝐖  represents a 260	
principle component (PC) for temporal variation associated with the corresponding spatial 
mode.  

- EEMD analysis of each PC time series to obtain its “intrinsic mode functions” (IMFs) of 



descending frequencies. 

Each PC is mixed with multiple scales, which requires further decomposition in the time 265	
domain. Unlike Fast Fourier Transform (FFT) or Wavelet Transform (WT), EEMD does not 
need priori bases, and it can be appropriately applied to delineate nonlinear and non-
stationary time series, as in our pollution study. 

EEMD consists of an ensemble of Empirical Mode Decomposition (EMD) performed on 
each PC time series (denoted as x(t) in Eq. 3). Each EMD linearly decomposes x(t) into 270	
individual IMFs 𝑐𝑗 (of ascending time scales and descending frequencies) and a residual 𝑟𝑛: 

𝑥 𝑡 = 𝑐𝑗 𝑡 + 𝑟𝑛(𝑡)𝑛
𝑗=1    (3) 

EMD is based on finding local maxima and minima of the time series. A detailed 
decomposition process can be found in Huang et al. (1998, 1999). EMD is much less 
susceptible to missing values and data interpolation than approaches that are based on an 275	
analysis of the whole time series (e.g., FFT and WT).  

EMD may be sensitive to noise in the real data to encounter a “mode mixing” problem (Wu et 
al., 2009). EEMD solves this problem by performing an ensemble of hundreds of EMDs, 
each with certain white noise added to 𝑥 𝑡 . Hence, the noise in the real data is incorporated 
as part of the white noise, and the ensemble further minimize the effects of noise. The white 280	
noise is assumed to follow the standard Gaussian distribution (Wu et al., 2009). Figure 4 
shows an example of the EEMD analysis. 

- Hilbert Transform and Marginal Spectrum Analysis of each IMF to reveal its 
representative frequency range. 

There are no discrete periods/frequencies in the pollution and meteorological time series. 285	
Correspondingly, an IMF also has a continuous frequency range (rather than a constant 
frequency) that can be determined by HT-MSA. The HT reveals the IMF’s energy-frequency-
time distribution (Huang et al., 1999). The MSA further shows the IMF’s distribution of 
variance (energy) with respect to different frequencies. The spectral peak represents the 
largest contribution to total variance.  290	

A spurious oscillation may occur near the edges of certain IMF time series, resulting in an 
inaccurate calculation of variance under HT-MSA. We apply a box-car filter (Gubbins, 2004) 
to select the internal 60% of an IMF time series (from 20% to 80% of the 1488 hours) to 
perform HT-MSA. Figure 4b shows an example of the visualized result of HT-MSA, where 
the horizontal axis is the number of occurrences within the whole period (frequency, in h-1, 295	
multiplied by the time length, 1488 hours) and the vertical axis the energy contribution. IMF2 
~ IMF5 are visualized and analyzed in this study. The higher-frequency IMF1 is noisy as the 
energy is distributed over a wide range of occurrence numbers. IMF6 ~ IMF10 represent the 
longest temporal scales that contribute little to the total variance of the decomposed PC. Thus 
IMF1 and IMF5~IMF10 are not further analyzed.   300	



Based on HT-MSA, we determine a representative frequency range (RFR) such that the range 
encompasses the peak frequency, and that the frequencies within the range contribute 50% of 
the total variance of an IMF. The frequencies below and above the RFR bounds each 
contribute to 25% of the total variance of the IMF. Before calculating the RFR, we smooth 
the marginal spectrum by connecting all local maxima of the spectrum with cubic spline.  305	

- Visualization of the spatial and temporal scales in a two-dimensional plot. 

Finally, we simultaneously visualize the spatial and temporal scales as well as their 
contributions to the total variance of 𝐙 in a two-dimensional plot, for easy observational 
diagnosis and model evaluation. In this plot, an IMF is represented by a vertical “error bar” 
and a horizontal bar. The length of the “error bar” stands for the representative period range 310	
(RPR, the inverse of RFR), and a shorter length means a more stationary variation mode (i.e., 
towards a fixed frequency/period). The length of the horizontal bar stands for the contribution 
to the total variance. For clearer presentation, the plot does not include IMFs which do not 
pass the white noise examination, which lay outside the range of scales considered here 
(hours to days), or which contribute little to the total variance of the original data (e.g. less 315	
than 1%). 

3. Observational analyses of NO2, PM2.5 and meteorological variables 

3.1 General characteristics 

The colored dots in Fig. 5a, b show the observed spatial distributions of city-mean NO2 and 
PM2.5 averaged over the time period. Both NO2 and PM2.5 are largest over Beijing-Tianjin-320	
Hebei (BTH) in the north and the Yangtze River Delta (YRD) in the east. NO2 concentrations 
exceed 60 µg/𝑚3 at many sites. The range of PM2.5 is larger, from below 10 µg/𝑚3 in some 
northern and coastal cities to about 200 µg/𝑚3 in several cities of BTH. 

Figure 6a, b shows the diurnal variations of NO2 and PM2.5 over Eastern China, NEC and 
SEC, averaged over all days. Similarly, over the three regions, NO2 peaks around 19:00 due 325	
to evening rush hour emissions, reduced PBL mixing, and a lengthened lifetime. NO2 reaches 
a minimum at 14:00 because of the shortest lifetime and strongest PBL mixing. The diurnal 
range (maximum minus minimum) is about 30 µg/𝑚3 . The PM2.5 level also reaches a 
minimum in the early afternoon. It has a much smaller diurnal range at 10 µg/𝑚3 . The 
vertical error bars in Fig. 6a, b depict the standard deviation for day-to-day variation of NO2 330	
and PM2.5 at any given hour. At a given hour, the PM2.5 level is much more variable across the 
days than NO2. In particular, the day-to-day standard deviation for PM2.5 at a given hour is as 
large as the diurnal range of PM2.5. 

Figure 6c, d further shows the time series of daily mean NO2 and PM2.5. All data are de-
trended (trends are at 0.01 µg/𝑚3/ℎ𝑜𝑢𝑟 for NO2 and 0.05 µg/𝑚3/ℎ𝑜𝑢𝑟 for PM2.5). Although 335	
local maxima and minima (peaks and troughs of the time series) occur every several days, 
there is no single period or amplitude for the variation of each species. For NO2 over Eastern 
China (black line in Fig. 6c), the local maxima vary from 60 to 100 µg/𝑚3, and the local 
minima vary from 20 to 40 µg/𝑚3. For PM2.5 over Eastern China (black line in Fig. 6d), the 
local maxima vary from 100 to 300 µg/𝑚3, and the local minima vary from 20 to 120 µg/340	
𝑚3. Furthermore, comparing the green and blue lines reveals that pollutants over NEC and 



SEC synchronize in some days but are out of phase in others; this feature is quantitatively 
analyzed in Sect. 3.2. These day-to-day variation patterns are associated with meteorological 
conditions and pollutant lifetimes. 

Figure 7 shows day-to-day anomalies of observed pollutant concentrations and 345	
meteorological parameters over NEC and SEC. All data are de-trended. Over NEC, wind 
speed is clearly anti-correlated with pollutant levels. The correlation coefficient reaches -0.73 
between NO2 and wind speed and -0.60 between PM2.5 and wind speed. Over this region, 
stronger winds are often associated with lower RH and lower temperature, characteristic of 
cold air passage that brings cleaner, colder and drier air from the north to NEC and transport 350	
the NEC pollution out of the region. Correspondingly, RH is strongly positively correlated 
with NO2 (R = 0.62) and PM2.5 (R = 0.69). The meteorology-associated day-to-day variability 
is more apparent after Mid November, when the variations of the two pollutants are more 
synchronous. 

Over SEC (Fig. 7), the relationship between pollutant levels and meteorological parameters is 355	
more complex. The correlation between daily mean PM2.5 and wind speed is relatively weak 
(R = -0.44, compared to -0.60 over NEC), and its correlation with RH is even weaker (R = 
0.29). This indicates that the northerly air does not reduce PM2.5 levels over SEC as 
effectively as over NEC, as PM2.5 from NEC may be transported to SEC. By comparison, 
NO2 is still highly anti-correlated with wind speed (R = -0.77) over SEC, likely a result of the 360	
short lifetime of NO2. Compared to PM2.5 whose lifetime is sufficiently long (several days) 
for transport from NEC to SEC (Hu et al., 2014), NO2 has a much shorter lifetime (below one 
day; Lin et al., 2012) and cannot undergo effective long-distance transport. However, almost 
all pollution measurement sites are urban, and weaker (stronger) winds allow for rapid 
accumulation (removal) of urban NO2 pollution.  365	

3.2 EOF-EEMD analyses of pollutants and meteorological parameters 

Although informative, the time series analyses on regional mean pollution in Sect. 3.1 do not 
provide adequate quantitative information of the spatiotemporal variability and embedded 
scales. In fact, the separate discussion on NEC and SEC in Sect. 3.1 is largely inspired by the 
following EOF-EEMD analysis that suggests distinctive features between these two sub-370	
regions. In this section, we use the EOF-EEMD package to distinguish and visualize the 
quantitative contributions of individual spatial and temporal modes to variations in the 
pollutant and meteorological data. 

The columns of Fig. 8 show the EOF-EEMD results for the observed temperature, RH, wind 
speed, NO2 and PM2.5, respectively. The first two rows show the first two spatial patterns 375	
(EOF1 and EOF2) out of the EOF analysis. The third row visualizes the EEMD-HT-MSA 
results for PC1 and PC2, the temporal counterparts of EOF1 and EOF2. For all variables, the 
first two PCs contribute more than 50% of the total variance of the original data. The 
following PCs (PC3, PC4…) contain small variances and are not discussed here.  

3.2.1 EOF-EEMD analyses of pollutants 380	

The fourth column of Fig. 8 for NO2 shows a primary pattern (EOF1 and PC1) with 
synchronous variation over the entire Eastern China. This pattern contributes 42% of the total 
variance of NO2. The two dominant IMFs of PC1 have time periods at 24 hours and 12 hours, 
respectively, and they together contribute 30.4% of the total variance of NO2. Thus, PC1 
mainly reflects the diurnal variation of NO2. PC1 also contains some day-to-day variability 385	



IMFs, which contribute about 10% of the total variance of NO2. The second pattern (EOF2) 
of NO2 reveals opposite temporal variations between NEC and SEC. This temporal contrast is 
mainly reflected in the day-to-day variability, with RPRs around 2–5 days contributing 10.9% 
of the total variance in NO2. The day-to-day components of PC1 and PC2 correspond to the 
finding in Sect. 3.1 that NO2 over NEC and SEC are synchronous in some days but out of 390	
phase in others. 

We further investigate the physical meanings of PC1 and PC2 for NO2. The red solid and red 
dashed lines in Fig. 6a, c show the diurnal and day-to-day variations of PC1 and PC2, in 
comparison to regional mean NO2 levels over Eastern China (black line), NEC (green line) 
and SEC (blue line). Table 1 shows the associated correlation coefficients. PC1 is 395	
synchronous with Eastern China mean NO2 for both diurnal and day-to-day variations (R 
reaches 1.0), confirming this regionally synchronous pattern. The day-to-day variation of PC2 
is correlated to NEC NO2 (R = 0.66) but anti-correlated to SEC NO2 (R = -0.45, Table 1), 
again confirming this NEC-SEC contrasting pattern. 

The last column of Fig. 8 shows the EOF-EEMD result for PM2.5. As for NO2, EOF1 and 400	
PC1 of PM2.5 reflect a temporally synchronous pattern over Eastern China, which contributes 
44% of the total variation of PM2.5. Again, PC1 is synchronous to Eastern China mean PM2.5 
(red versus black lines in Fig. 6b, d) in terms of both diurnal and day-to-day variations, with 
correlation coefficients approaching 1.0 (Table 2). However, the IMFs of PC1 representing 
diurnal variation are relatively weak, consistent with the noisy diurnal cycle of PM2.5 405	
discussed in Sect. 3.1. The dominant IMF of PC1 shows a period around seven days. PC2 of 
PM2.5 reflects the day-to-day contrast between NEC and SEC (Fig. 6d and Table 2) with 
RPRs of 2–5 days, similar to PC2 of NO2.  

3.2.2 EOF-EEMD analyses of meteorological parameters 

For comparison, the first three columns of Fig. 8 show the EOF-EEMD results for the 410	
observed temperature, RH and wind speed. The EOF-EEMD result for wind speed (the third 
column in Fig. 8) is closest to that for NO2, with a regionally synchronous pattern (EOF1 and 
PC1), a NEC-SEC contrasting pattern (EOF2 and PC2), and a dominant IMF with a period of 
24 hours. The day-to-day wind speed variability is also reflected in the IMFs of PC1 and PC2 
with RPRs of 2–5 days, consistent with that for NO2. The EOF-EEMD result for wind speed 415	
is also fairly comparable with that for PM2.5, although the latter shows a dominant IMF (in 
PC1) with a period of seven days. These results are consistent with Sect. 3.1 but with a more 
quantitative analysis on the spatiotemporal scales.  

The EOF-EEMD analysis for temperature (the first column of Fig. 8) shows that PC1 
contributes 88% of the total variance, and it is dominated by the IMF with a period at 24 420	
hours. The contribution of PC2 is negligible (4%). For RH (the second column of Fig. 8), 
PC2 plays a minor role, and there are IMFs of PC1 with periods near 3 and 12 days, 
contributing to the correlation between RH and PM2.5. These results indicate complex 
association in the day-to-day variability between temperature/RH and pollutants, broadly 
consistent with the discussion in Sect. 3.1. 425	

4. Evaluation of GEOS-Chem and WRF/CMAQ simulations 



4.1 General evaluation 

The color contours in Fig. 5a-d show the horizontal distributions of NO2 and PM2.5 simulated 
by GEOS-Chem and CMAQ. The model results here are averaged from all days over the time 
period rather than sampled from days with valid observations. Both models capture the 430	
general spatial patterns of observed NO2 and PM2.5, with heaviest pollution over the north 
and east.  

Figure 9 evaluates the regional mean diurnal and day-to-day variations of modeled pollutant 
levels over NEC and SEC. Here model data are sampled from days and locations with valid 
observations. All trends are negligible and have been removed, consistent with the 435	
observational analysis. GEOS-Chem underestimates the observations by about 17 µg/𝑚3 
over Eastern China (21 µg/𝑚3 over NEC and 13 µg/𝑚3over SEC) for NO2 and by 35 µg/𝑚3 
over Eastern China (31 µg/𝑚3 over NEC and 41 µg/𝑚3 over SEC) for PM2.5 averaged over 
the whole period. The model bias is relatively consistent across individual hours. GEOS-
Chem captures the observed diurnal variability for both pollutants as well as the day-to-day 440	
variability of PM2.5, although it greatly underestimates the day-to-day variability of NO2. 
More model evaluation statistics is shown in Table 3. 

Figure 9 also shows that WRF/CMAQ overestimates the nighttime observations by about 30 
µg/𝑚3 for NO2 and 60 µg/𝑚3 for PM2.5 averaged over Eastern China, although it reproduces 
the daytime pollutant levels. This means an overestimate of the diurnal range, as is also 445	
revealed by the EOF-EEMD analysis in Sect. 4.2. CMAQ captures the day-to-day variability 
of daily mean NO2 and PM2.5 much better than GEOS-Chem (R = 0.63–0.84 versus 0.25–
0.37 over NEC and SEC for NO2; and 0.87–0.88 versus 0.55–0.75 for PM2.5). Note that the 
correlations showed here mainly reflect the model capabilities in capturing Eastern China-
wide synchronous day-to-day variation; and they do not imply the model performance in 450	
simulating the NEC-SEC contrast, which is revealed in Sect. 4.2. More model evaluation 
statistics is shown in Table 3. 

4.2 Model evaluation based on the EOF-EEMD analysis 

Figures 10 and 11 evaluate the EOF-EEMD results for modeled NO2 and PM2.5, respectively. 
Prior to the EOF-EEMD analysis, modeled NO2 and PM2.5 are sampled at times and locations 455	
with valid observations and then underwent the same interpolation procedure to fill the 
missing values. In these figures, the last three rows visualize the EOF-EEMD-HT-MSA 
results in different ways (manifested in different lengths of the horizontal bar for each IMF). 
In the third row, the variance of each IMF is normalized to the total variance of the original 
data (NO2 or PM2.5). In the fourth row, the variance of each IMF is normalized to the variance 460	
of its respective PC, in order to better visualize the signals from PC2 (which has a much 
smaller variance than PC1); as such, only the IMFs from the same PC are intercomparable. 
The fifth row visualizes the absolute variance of each IMF without any normalization. 

The first two rows of Fig. 10 show EOF1 and EOF2 of NO2. Both GEOS-Chem and CMAQ 
exhibit a synchronous pattern (EOF1) and a NEC-SEC contrasting pattern (EOF2), consistent 465	



with the observation. However, the CMAQ simulated NEC-SEC contrast in EOF2 is much 
weaker than the observed. Table 1 shows that for modeled NO2, PC1 is highly correlated to 
Eastern China mean NO2 for diurnal (R = 1.0 for GEOS-Chem and CMAQ) and day-to-day 
(R = 0.56–0.97) variability, and that PC2 is correlated to NEC NO2 (R = 0.74–0.81) and anti-
correlated to SEC NO2 (R = -0.47 – -0.32) in terms of day-to-day variability, in line with the 470	
observational analysis.  

The last three rows of Fig. 10 show that both models underestimate the contribution of day-
to-day variability to the total variance of NO2 (with a shorter length of horizontal bar). For 
PC1, CMAQ captures the RPR (position of “error bar”) and variance (length of horizontal 
bar) of the observed IMFs fairly well. By comparison, GEOS-Chem underestimates the day-475	
to-day variance (too small horizontal length) and does not capture its RPR. These results are 
consistent with the analysis in Sect. 4.1 (Fig. 9) that CMAQ is correlated with the observed 
Eastern China-wide synchronous NO2 time series much better than GEOS-Chem. For PC2, 
which reflects the NEC-SEC contrasting pattern, GEOS-Chem outperforms CMAQ in 
capturing the RPR and variance of the observed day-to-day IMFs (red colored in fourth row). 480	
This model characteristic is not seen from the time series discussion in Sect. 4.1. 

Figure 11 shows that both GEOS-Chem and CMAQ capture the synchronous pattern (EOF1) 
and the NEC-SEC contrasting pattern (EOF2) of PM2.5. For PC1, GEOS-Chem captures the 
variance of each IMF but not its RPR (especially for the day-to-day IMFs). CMAQ simulates 
too strong diurnal IMFs, consistent with its overestimated diurnal cycle discussed in Sect. 485	
4.1. CMAQ outperforms GEOS-Chem in capturing the RPR of day-to-day IMFs of PC1, in 
line with its better correlation to the observations (Fig. 9). For PC2, GEOS-Chem captures 
the variance and RPR of the observed day-to-day IMFs better than CMAQ.  

4.3 Discussion on model deficiencies 

WRF/CMAQ overestimates the diurnal variation of NO2 and PM2.5. The causes are 490	
multifaceted. The ACM2 PBL mixing scheme in WRF v3.5.1 and CMAQ v5.0.1 (used here) 
assumes the same value of for eddy diffusivity of momentum (Km) and heat (Kh), which 
implies a Prandtl number (Pr = Km/Kh) of unity and too weak mixing under stable 
atmospheric conditions (i.e., at night). This deficiency has been alleviated in WRF v3.7 and 
CMAQ v5.1. Also, there is inconsistency between CMAQ and WRF in the Monin-Obukhov 495	
length in the surface layer module. This error has been corrected in CMAQ v5.1. For more 
model update details, please refer to the online document 
(https://www.airqualitymodeling.org/index.php/CMAQ_version_5.1_(November_2015_relea
se)_Technical_Documentation#Asymmectric_Convective_Model_version_2_.28ACM2.29). 

GEOS-Chem (the first model layer) underestimates surface NO2 by about 17 µg/𝑚3  and 500	
PM2.5 by 35 µg/𝑚3  averaged over Eastern China. The underestimate of PM2.5 is in part 
because this simulation of GEOS-Chem does not include secondary organic aerosols, which 
likely contribute as much as 21% of PM2.5 over Eastern China (Fu et al., 2012). Also, the 
model does not include anthropogenic dust. Furthermore, although the observation stations 
are close to the ground, the first layer of GEOS-Chem is too thick (130 m) to fully capture the 505	



vertical gradient of pollution concentrations. Figure 12 shows Eastern China mean vertical 
profiles of NO2 in the two models. The center of the first layer of CMAQ (40 m) is closer to 
the ground, and the center of its second layer is located at a height similar to the center of the 
first layer of GEOS-Chem. CMAQ shows a strong vertical gradient of NO2 from its first to 
second layer. Had we used the CMAQ-simulated ratio of the first over second layer to 510	
extrapolate GEOS-Chem first-layer NO2 to 40 m, this would significantly increase the 
model’s “ground-level” NO2 (by 24% over NEC and 17% over SEC) and PM2.5 (by 45% and 
17%). However, the extrapolation does not improve the day-to-day correlation to the 
observations, indicating the important roles played by other factors. See Table 3 for more 
evaluation statistics. 515	

GEOS-Chem (the first model layer) also underestimates the Eastern China-wide synchronous 
day-to-day variation of NO2. When averaged over the 10 lowest layers (below 850 hPa), 
GEOS-Chem NO2 captures the day-to-day variability of observed surface NO2. This suggests 
that the model deficiency in day-to-day variability may be specific to the first layer. 
Moreover, the first layer of GEOS-Chem captures the day-to-day variation of observed NO2 520	
in the afternoon (12:00–15:00 local time, R = 0.9 over NEC and 0.8 over SEC), but the model 
performance is rather poor in the evening (20:00–23:00 local time, R = 0.1 over NEC and 
SEC), suggesting nighttime-specific model inadequacies. A further analysis on nighttime 
ozone and the NO : NO2 ratio suggests that GEOS-Chem greatly underestimates the observed 
nighttime ozone by 49.2% on average over NEC and 54.6% over SEC, particularly on days 525	
when its NO : NO2 ratio is much greater than CMAQ-modeled ratio. The mean NO : NO2 
ratio in GEOS-Chem is 1.8 over NEC and 1.4 over SEC, greater than the ratio in CMAQ (1.0 
over NEC and 0.4 over SEC) by a factor of 2–3. Overall, it appears that the nighttime 
chemistry is poorly represented in the first layer of GEOS-Chem, the causes of which warrant 
further investigations.  530	

The magnitude of emission differences between the two models plays an insignificant role in 
the differences between their simulated NO2 or PM2.5 concentrations. Chinese anthropogenic 
emissions in 2010 used in GEOS-Chem (except for NOx) are close to emissions in 2013 used 
in CMAQ (within 10% for both gases and primary aerosols, mostly within 5%, see Zheng et 
al. (2018)). NOx emissions in GEOS-Chem are scaled to 2013 using satellite NO2 data, 535	
which further eliminates the differences from those used in CMAQ. The difference in the 
spatial distribution of emissions is also small (Geng et al., 2017; Zheng et al., 2018). 

We further use CMAQ simulations to investigate whether the inclusion of SOA affects our 
analysis of the spatiotemporal patterns of PM2.5. Supplementary Fig. S1 compares the time 
series of CMAQ-simulated PM2.5 with versus without including SOA. Although SOA 540	
contributes about 8-9 µg/𝑚3 of PM2.5 averaged over the days, inclusion of SOA does not 
affect the temporal variability. The EOF-EEMD results in Supplementary Fig. S2 further 
confirm that the spatiotemporal scales are very consistent whether or not SOA is included. 

5. Conclusions and discussion 



This study uses a newly compiled EOF-EEMD analysis-visualization package to evaluate the 545	
spatiotemporal variations of hourly NO2 and PM2.5 data over Eastern China during Fall-
Winter 2013. The observed NO2 data exhibit an Eastern China-wide synchronous pattern 
(EOF1) and a north-south contrasting pattern (EOF2). EOF1 of NO2 consists of a dominant 
signal for diurnal variation and a weaker signal for day-to-day variation. EOF2 of NO2 is 
dominated by the day-to-day variation. Although the diurnal cycle is relatively consistent 550	
across the days, the day-to-day variation exhibits a RPR at 2–5 days with no constant 
amplitude, a feature intended to be properly accounted for in the EOF-EEMD analysis. The 
day-to-day variation is largely driven by cold air passage, as revealed from analyses of 
observed wind speed, temperature, and RH. In particular, wind speed is most closely related 
to NO2, based on an EOF-EEMD analysis and a complementary correlation calculation (R = -555	
0.77 – -0.73 over NEC and SEC). 

An EOF-EEMD analysis of the observed PM2.5 also reveals an Eastern China-wide 
synchronous (EOF1) and a north-south contrasting (EOF2) pattern. However, the diurnal 
variation of PM2.5 is much noisier than that of NO2. The day-to-day variation dominates for 
PM2.5, and it is much associated wind speed, especially over NEC (R = -0.60).  560	

Further evaluation on GEOS-Chem and WRF/CMAQ simulations shows that both models 
simulate the observed EOF1 and EOF2 patterns well. Both models capture the day-to-day 
variability of PM2.5 better than that of NO2. CMAQ outperforms GEOS-Chem in Eastern 
China-wide synchronous day-to-day IMFs, especially for NO2; whereas GEOS-Chem better 
captures the north-south contrasting day-to-day IMFs. CMAQ overestimates the diurnal 565	
variability of NO2 and PM2.5, such that the IMFs out of the EOF-EEMD analysis are overly 
dominated by the diurnal signal (especially for NO2). This is likely due to its underestimate of 
PBL mixing, which deficiencies have been alleviated by the latest model updates. GEOS-
Chem underestimates the concentrations of both pollutants, due in part to missing secondary 
organic aerosols and anthropogenic dust (affecting PM2.5) and a first layer too thick (130 m) 570	
to capture the vertical gradient near the ground. GEOS-Chem captures the diurnal variations 
of NO2 and PM2.5. It underestimates the day-to-day variability of nighttime NO2 likely due to 
chemical inaccuracies in the first layer.  

This study suggests that the EOF-EEMD package is a useful tool providing a simultaneous 
and quantitative view of the spatial and temporal (both stationary and non-stationary) scales 575	
embedded in a dataset. The package can be applied to other chemical, meteorological or 
climatic variables, and will be freely accessible to the public.  
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Table 1. Correlation between PCs and regional mean values in terms of diurnal and day-to-
day variability for NO2. 785	

PC 
 
Region 

PC1 PC2 

Diurnal Day-to-day Day-to-day 
Eastern China (obs.) 1.0** 0.96** 0.0 
NEC (obs.) 1.0** 0.77** 0.66** 
SEC (obs.) 1.0** 0.84** -0.45** 
Eastern China (GEOS-
Chem) 

1.0** 0.97** -0.07 

NEC (GEOS-Chem) 1.0** 0.56** 0.81** 
SEC (GEOS-Chem) 1.0** 0.78** -0.47** 
Eastern China 
(CMAQ) 

1.0** 0.99 ** 0.12 

NEC (CMAQ) 1.0** 0.82** 0.74** 
SEC (CMAQ) 1.0** 0.94** -0.32** 
** The correlation coefficient is statistically significant with the P-value < 0.01.		
	

	

	 	



Table 2. Correlation between PCs and regional mean values in terms of diurnal and day-to-790	
day variability for PM2.5. 

PC 
Region 

PC1 PC2 

Diurna
l 

Day-to-day Day-to-day 

Eastern China (obs.) 0.99** 0.97** -0.23 
NEC (obs.) 0.99** 0.89** 0.41** 
SEC (obs.) 0.99** 0.78** -0.62** 
Eastern China (GEOS-

Chem) 
1.0** 0.98** -0.13 

NEC (GEOS-Chem) 1.0** 0.85** 0.55** 
SEC (GEOS-Chem) 1.0** 0.72** -0.68** 
Eastern China 

(CMAQ) 
1.0** 0.99** -0.20 

NEC (CMAQ) 1.0** 0.89** 0.32** 
SEC (CMAQ) 1.0** 0.90** -0.62** 

** The correlation coefficient is statistically significant with the P-value < 0.01. 
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Table 3. Observed and simulated pollutants and their correlations. 

  NEC SEC 
  Mean Median R 1 Mean Median R 1 

NO2 
(hourly) 

Observation 62.4 62.3 / 56.0 55.8 / 
GEOS-Chem 41.0 41.5 0.96** 43.3 45.7 0.96** 
R_GEOS-Chem 2 50.7 52.3 0.96** 54.9 57.5 0.96** 
CMAQ 78.4 79.4 0.94** 68.7 68.3 0.95** 

NO2 
(daily mean) 

Observation 62.4 65.2 / 56.0 57.2 / 
GEOS-Chem 41.0 40.4 0.25* 43.3 43.0 0.37** 
R_GEOS-Chem 2 50.7 51.9 0.24 54.9 52.6 0.29* 
CMAQ 78.4 79.4 0.84** 68.8 67.0 0.63** 

PM2.5 
(hourly) 

Observation 92.1 95.1 / 111.4 115.6 / 
GEOS-Chem 61.1 65.6 0.83** 69.8 74.7 0.86** 
R_GEOS-Chem 2 88.4 104.0 0.76** 81.9 92.2 0.80** 
CMAQ 130.4 144.3 0.81** 135.4 144.1 0.81** 

PM2.5 
(daily mean) 

Observation 92.1 90.6 / 111.4 111.7 / 
GEOS-Chem 61.1 56.3 0.75** 69.8 63.5 0.55** 
R_GEOS-Chem 2 88.4 81.8 0.75** 81.9 76.4 0.56** 
CMAQ 130.4 128.6 0.87** 135.4 128.0 0.88** 

1. Correlation between observed and simulated variables. ** indicates the correlation coefficient is 800	
statistically significant with the P-value < 0.01 while  *  indicates it passed statistical test with P-value 
< 0.01. 

2. Revised GEOS-Chem NO2 and PM2.5 by multiplying the ratio of the first layer to the second layer of 
CMAQ values.  
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Figure 1. (a) Distribution of 163 measurement stations for NO2, 157 stations for PM2.5 and 36 815	
meteorological stations (red diamonds) over Eastern China (25°N–41°N, 110°E–123°E). (b) 
Distribution of 42 cities with NO2 and PM2.5 observations. Both dots denote stations (a) and 
cities (b) with both NO2 and PM2.5 data. The blue dots indicates the same stations (cities) for 
both NO2 and PM2.5 while the green dots only used for NO2 and purple dots only used for 
PM2.5. The orange line separates Northern Eastern China (NEC) and Southern Eastern China 820	
(SEC), and the red line labels out the location of Huaihe River.  
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Figure 2. Regional mean hourly time series of raw and “corrected” NO2 from the 830	
observations. The gray shading indicates one standard deviation across all stations.  
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Figure 3. The flow chart of EOF-EEMD analysis-visualization package. The red boxes 
represent quantities visualized.  
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Figure 4. EEMD-HT-MSA result for PC1 of observed NO2.  

 



 855	

Figure 5.  Observed (filled circles) and modeled (color maps) NO2 and PM2.5 averaged over 
October 25th – December 25th 2013. Here the model results are averaged over all days rather 
than sampled at times of valid observations.  
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Figure 6. (a) Diurnal variation of observed NO2 averaged over October 25th – December 25th 
2013. The black vertical bars represent one standard deviation across the days. PC1 from the 
EOF analysis is overlaid in red. (b) Similar to (a) but for PM2.5. (c) Day-to-day variation of 
daily mean NO2 over October 25th – December 25th 2013. Data are de-trended. The black 865	
vertical bars represent one standard deviation due to the diurnal variation. PC1 and PC2 from 
the EOF analysis are overlaid in red. (d) Similar to (c) but for PM2.5.  

 

  



 870	

Figure 7. Daily anomalies of observed meteorological parameters and pollutant 
concentrations averaged over NEC and SEC, as well as their correlations. All data are de-
trended. Correlation coefficients with “*” and “**” are statistically significant with P-value 
below 0.05 and 0.01, respectively.  
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Figure 8. EOF-EEMD-HT-MSA results for the observed temperature, RH, wind speed, NO2 
and PM2.5. The first two rows depict EOF1 and EOF2, and the third row shows the EEMD-
HT-MSA result for PC1 and PC2. In each panel of the third row, the length of the vertical 880	
“error bar” shows the RPR of an IMF, while the length of the horizontal bar represents the 
percentage contribution of the IMF to the total variance of the original data (as such, the 
horizontal lengths for different IMFs across different PCs can be compared). The blue (red) 
color indicates diurnal (day-to-day) variation. 

 885	

 

  



 

Figure 9. Observed and simulated diurnal and day-to-day variations of (a) NO2 and (b) PM2.5 
over NEC and SEC (μg m-3).  890	
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Figure 10. EOF-EEMD-HT-MSA results for observed, GEOS-Chem and CMAQ NO2. See 
Sect. 4.2 for detailed descriptions.   



 900	

Figure 11. EOF-EEMD results for observed, GEOS-Chem and CMAQ PM2.5. See Sect. 4.2 
for detailed descriptions.   



 

Figure 12. Eastern China mean NO2 vertical profiles simulated by GEOS-Chem and CMAQ 
averaged over October 25th – December 25th 2013. The black and red dots denote the center 905	
of each vertical layer in the two models. The evening is from 20:00 to 23:00 LT while the 
afternoon is from 12:00 to 15:00 LT. 

 

 


