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Decadal trends in the atmospheric abundances of carbon tetrafluoride (CF4) and nitrogen 

trifluoride (NF3) have been well characterised and have provided a time series of global total 

emissions. Information on locations of emissions contributing to the global total, however, is 20 

currently poor. We use a unique set of measurements between 2008 and 2015 from the Gosan 

station, Jeju Island, South Korea (part of the Advanced Global Atmospheric Gases 

Experiment network), together with an atmospheric transport model to make spatially 

disaggregated emission estimates of these gases in East Asia. Owing to the poor availability 

of good prior information for this study our emissions estimates are largely influenced by the 25 

atmospheric measurements. Notably, we are able to highlight emissions hotspots of NF3 and 

CF4 in South Korea, owing to the measurement location. We calculate emissions of CF4 to be 

quite constant between years 2008 and 2015 for both China and South Korea with 2015 

emissions calculated at 4.3 ± 2.7 Gg yr-1and 0.36 ± 0.11 Gg yr-1, respectively. Emission 
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estimates of NF3 from South Korea could be made with relatively small uncertainty at 0.6 ± 30 

0.07 Gg yr-1 in 2015, which equates to ~1.6% of the country’s CO2 emissions. We also apply 

our method to calculate emissions of CHF3 (HFC-23) between 2008 and 2012, for which our 

results find good agreement with other studies and which helps support our choice in 

methodology for CF4 and NF3.  

1. Introduction 35 

The major greenhouse gases (GHGs) − carbon dioxide, methane and nitrous oxide − have 

natural and anthropogenic sources. The synthetic fluorinated species (chlorofluorocarbons, 

hydrochlorofluorocarbons, hydrofluorocarbons, and perfluorocarbons) are almost or entirely 

anthropogenic and are released from industrial and domestic appliances and applications. Of 

the synthetic species, tetrafluoromethane (CF4) and nitrogen trifluoride (NF3) are emitted 40 

nearly exclusively from point sources of specialized industries (Arnold et al., 2013; Mühle et 

al., 2010). Although these species currently make up only a small percentage of current 

emissions contributing to global radiative forcing, they have potential to form large portions 

of specific company, sector, state, province, or even country level GHG budgets. 

CF4 is the longest-lived GHG gas known with an estimated lifetime of 50,000 years, leading 45 

to a global warming potential on a 100-year time scale (GWP100) of 6630 (Myhre et al., 

2013). Significant increases in atmospheric concentrations are ascribed mainly to emissions 

from primary aluminum production during so-called “anode events” when the alumina feed 

to the reduction cell is restricted (International Aluminium Institute, 2016), and from the 

microchip-manufacturing component of the semiconductor industry (Illuzzi and Thewissen, 50 

2010). Recently, evidence is emerging that, similar to primary aluminium production, rare 

earth element production may also release substantial amounts of CF4 (Vogel et al., 2017; 

Zhang et al., 2017). Other emission sources for CF4 include release during the production of 

SF6 and HCFC-22, but emissions from these sources are estimated to be small compared to 

the emissions from the aluminium production and semiconductor manufacturing industries 55 

(EC-JRC/PBL, 2013; Mühle et al., 2010). There is also a very small natural emission source 

of CF4, sufficient to maintain the preindustrial atmospheric burden (Deeds et al., 2008). 

According to the IPCC fifth assessment, NF3’s global warming potential on a 100-year time 

scale (GWP100) is ∼16,100 (based on an atmospheric lifetime of 500 years) (Myhre et al., 

2013), however, recent work suggests the GWP100 is higher at 19,700 owing to an increased 60 

estimate in the radiative efficiency  (Totterdill et al., 2016). Use of NF3 began in the 1960s in 
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specialty applications, e.g., as a rocket fuel oxidizer and as a fluorine donor for chemical 

lasers (Bronfin and Hazlett, 1966). Beginning in the late 1990s, NF3 has been used by the 

semiconductor industry, and in the production of photovoltaic cells and flat-panel displays. 

NF3 can be broken down into reactive fluorine (F) radicals and ions, which are used to 65 

remove the remaining silicon-containing deposits in process chambers (Henderson and 

Woytek, 1994; Johnson et al., 2000). NF3 was also chosen because of its promise as an 

environmentally friendly alternative, with conversion efficiencies to create reactive F far 

higher than other compounds such as C2F6 (Johnson et al., 2000; International SEMATECH 

Manufacturing Initiative, 2005). Given its rapid recent rise in the global atmosphere and 70 

projected future market, it has been estimated that NF3 could become the fastest growing 

contributor to radiative forcing of all the synthetic GHGs by 2050 (Rigby et al., 2014b). 

CF4 and NF3 are not the only species with major point source emissions. Trifluoromethane 

(CHF3; HFC-23) is principally made as a byproduct in the production of 

chlorodifluoromethane (CHClF2, HCFC-22). Of the hydrofluorocarbons (HFCs), HFC-23 has 75 

the highest 100-year global warming potential (GWP100) at 12,400 owing most significantly 

to a long atmospheric lifetime of 222 years (Myhre et al., 2013). Its regional and global 

emissions have been the subject of numerous previous studies (Fang et al., 2014; McCulloch 

and Lindley, 2007; Miller et al., 2010; Montzka et al., 2010; Fang et al., 2015; Stohl et al., 

2010; Li et al., 2011; Kim et al., 2010; Yao et al., 2012; Keller et al., 2012; Yokouchi et al., 80 

2006; Simmonds et al., 2018). Thus, emissions of HFC-23 are already relatively well 

characterized from a bottom up and top-down perspective. In this work we will also calculate 

HFC-23 emissions, not to add to current knowledge, but to provide a level of confidence for 

our methodology. 

Unlike for HFC-23, the spatial distribution of emissions responsible for CF4 and NF3 85 

abundances is very poorly understood, which is hindering action for targeting mitigation. 

HFC-23 is emitted from well-known sources (namely HCFC-22 production sites) with well 

characterized estimates of emission magnitudes and hence it has been a target for successful 

mitigation (by thermal destruction) via the clean development mechanism (Miller et al., 

2010). However, emissions of CF4 and NF3 are very difficult to estimate from industry level 90 

information: Emissions from Al production are highly variable depending on the conditions 

of manufacturing, and emissions from the electronics industry depend on what is being 

manufactured, the company’s recipes for production (such information is not publicly 

available), and whether abatement methods are used and how efficient these are under real 
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conditions. Both the Al production and semiconductor industries have launched voluntary 95 

efforts to control their emissions of these substances, reporting success in meeting their goals 

(International Aluminium Institute, 2016; Illuzzi and Thewissen, 2010; World Semiconductor 

Council, 2017). Despite the industry’s efforts to reduce emissions, top-down studies on the 

emissions of CF4 and NF3 have shown the bottom-up inventories are likely to be highly 

inaccurate. Most recently, Kim et al. (2014) showed that global bottom-up estimates for CF4 100 

are as much as 50% lower than top-down estimates, and Arnold et al. (2013) show that the 

best estimates of global NF3 emissions calculated from industry information and statistical 

data total only ~35% of that estimated from atmospheric measurements.  

Accurate emission estimates of NF3 and CF4 are difficult to make based on simple parameters 

such as integrated country level uptake rates and leakage rates, which, for example, underpin 105 

calculations of HFC emissions. Active or passive activities to reduce emissions vary between 

countries, and between industries and companies within countries, and the impetus to 

accurately understand emissions is lacking in regions that have not been required to report 

emissions under the UNFCCC. This problem is compounded by the difficulty in making 

measurements of these gases: CF4 and NF3 are the two most volatile GHGs after methane, 110 

and have very low atmospheric abundances, which makes routine measurements in the field 

at the required precision particularly difficult. The Advanced Global Atmospheric Gases 

Experiment (AGAGE) has been monitoring the global atmospheric trace gas budget for 

decades (Prinn et al., 2018). Most recently, AGAGE’s ‘Medusa’ pre-concentration GC-MS 

(gas chromatography-mass spectrometry) system has been able to measure a full suite of the 115 

long-lived halogenated GHGs (Arnold et al., 2012; Miller et al., 2008). The Medusa is the 

only instrument demonstrated to measure NF3 in ambient air samples, and the only field-

deployable instrument capable of measuring CF4. The Medusa on Jeju Island, South Korea is 

one of only twenty such instruments currently in operation globally and is uniquely sensitive 

to the dominant emission sources of these compounds given its location in this highly 120 

industrial part of the globe with large capacities of Al production, semiconductor 

manufacturing, and rare earth element production industries. Its utility has already been 

demonstrated in numerous previous studies to understand emissions of many GHGs from 

Japan, South Korea, North Korea, eastern China, and surrounding countries (Fang et al., 

2015; Kim et al., 2010; Li et al., 2011).  125 

For the first time we use the measurements of CF4 (starting in 2008) and NF3 (starting in 

2013) in an inversion framework – coupling each measurement with an air history map 
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computed using a particle dispersion model. We demonstrate the use of these measurements 

to find emissions hotspots in this unique region with minimal use of prior information, and 

we show that East Asia is a major source of these species. Focussed mitigation efforts, based 130 

on these results, could have a significant impact on reducing GHG emissions from specific 

areas. The technology for abating emissions of these gases from such discrete sources exists 

and could be used (Chang and Chang, 2006; Purohit and Höglund-Isaksson, 2017; Illuzzi and 

Thewissen, 2010; Yang et al., 2009; Raoux, 2007; Wangxing et al., 2016). 

 135 

2. Methods 

2.1 Atmospheric measurements 

The Gosan station (from here on termed GSN) is located on the south-western tip of Jeju 

Island in the Republic of Korea (126.16181° E, 33.29244° N). The station rests at the top of a 

72 m cliff, about 100 km south of the Korean peninsula, 500 km northeast of Shanghai, 140 

China, and 250 km west of Kyushu, Japan, with an air inlet 17 m above ground level. 

A Medusa GC-MS system was installed at GSN in 2007 and has been operated as part of the 

AGAGE network to take automated, high-precision measurements for a wide range of CFCs, 

HCFCs, HFCs, PFCs, Halons and other halocarbons; all significant synthetic GHG and/or 

stratospheric ozone depleting gases as well as many naturally occurring halogenated 145 

compounds (Miller et al., 2008; Arnold et al., 2012; Kim et al., 2010). Since November 2013, 

NF3 has been measured within this suite of gases. Air reaches GSN from the most heavily 

developed areas of East Asia, making the measurements and their interpretation a unique 

source for ‘top-down’ emissions estimates in the region. Ambient air measurements are made 

every 130 minutes and are bracketed with a standard before and after the air sample in order 150 

to correct for instrumental drift in calibration. Further details on the methodology for the 

calibration of these gases are given elsewhere (Arnold et al., 2012; Mühle et al., 2010; Miller 

et al., 2010; Prinn et al., 2018). 

2.2 Atmospheric model 

Lagrangian particle dispersion models are well suited to determine emissions of trace gases 155 

on this spatial scale as they can be run backwards, allowing for the source-receptor 

relationship to be efficiently calculated. We use the Numerical Atmospheric dispersion 

Modelling Environment (NAME III), henceforth called NAME, developed by the UK Met 

Office (Ryall and Maryon, 1998; Jones et al., 2007). Inert particles are advected backwards in 
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time by the transport model, NAME, which also associates a mass to each trajectory. Hence, 160 

NAME output is provided as the time integrated near-surface (0 - 40 m) air concentration (g s 

m-3) in each grid cell – the surface influence resulting from a conceptual release at a specific 

rate (g s-1) from the site. ‘Offline’ this surface influence is divided by the total mass emitted 

during the 1-hour release time and multiplied by the geographical area of each grid box to 

form a new array with each component representative of how 1 g m-2 s-1 of continuous 165 

emissions from a grid square would result in a measured concentration at the model’s release 

point (the measurement site). Multiplication of each grid component by an emission rate then 

results in a contribution to the concentration.  

The meteorological parameter inputs to NAME are from the Met Office’s operational global 

NWP model, the Unified Model (UM) (Cullen, 1993). The UM had a horizontal resolution of 170 

0.5625° × 0.375° (∼40 km) from December 2007 to April 2010; 0.3516° × 0.2344° (∼25 km) 

from April 2010 to July 2014; and 0.234375 × 0.15625° (∼17 km) from mid-July 2014 to 

mid-July 2017. The number of vertical levels in the UM has increased over this period, with 

NAME taking the lowest 31 levels in 2009 and the lowest 59 levels in 2015. The GHGs 

considered in this study have lifetimes on the order of hundreds to tens of thousands of years 175 

(Myhre et al., 2013), and can be considered inert gases on the spatial and temporal scales of 

this study and therefore the NAME model schemes for representing chemistry, dry 

deposition, wet deposition and radioactive decay were not used. The planetary boundary 

layer height (BLH) estimates are taken from the UM, however, a minimum BLH allowed 

within NAME was set to 40 m to be consistent with the maximum emission height and the 180 

height of the output grid. The NAME model was run to estimate the 30-day history of the air 

on route to GSN. We calculated the time‐integrated air concentration (dosage) at each grid 

box (0.352° × 0.234°, and 0–40 m above ground level, irrespective of the underlying UM 

meteorology resolution) from a release of 1 g s−1 at GSN at 10±10 metres above the model 

ground level (magl).  185 

The model is three‐dimensional, and therefore it is not just surface to surface transport that is 

modelled: An air parcel can travel from the surface to a high altitude and then back to the 

surface but only those times when the air parcel is within the lowest 40 m above the ground 

will it be included in the model output aggregated sensitivity maps. The computational 

domain covers 54.34° E to 168.028° W longitude (391 grid cells of dimension 0.352°) and 190 

5.3°S to 74.26°N latitude (340 grid cells of dimension 0.234°) and extends to more than 19 

km vertically. Despite the increase in the resolution of the UM over the time period covered, 
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the resolution of the NAME output was kept constant throughout.  For each 1 h period, 5000 

inert model particles were used to describe the dispersion of air. By dividing the dosage [g s 

m−3] by the total mass emitted [3600 s h−1 × 1 h × 1 g s−1] and multiplying by the 195 

geographical area of each grid box [m2], the model output was converted into a dilution 

matrix H [s m−1]. In figure 1 we show an aggregated dilution matrix for the 2013 inversion 

period, demonstrating the areas of most significant influence on the GSN measurements. 

Each element of the matrix H dilutes a continuous emission of 1 g m−2 s−1 from a given grid 

box over the previous 30 d to simulate an average concentration [g m−3] at the receptor 200 

(measurement point) during a 1 h period. 

 

2.3 Inversion framework 

For most long-lived trace gases (with lifetimes of years or longer), the assumption that 

atmospheric mole fractions respond linearly to changes in emissions holds well. By using this 205 

linearity, we can relate a vector of observations (𝑦) to a state vector (𝑥) made up of emissions 

and other non-prescribed model conditions (see section 2.6), via a sensitivity matrix (𝐻) 

(Tarantola, 2005): 

𝑦 = 𝐻𝑥 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

A Bayesian framework is typically used in trace gas inversions and incorporates a priori 210 

information, which gives rise to the following cost function: 

𝐶 = (𝐻𝑥 − 𝑦)𝑇𝑅−1(𝐻𝑥 − 𝑦) + (𝑥 − 𝑥𝑝)𝑇𝐵−1(𝑥 − 𝑥𝑝)  (1) 

Where, 𝐶 is the cost function score (the aim is to minimise this score); 𝐻 is made up mainly of 

the model derived dilution matrices (Section 2.2) but also the sensitivity of changes in domain 

border conditions on measured mixing ratios; 𝑥 is a vector of emissions and domain border 215 

conditions; 𝑦 is a vector of observations; 𝑅 is a matrix of combined model and observation 

uncertainties; 𝑥𝑝 is a vector of prior estimates of emissions and domain border conditions; and 

𝐵 is an error matrix associated with 𝑥𝑝. The cost function is minimised using a “NNLS”, non-

negative least squares fit (Lawson and Hanson, 1974), as previously used for volcanic ash 

(Thomson et al., 2017; Webster et al., 2017). The NNLS algorithm finds the least squares fit 220 

under the constraint that the emissions are non-negative. This is an "active set" method which 

efficiently iterates over choices for the set of emissions for which the non-negative constraint 

is active, i.e. the set of emissions which are set to zero. 
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The first term in equation 1 describes the mismatch (fit) between the modelled time-series and 

the observed time-series at each observation station. The observed concentrations (𝑦) are 225 

comprised of two distinct components; (a) the Northern Hemisphere (NH) background 

concentration, referred to as the baseline, that changes only slowly over time, and (b) rapidly 

varying perturbations above the baseline. These observed deviations above background 

(baseline) are assumed to be caused by emissions on a regional scale that have yet to be fully 

mixed on the hemisphere scale. The magnitude of these deviations from baseline and, crucially, 230 

how they change as the air arriving at the stations travels over different areas, is the key to 

understanding where the emissions have occurred. The inversion system considers all of these 

changes in the magnitude of the deviations from baseline as it searches for the best match 

between the observations and the modelled time-series. The second term describes the 

mismatch (fit) between the estimated emissions and domain border conditions (𝑥) and prior 235 

estimated emissions and domain border conditions ( 𝑥𝑝 ) considering the associated 

uncertainties (𝐵). 

The aim of the inversion method is to estimate the spatial distribution of emissions across a 

defined geographical area. The emissions are assumed to be constant in time over the inversion 

time period (in this case one calendar year as is typically reported in inventories). Assuming 240 

the emissions are invariant over long periods of time is a simplification, but is necessary given 

the limited number of observations available. In order to compare the measurements and the 

model time-series, the latter are converted from air concentration [g m-3] to the measured mole 

fraction (e.g. parts per trillion [ppt]) using the modelled temperature and pressure at the 

observation point. 245 

2.4 Prior emissions information 

Global emissions estimates of CF4 and NF3 using atmospheric measurements have 

demonstrated that ‘bottom-up’ accounting methods for one or more sectors, or one or more 

regions, are highly inaccurate (Arnold et al., 2013; Mühle et al., 2010). This study makes no 

effort to improve such inventory methods but instead focuses on minimising the reliance of 250 

prior information on our Bayesian-based posterior emissions estimates. Our prior information 

data sets come from the EDGAR (Emissions Database for Atmospheric Research) v4.2 

emission grid maps (EC-JRC/PBL, 2013). This data set only covers the years 2000 to 2010 

and therefore we apply the prior for 2010 for each year between 2011 and 2015. The 0.1 x 

0.1º EDGAR emission maps were first re-gridded based on the lower resolution of our 255 

inversion grid (0.3516°× 0.2344°). In order to remove the influence of the within-country 
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prior spatial emissions distribution, each country’s emissions were then averaged across their 

entire landmass (see Figure S1). We applied 5 different levels of uncertainty to each 

inversion grid cell (a,b) in 5 separate inversion experiments, each a multiple of the emissions 

magnitude (xa,b) in each grid cell: 1×xa,b (i.e. 100% uncertainty), 10×xa,b, 100×xa,b, 1000×xa,b, 260 

and 10,000×xa,b. We were then able to test the sensitivity of the prior emissions uncertainty 

and provide evidence for the low influence of prior information on the emissions estimates in 

the posterior. 

2.5 Model-measurement and prior uncertainties 

In addition to inaccurate prior information, another significant source of uncertainty in 265 

estimating emissions is from the model; from both the input meteorology and the atmospheric 

transport model itself. The uncertainty matrix, R, is a critical part of equation 1 that allows us 

to adjust uncertainties assigned to each measurement depending on how well we think the 

model is performing at that time: It describes, per hour time period, a combined uncertainty of 

the model and the observation at each time. The method of assigning measurement-model 270 

uncertainties is under development and here we describe one method that has been applied to 

the modelling of GSN measurements. All elements of the modelled meteorology (wind speed 

and direction, BLH, temperature, pressure, etc.) are important in understanding the dilution 

and uncertainty in modelling from source to receptor. However, quantifying the impact of each 

element that each model particle experiences in order to fully quantify the model uncertainty 275 

at each measurement time is beyond what is available from numerical weather prediction 

models. So in order to attempt to quantify a model/observation uncertainty we took a pragmatic 

approach and used modelled BHL at the receptor as a proxy.  

Emissions are primarily diluted by transport and mixing within the planetary boundary layer 

(PBL), and hence, modelling of the PBL height (BLH) is crucial for accurate modelling of the 280 

mixing ratios. Changes in BLH at or surrounding the measurement location can cause 

significant changes to the measured mixing ratio. A low PBL (causing a larger model 

uncertainty) has two implications for measurements at the Gosan site: 1) A greater possibility 

of air from above the PBL being sampled in reality but not in the model. Subtle changes in the 

BLH at the exact measurement location are not well modelled and the difference between 285 

sampling above or within the PBL can have a significant influence on the amount of pollutant 

assigned to a back trajectory. 2) Greater influence of emissions from sources very near GSN. 

A lower BLH means that a lower rate of dilution of local emissions will occur, in turn 

increasing the signal of the local pollutant above the baseline. A relatively small change in a 
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low BLH will have a significant influence on this dilution compared to the same change on a 290 

high BLH. Thus, any error in the BHL at low levels can significantly amplify the uncertainty 

in the pollutant dilution. This is coupled with the fact that the modelled BLH has significant 

uncertainty especially when low. 

To assign a model uncertainty to each hourly window of measurements we use model 

information of BLH: 295 

𝜎𝑚𝑜𝑑𝑒𝑙 =  𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓𝐵𝐿𝐻 

where, 𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the variability associated with the baseline calculation (see Section 2.6), 

and 𝑓𝐵𝐿𝐻 is a multiplying factor (greater than or less than unity) that increases or decreases 

the relative uncertainty assigned to each model time period. 𝑓𝐵𝐿𝐻 is based on modelled BLH 

magnitude and variability over a three-hour period and is calculated with the following:  300 

𝑓𝐵𝐿𝐻 =
𝑀𝑎𝑥𝐵𝐿𝐻−𝑖𝑛𝑙𝑒𝑡

𝑀𝑖𝑛𝐵𝐿𝐻−𝑖𝑛𝑙𝑒𝑡
 ×

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑀𝑖𝑛𝐵𝐿𝐻
 

where, 𝑀𝑎𝑥𝐵𝐿𝐻−𝑖𝑛𝑙𝑒𝑡 is the largest of either 100 m or the maximum distance, calculated 

hourly, between the inlet and the modelled BLH within a period of three hours around the 

measurement time; 𝑀𝑖𝑛𝐵𝐿𝐻−𝑖𝑛𝑙𝑒𝑡 is the smallest of the distances calculated between the inlet 

and the BLH over the same three-hour period; 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is an arbitrary value set at 500 m; 305 

and 𝑀𝑖𝑛𝐵𝐿𝐻 is the lowest BLH recorded over the three-hour period. Thus, the relative 

assigned uncertainty considers the proximity of the varying BLH to the inlet height and a 

recognition that observations taken when the BLH is varying at higher altitudes (>500 m 

a.g.l.) is likely to have less impact and therefore have lower uncertainty compared to those 

taken when the BLH is varying at lower altitudes (< 500 magl). 310 

Supporting Figures S2-S6 show annual time series of observations and the corresponding 

measurement-model uncertainties, as well as statistics for the mismatch between observations 

and modelled time series. 

2.6 Baseline calculation and domain border conditions 

For each measurement at GSN it is important to accurately understand the portion of the total 315 

mixing ratio arriving from outside the inversion domain and the portion from emission 

sources within the domain, otherwise emissions from specific areas could be over or under 

estimated. GSN is uniquely situated; receiving air masses from all directions over the course 
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of the year, which can have distinct compositions of trace gases, driven mainly by the 

different emission rates between the two hemispheres and slow inter-hemispheric mixing. 320 

In addition to the time integrated air concentration produced by NAME (Section 2.2), the 3D 

coordinate where each particle left the computational domain was also recorded. This 

information was then post-processed to produce the percentage contributions from 11 

different borders of the 3D domain (Figure 2). From 0 to 6 km in height eight horizontal 

boundaries (WSW, WNW, NNW, NNE, ENE, ESE, SSE, SSW) were considered and 325 

between 6 to 9 km the horizontal boundaries were only split between north and south. The 

eleventh border was considered when particles left in any direction above 9 km. Thus, the 

influence of air arriving to GSN from outside the domain was simplified as a combination of 

air masses arriving from 11 discrete directions. 

We use measurements from the Mace Head observatory (from here termed MHD) on the 330 

west coast of Ireland (53.33° N, 9.90° W) – a key AGAGE (Advanced Global Atmospheric 

Gases Experiment) site providing long term in-situ atmospheric measurements – to act as a 

starting point for an estimate of the composition of air from the NH mid-latitudes entering the 

East Asia domain. MHD was one of the first locations to measure CF4 (starting 2004) and 

NF3 (starting 2012) and other measurements from the site are routinely used in atmospheric 335 

studies to calculate decadal trends in the NH atmospheric abundances. In summary, a 

quadratic fit was made only to MHD observations that were representative of the NH 

baseline. i.e. when well mixed air was arriving predominately from the WNW-NNW (North 

Atlantic) direction as calculated using NAME (details of filtering and fitting are given in the 

Supporting Text).  340 

The composition of air arriving from any of the 11 directions is calculated using 

corresponding multiplying factors applied to the MHD baseline, which were included as part 

of the state vector (𝑥), i.e. these factors are constant for a given inversion year. The prior 

baseline was therefore perturbed as part of the inversion based on the relative contribution of 

air arriving from different borders of the 3D domain and the multiplying factors that are 345 

included within the cost function (Equation 1). Figure 3 shows an annual time series of 

observations for CF4 and the difference between the prior baseline (the quadratic fit from 

MHD) and the posterior baseline. 

2.7 Domains and inversion grids 
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The domain used in the inversion is smaller than the computational NAME transport model 350 

domain. The horizontal inversion domain covers 88.132° E to 145.860° E longitude (164 fine 

grid cells of 0.352°) and 15.994° N to 57.646° N latitude (178 fine grid cells of 0.234°). GSN 

is within a region surrounded by countries with major developed industries and therefore the 

site is relatively insensitive to emissions from further away that are diluted on route to the 

site. NAME is run on a larger domain to ensure that on the occasion when air circulates out 355 

of the inversion domain and then back, its full 30-day history in the inversion domain is 

included. 

An initial computational inversion grid (from here termed the ‘coarse grid’) was created 

based on a) aggregated information from the NAME footprints over the period of the 

inversion (in this case one year), aggregating fewer grid cells in areas that are ‘seen’ the most 360 

by GSN, and b) on the prior emissions flux i.e. areas known to have low emissions (e.g. 

ocean) had higher aggregation.  Coarse grid cells could not be aggregated over more than a 

single country/region and a total of ≈100 coarse grid cells (n) were created. After the initial 

inversion a coarse grid cell was chosen to divide in two by area. The decision on which single 

coarse grid cell to split is calculated based on the posterior emissions density [g yr-1 m-2] of 365 

the coarse grids and the ability of the posterior emissions to impact the measurements at GSN 

(using information from the NAME output). A new inversion was run using identical inputs 

except for the number of grid cells (now n+1). This sequence was repeated 50 times creating 

≈150 coarse grid cells within the inversion domain for the final inversion. The results from 

the inversions with the maximum disaggregation are presented in this paper. 370 

3. Results and discussion 

3.1 Country total emissions estimates 

Table 1 provides a summary of our estimates of emissions from the five major emitting 

countries/regions within the East Asia domain. These posterior emission estimates use a prior 

emissions uncertainty in each fine grid cell of 100x the emissions magnitude (see Section 375 

2.4). 

HFC-23 

Fang et al. (2015) conducted a very thorough ‘bottom-up’ study within their work on HFC-

23; constraining an inversion model using both prior information and atmospheric 

measurements. They used an inverse method based on FLEXPART using measurements 380 

from three sites in East Asia – GSN, Hateruma (a Japanese island ~200 km east of Taiwan), 
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and Cape Ochi-ishi (northern Japan), calculating an HFC-23 emissions rise in China from 6.4 

± 0.7 Gg yr-1 in 2007 (6.2 ± 0.6 Gg yr-1 in 2008) to 8.8 ± 0.8 Gg yr-1 in 2012. An earlier study 

by Stohl et al. (2010) also report HFC-23 emissions of 6.2 ± 0.8 Gg yr-1 in 2008. Both Fang 

et al. (2015) and Stohl et al. (2010) report emissions from other countries below 0.25 Gg yr-1 385 

for all years. Our estimates use a completely independent inverse method and only data from 

GSN, yet the results are very close to those of Fang et al. (2015) (Figure 4): 6.8 ± 4.3 Gg yr-1 

in 2008 (a difference of 10%) and 10.7 ± 4.6 Gg yr-1 in 2012 (a difference of 22%), and of 

Stohl et al. (2010). The posterior uncertainties in these two different studies mainly reflect the 

difference in the prior uncertainty assumed for the prior information: We assume a very high 390 

level of uncertainty on our prior emissions and therefore our posterior uncertainties are 

significantly higher. However, these inversion result estimates are lower than estimates based 

on inter-species correlation analysis by Li et al. (2011) who calculated emissions of HFC-23 

from China in 2008 in the range of 7.2-13 Gg yr-1. And using a CO tracer-ratio method, Yao 

et al. (2012) estimated particularly low emissions of 2.1 ± 4.6 Gg yr-1 for 2011-2012. The 395 

estimates derived from atmospheric inversions do not rely on any correlations with other 

species or known emissions for certain species, and given two separate inversion studies have 

produced very similar results we suggest these provide a more reliable ‘top-down’ emissions 

estimate of HFC-23. As well as providing an independent validation of the previous work on 

HFC-23 by Fang et al. (2015) and Stohl et al. (2010), the alignment of our HFC-23 emissions 400 

estimates with those previous studies provides confidence in our inversion methodology for 

the CF4 and NF3 emissions estimates. 

CF4 

Our understanding of emissions of CF4 and NF3 is very poor, which is highlighted in global 

studies based on atmospheric measurements that show bottom-up estimates of emissions are 405 

significantly underestimated (Mühle et al., 2010; Arnold et al., 2013). With such a poor prior 

understanding of emissions we assess the effect of prior uncertainty on the posterior 

emissions (Figure 4). With assignment of uncertainty on the prior of each fine grid cell at ten 

times the prior emissions value, the posterior is still significantly constrained by the prior for 

both China and South Korea. When larger uncertainties are applied to the prior (100x to 410 

10000x) the posterior estimates are very consistent, indicating that when greater than 100x 

uncertainty is applied, emissions estimates are most significantly constrained by the 

atmospheric measurements. For China for 7 of the 8 years studied our posterior estimates are 

greater than twice the prior estimates taken from EDGAR v4.2. The latest global estimates 
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are from Rigby et al. (2014) and they estimated global CF4 emissions of 10.4±0.6 Gg/year in 415 

2008 with a steady but small increase to 11.1 ± 0.4 Gg/year in 2013 (with the exception of a 

dip in 2009 to 9.3±0.5 Gg/year). We highlight that our Chinese emission estimates remain 

within a narrow range for 5 of the 8 years studied at between 4.0 and 4.7 Gg/year (with 

typical uncertainties <2.7 Gg/year), and for 7 of the 8 years studied between 2.82 and 5.35 

Gg/year. However, the estimate for 2012 appears to be anomalous at 8.25±2.59 Gg/year. In 420 

relation to the global top-down estimates from 2008 to 2012, our Chinese estimates represent 

between 37 to 45 % of global emissions between 2008 and 2011 with a jump to 74 % in 

2012. This significant increase in 2012 is not reconcilable with atmospheric measurements on 

the global scale and is very likely a spurious result of the inversion. The most probable 

explanation for such a result is the incorrect assignment of emissions on the inversion grid. 425 

Incorrect assignment of emissions can occur between countries, particularly where air parcels 

frequently pass over more than one country, therefore reducing the ability of the inversion to 

confidently place emissions. However, there is not an obvious drop in emissions for another 

country in 2012 that would offset the large increase in the Chinese emissions estimate. 

Within a country, incorrect assignment of emissions from an area closer to the receptor to an 430 

area further from the receptor will increase the calculated total emissions owing to increased 

dilution in going from a near to a far source. Our inversion is susceptible to this effect as we 

only have one site for assimilation of measurements; two measurement sites, spaced apart 

and straddling the area of interest, would provide significantly more information to constrain 

the spatial emissions distribution. 435 

 

Our estimates are significantly higher than emission estimation methods using interspecies 

correlation: Kim et al. (2010) estimated CF4 emissions in the range of only 1.7-3.1 Gg yr-1 in 

2008 and Li et al. (2011) only 1.4-2.9 Gg yr-1 over the same period. The interspecies 

correlation approach inherently requires that the sources of the different gases that are 440 

compared are coincident in time and space. Kim et al. (2010) and Li et al. (2011) used 

HCFC-22 as the tracer compound for China with a calculated emissions field from an inverse 

model and most emissions of this gas originate from fugitive release from air conditioners 

and refrigerators. However, CF4 is emitted mostly from point sources in the semiconductor 

and aluminium production industries with different spatial emissions distribution within 445 

countries, and likely different temporal characteristics compared to HCFC-22.  
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Emissions estimates from South Korea and Japan are one order of magnitude lower than for 

China. For 2008 Li et al. (2011) estimate emissions of CF4 from combined South and North 

Korea of 0.19-0.26 Gg yr-1 and from Japan of 0.2-0.3 Gg yr-1, which are on the low end of the 

uncertainty range of our estimates for that year (Table 1). As one of the largest, if not the 450 

largest, country for semiconductor wafer production, Taiwan is also an emitter of CF4. 

However, measurements at GSN provide only poor sensitivity to detection of emissions from 

Taiwan and our results can only suggest that emissions are likely <0.5 Gg yr-1. North Korea 

emissions were small and no annual estimate was above 0.1 Gg yr-1. 

NF3 455 

Our understanding of NF3 emissions from inventory and industry data is even poorer than for 

CF4. On a global scale the emission estimates from industry are underestimated (Arnold et 

al., 2013). This study suggests that at least some emissions of NF3 stem from China, however 

gaining meaningful quantitative estimates has been difficult due to large uncertainties (Figure 

4). Contrastingly, the posterior estimates of emissions from South Korea have relatively 460 

small uncertainties. Emissions from China travel a greater distance to the measurement site 

compared to emissions from South Korea. Thus, the magnitudes of NF3 pollution events from 

China (especially from provinces furthest west), in terms of the mixing ratio detected at GSN, 

are smaller than for pollution arriving from neighbouring South Korea. Also, the poorer 

measurement precision for NF3 compared to CF4 leads to a larger uncertainty on the baseline, 465 

which in turn affects the certainty on the pollution episode, especially for more dilute signals.  

Emissions estimates for Japan are difficult to make without improved prior information and 

more atmospheric measurements in other locations. We argue that other large changes in our 

emissions estimates from 2014 to 2015 could be real. For example, Japan’s National 

Inventory Report for NF3 shows a reduction in emissions of 63% between 2013 and 2015 470 

(Ministry of the Environment Japan et al., 2018), which is within the uncertainty of the 

relative rate of decrease we observe. 

As for CF4, emission estimates of NF3 from Taiwan and North Korea are highly uncertain. 

However, our results do indicate that emissions of NF3 from Taiwan might be lower than 

from South Korea despite very similar sized semiconductor production industries. Focussing 475 

on the more meaningful estimates from South Korea, emissions of NF3 in 2015 are estimated 

to be 0.60 ± 0.07 Gg yr-1 which equates to 9660 ± 1127 Gg yr-1 CO2-equivalent emissions 

(based on a GWP100 of 16,100). This is ~1.6% of the country’s CO2 emissions (Olivier et al., 

2017), thus making a significant impact on their total GHG budget. Further, given that the 
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sources of NF3 are relatively few, these emissions can be assigned to a small number of 480 

industries, potentially making NF3 an easy target for focussed mitigation policy. Rigby et al. 

(2014a) updated the global emission estimates from Arnold et al. (2013), and calculated an 

annual emissions estimate of 1.61 Gg yr-1 for 2012, with an average annual growth rate over 

the previous 5 years of 0.18 Gg yr-1. Linearly extrapolating this growth to 2014 and 2015 

leads to projected global emissions of 1.97 and 2.15 Gg yr-1 for 2014 and 2015, respectively. 485 

Thus, South Korean emissions as a percentage of these global totals equate to ~20% and 

~28% for 2014 and 2015, respectively, which is around the proportion of semiconductor 

wafer fabrication capacity in South Korea relative to global totals (~20%) (SEMI, 2017). 

 

3.2 Spatial emission maps 490 

We use ‘emissions minus uncertainty’ maps (e.g. Figure 5B) is to provide information on 

where we are most certain of large emissions i.e. where emission hotpots are located and if 

they are significant: Less negative values indicate more certainty, with positive values 

indicating that the uncertainty is less than the best estimate and negative values indicating 

that the uncertainty is bigger than the estimate. A more common way to illustrate grid-level 495 

uncertainty is in an ‘uncertainty reduction’ map. This works well when starting from a 

relatively well-constrained, spatially resolved prior to illustrate the additional constraint the 

atmospheric observations add. In this study, however, we are starting from very poor prior 

information and we generate a posterior emission map that is very distinct from the prior, 

informed largely by the measurements. Thus, an uncertainty reduction map provides little 500 

useful information.  

Figure 5 shows the effect of re-gridding over the course of 50 separate CF4 inversions (for 

2015), from zero re-gridding steps (i.e. using a coarse grid space determined using 

information from NAME and the prior emissions), through to 25, and then 50 steps. The 

inversion was not allowed to decrease the minimum posterior grid size beyond four fine grid 505 

squares (i.e. four times the 0.3516° × 0.2344° grid square). This method highlights the areas 

that have the highest emissions density; the splitting of these grid cells improves the 

correlation between observations and posterior model output. However, these emission maps 

must be studied alongside the corresponding uncertainty maps. The inversion could continue 

to split towards a fine grid resolution limit even though there may not be enough information 510 

in the data to accurately constrain emissions from each course grid cell (leading to spurious 
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emission patterns) and the process would be computationally very expensive. The largest 

emissions of CF4 arise from China and Figure 5 suggests the largest emissions come from an 

area between 35° N and 38° N. The uncertainty on these emissions from the specific final 

coarse grid squares is large (Figure 5F) and therefore care needs to be taken not to over 515 

interpret emission hotspots. Although the grid is being split it is not realistic for the model to 

correctly interpret the spatial distribution of emissions at this distance from GSN, and this is 

demonstrated in Figure 5F where the relative error on emissions in this corner of the domain 

is large. Without better prior information it is not possible to distinguish between real year-to-

year emission pattern changes and inaccurate emission patterns (Figure 6 and S7). Over the 520 

period of study emissions of CF4 generally appear to arise from north of 30° N and in 2008 

and 2013 emissions appear around 25° N. However, GSN does not have good sensitivity to 

emissions from this area and it is possible that these emissions could be incorrectly assigned 

from Taiwan. Although emissions from South Korea are significantly lower than for China, 

the proximity to GSN causes the grid cells to be split and emissions to be assigned at higher 525 

spatial resolution, and generally (except for 2008) in the north-west quadrant of the country. 

Splitting of grid cells in South Korea decreased the relative error on the emissions from 

particular grid squares, providing confidence that the placement of emissions is accurate. 

Further, for sequential years 2013, 2014 and 2015 two specific grid cells in that north-west 

quadrant are highlighted with comparatively low uncertainties (Figure S7). How well these 530 

consistent year-to-year emission patterns in South Korea correlate with the actual location of 

emissions needs to be the subject of further study (e.g. improved bottom-up inventory 

compilation efforts). Emissions from Japan are too uncertain to explore the spatial emissions 

pattern. 

For NF3, emissions from China and Japan are too low and uncertain to interpret at finer 535 

spatial resolution. However, as with CF4, it is interesting to study the relatively more certain 

spatially disaggregated emissions from South Korea (Figure 7). In common with CF4, NF3 

emissions from the south-west area are minimal, however in contrast to CF4, emissions occur 

on the eastern side of South Korea and on the south east coast. Emissions from the south east 

coast coincide with the known location of a production plant for NF3 located in the area of 540 

Ulsan (Gas World, 2011). If this plant is sufficiently separated in space from the end-users of 

NF3 then this result would indicate that production of NF3, not just use, could be a significant 

source in South Korea. 
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The study of Fang et al. (2015) highlights three major hotspots for HFC-23 emissions in 

China based on HCFC-22 production facility locations. Our posterior maps (Figure 8) 545 

correctly show the bulk of emissions in far eastern China, in line with the results of Fang et 

al. (2015). However, given the inconsistency of emissions maps between years we are unable 

to provide any more information without a better spatially disaggregated prior emissions 

map. 

 550 

Conclusions 

We largely remove the influence of ‘bottom-up’ information and present the first Bayesian 

inversion estimates of CF4 and NF3 from the East Asia region using measurements from a 

single atmospheric monitoring site, GSN station located on the island of Jeju (South Korea). 

The largest CF4 emissions are from China, estimated at 4-6 Gg yr-1 for six out of the eight 555 

years studied, which is significantly larger than previous estimates. Despite significantly 

smaller emissions from South Korea, the spatial disaggregation of CF4 emissions were 

consistent between independent inversions based on annual measurement data sets, indicating 

the north west of South Korea is a hotspot for significant CF4 release, presumably from the 

semiconductor industry. Emissions of NF3 from South Korea were quantifiable with 560 

significant certainty, and represent large emissions on a CO2-equivalent basis (~1.6% of 

South Korea’s CO2 emissions in 2015). HFC-23 emissions were also calculated using the 

same inversion methodology with high uncertainty on prior information. We found good 

agreement with other studies in terms of aggregated country totals and spatial emissions 

patterns, providing confidence that our methodology is suitable and conclusions justified for 565 

estimates of CF4 and NF3.  

 

Our results highlight an inadequacy in both the bottom-up reported estimates for CF4 and NF3 

and the limitations of the current measurement infrastructure for ‘top-down’ estimates for 

these specific gases. Adequate bottom-up estimates have been lacking, owing to the absence 570 

of reporting requirements for these gases from China and South Korea, and top-down 

estimates have been hampered by poor measurement coverage owing to the technical 

complexities required to measure these volatile, low abundance gases at high precision. 

Improvements in both bottom-up information and measurement coverage, alongside 

refinements in transport modelling and developments in inversion methodologies, will lead to 575 

improved optimal emissions estimates of these gases in future studies. 
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Figures 

Figure 1: An aggregation of the dilution matrices from 2013, generated using NAME output 

(see section 2.2), illustrating the relative sensitivity of measurements at GSN to emissions in 

the region. 755 

Figure 2: Schematic of the domain borders as applied in the inversion. 11 domain border 

conditions were estimated as depicted from 1 to 11 as a multiplying factor to the prior 

baseline estimated using data from the Mace Head observatory. Below 6 km the domain 

border was divided 8 times: NNE, ENE, ESE, SSE, SSW, WSW, WNW and NNW; between 

6 to 9 km the domain border was just divided between north and south; and air arriving from 760 

above 9 km was considered from one ‘high’ domain border. Average posterior multiplying 

factors for CF4 over the eight years were 1.00 ± 0.01 (NNE), 0.97 ± 0.06 (ENE), 1.02 ± 0.05  

(ESE), 0.99 ± 0.01 (SSE), 1.00 ± 0.01 (SSW), 0.99 ± 0.01 (WSW), 1.00 ± 0.00 (WNW), 1.00 

± 0.01 (NNW), 1.00 ± 0.00 (6 to 9 km north), 1.00 ± 0.05 (6 to 9 km south), 0.97 ± 0.03  

(above 9 km). 765 

Figure 3: Time series of CF4 measurements during 2013 – an example year with the most 

uninterrupted time series. Prior baseline (blue) is adjusted in the inversion using the baseline 

condition variables, producing a posterior baseline (red). During the summer months the 

proportion of air arriving from the south significantly rises causing a large shift in the 

posterior baseline relative to the prior baseline calculated from Mace Head data. 770 

Figure 4: Time series of country emission totals 2008-2015. Annual inversion results are 

given for each gas for three different levels of uncertainty applied to the prior emission map: 

100, 1000, and 10,000 times the emissions magnitude for each grid cell. The aggregated 

country totals from the prior dataset are also given. 

Figure 5: The effect of the regridding routine on posterior emission distributions for CF4. 775 

Maps A, C and E are posterior emissions maps at the initial inversion resolution, at 0 

regridding steps, at 25 regridding steps and at 50 regridding steps, respectively. Maps B, D, F 

show the emissions magnitude minus the uncertainty calculated for each inversion grid box at 

the same regridding levels (0, 25, and 50), which demonstrates the relative uncertainty of the 

emissions distribution obtained for South Korea. Results are from inversions with initial 780 

uncertainty on the prior emissions field set to 100 times emissions at each fine grid square. 

Units in Gg m-2 yr-1. 

Figure 6: Emissions maps for all years of data available for CF4. Results are from inversions 

with initial uncertainty on the prior emissions field set to 100 times emissions at each fine 

grid square. Units in Gg m-2 yr-1. See Figure S7 for corresponding maps of emissions 785 

magnitude minus the uncertainty. 

Figure 7: Emissions maps for both years of data available for NF3: Maps A and C are 

posterior emissions maps for years 2014 and 2015, respectively. Maps B and D show the 

emissions magnitude minus the uncertainty calculated for each inversion grid box for years 

2014 and 2015, respectively. Results are from inversions with initial uncertainty on the prior 790 

emissions field is set to 100 times emissions at each fine grid square. Units in Gg m-2 yr-1. 

Figure 8: As for Figure 6 but for HFC-23 
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Table 1: Annual posterior emissions estimates for the five main emitting countries 795 

surrounding GSN (Gg yr-1). These posterior emissions estimates are from the inversion that 

uses a prior emissions uncertainty on each fine grid cell of 100x the prior emission rate. 
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 CF4 NF3 HFC-23 

 China       S.Korea N.Korea Japan Taiwan China       S.Korea N.Korea Japan Taiwan China       S.Korea N.Korea Japan Taiwan 

2008 4.66 

(1.82)# 

0.31 

(0.05) # 

0.05 

(0.12) # 

0.57 

(0.36) # 

0.01 

(0.07) 

 6.8 

(4.3) 

0.09 

(0.09) 

0.08 

(0.28) 

0.28 

(0.69) 

0.11 

(0.15) 

2009 4.01 

(1.80) 

0.15 

(0.05) 

0.02 

(0.10) 

0.23 

(0.33) 

0.32 

(0.17) 

5.2 

(5.1) 

0.04 

(0.12) 

0.00 

(0.29) 

0.29 

(0.84) 

0.00 

(0.48) 

2010 4.42 

(2.06) 

0.29 

(0.05) 

0.00 

(0.16) 

0.10 

(0.48) 

0.06 

(0.13) 

9.2 

(6.4) 

0.04 

(0.10) 

0.00 

(0.39) 

0.02 

(1.11) 

0.00 

(0.31) 

2011 4.12 

(2.37) 

0.32 

(0.05) 

0.06 

(0.15) 

0.18 

(0.67) 

0.00 

(0.26) 

8.4 

(5.1) 

0.09 

(0.08) 

0.00 

(0.27) 

0.26 

(0.69) 

0.00 

(0.41) 

2012 8.25 

(2.59) 

0.29 

(0.05) 

0.00 

(0.13) 

0.16 

(0.60) 

0.04 

(0.40) 

10.7 

(4.6) 

0.10 

(0.07) 

0.00 

(0.23) 

0.06 

(0.67) 

0.24 

(0.46) 

2013 2.82 

(2.49) 

0.26 

(0.04) 

0.08 

(0.13) 

0.11 

(0.48) 

0.09 

(0.26) 

 

 

 

 

 

2014 5.35 

(2.61) 

0.21 

(0.05) 

0.07 

(0.15) 

0.21 

(0.50) 

0.00 

(0.30) 

1.08 

(1.17) 

0.40 

(0.05) 

0.02 

(0.12) 

0.75 

(0.36) 

0.03 

(0.09) 

2015 4.33 

(2.65) 

0.36 

(0.11) 

0.00 

(0.26) 

0.36 

(0.57) 

0.00 

(0.44) 

0.36 

(1.36) 

0.60 

(0.07) 

0.15 

(0.16) 

0.11 

(0.39) 

0.00 

(0.27) 

# Kim et al. (2010) estimated CF4 emissions from China in the range 1.7-3.1 Gg yr-1 and Li et al. (2011) 1.4-2.9 Gg yr-1. For South and North Korea (combined) Li et al. (2011) estimated emissions of CF4 at  

0.19-0.26 Gg yr-1 and from Japan at 0.2-0.3 Gg yr-1. 

 

Table 1 


