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Abstract:

The seasonal evolutiomf Os and its photochemicalproduction regimein a
polluted region okasternChina between 2014 and 2017%lHmeen investigated using
observations We usea tropospheric ozone (s3), carbon monoxide(CO) and
formaldehyde(HCHO, a marker of VOCs \platile organic compoungs partial
columns derived from high resolution Fourier transforspectrometry (FTS)
tropospleric nitrogen dioxide(NO., a marker of NOx r(itrogen oxide)) partial
column dedued fromOzone Monitoring Instrument (OMIsurface meteorological
datg anda back trajectoryclusteranalysistechnique A broad Oz maximumduring
both spring and summefMAM/JJA) is observed the da-to-day variations in
MAM/JJA are generally larger than those imutumn andwinter (SON/DJH.
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Tropospheric @ columrs in Juneare 1.55<10'% molecules*cnt (56 DU (Dobson
Units)) and in December are 1:08'® molecules*cr? (39 DU). Tropospheric @
columns inJune were~ 50% higher than those in DecembeZompared with
SON/DJF season,the observed tropospheri®z levels in MAM/JJA are more
influencedby transport ofair masses frordensely populated and industrializacas
andthe high G level and variability ilTMAM/JJA is determined by the photochemical
Oz production The tropospheric columrHCHOMNO: ratio is usedas a proxyto
investigatethe photachemicalOs productionrate (PQs). The results show that the PO
is mainlynitrogen oxide (NOy) limited in MAM/JJA, while it is mainly VOC or mix
VOC-NOx limited in SON/DJFE Statistics show that NOimited, mix VOC-NOx
limited, and VOC limited PQ accounts for 60.1%, 28.7%, and 118t days
respectively.Considering most of POare NOx limited or mix VOC-NOy limited,

reductions iMNOx would reduce @pollution in eastern China.

1 Introduction

Human health, terrestrial ecosystermsd materials degradation are impacted by
poor air quality resulting from highhotochemicabzone(Os) levels (Wennberg and
Dabdub, 2008;Edwards et al., 2013Schroederet al., 201Y. In polluted areas,
troposphericOz generate from a series ofcomplex reactionsin the presencef
sunlightinvolving carbon monoxidéCO), nitrogen oxide (NOx G NO (nitric oxide)

+ NO2 (nitrogen dioxidg), andvolatile organic compoundd/OCs) (Oltmanset al.,
2006 Schroedeet al., 201Y. Briefly, VOCsfirst reactwith the hydroyl radical (OH)

to forma peroxy radical (HQ@ + RQ,) which increaseshe rate of catalytic cyirlg of
NO to NQ. Oz is then producebly photolysis of NQ. Subsequent reactions between
HO2 or RGQ:and NOlead to radical propagation (via subsequefdrmation of OH).
Radical termination proceeds via reaction of OH with N@form nitric acid (HNG)
(reaction(1), referred to as LNOXx) or by radieadical reactions resulting in stable
peroxide formation (reactions (2)(4), referred to as LROxyhere ROxd RO, +

HO>) (Schroedeet al., 2017)
OH+NGQY HNO Q)

2HO Y D2+ O (2)
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HO,+ RO Y ROOH + Q ©)

2RO, Y ROOR +Q 4
Typically, the relationship between these two competatjcal termination processes
(referred toas the ratio LRGLNOy) can be used to evaluate thEhotochemical
regime In high-radical, lowNOyx environments, reactions (2)(4) remove radicals at
a faster rate than reaction (Le., LROx] LNOXx), andthe photochemical regime is
regardedasi N Ox |aoi Imlovi-radital, highNOx environments the oppositis
true (i.e., LROxL LNOXx) and the regime is regardedfi V OC | d When tked
rates of the two loss processes @smparablgLNOx & LROX), the regime is said to
be at the photochemical transitiambiguouspoint, i.e., mx VOC-NOx limited
(Kleinman et al., 2005Siliman et al., 199a; Schroedeet al., 201Y.

Understanding thghotochemical regime at local scales is a crucial piece of
informationfor enacting effective policies to mitigates @ollution (Jin et al., 2017,
Schroedeet al., 2017)In order to determine theegime,the total reactivity with OH
of themyriad of VOCs in the polluted arées tobe estimatd (Sillman, 199%; Xing
et al.,, 201J. In the absence of such information, themaldehyde (HCHO)
concentation can be use@s a proxy for VOQeactivity becausd is a shordlived
oxidation product of many VOCs ans positively correlated with peroxy radicals
(Schroedeet al., 201Y. Sillman (1995) and Tonnesen and Dennis (20@@)nd that
in situ measumaents of theatio of HCHO (a marker of VOCsto NO2 (a marker of
NOXx) could be used to diagnose local photochemical regi@esr polluted areas,
both HCHO andtroposphericNO. have vertical distributions that are heavily
weighted toward the lower ftposphere, indicatingthat tropospheric column
measurements of these gases are fairly representative of near surface conditions.
Many studies have taken advantage of these favorable vertical distributions to
investigate surface emissis of NOx and VOCs from gpe Boersma et al., 2009;
Martin et al., 2004, Millet et al.,2008; Streets et al., 2013)lartin et al. (2004) and
Duncan et al. (2010) used satellite measurements of column HCHQAtO to
exploretropospheridOs sensitivities from spacand disclosd that this diagnosis of

Os production rat€PQs) is consistent with previous finding of surfgoieotochemistry.

3
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Witte et al. (2011usedthe similar technique to estimate changes insR®the strict
emission control measures (ECMs) during Beijing Sum@igmpic Games period in
2008.Recent papers have applieche yndings of Duncas et
sensitivity in other parts of the world (Choi et al., 20W4tte et al., 2011;Jin and
Holloway, 2015; Mahajan et al., 2015n et al., 201y

With in situ measurements;Tonresen and Dennis (2000) obsedv a
radicatlimited environment with  HCHO/NO: ratios < 0.8, a NOxlimited
environment with  HCHO/NO; ratios >1.8, anda transition environment with
HCHO/NO: ratios between 0.8 and 1.8Vith 3-d chemical model simulations,
Sillman (199%) and Martin et al(2004) estimated that the transition between the
VOC- and NQ-limited regimes occurs when ttCHO/NG, ratio is ~ 1.0.With a
combination of reginal chemical model simulationsnd the Ozone Monitoring
Instrument (OMI)measuremeniuncan et al. (2010oncluded thas production
decreases witheductions in VOCs atolumn HCHO/NG; ratio < 1.0 and NQ at
column HCHO/NG, ratio > 2.0; both NQ and VOCs reductions decreas®
production whercolumnHCHO/NG; ratio lies in between 1.0 and 2.W/ith a GD
phobchemical box model and airborne measureme8thiroederet al (2017)
presentech thorough analysis of the utility of column HCHO/MNftios to indicate
surface @ sensitivity and found thatthe transition/ambiguous range estimated via
column datais muchlarger thanthat indicatedby in situ data alone~urthermore,
Schroederet al. (2017) concluded thahany additional sources of uncertainty
(regional variability, seasonal variability, variable fresepospheric contributions,
retrieval uncertaintyair pollution levels and meteorological conditions) may cause
transition threshold vary both geographically and temporally, and thus the results from
one region are not likely to be applicable globally.

With the rapid increase in fossil fuel consumption in @hiover the past three
decades, the @ssion of chemical precursors 6k (NOx and VOCSs) has increased
dramatically surpassing that of North America and Eurapd raising concerns about
worseningOs pollution in China(Tang et al., 2031Wang et al., 202; Xing et al.,
2017). TroposphericOz was already includeth the newair quality standardas a

4
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routine monitoring componeihttp://www.mep.gov.cnlast access on32May 2018,
where the limit for the maximum daily 8 h average (MDA8)3;Gn urban and
industrial areas i 6 0 3@~/ 78ppbv at 273 K, 101.3 kRa)ccording toair quality
data released bthe Chinese Ministry of Environmental Protection, tropospheric O
has relaced PN.5 as the primary pollutant in many citiekiring summer
(http://www.mep.gov.cn/last access on 23 May 2018 precise knowledge oDs
evolution andohotochemical production reginie polluted tropoghere in China has
importantpolicy implications forOs pollution controls(Tang et al., 2011; Xing et al.,
2017; Wang et al., 2017).

In this study, we investigates@easonal evolution and photochemical production
regime in the polluted troposphere insean China withtropospheric @ CO and
HCHO derived fromgroundbasedhigh resolutionFourier transform spectrometry
(FTS in Hefei, China, tropospheric NOdeduced fromthe OMI satellite
(https://aura.gsfc.nagpov/ omi.html, last access on 23 May 2Q18surface
meteorological data, aralback trajectory cluster analysis technig@®nsidering the
fact that nostNDACC (Network for Detection of Atmosphericomposition Change
FTS sites are located in Europe atafthern America, whereas the number of sites in
Asia, Africa, and South America is very sparse, and there is stiffroial NDACC
FTS station that covers Chinfttp://www.ndacc.org/last access on 23 May 2018
this studycan not only improveour understanding ofegional photochemicalOs
productionregime but alsacontributes to the evaluation of ©pollution controls

This study concentrates on measurements recorded during midday, when the
mixing layer has lagely been dissolvedill FTS retrievalsare selectedvithin +30
min of OMI overpass time (13:30 local time (LTWhile the FTS instrument can
measure throughout the whole day, if not cloudy, OMI measures only during midday
For Hefei, his coincidence uterion is a balance between thecaracy and the

number ofdatapoints.

2 Site description and instrumentation

The FTS observation site1 1 7 A1 0NJE, 31A54NjN, 30 m
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located inthe western suburbs éfefei city (the capital of Anhui Provinge8 million
population) in cental-eastern Chia (Figure S1). Detailed descriptiomf this site and
its typical observation senariocan be found in Tian et al2Q18. Similar to other
Chinesemegacities, serious air pollati is common in Hefethroughout thewhole
year(http://mep.gov.cn/last access on 23 May 2018

Our observation system consists of a high resolution Fp8cteometer
(IFS125HR, Bruker GmbH, Germany), a solar tracker (Tragk8olar 547, Bruker
GmbH, Germany),and a weather station (ZEN8&200, Coastal Environmental
Systems, Inc., USAJThenear infraredNIR) andmiddle infrared IR) solar spectra
were alernately acquired in routine observatiof®ang et al., 2017)The MIR
spectra used in this stu@dyerecordedover a wide spectral range (about 608500
cml) with a spectral resolution of 0.005¢nThe instrument is equippesdith a KBr
beam splitter &MCT detectorfor Oz measurementanda KBr beam splitter &InSb
detector for other gase3he weather stationincludes sensors foair pressure
0.1hpa),air temperature (£0.3°C), relative humidity (8%), solar radiation (5%),

wind speed (H.2m/s), wind direction (x5}, and the presence of rain.

3 FTSretrievals of O3, CO and HCHO

3.1 Retrieval strategy

The SFIT4 yersion 0.9.4.4algorithm is usedh the profile retrieva(Supplement
section A;https://www2.acom.ucar.edu/irwg/linkkast access on 23 May 2Q18he
retrieval settinggor Os, CO, andHCHO are listed in Tabld.. All spectroscopic line
parameters are adopted from HITRAN 2q8&thman et al., 20097 priori profiles
of all gasesexcept HO are from a dedicated WACCM (Whole Atmosphere
Community Climate Model) runA priori profiles of pressure, temperature angD
are interpolated from the National Centers for Environmental Protection and National
Center for Atmospheric Resear¢chGEP/NCAR) reanalysiéKalnay et al., 1996 For
O3 and CO, we follow the NDACC standard convention with respect to micro
windows (MW) selection and the interfering gases considerahtpg://www2.aco.
ucar.edu/irwg/links last access on 23 May 20181CHO is not yet an official

NDACC species but has been retrieved at a few statiotis different retrieval
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settings(Albrecht et al., 2002yigouroux et al., 2009; Jones et al., 2009; Viatte et al.,
2014; Franco et al., 2015y he four MWs used in the current study are chosen from a
harmonization project taking place in view of future satellite validation (Vigouroux et
al., 2018. They arecentered at around 2770 ¢nand the interfering gases are £H
O3z, N2O, and HDO.

We assumeneasurement noise covariance matrisgo be diagonaland seits
diagonal element® the inverse squaraf the signal to noise ratio (SNR)f the fitted
spectra and itsan-diagonal elements to zerBor all gasesthe diagonal elementsf
a priori profile covariance matriceSs are set tostandard deviation o dedicated
WACCM runfrom 1980 to 2020and its nofrdiagonal elements are set to zero

We regularlyused a lowpressure HBr cell to monitdhe instrument line sipe
(ILS) of the instrumenand included the measured ILS in the retrig¥#dse et al.,
2012 Sun et al., 2018).

3.2 Profile information in the FTS retrievals

The sensitive range for CO and HCHO is maintpbspheric, and faDs is both
tropospheric andtratospheridFigure S2. The typicaldegrees of freedonDOFS
over the total atmospheaobtained aHefei for each gaare includedn Table 2: they
are abou#.8, 3.5, and 1.2 foDs, CO, and HCHQ respectivelyln order to separate
independent partiatolumn amounts irthe retrieved profiles we have chosen he
altitudelimit for each independent laysuchthat the DOF3n each associated partial
columnis not less tharl.0. The retrieved profiles of § CO, and HCHOcan be
divided into four, three, ral one independent layers, respectivigiigure S3). The
troposphere isvell resolved byOs, CO, and HCHQ whereCO exhibits thebest

verticalresolutionwith more thartwo independent layers in the troposphere.

In this study,we have chosen the sampperlimit (12 km) for the tropospheric
columns forall gasegTable 2) which isabout3 km lower tharthe mean valuef the
tropopause (5.1 km). In this way weensured the accuraciés thetropospheric @
CO, and HCHOretrievals,andminimized the inflence of transport from stratosphere,
i.e.,the so calledbTE process (stratosphdreposphere exchange).

3.3 Error analysis

The results of thereor analysis presented here based on aherage of all

measurements that fulfill the scrésmschemewhichis used taninimize theimpacts
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of significant weather events arstrument problemg§Supplement section B)n the
tropospherethe dominansystematic errofor Oz and COis the smoothing errqgrand
for HCHO is the line intensityerror (Figure S4) The dominantrandom errorffor Os
and HCHO is the measurement error, and for COtiee zero baseline level error
(Figure S5) Taken all error items into account, the summarized emo@, CO, and
HCHO for 07 12 km tropospheric partial column and for the lteatdumnarelisted in
Table 3.The total errors in the tropospheric partial columns fgr@D, and HCHO,
have been evaluated to be 8.7%, 6.8%, and 10.2%, respectively.

4 Tropospheric Os seasonal evolution

4.1 Tropospheric G seasonal variability

Figure 1(a) shows the tropospherics @olumntime series recorded kihe FTS
from 2014 to 201/wherewe f ol | owed Gar di ner 0®rdemet hod
Fourier series plus a linear componhndetermine thannualvariability (Gardiner et
al., 2008) The andysis did not indicate a significaseculartrend of tropospheric £
column probably because the time series is much shorter than those in Gardiner et al.
(2008),the observed seasonal cycletwfpospheric ®@variations iswell captured by
the bootstrapesampling method (Gardiner et al., 20083.commonly observedthigh
levels of tropospheric ©occur in spring andummer(hereafterMAM/JJA). Low
levels of tropospheric © occur in autumn and winter hereafter SON/DJF,.
Day-to-day variations inMAM/JJA are generallylarger than those IrSON/DJF
(Figure 1(b)). At the same time, the tropospherig &lumn roughly increases over
time at the first halbf theyear and reachebaé maximum in June, and thdacreases
during the second haléf the year. Tropospleric O; columrs in Juneare 1.55<108
molecules*c? (56 DU (Dobson Units)) and in December are %1088
molecules*crii? (39 DU). Tropospheric @columns inJune were- 50% higher than
those in December.

Vigouroux et al. (2015) studietthe Oz trends and ugabilities at eight NDACC
FTS stations that have a lofigrm time seriesof O3 measurements, namely,
Ny-Alesund (79 N), Thule (77 N), Kiruna (68 N), Harestua (60N), Jungfraujoch
(47° N), Izafa (28 N), Wollongong (34 S) and Laudef45° S). All these stations

8



241  were located in nopolluted or relatively clean areashd tropospheric columns at
242  these stations are of the order0ofx10'® molecules*critto 1.1x10*8 molecules*crrt.
243  The results showed a maximum troposph@jcolumn in spring at alhesestatons
244  except athe high altitude stationlungfraujochandizara where itextended inte@arly
245 summer. This is because the STE process is most effective datéengvinter and
246  spring(Vigouroux et al. 2015)In contrast we observed a broadmaximumat Hefei
247  which extends oveMAM/JJA seasonand the values are 35% higher than those
248  studiedin Vigouroux et al. (2015)This isbecausehe observed tropospheric @vels
249 in MAM/JJA are more influenced by air masses originated from densely populated
250 and industrialized areas (see section 4.2)and the MAM/JJA meteorological
251 conditiors aremore favorable to photochemic@k production(seesection 5.1 The
252 selection of troposphier limits 3 km below the tropopausainimized but cannot
253 avoid the influence fotransport from stratospheréhe STE process may also

254  contribute to high level of tropospherig Eblumnin spring.

255 4.2 Regional contributionto tropospheric Os levels

256 In order to determine where the air masses came from and thus contributed to the
257 obseved tropospheri©:s levels, we have used the HYSPLIT (HybBéhgleParticle

258 Lagrangian Integrated Trajectory) model to calculate the threensional kinematic
259 back trajectorieshat coincidewith the FTS measuremerftem 2014- 2017 (Draxler

260 et al.,, D09). In the calculation, the GDAS (University of Alaska Fairbanks GDAS
261 Archive) meteorological fieldgvere used with a spatial resolution of C29.25, a

262 time resolution o6 h and 22 verticdkevels from the surface to 250 mbar. All daily
263  back trajeabries at 12:00 UTC, with a 24 gathway arriving at Hefei site 4600 m

264 a.s.l., have beegrouped into clustersand divided intoMAM/JJA and SON/DJF
265 seasongStunder, 1996)The results showed thair massesn Jiargsu and Anhui
266  Province in eastern ChanHebeiand Shadong Province in northern China, Shaanxi,
267 Henan and Shanxi Province in northveestChina, Hunan and Hubei Province in
268 central Chinacontributedto the observed troposphefig levels.

269 In MAM/JJA seasor{Figure Za)), 28.8% of air massesre easbrigin and arrived
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at Hefei through the sowthstof JiangsuProvinceand east of Anhui Provincdl.0%

are southwestbrigin and arrived at Hefei through tmertheasiof Hunan and Hubei
Province andsouthwesbf Anhui Province 10.1% arenorthwes origin and arrived at
Hefei through the southeast of Shanxi and HelPeovince and nothwest of Anhui
Province; 10.% are north origirand arrived at Hefei through theutb of Shadong

Province and north of Anhui Provinc#(.1% arelocal origin gener#ed in south of
Anhui Province As a result, & pollution from megacitiessuch asShanghai, Nanjing,
Hangzhou andHefei in eastern ChinaChangsha and Wuhaim centratsouthern
China, Zhenzhou and Taiyuam northwest ChinaandJinan innorth Chinacould

contributeto the observed troposphefig levels.

In SON/DJF season,trajectoriesare generally longer and originated in the
northwest of thdvJAM/JJA ones(Figure Zb)). The direction of air masses originating
in the eastern sector shifts from the seasit to northeast of Jiangsu Province, and
that of local air masses shifts from the south to the northwest of Anhui province
Trajectoriesof east origin west origin, and north origiair massesn SON/DJFare
6.9%, 13.1%, and 0% less frequenthan theMAM/JJA ones respectivelyAs a
result, theair massesutside Anhui provincéave 20.2% smaller contribution tthe
observed tropospheri©z levels in SON/DJF than in MAM/JJA. In contrast,
trajectoriesof local originair massesn SON/DJFare 20.26 more frequentthan the
MAM/JJA ones indicating a moreignificantcontribution of air massemside Anhui
province inNSON/DJF

The majority of the Chinese population lives in the eastern pai€hiha,
especially in the three mosgékloped regionghe JingJin-Ji (Beijing-Tianjin-Hebei)
the Yangtze River Delta (YRD; including ShanglangsuZhejiangAnhui), and the
Pearl River Delta (PRD; includinGuangzhou, Shenzhen, and Hong Konj)ese
regions consistentlpave the highest emissions anthropogenigrecursors (Figure
$6), which have led to severe regtande air pollution.Particularly the Hefei site
located in the cental-wesern cornerof the YRD, where thepopulationin the
southeasern areais typically denser tharthe northwestern areaSpecifically, the
southeast of Jiangsu province and the south of Anhui province are tthe st

1C



300 developed areas in YRD, and human activities therein are very infEmsefore,
301 when the air masses originated frohese two areas, :Qevel is usually very hidp.
302 Overall, ompared with SON/DJF season,the more soutteastern air masses
303 transporationin MAM/JJA indicated thathe observed tropospher@; levels could
304 be more influenced byhe densely populated and industrializedeas broadly

305 accounting for higheOs level and variability inMAM/JJA.

306 5 Tropospheric Oz production regime

307 5.1 Meteorological dependency

308 Photochemistry in polluted atmospheres, particulddg formation of @,

309 depends not only on pollutaemissions, but also on meteorological condgifirei et
310 al, 2008; Wang et al., 2016; Coates et al., 2016) order to investigate
311 meteorological dependency ofz@Qroduction regime in theobserved area, we
312 analyzed the correlation othe tropospheric Os with the coincident surface
313 meteorological dataFigure 3 showstime series of temperature, pressure, humidity,
314 and solar radiationrecorded by thesurface weather stationThe seasonal
315 dependenciesof all these coincident meteorological elements show no clear
316 dependenciesexcept for the temperature ah pressurewhich show cleareverse
317 seasonal cycte Generally, the temperatures are higher and the pressures are lower in
318  MAM/JJAthan those irSON/DJEThe orrelation plos between FTS tropospher@;

319 column andeachmeteorological elemerdre shown irFigure4. The tropospheri©s

320 columnshowspositive correlatiors with solar radiationtemperatureand humidity,
321 andnegative correlations witpressure.

322 High temperaturendstrong sunlighprimarily affects Oz productionin Hefeiin

323 two ways: speedingp the rates of many chemical reactiamsl increasing emissions
324 of VOCs from biogenic source@BVOCs) (Sillman and Samsaon199%). While
325 emissions of anthropogenic VOCs (AVOCs) are generally not dependsnt
326 temperature, evaporative emissions of some A¥@EG increase with temperature
327 (Rubin et al., 2006Coates et al., 20)6ElevatedOs concentrabn generally occurs

328 on days withwet condition andlow pressurein Hefei probably because these

11
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conditions favor the accumulation 0Ds and its precursorsOverall, MAM/JJA
meteorological conditiamare more favorabldo Os production(higher sun intensity,
higher temperature wetter condition,and lower presswg) than SON/DJE which
consolidate the fact thattroposphericOs in MAM/JJA are larger than those in

SON/DJFE

5.2 POsrelative to CO, HCHO, and NO- changes

In order to determintghe relationship betwednopospherids production and its
precursorsthe chemical sensitivityof PGs relative totroposphericCO, HCHO, and
NO- changesvas investigated-igure 5showstime seriesof troposphericCO, HCHO,
and NQ columnsthat are coincident wits counterpat Thetropospheric N@was
deduced from OMI produdelected within the° 0.7°latitude/longitude rectangular
area around Hefesite The retrieval uncertainty for troposphericolumn ofis less
than 30%(https://disc.gsfc.nasa.gov/datasets/OMNO2_VP0ORbposphericHCHO
and NQ show cleareverseseasonal cycle§&ererally, ropospheridHCHO are higher
and toposphericNO: are lower inMAM/JJA than those iIrSON/DJFE Pronounced
tropospheric CQvasobserved but the seasonal cycl@das evident probably because
CO emission isiot constant oveseason or season dependent

Figure6 shows the arrelation plot betweethe FTS tropospheri€©s column and
the coincidat troposphericCO, HCHO, and N@ columns The tropospheric ©
column showgositivecorrelations withtropospheric CO, HCHO, and N@olumns
Generally, the highrethe tropospheric CO concentration, the higher the tropospheric
O3, and wth VOCs and NOy reductions decread@s production As an indicator of
regional air pollution, thgood correlation betweenz@nd CO (Figure @&)) indicates
thatthe enhancement &fopospheric @is highly associated witlthe photochemical
reactionswhich occurred in polluted conditions rather thdme tothe STE process
The relative weaker overall correlationg Os with HCHO (Figure 6 (b)) and N©O
(Figure 6 (c))are partlyexplaned by different lifetime®f these gases.e., several
hours to 1 day in summer for N@nd HCHO, several days to weeks far So older

Oz enhanced air masses easily loose trace of NGHCHO. Since te sensitivity of
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PGs to VOCsandNOy is different under different limitatiorregimes, the relativeflat
overallslopesindicates that th©z pollution in Hefei canneitherbe fully attributed to

NOx pollution nor VOCs pollution.

5.3 &-NOx-VOCs sensitivities

5.3.1Transition/ambiguous rangeestimation

Referring to previous studiesthe chemical sensitity of PG in Hefei was
investigatedusingthe column HCHO/NQ@ratio (Martin et al., 2004; Duncan et al.,
2010; Witte et al., 2011Choi et al., 2012; Jin and Holloway, 2015; Mahajan et al.,
2015;Schroedeet al., 2017; Jin et al., 20L7The methods have been adapted to the
particular conditions irHefei. In particular the findings of Schroeder et.al (2017) have
been taken into account.

Since themeasurementools for Os and HCHO, thepollution characterisc and
the meteorological conditionn this studywere not the same as thost previous
studies the transition thresholdsestimated ineither previous studies wereot
straighty applied hergMartin et al., 2004 Duncan et al., 2010; Witte et al., 201
Choi et al., 2012; Jin and Holloway, 2015; Mahajan et al., 28t&roederet al.,
2017; Jin et al., 2017)n order to determine transition threshodgsplicable in Hefei,
Ching we iteratively altered theolumn HCHO/NGQ; ratio threshold and judged
whether the sensitivities of tropospheric @ HCHO or NO2 changed abruptly-or
example in order toestimatethe VOGIlimited threshold, we first fied tropospheric
O3 to HCHOthat lieswithin columnHCHO/NG, ratios< 2 (an empiricaktart point)
to obtainthe correspondingslope,and then we decreaseitie threshold by 0.1an
empirical step sizeand repeated the fiti.e., only fited the data pairs witbolumn
HCHO/NG; ratios < 1.9 This has beemlone iteratively Finally, we sorted out the
transition ratio which shows an abrupt change stope, and regarded thas the
VOC-limited thre$old. Similarly, the NQ-limited threshold wasdetermined by
iteratively increasinghe column HCHO/NG; ratio thresholdtill the sensitivity of
tropospheric @to NO; charged abruptly.

The transition thresholdestimationwith this schemeexploits the factthat O3
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production is more sensitive to VOCs if it is VO{Isited and is more sensitive to
NOx if it is NOx limited, andit existsa transitionpoint near the threshol@artin et
al., 2003. Su et al. (2017) used this scheme to investigate th&l@x-VOCs
sensitivities during the 2016 G20 conference in Hangzhou, Chinarguddthat this

diagnosis of Pecould reflect the overall production conditions.

5.3.2 PQlimitations in Hefei

Throughthe aboveempirical iterative calculation we observeda VOGClimited
regime with column HCHONO: ratios < 1.3,a NOxlimited regime with column
HCHO/NO:> ratios > 2.8, and amix VOC-NOx-limited regime with column
HCHOINO: ratios tetween1.3 and 8. Column measurements sample a larger
portion of the atmosphere, and thus their spatial coverage are larger than in situ
measurements. So the photochemical scene disclosed by column measurement is
larger than the Hsitu measurementSpedfically, this study reflects the mean
photochemical condition of the troposphere.

Schroeder et. al. (2017) argued, the column measurements from space have to be
used with care because of the high uncertainty and the inhomggehtie satellite
measurerants. This has been mitigated in this study by the following:

The FTIR measurements have a much smaller footprint than the satellite
measurements. Also we concentrate on measurements recorded during midday, when
the mixing layer has largely been dissolved

The measurements are more sensitive to the lower parts of the troposphere, which
can be inferref r om t he normali zed AVKOGOs. This rea
show the sensitivity to the column, but the column per altitude decreases with altitude.

Figure 7 showstime seriesof column HCHO/NQ ratios whichvaried overa
wide range from 1.0 to 9.0’he column HCHO/N®@ratios in summer are typically
larger than those in winteindicatingthatthe PQ is mainly NG limited in summer
andmainly VOClimited or mix VOG-NOx limited in winter. Based orthe calculated
transitioncriteria, 106 days obbservationshat have coincider®s, HCHO, and NQ

counterpartsin the reported periodre classified where57 days (53.8%)are in
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416  MAM/JJA season and9 days (8.2%) are in SON/DJFseasonTable 4listed the
417 statistics for the 106 days of observatiomghich shows that NG limited, mix
418 VOC-NOx limited, and VOClIlimited PQ accounts for 60.3% (64 days), 25330
419 days) and 114% (12 days) respectivelyThe majory of NO limited (70.3%) P®@
420 lies in MAM/JJA season, while the majorities ofix VOC-NOx limited (70%) and
421 VOC limited (75%) PQ@lie in SON/DJFseasonAs a resultreductions inNOx and
422  VOC could be more effective tamitigate Oz pollution in MAM/JJA and SON/DJF
423 seasonrespectively Furthermore considering masof POz are NQ limited or mix

424  VOC-NOx limited, reductions irNOx would reduceOs pollutionin eastern China

425 6 Conclusion

426 We investigatedhe seasonal evolutioand photochemicaproduction regimeof
427  tropospheric ®in easterrChina from 2014 2017by usingtropospherids, CO and
428 HCHO columns derived from Fourier transform infrared spectrometry (FTS)
429  tropospheric N@ column deducedfrom Ozone Monitoring Instrument (OMlxhe
430 surface meteorologid data, anda back trajectory clusteranalysis techniqueA
431  pronounced sasonal cycléor tropospheri®s is capturedby the FTS whichroughly
432 increases over time at the first half year and reaches the maximum in June, and then it
433 decreases over time Hte second half yeairopospheric ® columrs in Juneare
434  1.5510'8 molecules*cnt (56 DU (Dobson Units)) and in December are 1058
435 molecules*crit (39 DU). Tropospheric @columns inJune were- 50% higher than
436 those in DecembeA broad maximum withiboth spring and summeviAM/JJA) is
437 observedand the dg-to-day variations irMAM/JJA aregenerallylarger than those in
438 autumn andwvinter (SON/DJHR. This differs from tropospheric measurements in
439 Vigouroux et al. (2015). However, Vigouroux et al. (8plised measurements at
440 relatively clean sites.

441 Back trajectories analysis showed that air pollution in gdanand Anhui
442  Province n eastern China, Hebei and Sdang Province in northern China, Shaanxi,
443 Henan and Shanxi Province in northwest China,dtueind Hubei Province in central

444  Chinacontributedto the observed troposphel@; levels. Compared withSON/DJF
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seasonthe observed tropospheri@s levelsin MAM/JJA are more influenced by
transport of air masses from densely populated and industriaiiead andthe high
O3 level and variability inMAM/JJA is determined by the photochemicak O
production The tropospheric column HCHO/NGOratio is usedas a proxyto
investigatethe chemical sensitivity dDs productionrate (PQ). The results show that
the PQ is mainlynitrogen oxidg(NOx) limited in MAM/JJA, while it is mainly VOC
or mix VOGNOx limited in SON/DJFE Reductions ilNOx and VOC could be more
effective tomitigate Oz pollution in MAM/JJA and SON/DJFseason, respectively.
Considering most oPO; are NQ limited or mix VOC-NOx limited, reductions in

NOx would reduce ®@pollution in eastern China.
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652  Figure 4. Correlation plot betweethe FTS tropospheric ©column and the coincident surface
653 meteorological dateBlack dots are data pairs within MAM/JJA season and green dots are data
654  pairs withinSON/DJFseason.
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656  Figure 5. Time series of tropospheric CO, HCHO, and NOropospheric CO and HCHO were
657 derived from FTS observationghich is the sameas tropospheric ©and tropospheric NOis
658 derivedfrom OMI data.
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