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Text:
Text S1: Diurnal Patterns of meteorological conditions and gas and particle species.

Diurnal patterns for temperature, RH, irradiance (IR), NOy, O3, all NR-PM; species, and BC in
November and December are depicted in Figure S11. IR, an indicator of photochemical activities,
showed a clear noon time peak in November. Ozone concentration is also closely linked to the
extent of photochemical oxidation in an air mass because Oz production results from OH reactions
with VOCs and CO. In general, ozone concentration slowly increases after sunrises and reaches
its maximum in mid-afternoon. In November, both IR and Oz were relatively high at noon time,
indicating the strong photochemical activities. Obvious diurnal cycles of temperature and RH were
observed. SO, had morning peaks while NO showed clear rush hour peaks. Sulfate showed a
slight concentration increase in median hourly data in the early morning in November, consistent
with the SO, morning peaks. The daytime decrease in nitrate and chloride in November may due
to the combinative effects of higher mixing layer height and gas-to particle partitioning under high
temperature and low RH conditions (Seinfeld and Pandis, 2006). Ammonium concentration
decreased in the early morning and increased in late afternoon, which was the combined result of
the variations of anions in the particle (SO4, NO; and Chl). Organics had a significant increase
after 16:00, and stayed at a high level at night, which might be attributed to combined effects of
enhanced vehicular emissions and lower mixing layer height. Other vehicle-related pollutants such
as NOy and BC also showed an increase in concentrations after 16:00. Also, a small organics peak
appeared in the afternoon, coincided with the peak of Os, suggesting the possibility of
photochemical formation of SOA. The diurnal patterns of individual organic factors as
characterized by ME-2 which will be discussed in a later section. Similar diurnal variations for
most of the PM; species in November were also observed in the earlier field campaign conduced
in November in Shenzhen (He et al., 2011).

In December, although O3 concentrations were significantly lower than those in November, the
daytime peak was still obvious. Both temperature and RH were lower in December than in
November while obvious diurnal cycles of temperature and RH were also observed. No obvious
diurnal variation for SO, were observed in December. NOx still showed clear rush hour peaks.
However, a discrepancy between mean and median data in diurnal patterns for NOyx was apparent

during night to early morning in December because of intense traffic emissions on 24-25
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December, as also shown in the high NOy concentrations in Figure 1. SO, slightly increased at
night, which might be attributed to the lower mixing layer height during nighttime. However,
nitrate concentration did not experience a significant decrease, while the daytime decrease in
chloride is still obvious. Other contributing factors of nitrate may somewhat offset the decrease
due to higher mixing layer height and evaporation from particles in daytime. Ammonium
concentration increased in late afternoon, which was the combined result of the variations of anions
in the particle. Organics had a significant increase after 16:00, stayed at a high level at night, and

tracked well with vehicle-related pollutants such as NOy and BC.

Text S2: Organic nitrate and inorganic nitrate estimation

To exanimate the contribution of organic nitrate (ON) to nitrate measured by the HR-ToF-AMS,
we adopted two methods to estimate the ON concentration. The first method (Method 1) is based
on the ratio of NO"/NO," (Farmer et al., 2010), which makes use of the difference in NO"/NO,"
ratios for organic nitrates and ammonium nitrate in the AMS spectra. The fraction of the total

nitrate signal due to organic nitrates (x) can be derived from:

_ (Robs—RNHaN03)(1+RoN) (1)
(RoN—RNH4aN03)(1+Rops)

where R, is the NO'/NO, " ratio in the mass spectra, Ryzsvos is the NO/NO, " ratio of ammonium
nitrate in IE calibrations, while Roy is the NO'/NO," ratio of ON. Xu et al.(2015) used the
NO'/NO," ratios of 5 and 10, which likely correspond to the upper and lower bounds of the ratios
from ON. This method using NO'/NO," is adopted in this study for the estimation of contributions
for organic nitrates to the AMS-measured nitrate signals. The concentrations of organic nitrates
can be derived by multiplying the organic nitrate fraction (x) with the total nitrate measured by the
AMS. And inorganic nitrate can then be calculated by subtracting the organic nitrates from the
total nitrate concentrations. But still, we should be cautious when using this method, as the vast
array of possible ON parent compounds in ambient particles and the variation of the NO'/NO,"
ratios between instruments may led to some bias in the calculation. We also use the organic
concentrations and elemental ratios (OM:OC and N:C) from the HR-ToF-AMS measurement to
estimate the lower bound of concentrations for organic nitrates (Method 2) adopted from
Schurman et al.(2015).

ONpin=(Organics/OM:OC)*N: C*(14/12) (2)
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where Organics is total organic concentration. ON may be underestimated using this method as
N:C includes only N from CHON and CHN fragments. The maximum inorganic nitrate can also
be estimated by deducting the ONyi, from the total nitrate concentration using this method.

The time series of total nitrate form AMS and MAGRA, and inorganic nitrate and organic nitrate
calculated from Method 1 and Method 2 are shown in Fig. S12, while the campaign average mass
concentration and mass fraction derived from each method are shown in Fig. S13-S14. On average,
the maximum IN concentration estimated from Method 1 was 6.15 pg/m?®, accounted for 81.2% of
the total nitrate mass concentration from AMS measurement. And the minimum IN concentration
from Method 1 was 4.95 pg/m’, contributed to 74.4% of the total nitrate mass. While using Method
2, the minimum nitrate was 6.48 pg/m’, accounted for 89.8 % of the total nitrate. And the time
series of the calculated inorganic nitrate tracked well with the total AMS measured nitrate (Fig.
S12). Fig. 8 shows the scatter plot of estimated inorganic nitrate versa total AMS measured nitrate.
We found that the estimated inorganic nitrate was highly correlated with (R,*>0.95) the total AMS
nitrate concentration and followed the 1 to 1 line for each method we used. Even though organic
nitrates also contributed to the total nitrate we measured, both the variation and the concentration
of the nitrate did not change significantly after subtracting the organic nitrates. Furthermore, as
shown in Fig. S2, AMS measured nitrate were comparable to those from MAGRA, with a
correlation slope 0f 0.9 and an R, 0of 0.95. Given the uncertainties associated with each estimations,

we prefer to use the total HR-ToF-AMS nitrate concentration in our discussion.

Figures and Tables:
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83 Figure S 1 Location of sampling site
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87 Figure S 2 AMS data comparison
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89 Figure S 3 Three factors PMF solution
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91 Figure S 4 Four factors PMF solution
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94 Figure S 5 Factor profiles and diurnal variations in ME-2 trials. upper panel: four factor solution with constraining HOA and COA.
95 bottom panel: six factor solution with constraining HOA, COA and BBOA.
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98 Figure S 6 Organic peaks during the campaign
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101 Figure S 7 Local HOA source profile comparison
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113 Figure S 11 Diurnal patterns for temperature, RH, Irradiance, NO,, Os, all NR-PM, species, and BC in Nov. and Dec. (25th and
114 75th percentile boxes,5th and 95th percentile whiskers, median as line in solid dot, and mean as cycle). There is no Irradiance data

115 available in December
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119 Figure S 12 Time series of total nitrate form AMS and MAGRA and , inorganic nitrate and organic nitrate calculated from Method
120 1 and Method 2. IN denotes inorganic nitrate and ON denotes organic nitrate.
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Figure S13 Box and whisker plot of nitrate mass concentration from AMS and MAGRA, and inorganic nitrate and organic nitrate
calculated from Method 1 and Method 2 (25th and 75th percentile boxes, 10th and 90th percentile whiskers, median as line in solid
line, and mean as dot).
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Figure $14 Box and whisker plot of inorganic nitrate and organic nitrate mass fraction calculated from Method 1 and Method 2

(25th and 75th percentile boxes, 10th and 90th percentile whiskers, median as line in solid line, and mean as dot).

Table S 1 Correlation of ME-2 resolved OA factors with tracers

Correlation (Rp) | NOy C3H;0 C,H40, NO; SO4
HOA 0.83 0.84 0.81 0.58 0.18
COA 0.51 0.66 0.42 0.08 0.08
BBOA 0.18 0.47 0.71 0.52 0.33
LVOOA -0.01 0.31 0.42 0.43 0.7

SVOOA 0.21 0.66 0.62 0.68 0.49

14
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