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Abstract. TS1 CE1Mixing states of soot-containing aerosol
particles constitute important information for the simulation
of climatic effects of black carbon in the atmosphere. To elu-
cidate the mixing states and morphological features of soot-
containing particles over remote oceans, we conducted on-5

board observations over the southern Indian Ocean and the
Southern Ocean during the TR/V Umitaka-maru UM-08-09
cruise, which started from Benoa, Indonesia, on 1 Decem-
ber 2008 via Cape Town, South Africa, and which termi-
nated in Fremantle, Australia, on 6 February 2009. The light10

absorption coefficients of size-segregated particles ( < 0.5
and < 1.0 µm diameter) and aerosol number concentrations
(0.1–0.5 µm diameter) were measured to assist direct aerosol
sampling. Size-segregated aerosol particles were collected
for chemical analysis using ion chromatography. For trans-15

mission electron microscopy (TEM) analyses using water-
dialysis methods, dried submicrometer aerosol particles were
collected using a cascade impactor. We analyzed 13 TEM
samples. Results of water-dialysis analysis demonstrate that
most particles were water-soluble. However, for all TEM20

samples, particles were rarely found (2.1 % of particles on
a TEM sample at a maximum) containing insoluble resid-
uals with the characteristic soot shape. For samples col-
lected over the Indian and Southern oceans at latitudes less
than 62◦ S, some (20–38 %) soot-containing particles were25

found as bare soot. For samples collected near the Antarc-
tic coast (65–68◦ S, 38–68◦ E), all soot-containing particles
were mixed with water-soluble materials. Furthermore, 56 %
of soot-containing particles had a satellite structure formed

by the impact of droplets such as sulfuric acid. Chemi- 30

cal analysis of submicrometer particles near the Antarc-
tic coast revealed high concentrations of non-sea-salt (nss)
SO2−

4 and CH3SO−3 , suggesting that aged soot-containing
particles were transformed by soluble materials derived from
dimethyl sulfide (DMS) oxidation. The obtained information 35

of soot at various remote ocean areas is expected to be useful
to understand long-range transport processes and to improve
simulations of global soot concentration.

1 Introduction

Soot in the atmospheric aerosol is a by-product of fossil fuel 40

(diesel and coal) combustion and open biomass burning. It
is a carbonaceous material with a deep black appearance to
visible solar radiation in the atmosphere (Ramanathan and
Carmichael, 2008). Soot has an aggregated morphology of
globules with diameters of tens of nanometers, consisting of 45

concentrically wrapped graphitic layers (e.g., Pósfai et al.,
2004; Murr and Soto, 2005). Carbonaceous materials with
a deep black appearance with a large imaginary part of the
refractive index are measured optically as black carbon (BC).
Although the carbon fractions that are designated by different 50

definitions are far from being the same, those for soot and BC
overlap to a great extent (Grencsér, 2004)TS2 .

In fact, BC in atmospheric aerosols can influence the
Earth’s radiation budget strongly through atmospheric pro-
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2 S. Ueda et al.: Morphological features and mixing statesTS6

cesses, but also through positive feedback on snow and ice
albedo after transport and deposition on the snow surface at
midlatitudes to high latitudes (e.g., Haywood and Boucher,
2000; Hansen and Nazarenco, 2004; Koch and Hansen, 2005;
Ramanathan and Carmichael, 2008; Bond et al., 2013). Nev-5

ertheless, there are order-of-magnitude disagreements of BC
concentrations between models and observations in the re-
mote and upper troposphere air masses (Koch et al., 2009;
Schwarz et al., 2010, 2013).

Soot particles that are freshly emitted from fossil fuel com-10

bustion are attached to or coated with secondary aerosol ma-
terials such as sulfates, nitrates, and organics through atmo-
spheric aging processes (Weingartner et al., 1997; Zuberi et
al., 2005). The aging processes alter the particle size, hygro-
scopicity, and the ability to act as cloud condensation nuclei,15

eventually reducing the residence time of soot particles in the
atmosphere. Some numerical sensitivity studies have pointed
out that aging and wet scavenging parameters of soot in the
atmosphere are key factors controlling long-range transport
and spatial distributions (Koch, 2001; Croft et al., 2005; Stier20

et al., 2006).
To improve global BC modeling, fundamental informa-

tion related to aging levels of soot-containing particles is
necessary for the atmosphere in remote or polar regions be-
cause of their importance for snow albedo effects caused by25

BC deposition onto snow or sheet ice. Some reports have
described aged soot-containing particles using electron mi-
croscopy (Pósfai et al., 1999; Hasegawa et al., 2002;TS3

Hara et al., 2003; Vester et al., 2007; Ueda et al., 2011b,
2016b; Adachi et al., 2014). However, most of such obser-30

vations have been limited to sampling locations near source
areas. Particularly, knowledge of individual features of soot-
containing particles in remote areas of the Southern Hemi-
sphere remains very poor. Although some reports of observa-
tions have described BC concentrations over marine bound-35

ary layers of the Southern Hemisphere (Moorthy et al., 2005;
Evangelista et al., 2007; Sciare et al., 2009) and Antarctica
(Wolff et al., 1998;TS4 Hansen et al., 2001; Hara et al., 2008;
Chaubey et al., 2010; Weller et al., 2013), information related
to mixing states of soot has scarcely been shown.40

An important reason for the scarcity of data in remote
regions is the difficulty of sampling aerosols under clean
conditions. In remote areas, the BC concentration is usually
quite low. Moreover, the mass proportion is very low com-
pared to other aerosol components such as sea salt and sul-45

fates. Therefore, it is difficult to find rare soot particles in
many other components, particularly well-aged soot. How-
ever, water dialysis to detect insoluble soot selectively un-
der a microscope is a powerful technique to investigate the
mixing states of well-aged soot-containing particles (Okada50

et al., 1983;TS5 Ueda et al., 2011a, b). This method com-
prises morphological observation and comparison before and
after water dialysis of aerosols. Because soot shows distinc-
tive morphological features and because it is water-insoluble,

 
 

 

 

Figure 1. Ship tracks of the TR/V Umitaka-maru UM-08-09 cruise.
Open circles and black squares represent noon of each day at local
time.

this method is suitable to detect soot and to investigate the 55

mixing states with water-soluble materials.
For this study, we conducted careful sampling for individ-

ual analysis of soot-containing particles on board the TR/V
Umitaka-maru cruises from 1 December 2008 to 6 Febru-
ary 2009 over the southern Indian Ocean and the Southern 60

Ocean. Elucidating the mixing states of soot-containing par-
ticles for low-BC concentration areas will be helpful for elu-
cidating the long-range transport of soot in remote areas, and
eventually for understanding the global diffusion processes
of BC through the atmosphere. This study was conducted 65

mainly to ascertain the mixing states of soot-containing parti-
cles with water-soluble materials and to assess their relation-
ship to the morphological features of the mixing materials.

2 Field observation and laboratory methods

Atmospheric observations were conducted over the Indian 70

Ocean and the Southern Ocean during the TR/V Umitaka-
maru UM-08-09 from 1 December 2008 through 6 Febru-
ary 2009. Figure 1 portrays ship tracks of the TR/V Umitaka-
maru cruise.

2.1 Aerosol number–size distribution 75

A flow diagram of a measurement system and a sampling
system for transmission electron microscopy (TEM) samples
is presented in Fig. 2. Number–size distributions of atmo-
spheric aerosol particles were measured using an optical par-
ticle counter (OPC, KC-18; Rion Co. Ltd.) similar to the sys- 80

tem used for a study described by Ueda et al. (2011a). The
OPC measures the number concentrations of aerosol parti-
cles for five size ranges, with diameters greater than 0.1, 0.15,
0.2, 0.3, and 0.5 µm. The aerosol measurements were made at
relative humidity (RH) of 15–25 %, monitored online using 85

a data logger (MR6600; Chino Corp.).
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Figure 2. Flow diagram of a measurement system using the CN counter, PSAP, and OPC, and a sampling system for TEM samples. Solid
arrow lines are sample air flow lines for consecutive measurements. Broken arrow lines show sample air flow for TEM sampling.

2.2 Size-segregated light absorption coefficient

Light absorption of aerosol particles was measured using
two particle soot absorption photometers (PSAP; Radiance
Research), as derived from the particle light absorption co-
efficient at 565 nm wavelength (babs). The values of babs5

were corrected based on the method described by Bond et
al. (1999). To obtain size information, two impactors (nozzle
diameters 0.4 and 1.2 mm, flow rates 0.8 and 1.0 L min−1,
respectively) and two two-way valves were used for a PSAP
to separate particles with a diameter larger than 0.5 µm and10

larger than 1 µm. The other was used to measure light absorp-
tion for total particles. The valves were changed every 6 min
with integration time of 1 min for one photometric value. It is
noteworthy that the values of maritime babs, especially those
of the larger size range, can be overestimated by the effects15

of scattering by sea salts and other components on the fil-
ter. However, correction of the scattering effect was difficult
because babs over the remote ocean region was usually quite
low. For this study, values of babs less than 1 µm were used
mainly for evaluating the relative variation with attention to20

overestimation, and as an index of clean sampling of TEM
samples aboard the ship.

2.3 Data screening of aerosol number concentration
and light absorption

Condensation nuclei (CN) concentrations were measured us-25

ing a CN counter (3781; TSI) for particles with a diameter
greater than 10 nm (Fig. 2). A two-way valve and a diffu-
sion screen to cut particles smaller than 20 nm were used for
the CN counter to obtain information about the nucleation
particle size. The valves were changed every 10 min. To dis-30

cuss background aerosol particles specifically, we carefully
removed data showing contamination by ship exhaust using
CN concentration. As an example, CN concentrations before

and after data screening are presented in Fig. 3. CN concen-
trations before screening sometimes increased dramatically 35

for a short time because of local contamination. We applied
restrictions using CN data to the aerosol number–size distri-
bution and babs, and eliminated suspicious data that did not
conform to the following: (1) the standard deviation of CN
concentrations during 10 min is less than 10 % of the median 40

value and (2) CN concentration during 1 min is lower than
1.2 times the median value for 10 min. As a result of screen-
ing according to (1) and (2), periods of rapid CN increase
and high CN concentration, which mainly originate from
the ship’sCE2 own emissions, were omitted (Fig. 3). Ueda 45

et al. (2016a) has studied new particle formation over the Pa-
cific Ocean, using a similar screening method. The screening
threshold of the rate of increase of the particle number con-
centration (1.2 times per 10 min) is sufficiently higher than
the naturally observed rate of increase for typical new parti- 50

cle formation over the ocean. Therefore, data related to new
particle formation would remain after our data screening. For
data of OPC and PSAP, the periods of (1) and (2) were not
used. Consequently, the aerosol concentration and babs data
showed no sudden change, as described later in Sect. 3.1. 55

2.4 Ionic constituents of size-segregated aerosol
particles

Size-segregated aerosol samples were collected using a
three-stage impactor with a backup filter for 24 h intervals
at a flow rate of 20 L min−1. The air sampler was placed in 60

a weather shield at the middle of the front end on the up-
permost deck. Air sampling was controlled as relative wind
speed (> 2 m s−1) and direction (from bow) to avoid con-
tamination from the ship’s exhaust. To prevent contamination
from the ship’s boundary layer, the inlet of the weather shield 65

was designed to protrude toward the bow from the edge of
the uppermost deck. A similar arrangement and strategy of
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Figure 3. Results for CN concentrations measured before and after
screening. Data for periods of orange arrows indicate removal by
screening (1). Data indicated by pink arrows are data removed by
screening (2).

aerosol sampling was used by Kawakami et al. (2008). The
estimated 50 % cutoff diameter for Stage 1 was 8 µm, with
2 µm for Stage 2, and 0.2 µm for Stage 3 at a flow rate of
20 L min−1. In this study, the Stage 3 results were used for
comparison with other aerosol data. The substrate of the first5

impactor stage was a PTFE filter (47 mm diameter; Advantec
Toyo Kaisha Ltd.) with a 15 mm diameter hole at the center.
Nuclepore filters (25 mm diameter, 110606; Whatman plc.)
were used as sampling substrates for the second and third
stages of the impactor. The backup filter was a 47 mm diam-10

eter PTFE filter (nominal pore size of 1.0 µm; Advantec Toyo
Kaisha Ltd.). These samples were kept in a freezer until labo-
ratory analyses. Filter samples were analyzed using ion chro-
matography (DX-120; Dionex Corp.) after extraction using
14 mL of ultrapure water (18.2 M�). Analytical conditions15

and procedures were described by Hara et al. (2004).

2.5 Samples of morphological particle analyses using
an electron microscope

Aerosol particles were collected for morphological particle
analysis using a transmission electron microscope (TEM).20

To analyze morphological features of aerosol particles, dried
(RH < 20 %) aerosols were collected using cascade im-
pactors (50 % cutoff diameters of the three stages 1, 2, and
3 were, respectively, 0.5, 0.3, and 0.2 µm) on carbon-coated
nitrocellulose (collodion) films. Aerosol samples were col-25

lected for 20–70 min at a flow rate of about 0.6 L min−1. In
this study, samples of stages 1 and 2 were used for analy-
ses. To control the suitable surface density of particles on
the sampling substrate for observation by TEM analysis, the
sampling time was controlled according to aerosol number30

concentrations. TEM samples were taken at about 2–5 sam-
ples per day based on aerosol concentrations and light ab-
sorption of aerosol particles. For analysis of atmospheric
aerosols, locally contaminated aerosol samples were elimi-
nated by reference to the CN concentration during TEM sam-35

ple collection from the same inlet tube. The TEM samples

were stored under dry conditions at room temperature until
TEM analyses were conducted at Nagoya University.

The particles were photographed using TEM (JEM-2010;
JEOL) at 2000× magnification. The collection film is re- 40

garded to be a semipermeable membrane. Therefore, a water-
dialysis technique (Mossop, 1963; Okada, 1983; Okada and
Hitzenberger, 2001; Ueda et al., 2011a, b) was applied to
aerosol samples to remove water-soluble materials from in-
dividual aerosol particles through the film after they were 45

photographed. The electron microscopic grid with particle
samples was floated on ultrapure water at room temperature
(about 25 ◦C) for 3 h with the collection side facing upward.
The water-insoluble residues after dialysis were coated again
perpendicularly to the previous coat of a Pt / Pd alloy to dif- 50

ferentiate the particle height and two-dimensional morphol-
ogy after water dialysis. They were then rephotographed us-
ing TEM.

The negative films were scanned and recorded with a res-
olution of 1200 dpi. The scanned image was processed using 55

image analysis software (Win Roof; Mitani Corp.) to esti-
mate the projected area of particles (S). The diameter of the
equivalent circle was estimated from S. The mixing states of
individual particles with respect to water solubility were ob-
tained by comparing electron micrographs of the same field 60

of the collecting surface taken before and after water dial-
ysis. For morphological analysis using water dialysis, 365–
6270 particles per sample were compared before and after
water dialysis.

2.6 Air mass backward trajectories 65

Air mass backward trajectories were analyzed to investigate
their relation to observed size distributions and mixing states
of aerosol particles. The backward trajectory and precipita-
tion data were computed using the Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model devel- 70

oped by the National Oceanic and Atmospheric Administra-
tion (NOAA) Air Resources Laboratory (ARL) (Stein et al.,
2015; Rolph et al., 2017). The settings of the trajectory du-
ration, starting height, vertical mode calculation method, and
dataset were chosen, respectively, to be 10 days, 500 m above 75

sea level, model vertical velocity, and GDAS meteorological
data.

3 Results and discussion

3.1 Temporal variation of aerosol parameters

Figures 4 and 5 portray temporal variations of the size- 80

segregated volume concentration (0.1–0.5 µm diameter) of
aerosol particles (Figs. 4a and 5a), the babs of the size-
segregated aerosol particles (D: < 0.5, 0.5–1.0, > 1.0 µm)
(Figs. 4b and 5b), the ratio of the babs of D < 0.5 to
D < 1.0 µm aerosols (Figs. 4c and 5c), and wind speed and 85

direction (Figs. 4d and 5d), respectively, for Benoa–Cape
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Figure 4. Temporal variations of (a) volume concentration of aerosol particles and start times of TEM sampling (A–M with arrows), (b) ab-
sorption coefficient babs of size-segregated aerosols, (c) ratio of babs of < 0.5 µm to babs of < 1.0 µm particles, and (d) wind speed and
direction from Benoa to Cape Town. Vertical marks above (a) show periods of rain and fog.

Town and Cape Town–Fremantle. The volume concentra-
tions were calculated from the number concentrations for
the respective size ranges of the OPC and their geometric
mean diameters, assuming spherical particles. Contaminated
data were removed from the dataset based on the screening5

method. The fog, rain, and snow periods are shown at the top
of Figs. 4a and 5a.

The total volume concentrations of aerosols over remote
ocean areas were usually 100–500 µm3 L−1. They were high,
about 1000 µm3 L−1, near South Africa (28–29 Decem-10

ber 2008, 1–2 and 7–8 January 2009). Throughout the obser-
vation period, aerosol volume concentrations of 0.15–0.3 µm
diameter comprised about half of the total volume concentra-
tion.

The highest babs (> 1.0× 10−6 m−1 at D < 1 µm parti-15

cle) was observed near the coast of South Africa (7 Jan-
uary 2009), but babs values soon decreased with distance
from the coast. The ratio of 0.5 to 1.0 µm particles also
tended to decrease concomitantly with increasing distance
from the coast (7–8 January 2009). High values of babs20

(> 0.4× 10−6 m−1 at D < 1 µm particle) were observed on
13 and 20–25 December 2008, 10–11, 13–16, and 28–
31 January 2009, and 1 February 2009. Near the Antarc-
tic coast on 16–28 January 2009, babs was mostly approx.
0.1× 10−6 m−1 (0.3× 10−6 m−1 at most) for D < 1 µm par-25

ticles. The ratio of 0.5 to 1.0 µm was high. Some observa-
tion studies have measured BC concentration over oceans of

the Southern Hemisphere (Moorthy et al., 2005; Evangelista
et al., 2007; Sciare et al., 2009) based on light absorption
measurements. Moorthy et al. (2005) measured a BC value 30

over the Arabian Sea, the tropical Indian Ocean, and the
Southern Ocean. The values of BC remained < 50 ng m−3

and remarkably steady (in space and time) in the Southern
Ocean (20–56◦ S, 42–60◦ E) during January–March. Evan-
gelista et al. (2007) measured BC values at the south- 35

ern East Atlantic coast at latitudes of 22–62◦ S. The val-
ues of BC at 50–62◦ S were less than 40 ng m−3. Sciare et
al. (2009) conducted long-term observations of filter-based
monitoring of carbonaceous aerosols at Amsterdam Island
(37◦ S, 77◦ E). They reported that BC concentrations were 40

among the lowest reported for a marine atmosphere, with
monthly mean levels ranging from 2 to 5 ng C m−3 TS7 dur-
ing summer. Based on light absorption, BC concentrations
in Antarctica have been reported from some observation
studies (Wolff et al., 1998;TS8 Hansen et al., 2001; Hara 45

et al., 2008; Chaubey et al., 2010; Weller et al., 2013).
According to those reports, BC concentrations for sum-
mer have been reported as 0.5–5.0 ng m−3 at Halley Station
(75◦ S, 26◦ E) by Wolff et al. (1998), 20–300 ng m−3 at Mc-
Murdo Station (78◦ S, 167◦ E) by Hansen et al. (2001), less 50

than 10 ng m−3 at Syowa Station (69◦ S, 39◦ E) by Hara et
al. (2008), 4–19 ng m−3 at Larsemann Hills (69◦ S, 77◦ E)
and 20–157 ng m−3 at Maritri (70◦ S, 12◦ E) by Chaubey et
al. (2010), and approx. 2 ng m−3 monthly median at Neu-
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Figure 5. Temporal variations of (a) volume concentration of aerosol particles and start times of TEM sampling (A–M with arrows), (b) ab-
sorption coefficient babs of size-segregated aerosols, (c) ratio of babs of < 0.5 µm to babs of < 1.0 µm particles, and (d) wind speed and
direction from Cape Town to Fremantle. Vertical marks above (a) show periods of snow, rain, and fog.

mayer Station (70◦ S, 8◦W) by Weller et al. (2013). For Mar-
itri, Chaubey et al. (2010) pointed out that the considerable
impact of local pollution by human activities must be consid-
ered along with results. If a mass-specific absorption cross
section of BC was assumed to be 10 m2 g−1 (Hansen et al.,5

1984;TS9 Gelencsér, 2004), then the BC mass concentration
in this study was calculated roughly to be > 100 ng m−3 near
the coast of South Africa, but usually 20–60 ng m−3 in the
remote ocean, showing a similar BC level to those of reports
by Moorthy et al. (2005) and by Evangelista et al. (2007).10

In addition, the calculated BC concentration near Antarc-
tica (65–68◦ S, 38–68◦ E) was about 10 ng m−3 (30 ng m−3 at
most), showing a low level similar to data from other reports
of coastal areas of Antarctica (McMurdo Station, Syowa Sta-
tion, Larsemann Hills, and Maritri).15

Wind speeds (Fig. 4d) varied during observation periods
from 0 to 23 m s−1. High wind speeds (> 15 m s−1) were of-
ten observed at latitudes of 40–60◦ S (21–23 December 2008,
11–13 January 2009, and 1 February 2009). Wind speeds
over the Southern Ocean near the coast of Antarctica (16–20

27 January 2009) were mostly lower than 10 m s−1 and were
often less than 5 m s−1. The mass concentrations of sea-salt
aerosol particles derived from the ocean are known to corre-
late well with wind speed (Lewis and Schwartz, 2004)TS10 .
Although the aerosol concentrations of D > 0.3 µm were of-25

ten higher under high wind speed conditions (e.g., 22 De-

cember 2008), no correlation was found between wind speed
and aerosol concentration.

3.2 Relation between backward air mass trajectory
and horizontal distribution of absorption 30

coefficient and nss-K+

Figure 6 portrays 10-day backward air mass trajectories. Cal-
culations started from 500 m above sea level over the lo-
cation at noon, local time, every day. According to start-
ing areas, trajectory analyses were grouped into six zones 35

(Fig. 6a–f). The air masses of the eastern Indian Ocean (2–
18 December 2008) were derived from southern subtropi-
cal or more southern areas, moving counterclockwise to the
observation sites (Fig. 6a). Air masses of the western In-
dian Ocean (19–30 December 2008, Fig. 6b), south of South 40

Africa of 50–65◦ S (10–15 January 2009, Fig. 6d), and south-
west of Australia (27–31 January and 1, 2 February 2009,
Fig. 6f) were derived southwest of the Atlantic Ocean. Some
of them passed around the area south of South America. The
air masses from near the coast of South Africa (31 Decem- 45

ber 2008, 1, 8, and 9 January 2009, Fig. 6c) passed the coast
of South Africa, moving counterclockwise from the south.
Air masses from the Southern Ocean near Antarctica (16–
26 January 2009, Fig. 6e) originated from the Antarctic coast.

Figure 7a portrays a horizontal distribution of babs for par- 50

ticles with less than 1.0 µm diameter. The babs around South
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Figure 6. The 10-day backward air mass trajectories along the ship tracks. Calculations started from 500 m a.s.l. above the site every day at
noon, local time. Red lines show backward air mass trajectories. Black lines show ship tracks.

 
 

 

(a) (b) (c)

 

Figure 7. Horizontal variation of (a) absorption coefficient of particles smaller than 1 µm, (b) mass concentration of nss-K+ for 0.2–2 µm
aerosols, and (c) mass concentration of oxalate for 0.2–2 µm aerosols. Black circles show values below the detection limit.

Africa was higher. High values (> 4× 10−7 m−1) were often
observed in the western Indian Ocean (35–45◦ S 35–45◦ E
on 20–25 December 2008), south of South Africa (50–65◦ S
26–38◦ E on 10–11, 13–16 January 2009), and southwest of

Australia (45–63◦ S 80–98◦ E on 28–31 January and 1 Febru- 5

ary 2009). For these periods, backward air trajectories were
mostly derived south of South America. In the subtropical
area of South America, biomass burning was often observed

www.atmos-chem-phys.net/18/1/2018/ Atmos. Chem. Phys., 18, 1–18, 2018



8 S. Ueda et al.: Morphological features and mixing states

by satellite (Edwards et al., 2006; Giglio et al., 2006; Chen
et al., 2013). Figure 7b and c respectively portray horizon-
tal distributions of non-sea-salt potassium (nss-K+) and ox-
alate concentrations in aerosol particles with sizes of 0.2–
2 µm. These species are regarded as originating mainly from5

biomass burning (Andreae, 1983; Kawamura and Kaplan,
1987; Narukawa et al., 1999). Although the nss-K+ con-
centrations were below the detection limit (black circle in
Fig. 7b) in broad remote ocean areas, discernible nss-K+

(> 3 ng m−3) concentrations were observed on 20–23 and10

25 December 2008 (western Indian Ocean), on 9 and 12–
16 January 2009 (Southern Ocean), and on 31 January and
1 February 2009 (region southwest of Australia). High con-
centrations (> 5 ng m−3) of oxalate were also observed in the
Indian Ocean on 13–14, 19–20, and 22–23 December 2008.15

Dates of higher concentrations of nss-K+ or oxalate mostly
coincided with higher babs. Some reports of observation have
described plumes from South America and southern Africa
at Syowa Station (Hara et al., 2010) and Troll Research Sta-
tion (Fiebig et al., 2009) in Antarctica during winter–spring,20

when biomass burning is active in the Southern Hemisphere.
However, the season in this study was summer. Most 10-day
air mass trajectories did not come directly from subtropical
continental areas of South America. In this study, identifica-
tion of the source was unfortunately difficult by trajectory,25

but the result obtained for nss-K+ and oxalate suggests that
the air mass was partially influenced by biomass burning.

3.3 TEM analysis

3.3.1 Samples

According to the geographical area of sample collection and30

babs, 13 samples were analyzed using TEM. The starting
times of sample collection are indicated by arrows A–D in
Fig. 4a and b by arrows E–M in Fig. 5a. Sample details are
presented in Table 1. Sampling locations and 10-day back-
ward trajectories of air parcels for samples A–M are por-35

trayed in Fig. 8. Trajectories were started at 500 m above sea
level at the sampling site. Samples A–D and G–J were col-
lected under conditions with high babs over remote areas of
the Indian Ocean and the Southern Ocean. Samples E and F
were collected near South Africa. Samples K–M were col-40

lected over the Southern Ocean near the Antarctic coast.
Samples were classified into five groups referring to the

area. Sample A was collected over the eastern Indian Ocean
(classified as group 1). Only one sample was adequate for
TEM analysis because of frequent contamination in the east-45

ern Indian Ocean caused by surrounding ship activities. Sam-
ples B, C, and D were collected over the western Indian
Ocean and were classified as group 2. Samples E and F were
collected near southern Africa (classified as group 3). Sam-
ples G, H, and I were collected at 50–62◦ S south of South50

Africa (classified as group 4). Samples J, K, L, and M were

collected over the Southern Ocean near the Antarctic coast
(classified as group 5).

3.3.2 Morphological features and mixing states

Figure 9 shows TEM images of samples A, C, E, H, J, and 55

M, and an example (lower part) of analysis at the same mag-
nification using water dialysis before and after treatment of
sample J. Based on the image contrast and shadow of Pt / Pd
of the particle, most of the particles were classified as round
(r), dome-like (d), or rotundate rectangular (rr) on the film 60

(examples indicated by blue arrows in Fig. 9a). According to
earlier studies based on elemental analysis using an energy-
dispersive X-ray spectrometer, such particles were often rec-
ognized as sulfate-rich particles (Li et al., 2003; Li and Shao,
2010;TS11 Ueda et al., 2011b, 2014, 2016b). Particularly, ro- 65

tundate rectangular particles were identified as ammonium
sulfate particles based on selected-area electron diffraction
analysis (Ueda et al., 2011b). Some crystalline coarse par-
ticles were also found in group 1–4 samples (samples A–I)
(examples are indicated by red arrows in Fig. 9a). These par- 70

ticles showed a stronger contrast with the collection film and
had larger diameters than those of sulfate-like particles. Most
of them had a cuboidal shape, which is a morphological fea-
ture of sea-salt particles. By contrast, such sea-salt-like parti-
cles were rarely found in samples (samples J–M) of group 5 75

collected under lower wind speed conditions near the coast of
Antarctica. In samples K, L, and M, most particles exhibited
a satellite structure, resembling those of sample M of Fig. 9a.
Such particles with a satellite structure were also found in
samples H–J collected over the Southern Ocean, as indicated 80

by green arrows. The satellite structure is typically formed
by the impact of sulfuric acid (H2SO4) droplets (Waller et
al., 1963; Frank and Lodge, 1967; Gras and Ayers, 1979).
Some reports have indicated that the satellite ring shape was
correlated with the degree of ammonization: a single ring 85

for bisulfate (NH4HSO4) and multiple rings for pure sulfuric
acid (Bigg, 1980; Ferek et al., 1983; Ueda et al., 2011b). In
this study, some rectangular particles showed a satellite struc-
ture, which suggests impact by sulfuric acid droplets. Rect-
angular particles are usually regarded to be fully neutralized 90

ammonium sulfate. Therefore, the existence of such particles
invites curiosity. One possibility for the origin is the transfor-
mation of acidic particles after collection by neutralization
with ambient ammonia over the substrate. In samples K, L,
and M, which were collected closer to the coast of Antarc- 95

tica, most particles showed a satellite structure with multiple
rings, although the satellite particles were fewer in samples
H, I, and J than in samples K–M.

As shown in Fig. 9b, water-dialysis analysis reveals that
most aerosol particles (i.e., rounded, dome-like rectangular 100

and crystalline-coarse particles, and the satellite particles)
were water-soluble. However, quite rarely, insoluble resid-
uals remained after water dialysis. Some of them revealed
aggregations of globules with a diameter less than 50 nm,
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Figure 8. TEM sampling location A–M and the 10-day backward trajectories for air masses reaching the location at 500 m a.s.l. during
sampling periods. Black lines show the ship track. Colored (red, blue, green, and pink) circles and lines respectively represent sampling
locations and backward trajectories.

which is characteristic of soot particles (Janzen, 1980; Pósfai
et al., 2004; Murr and Soto, 2005). In this study, particles
containing such water-insoluble aggregated residuals were
regarded as soot-containing particles. Using this method, in-
soluble materials of less than 0.1 µm diameter were not iden-5

tifiable as soot because of TEM image quality.
The number of soot-containing particles was 1–10 per

sample (Table 1). The number fractions of soot-containing
particles to total particles for all samples except for sample
H were 1 % or less. The fraction for sample H was 2 %. Al-10

though the trajectory did not pass over subtropical areas of
South America (Fig. 8), the sampling site of sample H co-
incided with higher nss-K+ concentrations and higher babs,
suggesting some influence from biomass burning.

Several examinations of moderately remote atmospheres15

using the same water-dialysis analysis have also reported
the number fraction of soot-containing particles (Hasegawa
and Ohta, 2002; Ueda et al., 2011b). The quantities of soot-

containing particles in this study (less than 2 %) were smaller
than their values (3–11 % for particles 0.08–1.6 µm at Fukue 20

Island in northwestern Japan by Hasegawa and Ohta, 2002,
and 2–25 % for particles 0.2–0.4 µm and 14–59 % for par-
ticles 0.4–0.7 µm at Cape Hedo in southwestern Japan by
Ueda et al., 2011b). For the soot-containing fraction in the
remote marine troposphere above the Southern Ocean, Pós- 25

fai et al. (1999) reported that 10–45 % for particles > 0.1 µm
were sulfate particles containing soot inclusions based on
TEM analysis. They also identified aircraft emissions and
biomass burning as the most likely major sources of soot.
By contrast, our study examined aerosols within the marine 30

boundary layer by ship. Most sampling sites were more dis-
tant from continental source areas than those explained in
earlier studies. In addition, the backward air mass trajectories
had not passed over continental areas (except Antarctica) for
a week. The low fraction of soot-containing particles in this 35

Atmos. Chem. Phys., 18, 1–18, 2018 www.atmos-chem-phys.net/18/1/2018/
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Figure 9. Electron micrographs for (a) samples A, C, E, H, J, and M, and (b) before and after dialysis of sample J for the same sample
region. Magnifications of all microphotographs of (a) are the same. Red arrows indicate examples of particles with a sea-salt shape. Blue
arrows indicate examples of particles with a sulfate particle shape (d, dome-like, r, round, and rr, rotundate rectangular particles). Particles
with a satellite structure in samples H and J are marked by green arrows. See main text.

study is expected to be a result of remoteness of the atmo-
sphere observed.

3.3.3 Features of soot-containing particles

Figure 10 presents representative examples of electron mi-
crographs of soot-containing particles before and after wa-5

ter dialysis at the same magnification. In sample D collected
over the western Indian Ocean, soot-containing particles of

two types were found: bare soot (i.e., external mixture of
soot) and internal mixtures of soot and water-soluble materi-
als. Soot-containing particles of both types were also found 10

in sample H. Some particles that were internally mixed with
soot had the satellite structure in sample H, suggesting the
existence of acidic droplets. In sample M, all soot was inter-
nally mixed with the satellite particles.

Table 2 presents the number and a percentage of each type 15

of soot-containing particle and average values of parameters
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12 S. Ueda et al.: Morphological features and mixing states

Figure 10. Electron micrographs of soot-containing particles before (left) and after (right) water dialysis at the same magnification for
samples D, H, and M.

of soot-containing particles (diameters of soot-containing
original particles and inner soot core, and diameter ratios of
soot to original particle) for each group. The data are total fig-
ures for stages 1 and 2. Figure 11 portrays scatterplots of par-
ticle sizes (projected area diameters) before (soot-containing5

particles: Dparticle) and after (soot: Dsoot) water dialysis of
soot-containing particles for groups 1–5. Most Dsoot particles
were of 0.1–0.5 µm diameter (Fig. 11). Although some soot-
containing particles were of super-micrometer size, Dparticle
were mostly submicrometer size.10

In samples of groups 1–4, 20–38 % of soot-containing par-
ticles were found to be bare soot (Table 2). More than half
of soot-containing particles of groups 1–4 had diameters of
Dparticle less than twice those of Dsoot (Fig. 11). Averaged
values of the ratio of Dsoot to Dparticle were 0.41–0.78 (Ta-15

ble 2). Averaged values of Dparticle were largest for group
5 (Table 2). This result disagreed with the high babs ratios
of 0.5 to 1.0 µm near Antarctica, as explained in Sect. 3.1. A
comparison between results of PSAP and morphological data

presented some difficulties. The number and volume of soot 20

particles were quite low in remote ocean areas, especially
in the Southern Ocean, compared to the other aerosol mate-
rials. Therefore, the possibility that babs of each size range
was overestimated by scattering particles was undeniable. In
addition, accurate estimation of the diameters of the satel- 25

lite and liquid particles was difficult. For that reason, the size
is expected to differ from the aerodynamic size used in mea-
surement of babs. This section presents discussion of the mor-
phological features of soot-containing particles.

Soot particles that had been freshly emitted from fossil 30

fuel combustion were found to be of bare type (Weingart-
ner et al., 1997). However, aged soot particles often showed
coatings of large amounts of secondarily formed materials
(Pósfai et al., 1999; Hasegawa et al., 2002; Ueda et al., 2011,
2016TS12 Adachi et al., 2014). In this study, the air masses for 35

groups 1–4 remained over remote ocean areas without pass-
ing continental areas within 8 days (Fig. 8). Nevertheless,
a certain number of bare soot particles and less coated soot
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Table 2. Parameters of the soot-containing particles of TEM samples.

Sample Group 1 Group 2 Group 3 Group 4 Group 5
A B, C, and D E and F G, H, and I J, K, L, and M

Number and percentage of each type soot-containing particles

number % number % number % number % number %

Total 5 14 10 16 9
Bare type 1 20 % 4 29 % 2 20 % 6 38 % 0 0 %
Mixed type 4 80 % 10 71 % 8 80 % 10 62 % 9 100 %
Satellite type 0 0 % 0 0 % 0 0 % 3 19 % 5 56 %

Averaged values of soot-containing particle diameter (Dparticle) and soot diameter (Dsoot)

Dparticle (µm) 1.05± 0.50 0.43± 0.20 1.10± 0.57 0.57± 0.22 1.86± 2.36
Dsoot (µm) 0.36± 0.18 0.34± 0.22 0.33± 0.25 0.34± 0.12 0.23± 0.08
Dsoot/Dparticle 0.47± 0.31 0.78± 0.22 0.41± 0.30 0.68± 0.30 0.31± 0.22

The numbers after the ± symbol denote standard deviation. CE3
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Figure 11. Scatterplot of particle sizes before and after water dial-
ysis of soot-containing particles (i.e. soot-containing particle diam-
eter and soot diameter) for sample groups 1–5.

particles were found in these samples. We have considered
that such bare soot might have originated from distant ships
(e.g., cargo ships) in the same region or an upper tropospheric
source from aircraft emissions. However, the locations of our
TEM sample collection for groups 2 and 4 were far from a5

major ship route located from north of the Malacca Strait to
south of Madagascar (Tournadre, 2014). For groups 2 and 4,
although the backward trajectory passed a major ship route a
few days before for sample B and 10 days before for sample
G, that for the other samples did not. Therefore, contribu-10

tions from distant ships cruising along the major traffic route
on days near the sampling days are regarded to be quite low
for groups 2 and 4 except sample B. Similarly, the possibil-
ity of a contribution from aircraft exhaust is quite low. Most
of the backward trajectories for samples of groups 1–4 were 15

passed below 2 km a.s.l. during the 5 days preceding sample
collection. In addition, most of the horizontal backward tra-
jectories did not pass through major routes of civil aviation
(Stettler et al., 2013) for several days before sampling.

Internally mixed soot particles with soluble materials can 20

be scavenged preferentially from the atmosphere by cloud
and rain processes. This mechanism can also engender a
higher likelihood of smaller and hydrophobic soot particles
surviving longer in the atmosphere. Studies of partitioning
of soot particles between cloud droplets and cloud interstitial 25

particles at high altitudes have demonstrated that soot parti-
cles remained in interstitial particles and that sulfate particles
were more likely to be scavenged toCE4 cloud droplets (Hall-
berg et al., 1992, 1994; Kasper-Giebl et al., 2000; Hitzen-
berger et al., 2001). Additionally, individual particle analy- 30

sis using water dialysis revealed that bare soot particles are
abundant in cloud interstitial particles under high precipita-
tion (2–6 mm h−1) at high-elevation mountain sites (Ueda et
al., 2011a). Wet processes can also scavenge precursor gases
for aging particles. Therefore, aging of soot particles will oc- 35

cur slowly in a clean air mass over remote ocean areas. Par-
ticularly, weather around 50◦ S was often rainy and stormy
during the cruise. During this study, fog and rain events were
observed frequently near sampling sites G2 (Fig. 4) and G4
(Fig. 5). Therefore, bare soot particles found in these samples 40

might have come through these wet scavenging processes af-
ter they were emitted at a remote source from the sampling
site.

Although some bare soot particles were present over the
remote Indian Ocean and northern parts of the Southern 45
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Figure 12. Horizontal variation of mass concentrations of (a) CH3SO−3 for 0.2–2 µm aerosols and (b) nss-SO2−
4 for 0.2–2 µm aerosols.
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Figure 13. Scatterplot of CH3SO−3 and nss-SO2−
4 for 0.2–2 µm

aerosols. Crosses and circled crosses respectively represent data for
all samples and for samples collected at sites of latitudes higher
than 60◦ S (from 09′1/13 to 09′2/28). The fitting line is linearized
for circled crosses.

Ocean, all soot-containing particles in samples of group 5
collected near the Antarctic coast were mixed internally
with water-soluble materials. Ds CE5 were less than 0.5 µm
(Fig. 11). However, most soot-containing particles had
Dparticle greater than twice the value of Dsoot. The average ra-5

tios of Dsoot to Dparticle were 0.31 (Table 2). The abundance
of soot-containing particles with a satellite structure was
56 % in group 5. Such soot-containing particles with a satel-
lite structure were found only in samples obtained at south of
60◦ S latitude. Figure 11a and b respectively portray horizon-10

tal distributions of CH3SO−3 and nss-SO2−
4 concentrations

for 0.2–2 µm particles. Although nss-SO2−
4 has both natural

and anthropogenic sources, CH3SO−3 in marine aerosols is
derived from the oxidation of dimethyl sulfide (DMS) emit-
ted by marine phytoplankton (Savoie et al., 1992). Actually, 15

the CH3SO−3 concentrations in Fig. 12 were higher south
of 50◦ S and were quite low at lower (< 30◦ S) latitudes.
Sporadic high concentrations of CH3SO−3 (> 150 ng m−3)

were found in coastal areas of Antarctica. High nss-SO2−
4

concentrations over the Southern Ocean correspond well 20

with the high concentration for CH3SO−3 . Figure 13 presents
a scatterplot of concentrations of CH3SO−3 and nss-SO2−

4 .
For the Southern Ocean of latitudes higher than 60◦ S, nss-
SO2−

4 concentration showed good correlation with CH3SO−3 .
In addition, the number–size distribution of submicrom- 25

eter aerosols over the Southern Ocean was characterized
by abundant smaller particles (Fig. 5a). These results sug-
gest strongly that submicrometer aerosols over the South-
ern Ocean are dominated by secondary particles produced
by DMS oxidation after local marine biogenic emission. Be- 30

cause DMS production and oxidation are both high in sum-
mer in the Southern Ocean, condensation of oxidation prod-
ucts by gaseous DMS and coagulation of the ultrafine par-
ticles engender transformation of soot particles and the for-
mation of soot-containing particles coated by sulfuric acid 35

or methanesulfonic acid droplets. Such mixing processes of
soot should be considered during the estimation of transport
and deposition of BC to Antarctica.

4 Conclusions

To elucidate the mixing states and morphological features of 40

soot-containing particles in remote marine areas, we con-
ducted shipborne aerosol observations over the Southern
and southern Indian oceans during the 27th Umitaka-maru
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cruise. After TEM samples for individual particle analysis
using water dialysis were obtained, 13 samples were chosen
for detailed analysis by sampling location and babs.

Water-dialysis examination revealed that many particles in
the 13 TEM samples contained water-soluble materials. Re-5

garding the particle number fraction, 0.03–2.11 % of parti-
cles on the samples contained chain-like insoluble residuals
(soot) of 0.1–0.5 µm diameter.

For samples collected over the southern Indian Ocean
and northern Southern Ocean, north of 62◦ S latitude, 20–10

38 % of soot-containing particles were found to be bare soot.
The backward air mass trajectories suggested that most of
the sample air had not been affected by aircraft and ship
emissions within several days at least. The origin of bare
soot remains unknown. Preferential scavenging of aged soot-15

containing particles might be a mechanism supporting the
existence of bare soot over remote ocean areas. On the other
hand, all soot-containing particles in samples collected near
the Antarctic coast were mixed internally with water-soluble
materials. The ratio of diameter of soot / soot-containing par-20

ticles for samples obtained near the Antarctic coast (0.31)
was smaller than those of the other samples (0.41–0.78), sug-
gesting thicker coating than in other places. Most (56 %) of
the soot-containing particles near the Antarctic coast had a
satellite structure formed by the impact of droplets such as25

sulfuric acid. Chemical analysis of submicrometer particles
near the Antarctic coast revealed high concentrations of non-
sea-salt (nss) SO2−

4 and of CH3SO−3 .
This study specifically addressed individual features of

soot-containing particles in a remote maritime boundary30

layer, which was distant from the emission sources of soot.
Morphological features of soot-containing particles over the
Southern Ocean suggest that aged soot-containing particles
were transformed by soluble materials derived from DMS
oxidation. Differences of mixing states and transformation35

of soot-containing particles for various ocean areas must be
considered for the evaluation of long-range transport of soot
particles and for the simulation of the proper climatic effects
of soot-containing particles in the atmosphere.TS13
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