

Supplementary information for:

The role of traffic emissions in particulate organics and nitrate at a downwind site in the periphery of Guangzhou, China

Yi Ming Qin¹, Hao Bo Tan², Yong Jie Li^{3,*}, Misha I. Schurman⁴, Fei Li², Francesco Canonaco⁵, André S. H. Prévôt⁵, Chak K. Chan^{1,4,6,*}

¹Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China

²Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

³Faculty of Science and Technology, University of Macau, Taipa, Macau, China

⁴Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China

⁵Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland

⁶School of Energy and Environment, City University of Hong Kong, Hong Kong, China

*To Whom Correspondence Should be Addressed

Chak K. Chan: AC1-G5716, School of Energy and Environment, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong, China
Tel: (852) 3442-5593; Fax: (852) 3442-0688
Email: chak.k.chan@cityu.edu.hk

Yong Jie Li: E11-3017, Faculty of Science and Technology, University of Macau, E11, Avenida da Universidade, Taipa, Macau, China
Tel: (853) 8822-4943; Fax: (853) 8822-2426
Email: yongjieli@umac.mo

1 **Text:**

2 **Text S1:** Diurnal Patterns of meteorological conditions and gas and particle species.

3 Diurnal patterns for temperature, RH, irradiance (IR), NO_x , O_3 , all NR- PM_1 species, and BC in
4 November and December are depicted in Figure S11. IR, an indicator of photochemical activities,
5 showed a clear noon time peak in November. Ozone concentration is also closely linked to the
6 extent of photochemical oxidation in an air mass because O_3 production results from OH reactions
7 with VOCs and CO. In general, ozone concentration slowly increases after sunrises and reaches
8 its maximum in mid-afternoon. In November, both IR and O_3 were relatively high at noon time,
9 indicating the strong photochemical activities. Obvious diurnal cycles of temperature and RH were
10 observed. SO_2 had morning peaks while NO_x showed clear rush hour peaks. Sulfate showed a
11 slight concentration increase in median hourly data in the early morning in November, consistent
12 with the SO_2 morning peaks. The daytime decrease in nitrate and chloride in November may due
13 to the combinative effects of higher mixing layer height and gas-to particle partitioning under high
14 temperature and low RH conditions (Seinfeld and Pandis, 2006). Ammonium concentration
15 decreased in the early morning and increased in late afternoon, which was the combined result of
16 the variations of anions in the particle (SO_4 , NO_3 and Chl). Organics had a significant increase
17 after 16:00, and stayed at a high level at night, which might be attributed to combined effects of
18 enhanced vehicular emissions and lower mixing layer height. Other vehicle-related pollutants such
19 as NO_x and BC also showed an increase in concentrations after 16:00. Also, a small organics peak
20 appeared in the afternoon, coincided with the peak of O_3 , suggesting the possibility of
21 photochemical formation of SOA. The diurnal patterns of individual organic factors as
22 characterized by ME-2 which will be discussed in a later section. Similar diurnal variations for
23 most of the PM_1 species in November were also observed in the earlier field campaign conducted
24 in November in Shenzhen (He et al., 2011).

25 In December, although O_3 concentrations were significantly lower than those in November, the
26 daytime peak was still obvious. Both temperature and RH were lower in December than in
27 November while obvious diurnal cycles of temperature and RH were also observed. No obvious
28 diurnal variation for SO_2 were observed in December. NO_x still showed clear rush hour peaks.
29 However, a discrepancy between mean and median data in diurnal patterns for NO_x was apparent
30 during night to early morning in December because of intense traffic emissions on 24-25

31 December, as also shown in the high NO_x concentrations in Figure 1. SO₄ slightly increased at
32 night, which might be attributed to the lower mixing layer height during nighttime. However,
33 nitrate concentration did not experience a significant decrease, while the daytime decrease in
34 chloride is still obvious. Other contributing factors of nitrate may somewhat offset the decrease
35 due to higher mixing layer height and evaporation from particles in daytime. Ammonium
36 concentration increased in late afternoon, which was the combined result of the variations of anions
37 in the particle. Organics had a significant increase after 16:00, stayed at a high level at night, and
38 tracked well with vehicle-related pollutants such as NO_x and BC.

39 Text S2: Organic nitrate and inorganic nitrate estimation

40 To examine the contribution of organic nitrate (ON) to nitrate measured by the HR-ToF-AMS,
41 we adopted two methods to estimate the ON concentration. The first method (Method 1) is based
42 on the ratio of NO⁺/NO₂⁺ (Farmer et al., 2010), which makes use of the difference in NO⁺/NO₂⁺
43 ratios for organic nitrates and ammonium nitrate in the AMS spectra. The fraction of the total
44 nitrate signal due to organic nitrates (x) can be derived from:

$$45 x = \frac{(R_{obs} - R_{NH4NO3})(1 + R_{ON})}{(R_{ON} - R_{NH4NO3})(1 + R_{obs})} \quad (1)$$

46 where R_{obs} is the NO⁺/NO₂⁺ ratio in the mass spectra, R_{NH4NO3} is the NO⁺/NO₂⁺ ratio of ammonium
47 nitrate in IE calibrations, while R_{ON} is the NO⁺/NO₂⁺ ratio of ON. Xu et al.(2015) used the
48 NO⁺/NO₂⁺ ratios of 5 and 10, which likely correspond to the upper and lower bounds of the ratios
49 from ON. This method using NO⁺/NO₂⁺ is adopted in this study for the estimation of contributions
50 for organic nitrates to the AMS-measured nitrate signals. The concentrations of organic nitrates
51 can be derived by multiplying the organic nitrate fraction (x) with the total nitrate measured by the
52 AMS. And inorganic nitrate can then be calculated by subtracting the organic nitrates from the
53 total nitrate concentrations. But still, we should be cautious when using this method, as the vast
54 array of possible ON parent compounds in ambient particles and the variation of the NO⁺/NO₂⁺
55 ratios between instruments may lead to some bias in the calculation. We also use the organic
56 concentrations and elemental ratios (OM:OC and N:C) from the HR-ToF-AMS measurement to
57 estimate the lower bound of concentrations for organic nitrates (Method 2) adopted from
58 Schurman et al.(2015).

59 ON_{min}=(Organics/OM:OC)*N: C*(14/12) (2)

60 where Organics is total organic concentration. ON may be underestimated using this method as
61 N:C includes only N from CHON and CHN fragments. The maximum inorganic nitrate can also
62 be estimated by deducting the ON_{min} from the total nitrate concentration using this method.
63 The time series of total nitrate form AMS and MAGRA, and inorganic nitrate and organic nitrate
64 calculated from Method 1 and Method 2 are shown in Fig. S12, while the campaign average mass
65 concentration and mass fraction derived from each method are shown in Fig. S13-S14. On average,
66 the maximum IN concentration estimated from Method 1 was $6.15 \mu\text{g}/\text{m}^3$, accounted for 81.2% of
67 the total nitrate mass concentration from AMS measurement. And the minimum IN concentration
68 from Method 1 was $4.95 \mu\text{g}/\text{m}^3$, contributed to 74.4% of the total nitrate mass. While using Method
69 2, the minimum nitrate was $6.48 \mu\text{g}/\text{m}^3$, accounted for 89.8 % of the total nitrate. And the time
70 series of the calculated inorganic nitrate tracked well with the total AMS measured nitrate (Fig.
71 S12). Fig. 8 shows the scatter plot of estimated inorganic nitrate versa total AMS measured nitrate.
72 We found that the estimated inorganic nitrate was highly correlated with ($R_p^2 \geq 0.95$) the total AMS
73 nitrate concentration and followed the 1 to 1 line for each method we used. Even though organic
74 nitrates also contributed to the total nitrate we measured, both the variation and the concentration
75 of the nitrate did not change significantly after subtracting the organic nitrates. Furthermore, as
76 shown in Fig. S2, AMS measured nitrate were comparable to those from MAGRA, with a
77 correlation slope of 0.9 and an R_p of 0.95. Given the uncertainties associated with each estimations,
78 we prefer to use the total HR-ToF-AMS nitrate concentration in our discussion.
79

80 **Figures and Tables:**

81

82

83

Figure S 1 Location of sampling site

84

85

86

87

Figure S 2 AMS data comparison

88

89

Figure S 3 Three factors PMF solution

90

91 *Figure S 4 Four factors PMF solution*

92

93

94

95 Figure S 5 Factor profiles and diurnal variations in ME-2 trials. upper panel: four factor solution with constraining HOA and COA. bottom panel: six factor solution with constraining HOA, COA and BBOA.

Figure S 6 Organic peaks during the campaign

Figure S 7 Local HOA source profile comparison

103
104

Figure S 8 Five factor solution with HOA constrain

105
106

Figure S 9 ME-2 results comparison using the two COA source profile as constraint

107

108

109

Figure S 10 Correlation of the time series and mass spectra for ten runs with optimal solution.

Correlation of LVOOA mass spectra in different runs

113 *Figure S 11 Diurnal patterns for temperature, RH, Irradiance, NO_x, O₃, all NR-PM₁ species, and BC in Nov. and Dec. (25th and*
 114 *75th percentile boxes, 5th and 95th percentile whiskers, median as solid line, and mean as cycle). There is no Irradiance data*
 115 *available in December*

116
117

118

119 *Figure S 12 Time series of total nitrate form AMS and MAGRA and , inorganic nitrate and organic nitrate calculated from Method*
 120 *1 and Method 2. IN denotes inorganic nitrate and ON denotes organic nitrate.*

121

122

123
124
125

Figure S13 Box and whisker plot of nitrate mass concentration from AMS and MAGRA, and inorganic nitrate and organic nitrate calculated from Method 1 and Method 2 (25th and 75th percentile boxes, 10th and 90th percentile whiskers, median as line in solid line, and mean as dot).

126

127
128

Figure S14 Box and whisker plot of inorganic nitrate and organic nitrate mass fraction calculated from Method 1 and Method 2 (25th and 75th percentile boxes, 10th and 90th percentile whiskers, median as line in solid line, and mean as dot).

129

130

131

Table S 1 Correlation of ME-2 resolved OA factors with tracers

132

Correlation (R _p)	NO _x	C ₃ H ₃ O	C ₂ H ₄ O ₂	NO ₃	SO ₄
HOA	0.83	0.84	0.81	0.58	0.18
COA	0.51	0.66	0.42	0.08	0.08
BBOA	0.18	0.47	0.71	0.52	0.33
LVOOA	-0.01	0.31	0.42	0.43	0.7
SVOOA	0.21	0.66	0.62	0.68	0.49

133

134

135

136

137

138

139 **Reference:**

140 Farmer, D. K., Matsunaga, a, Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J. and
141 Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and
142 implications for atmospheric chemistry., Proc. Natl. Acad. Sci. U. S. A., 107(15), 6670–6675,
143 doi:10.1073/pnas.0912340107, 2010.

144 He, L.-Y., Huang, X.-F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R. and Zhang, Y.-H.:
145 Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl
146 River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res., 116(D12),
147 D12304, doi:10.1029/2010JD014566, 2011.

148 Schurman, M. I., Lee, T., Desyaterik, Y., Schichtel, B. A., Kreidenweis, S. M. and Collett, J. L.:
149 Transport, biomass burning, and in-situ formation contribute to fine particle concentrations at a
150 remote site near Grand Teton National Park, Atmos. Environ., 112, 257–268,
151 doi:10.1016/j.atmosenv.2015.04.043, 2015.

152 Seinfeld, J. H. and Pandis, S. N.: ATMOSPHERIC From Air Pollution to Climate Change
153 SECOND EDITION., 2006.

154 Xu, L., Suresh, S., Guo, H., Weber, R. J. and Ng, N. L.: Aerosol characterization over the
155 southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal
156 variation of aerosol composition and sources with a focus on organic nitrates, Atmos. Chem. Phys.,
157 15(13), 7307–7336, doi:10.5194/acp-15-7307-2015, 2015.

158