
Response to referee 1

We thank the referee for carefully reviewing our manuscript. We have accepted several of his suggestions,
which we believe have significantly improved the manuscript. The referee had two major general comments, (i)
the results presented in §4.2 and §4.4 were mostly qualitative, and (ii) it was difficult to draw conclusions about
total column vs planetary boundary layer (PBL) measurements from the experiments because of differing
spatiotemporal coverage.

Regarding the qualitative nature of results in §4, it is difficult to present general quantitative results in a work
like this, because the impact of transport model uncertainty varies by region, time and data stream. Previous
work that tackled the question of assessing transport model uncertainty, such as Locatelli et al (2013), also
struggled with drawing quantitative yet general conclusions. The referee mentions comparing our
transport-derived uncertainties with posterior uncertainties of the flux estimates. This is also not robust, since
the posterior uncertainty from TM5 4DVAR is an overestimate (Meirink et al, 2008), a problem common to
most iterative flux inversion techniques. Instead, this work considers the cross-model spread of OCO-2 inverse
models (Crowell et al, 2018) a measure of the uncertainty of our knowledge of inversion-derived surface fluxes,
and tries to estimate whether those uncertainties are consistent with what we would expect just from transport
model uncertainty.
However, we agree that our existing results could be presented in a more quantitative form. We have added
several tables in the text to facilitate this. Table 2 shows the number of observations assimilated from each data
stream, Table 3 gives the uncertainty (spread across five transport models) in the global budget and its
partitioning (land/ocean or latitude band), and Table C1 gives the uncertainty in the annual flux from all the
geographical regions considered, along with the prior and true fluxes. Comparing the uncertainty with the true
flux gives an idea of the significance of the uncertainty.

Regarding the differing coverage of OCO-2 and in situ measurements, this is a very good point. To make a
clearer distinction between the impact of total column measurement (vs PBL) and the impact of a spatially
distributed sampling pattern, we created two hypothetical in situ networks. IS-LNLG (IS-OG) had PBL samples
30m above ground level at the times and locations of all OCO-2 land (ocean) soundings used in the LNLG (OG)
inversions. A comparison between LNLG and IS-LNLG (OG and IS-OG) inversions, therefore, reveal the
impact of having total column vs PBL measurements over land (ocean), and not differences in spatiotemporal
coverage. We have replaced our figures and tables to include these new (hypothetical) data streams, and have
reworked our results and conclusions to incorporate the new results. The short summary is that over most land
regions, total column samples do lower the transport-driven uncertainty in flux estimates compared to PBL
samples. This holds less strictly over ocean regions, likely due to lower convective fluxes (and hence lower
model to model differences). The land/ocean partitioning within a zonal band is more uncertain with land PBL
samples, but the aggregate over the zonal band is not. Flying a remote sensing instrument with higher PBL
sensitivity has been a goal of space-based greenhouse gas missions (Wang et al, 2014). Our results suggest that if
such an instrument were to fly, the uncertainty in transport modeling would become a severe bottleneck, and
considerable improvement in transport modeling would be needed before we could use such an instrument to
improve on the precision of estimated surface fluxes.

Specific comments



“What motivates the chosen time span?”
The time span was motivated by two factors. (a) When this study was initiated (late 2016), OCO-2 data were
available up to July 2016. Allowing for some spin-up and spin down, this left 2015 as the only full calendar year
we could address. (b) The initial goal of the OCO2 model intercomparison project (Crowell et al, 2018) was to
perform inversions to estimate and compare flux estimates for 2015. Since this work was supposed to help them
test the robustness of their conclusions, it made sense to perform our work over the same time period. Having
said that, we certainly want to extend this work to at least three years in the near future, to study questions such
as trend and interannual variability that cannot be addressed with one year’s fluxes.

“Is daytime sampling used for marine background sites also?”
Yes, the majority of sites in the MBL network were sampled in the local mid-afternoon. Mountaintop sites such
as Mauna Loa were sampled in the early morning in both the IS and MBL networks to reduce the possibility of
updrafts. In fact, the samples in the MBL network are a subset of those in the IS network. We simply chose
those samples in the IS network that belonged to sites used by Baker et al (2006).

“Why were posterior fluxes from CarbonTracker chosen as prior? They are not independent from the data that
are used to derived the truth ... to me it seems more logical to take the CarbonTracker prior. How consistent is
the choice of prior covariances in this case?”
The CT posterior was chosen as the prior for two reasons. (a) The CT prior does not have a net ecosystem sink,
and using such as obviously biased prior guarantees a biased posterior in an inversion. This is why some long
term inversions evaluate their fluxes with respect to fluxes that already guarantee the correct atmospheric CO2

trend (Chevallier et al, 2010). (b) Several inversions in the OCO2 model intercomparison project (Crowell et al,
2018) is also using a climatological CT posterior as the prior flux, and our goal was to make our experiments
maximally relevant to that effort. We also note here that the 2000-2015 average posterior, which we used as the
prior, will have little information specifically from 2015 observations. In any case, our conclusions primarily
concern transport-driven uncertainty, which is not expected to be sensitive to the choice of prior (a fact the
referee notes later).
The question of the prior covariance is an interesting one. In our system we specify the prior error as a fraction
of the CASA heterotrophic respiration and not the NEE. As such, it is not strongly coupled to our choice of the
NEE; the fractional change in the NEE from prior to posterior is a very small change in comparison to the
heterotrophic respiration. Moreover, since our prior uncertainty uses the same CASA vegetation map as CT, it
is guaranteed to be large (small) where CT thinks there is a lot of (no) ecosystem activity.

“What is Nret typically? Does epsilonˆ2/Nret yield a realistic systematic error?”
Nret can be anywhere between 1 and 24. See Figure 1 for histograms of Nret over land and ocean. To answer the

second part of the
question, we plotted the
standard deviation of
XCO2 coming from the
retrievals in 1s bins in
Figure 1. The purpose of
the epsilon2/Nret is to
prevent the value of this
spread from getting too

Figure 1: Frequency distribution of Nret over land (far left) and ocean (near left) over ten days chosen

randomly from the OCO2 record. Over land (LN+LG), Nret = 1 19% of the time, Nret = 2 7.5% of the

time, etc. The standard deviation of retrieved XCO2 in 1s bins over land and ocean are shown in near

right and far right respectively.



low, as might be the case when there are only a couple of shots in the bin and they happen to have close to the
same XCO2 value (or the extreme case, when there is only a single shot, in which case the standard deviation is
zero).
“Even if all the models had the same random noise added to the data, this would not have changed the inter
model spread in the fluxes. However, if the importance of transport model uncertainty is assessed in relation to
overall posterior flux uncertainty then measurement uncertainties do matter (whether or not you would add
random noise to the data in this case depends on the method for calculating posterior flux uncertainties).”
This is true. However, as explained earlier, we are not comparing the transport model uncertainty to the
analytical posterior flux uncertainty from any single inversion, because our system cannot provide a robust
estimate of that. Rather, the goal is to use these transport uncertainties as guides when comparing flux estimates
(not their uncertainties) from different assimilation systems. And usually an assimilation system does not add
random noise to the measurements.

“So, in this case the difference between 2 models doesn’t even depend on the choice of prior flux. This means
that my earlier remark about the use of CarbonTracker posterior fluxes actually doesn’t matter. It would still be
useful to point out that the prior fluxes that are described in detail aren’t really relevant to the problem.. well,
they are to the extent that the a priori fluxes are used to define a priori flux uncertainties. Some further
sentences clarifying this would be useful.”
This is a good point, and we have added a sentence clarifying this.

“what do you mean by ‘lateral’ grid cell? Each individual grid cell?”
Yes. We had used the term ‘lateral grid’ to distinguish it from the ‘vertical grid’, but realize that that is clear
enough from the context. We have deleted the word ‘lateral’ from that sentence.

“‘due to chance’ you mean ‘due to differences in transport’?”
What we meant was that the proximity of the flux from the TM5 data stream to the true flux reflected the
posterior uncertainty of our inversion system. If a different model’s result happened to be closer to the true flux
for some region, it should not be taken to mean that that model somehow provided “better” than perfect
transport. However, we agree that meaning was not clear. We have changed that sentence to read “should not
be interpreted as significant”.

“but since the sampling is also very different between surface and satellite there is no way to isolate the impact
of PBL versus total column.”
See our description above of the hypothetical networks IS-LNLG and IS-OG. We have added several inversions
with these networks in the revised version.

“I wonder if this difference between this study and Baker et al (2006) could be influenced by the choice of an El
Nino year for the current inter-comparison, which may not be well representative of a typical year (so my
earlier remark about justifying the chosen times window).”
That is possible, but it’s not clear to us why tropical and temperate transport uncertainties would change
differently in an El Nino year. This is definitely something to look at when we extend out study to multiple
years.

“but could also be due to a more even sampling coverage.”



This has now been addressed with our new model runs.

Technical corrections
All three technical corrections have been implemented.
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Response to referee 2

We thank the referee for carefully reading the manuscript and providing valuable suggestions. Please see
our responses to the reviewer’s comments below.

P12, L13-15
This is a fair point. While we do think that transport uncertainty (transport model spread) is higher over
land, which leads to higher transport-driven uncertainty from land samples over land than from ocean
samples over oceans, that point has not yet been demonstrated at this point in the manuscript. So we have
added a sentence here to say that CO2 differences are larger over land due to both transport and flux
variability being higher over land.

P20, L12-14
We respectfully disagree with the referee here. In these lines we are talking about the uncertainty in
inverted fluxes, not differences in the simulated CO2 fields. We are referring to the higher spread in IS and
MBL inversions over land as evidence that transport variability, at least on land, is higher in the PBL than
in the total column. We would also like to refer the reviewer to the new IS-LNLG and IS-OG experiments
that we have included in the revised manuscript, which explicitly tries to address the impact of coverage
versus the impact of total column sampling.

P12, from L16
The referee is correct, we have not defined “venting”, and it is an ambiguous term. Sometimes it means
exchange between the PBL and the free troposphere, and sometimes it means inter-hemispheric exchange.
We have removed all mention of “venting” and used more exact terms in the revised manuscript.
Regarding the comparison between LMDZ and TM5 in NH winter, the referee is right. The surface signal
is positive, so the model that has a faster (slower) PBL-FT exchange will have lower (higher) CO2 near the
surface. Since TM5 has lower CO2 in the continental PBL in the NH winter, TM5’s PBL-FT exchange must
be higher than LMDZ’s. We have corrected this in the revised manuscript.
In figure 3, the positions of PCTM and LMDZ have been exchanged to be consistent with figures B1 and
B2, as per the referee’s suggestion.

P12, L25
Reference to figure B1 added.

P18, L15-16
The 16-day nadir/glint mode lasted till early July 2015. This information has been added. However, there
is no drastic change in the difference between fluxes from nadir and glint inversions after that date, so we
only mention this as one of two possible reasons for why nadir and glint-derived fluxes may be different
despite no relative coherent bias.

P7, L28
Added “set of”.



Figure 4 (and other similar figures)
The referee is right that our order of regions is not the standard TRANSCOM region order. However, in
Figure 4 we are not just presenting the TRANSCOM regions, so we would respectfully suggest that having
the same region order is not crucial. In figures 5 and 6 we are presenting only TRANSCOM regions (and
their totals), so in those figures we have switched the order to conform to the standard TRANSCOM
order.

P20, L34
Change “uncertainty” to “uncertainties” since we are referring to multiple regions.

P21, L20-21
Changed “do” to “does”.

P22, L23-24
That sentence has been fixed, using the singular in all instances and a judicious application of
“respectively”.



The following pages contain an annotated version of the final manuscript. Deletions

are struck through in red, while insertions are underlined in blue.
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Abstract. We estimate the uncertainty of CO2 flux estimates in atmospheric inversions stemming from differences between

different global transport models. Using a set of Observing System Simulation Experiments (OSSEs), we estimate this un-

certainty as represented by the spread between five different state-of-the-art global transport models (ACTM, LMDZ, GEOS-

Chem, PCTM and TM5), for both traditional in situ CO2 inversions as well as inversions of XCO2 estimates from the Orbiting

Carbon Observatory 2 (OCO-2). We find that in the absence of relative biases between in situ CO2 and OCO-2 XCO2, -based5

::::::
OCO-2 estimates of terrestrial flux for TRANSCOM-scale land regions are

:::
can

::
be

:
more robust to transport model differences

compared to corresponding in situ CO2 inversions. This , however, does not hold for oceanic fluxes or flux estimatesfor zonal

bands
:
is

::::
due

::
to

::
a

::::::::::
combination

:::
of

:::
the

::::::::
increased

::::::
spatial

::::::::
coverage

::
of

:::::::
OCO-2

:::::::
samples

::::
and

:::
the

::::
total

:::::::
column

::::::
nature

::
of

:::::::
OCO-2

::::::::
estimates.

:::
We

:::::::
separate

:::
the

:::
two

::::::
effects

:::
by

::::::::::
constructing

::::::::::
hypothetical

::
in
::::
situ

::::::::
networks

::::
with

:::
the

:::::::
coverage

::
of

:::::::
OCO-2

:::
but

::::
with

::::
only

::::::::::
near-surface

:::::::
samples. We also find that the transport-driven uncertainty in fluxes is comparable between well-sampled northern10

temperate regions and poorly sampled tropical regions. Furthermore, we find that spatiotemporal differences in sampling, such

as between OCO-2 land and ocean soundings, coupled with imperfect transport, can produce differences in flux estimates that

are larger than flux uncertainties due to transport model differences. This highlights the need for sampling with as complete a

spatial and temporal coverage as possible (e.g., using both land and ocean retrievals together for OCO-2) to minimize the im-

pact of selective sampling. Finally, our annual and monthly estimates of transport-driven uncertainties can be used to evaluate15

the robustness of conclusions drawn from real OCO-2 and in situ CO2 inversions.

1 Introduction

Atmospheric measurements of CO2 show that on average, half of the anthropogenic emissions of CO2 are taken up each year

by the land and oceans (Ballantyne et al., 2012). Allocating this global sink to specific regions, or even partitioning it between

land and oceans, has proved challenging (Schimel et al., 2014). Understanding the mechanisms behind this allocation, and20

their response to climate variability, is crucial for accurately estimating the carbon cycle impact on future climate scenarios
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(Friedlingstein et al., 2014). Current approaches to quantify the spatial distribution and temporal variation of carbon sources

and sinks can be broadly classified into two categories, “top down” and “bottom up”. Bottom up methods, such as biosphere

models and ocean biogeochemistry models, calculate the surface exchange of CO2 between two reservoirs by modelling the

physical processes in the reservoirs that lead to such exchanges. Top down methods, generally speaking, infer surface fluxes of

CO2 from measured spatiotemporal gradients in tracer concentrations in either reservoir.5

The most common top down method for estimating surface fluxes of CO2 from atmospheric measurements is an atmospheric

inversion. An inversion infers surface fluxes from observed spatiotemporal gradients of CO2 in the atmosphere by simulating

atmospheric transport to connect the two. Most inversions are Bayesian in nature, in that they calculate corrections from a

prior flux scenario (typically from bottom up models) under constraints of assumed errors in the prior fluxes and atmospheric

measurements. The flux estimates from an inversion, therefore, are subject to the assumed prior flux map and its error structure,10

the atmospheric transport model, the set of atmospheric observations assimilated, and the assimilation technique. Due to the

diversity of each of these elements in the current suite of atmospheric inversions, estimates of CO2 fluxes from biomes and

ocean basins vary widely across inversions, even though they agree on the global CO2 budget (Peylin et al., 2013), as would

be expected from mass balance considerations.

Peylin et al. (2013) showed that the northern extra-tropical sink was fairly consistent across inversions of in situ CO2 data, but15

the partitioning between the tropics and the southern extra-tropics was more variable. The tropics were found to be responsible

for most of the interannual variability of the global CO2 growth rate, and northern Asia was found to be responsible for an

increasing northern land carbon uptake between 1990 and 2008. However, the tropics and northern Asia were also the regions

most severely under-sampled by the surface CO2 observation network used by the inversions in Peylin et al. (2013). Therefore,

it remained an open question whether their conclusions were real or artifacts of insufficient observational constraints.20

Satellite estimates of atmospheric CO2 mole fraction, in principle, can add observational constraints over remote areas that

are difficult to sample with surface sampling sites, such as the tropics, Boreal Eurasia, and much of the oceans. This was the

chief motivation behind the Greenhouse gases Observing SATellite (GOSAT), launched in 2009 (Kuze et al., 2009). GOSAT

near infrared (NIR) spectra of reflected sunlight have been analyzed to estimate the column average CO2 mole fraction under

its orbit. It was hoped that these column averages – hereafter called XCO2 – assimilated by atmospheric inversions, would help25

constrain the CO2 flux over regions such as the tropics and northern Asia. Houweling et al. (2015) showed that assimilating

GOSAT XCO2 indeed reduced the spread in tropical land flux estimates across a suite of atmospheric inversions. However,

the year-round coverage of GOSAT did not extend beyond ±36◦ latitude, limiting its ability to draw conclusions about high

latitude fluxes. Over the tropics, despite the year-round coverage, GOSAT retrievals were sparse due to cloud cover and high

aerosol loading from biomass burning, also limiting its ability to constrain tropical fluxes. The balance between tropical and30

temperate fluxes estimated from GOSAT soundings was also inconsistent with information from independent aircraft profiles,

raising questions about its validity (Houweling et al., 2015).

In 2014, the next CO2 observing satellite, Orbiting Carbon Observatory 2 (OCO-2), was launched (Crisp et al., 2017;

Eldering et al., 2017). Compared to GOSAT, OCO-2 has more extensive spatial coverage, both in the density of soundings

as well as their latitudinal extent. Its higher measurement signal to noise allows for higher precision retrievals of XCO2, and35
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higher spatial sampling density enables easier validation with the ground-based Total Carbon Column Observing Network or

TCCON (Wunch et al., 2017). OCO-2 also has a smaller footprint compared to GOSAT, potentially enabling more retrievals

over the tropics by looking through gaps in clouds, over scenes that GOSAT might have treated as cloud-contaminated. Due

to the more extended spatial coverage, higher sampling density, higher precision and better validation opportunity, OCO-2 can

potentially provide better constraints on surface CO2 fluxes than what has hitherto been possible from the surface network and5

GOSAT. Several inverse modelling groups are currently engaged in investigating this potential.

One of the key problems in estimating CO2 fluxes from GOSAT retrievals is the presence of small but spatially coherent

biases in the retrievals arising from, e.g., a dependence of the retrieved XCO2 on aerosols or surface albedo (Cogan et al.,

2012; Guerlet et al., 2013; Wunch et al., 2011). Some synthetic data studies such as Chevallier et al. (2007) had warned that

such sub-ppm biases might significantly reduce the utility of satellite XCO2 retrievals, but most earlier studies either did not10

consider this complication (Rayner and O’Brien, 2001; Hungershoefer et al., 2010) or claimed that it was easily fixable (Miller

et al., 2007). In practice, these biases were found to strongly affect estimated fluxes in atmospheric inversions of GOSAT

data (e.g., Basu et al., 2013; Feng et al., 2016). Initial analyses suggest that OCO-2 estimates of XCO2 likely suffer from

similar biases (Wunch et al., 2017), although they can be better characterised due to the increased density of soundings. Efforts

are underway to characterize and remove such biases through improvements in the radiative transfer and surface reflectance15

models. Current validation strategies for satellite XCO2 have their own limits, since their truth metrics (e.g., TCCON XCO2)

may not be sufficiently accurate (Basu et al., 2011). Therefore, as satellite retrieval algorithms achieve higher accuracy, they

will need better validation strategies in the future. It is likely that with further progress in those directions, XCO2 biases will

go down to the point where they no longer limit our ability to infer regional CO2 fluxes.

Even with completely unbiased XCO2 retrievals, surface flux estimates would still be subject to uncertainties related to the20

atmospheric transport model, the optimization technique employed, and the balance between data and prior flux errors. At

present, it is not clear whether the divergence in flux estimates seen in intercomparisons such as Houweling et al. (2015) is

driven primarily by the variety of XCO2 retrievals assimilated or the other factors mentioned above, although more limited

intercomparisons suggest that those other factors may be at least as important as the differences in XCO2 assimilated (Cheval-

lier et al., 2014). It is possible that the uncertainty in a regional flux estimate stemming from factors specific to the inverse25

modelling setup is larger than what we can tolerate for detecting, say, the climate impact on those fluxes. In that case, even

perfectly accurate estimates of satellite-based XCO2 will not enable us to answer the carbon cycle questions we hope to answer

with current and future CO2 sensing satellite missions. It is therefore crucial that we quantify the impact of factors specific to

an inverse modeling setup on the uncertainty of inferred surface fluxes.

In this study, we consider one of those factors, namely the atmospheric transport model. Using a series of Observing System30

Simulation Experiments (OSSEs), we quantify the uncertainty in flux estimates due to differences between present day state-of-

the-art atmospheric transport models. The approach is similar to that used by earlier work (Chevallier et al., 2010; Houweling

et al., 2010; Locatelli et al., 2013). To wit:

1. From a common set of surface fluxes (henceforth called “true” fluxes), we use a suite of different atmospheric transport

models to produce a suite of time-varying three-dimensional atmospheric CO2 fields.35
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2. We sample these fields to produce synthetic observations of CO2 at in situ and OCO-2 sampling locations.

3. We assimilate these synthetic observations in a single data assimilation system with a single transport model.

4. For a given data stream (e.g., in situ observations, or OCO-2 land nadir), the spread in the posterior fluxes is an estimate

of the uncertainty driven by transport model differences.

In earlier work, Chevallier et al. (2010) performed their analysis for the GOSAT instrument, while Houweling et al. (2010)5

focussed on the (planned) A-SCOPE active sensor. Our methodology is closest to that of Locatelli et al. (2013), who estimated

the transport model driven uncertainty of CH4 fluxes assimilating only surface layer data. In our analysis, we try to answer two

specific questions:

1. For atmospheric inversions assimilating OCO-2 XCO2 retrievals, what are the uncertainties on posterior flux estimates

– at different spatiotemporal scales – that arise due to the divergence of present day state of the art atmospheric tracer10

transport models?

2. Are the uncertainties larger or smaller if we assimilate only in situ measurements of CO2? In other words, does assimi-

lating space-based total column XCO2 such as OCO-2 XCO2 magnify or diminish transport model related uncertainties

in the flux estimates?

The second question stems from a long-standing hypothesis that simulating XCO2 in a model is less sensitive to transport15

errors such as errors in the modeled planetary boundary layer (PBL), making XCO2 assimilations less sensitive to transport

errors than PBL CO2 assimilations (Rayner and O’Brien, 2001). This is plausible, since modeling convection and the formation

of the PBL are leading order uncertainties in present day transport models (Parazoo et al., 2012). Any error in modeling the

exact PBL height and vertical mass flow translates into an error in estimated fluxes, if the primary assimilated data for an

inversion are PBL CO2 mole fractions. On the other hand, the column average XCO2 is relatively insensitive to convective20

transport errors and the exact PBL height, so those types of transport errors may have less influence on estimated fluxes if the

primary data are XCO2. However, the spatiotemporal variations in XCO2 due to surface fluxes are smaller than corresponding

variations in PBL CO2. Therefore, XCO2 inversions starting from biased priors (true for most if not all current inversions)

may be less accurate than PBL CO2 inversions. In the net, it is not clear whether lower transport errors in modeled XCO2 can

compensate for lower flux signals to give us more accurate fluxes (Houweling et al., 2010; Chevallier et al., 2010).25

2 Data and methodology

As described earlier, we ran a suite of transport models with the same boundary conditions (intial
:::::
initial

:
mole fraction field

and surface fluxes), sampled them to produce a suite of synthetic observations, and then assimilated those observations in the

same inversion framework to come up with an estimate of flux uncertainty due to transport model differences. We describe the

individual elements of this process below.30
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2.1 “True” fluxes

Synoptic differences between transport models are likely correlated to surface fluxes, since they are influenced by common

drivers such as temperature, precipitation and insolation. Therefore, it is important to use realistic fluxes to generate the true

scenario. We produce the true surface fluxes by assimilating CO2 data from the National Oceanic and Atmospheric Admin-

istration’s (NOAA) Global Greenhouse Gas Reference Network (GGGRN) and the TCCON in a TM5 4DVAR atmospheric5

inversion (described later in § 2.4). The inversion spanned June 1, 2014 to April 1, 2016. This ensured that the true fluxes

had realistic land and ocean sinks consistent with the observed global CO2 growth rate. At the end of the optimization, TM5

4DVAR wrote out global 1◦×1◦3-hourly total CO2 fluxes for transport models to ingest in the next step.

2.2 Generation of CO2 fields

We ran a suite of transport models between June 1, 2014 and April 1, 2016 with the true fluxes produced earlier, starting from10

the same initial CO2 mole fraction field as the inversion used to produce the true fluxes. The suite consisted of TM5, LMDZ,

ACTM, PCTM and GEOS-Chem. Details of the individual models can be found in the respective references in Table 1.

It is important to note here that this suite of models spans the range of transport models currently being used by various

members of the OCO-2 Science Team to assimilate OCO-2 XCO2 retrievals. Moreover, these models are driven by four

different meteorological reanalysis products, ECMWF ERA Interim (TM5, LMDZ), MERRA (PCTM), MERRA2 (GEOS-15

Chem) and JMA-55 (ACTM). These four products span the gamut of meteorological fields used by most atmospheric inversions

today. Therefore, the divergence of flux estimates seen in this study can be taken to be a reasonable measure of the divergence

expected in real data inversions with these transport models.

The transport models produced hourly (PCTM) or 3-hourly (TM5, LMDZ, ACTM, GEOS-Chem) CO2 fields at their in-

dividual lateral and vertical resolutions, which are listed in Table 1. Note that the temporal granularity listed is the time step20

at which the CO2 mole fraction field was written out; the time step of the models for calculating transport is usually smaller.

The models also wrote out the geopotential heights and atmospheric pressures at the vertical layer edges. As a first check,

we verified that global average CO2 mole fractions from the different models, calculated from their own pressure and CO2

fields, closely matched the expected time series from the true fluxes diluting into an atmosphere of 5.123×1018 Kg, the total

dry air mass of TM5. Figure 1 shows these time series. It is evident that while all the colored lines are very close to the dashed25

black line, there are small differences that are seasonally coherent. These differences arise from differences in the molar mass

of carbon assumed by the models (e.g., 12 grams/mole vs 12.01115 grams/mole), small differences in the air mass between

different models and the handling of water vapor in the model atmosphere. Rather than standardize the models to remove these

small differences, we decided to keep them since they reflect legitimate differences between the models that would express

themselves in real data inversions.30
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Table 1. The different atmospheric transport models run in this study to produce CO2 fields.

Model Resolution (lon × lat) Vertical layers Temporal granularity Meteorology Reference

TM5 3◦ × 2◦ 25 3 hours ERA Interim Krol et al. (2005)

LMDZ 3.75◦ × 1.875◦ 39 3 hours ERA Interim Hourdin et al. (2006)

ACTM 1.125◦ × 1.125◦ 32 3 hours JRA-55 Patra et al. (2009)

PCTM 1.25◦ × 1◦ 40 1 hour MERRA Kawa et al. (2004)

GEOS-Chem 5◦ × 4◦ 47 3 hours GEOS FP Nassar et al. (2010)
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Figure 1. Time series of the global average CO2 mole fraction expected from the true flux scenario (bold black dashed line) and calculated

from the individual model outputs (colored lines). The flux scenario only provides increments of the mole fraction, so these increments were

added to the initial mole fraction of TM5 to calculate the black line.

2.3 Generation of synthetic data

The five different modelled dry air mole fraction CO2 fields were sampled with the same code to produce synthetic observations

of CO2 from in situ and satellite platforms. The details of the sampling protocol
::::
Table

:
2
:::::
gives

:::
the

:::::::
number

::
of

:::::::
samples

:::
per

::::
year

::::
from

::::
each

::::
data

::::::
stream,

::::
and

:::
the

::::::::
generation

:::
of

::::::::::
pseudo-data are described below.
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Table 2.
::::::
Number

::
of
::::::::::::::::
pseudo-observations

::
per

::::
year

::::
from

::
the

:::::::
different

::::::::
observing

::::::
systems

:::
and

:::::::
sampling

::::::::
strategies.

::::
Data

:::::
stream

:::::::::::::
Observations/year

:

::::
MBL

: ::::
37558

:

::
IS

:::::
107963

:

:::
LN

::::
49311

:

:::
LG

::::
46103

:

:::
OG

:::::
163452

:

2.3.1 In situ sampling

Synthetic in situ samples corresponded to the times and locations of CO2 measurements at network sites maintained by NOAA

and partner agencies, as contained in ObsPack versions GV 2.1 and NRT 3.2.2 (https://www.esrl.noaa.gov/gmd/ccgg/obspack/).

The following data filtering was applied:

1. Campaign data from aircrafts, such as CALNEX, SONGNEX and ORCAS were excluded. In situ CO2 data from the5

CONTRAIL program were also excluded.

2. At low altitude sites, only mid-afternoon hourly averages were used.

3. At mountain-top sites, only late night hourly averages were used.

4. For coastal sites, where the sampling protocol differentiated between background and non-background air, only back-

ground samples were used.10

5. Bi-weekly to monthly NOAA aircraft profiles, mostly over North America, were included. Flask CO2 data from the

CONTRAIL program were also included.

Note that these filters were applied to come up with a set of sampling coordinates (locations and times) to represent realistic

sampling frequency and density for real data inversions. No actual CO2 measurements were used from either ObsPack ver-

sion.
::
In

::::::::
addition,

:::
the

::::::::
sampling

:::::
times

:::
and

::::::::
locations

::::::::::::
corresponding

::
to

::::::::::::
mid-afternoon

:
CO2 :::::::

samples
::::
from

:::
six

::::::
towers

:::::::::
belonging15

::
to

:::
the

:::::::::::
Japan-Russia

:::::::
Siberian

::::
Tall

::::::
Tower

:::::
Inland

:::::::::::
Observation

::::::::
Network

::::::::::::
(JR-STATION)

:::::
were

::::
also

:::::::
included

:::
in

:::
our

:::
IS

:::::::
network

::::::::::::::::::::
(Sasakawa et al., 2013) .

Each model CO2 field was sampled at these sampling coordinates, adhering as closely as possible to the sampling protocol

that model would use in a real data inversion. For example, if a site’s elevation places it in the lowermost model layer, TM5

samples it one layer above to avoid surface effects, while the other four models sample it in the surface layer. This distinction20

was kept while sampling the five models. The set of synthetic observations generated with this sampling, and corresponding

flux estimates, will be referred to as “IS” in the rest of this manuscript. During this work, we discovered an artifact in our

7
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version of PCTM at the South Pole, which was fixed by moving the South Pole site 2◦ north along 0◦ longitude (details in

Appendix A).

In addition, we also considered a subset of the IS samples that corresponded closely to the network used by Baker et al.

(2006). The network used in that TRANSCOM 3 model intercomparison experiment chiefly consisted of marine boundary

layer and background sites, suitable for assimilation in coarse resolution flux estimation systems of the time. Since then, many5

continental sites have come online. These sites are located closer to terrestrial fluxes and therefore have larger flux-induced

variations in the CO2 mole fraction. However, modeling these variations accurately depends on modeling the continental

boundary layer accurately, which is one of the most uncertain aspects of atmospheric transport modeling. By comparing the

spread in our IS flux estimates to that from assimilating a more limited ,
::
set

::
of

:
mostly background sites comparable to Baker

et al. (2006), we sought to answer the question of whether the cost of increased model uncertainty in the continental PBL10

outweighed the benefit of more measurements from the non-background sites.

We constructed this limited subset of IS, henceforth refered
::::::
referred

:
to as “MBL”, as follows. We subselected our IS dataset

for sites that were used by Baker et al. (2006). Three sites used by Baker et al. (2006), namely CMN, GSN and HAT, did

not exist in our IS dataset and therefore were not used. ITN and JBN in Baker et al. (2006) were replaced by SCT (Beech

Island, South Carolina) and DRP (Drake Passage) respectively, two currently operational sites (cruises in the case of DRP)15

geographically nearest to the discontinued ITN and JBN. The resulting MBL network corresponded as closely as possible to

the mostly background network used by Baker et al. (2006), while also reflecting changes in the CO2 sampling network since

then.

2.3.2 OCO-2 sampling

The five different model CO2 fields were sampled at the locations and times of OCO-2 retrievals from the ACOS version20

7r algorithm (O’Dell et al., 2012), as archived at https://disc.gsfc.nasa.gov/uui/datasets/OCO2_L2_Standard_V7r/summary.

Real data inversions of OCO-2 typically only use retrievals of “good” quality, selected by xco2_quality_flag=0. We

performed the same selection of the sounding locations to mimic realistic spatiotemporal coverage. The vertical profiles of

CO2 from all the models were convolved with the OCO-2 column averaging kernels and prior profiles of the corresponding

real retrievals to produce sets of synthetic OCO-2 XCO2. These synthetic XCO2 were classified according to sounding mode25

and surface type of the original soundings, to come up with land nadir (LN), land glint (LG) and ocean glint (OG) synthetic

OCO-2 XCO2 for each transport model.

OCO-2 takes 24 samples every second, which span ∼7 km along track. Column average CO2 is expected to be highly

correlated over these short length scales (Worden et al., 2016), and therefore these 24 retrievals do not provide independent

information about XCO2. However, most trace gas inversions – including TM5 4DVAR – treat all measurements as indepen-30

dent. Moreover, most global transport models have grid cells hundreds of km in size, and therefore cannot model or interpret

the small spatial scale XCO2 variations seen by OCO-2. To avoid highly correlated measurements being treated as indepen-

dent measurements in our assimilation, and to bring the spatial resolution of the retrievals more in line with the resolution

of transport models used in most global inversions, we average the synthetic XCO2 in 10 s bins along orbit, which results

8
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in one value per orbit per ∼70 km bin along track. The averaging is done in two steps. First, retrievals are averaged over 1 s

bins, with weights inversely proportional to the square of the posterior retrieval uncertainty for each retrieval. Next, over a 10 s

interval, all 1 s bins with at least one valid retrieval are averaged to create a 10 s average. This two-step averaging is done to

avoid weighting the 10 s average disproportionately towards one part of the ∼70 km track which might have a lot of retrievals.

Soundings of different modes (LN, LG or OG) are averaged separately to create different 10 s averages for each mode. OCO-25

averaging kernels and prior profiles are similarly averaged to create 10 s mean averaging kernels and prior profiles.

2.3.3
::
In

::::
situ

::::::::
sampling

::
at

:::::::
OCO-2

::::::::
sounding

::::::::
locations

:::
The

:::::::::
difference

:::::::
between

:::::::
OCO-2

:::
and

::
in

::::
situ

:::::::
samples

:::
are

:::
two

:::::
fold,

::
(i)

:::
the

::::
first

::
is

:
a
:::::::
column

:::::::::::
measurement

:::::
while

:::
the

::::::
second

::
is
::
a

::::
point

::::::::::::
measurement,

:::
and

:::
(ii)

:::
the

::::::::::::
spatiotemporal

:::::::::
coverages

::
of

:::
the

::::
two

::::::
systems

:::
are

::::::
vastly

:::::::
different.

::::::::::
Differences

:::::::
between

:::::::
OCO-2

:::
and

::
in

:::
situ

:::::::::
inversions

::::::::
convolve

:::
the

::::
two,

:::
and

::::::::
therefore

::::::
cannot

::
be

::::
used

::
to

:::
test

:::
the

:::::::::
hypothesis

:::
of

::::::::::::::::::::::::::
Rayner and O’Brien (2001) that10

::::::::
inversions

::
of

:::::::
column

::::
data

:::
are

::::
less

:::::::
sensitive

::
to
::::::::

transport
::::::
model

:::::
errors

::::
than

:::::::::
inversions

::
of

::
in
::::

situ
::::
data.

:::
To

::::
test

:::
this

::::::::::
hypothesis,

::
we

:::::::
devised

:::
two

::::::
purely

:::::::::
theoretical

::
in

:::
situ

:::::::::
networks,

:::::
called

::::::::::
“IS-LNLG”

::::
and

::::::::
“IS-OG”.

:::
The

:::::::::
IS-LNLG

:::::::
(IS-OG)

:::::::
network

:::::::
consists

::
of

::::
PBL

:::::::
samples

:::
of

:::
the

:
CO2 ::::

mole
:::::::
fraction

::
at
::::::::
locations

::::
and

:::::
times

::
of

:::
all

:::::::
OCO-2

::::
land

::::::
(ocean)

:::::::::
soundings

:::::
from

::
§

:::::
2.3.2.

::::
The

:::
five

::::::::
different

::::::
model

:::::
fields

::::
were

::::::::
sampled

::
at
::::

the
::::::::
IS-LNLG

::::
and

::::::
IS-OG

:::::::::
networks,

:
30 m

::::
above

:::::::
ground

:::::
level

::
as

:::::::
defined

:::
by

::
the

::
1
:::::::::
arc-minute

::::::
global

:::::
relief

::::::
model

:::::::::
ETOPO01

:::::::::::::::::::::::
(Amante and Eakins, 2009) .

::::
The

:::::::::
difference

::
in

:::::
fluxes

::::::::
between

::::::::
inversions

:::
of15

::::::::
IS-LNLG

:::::::
(IS-OG)

::
in

:::
situ

:::::::::::
pseudo-data

:::
and

::::::
LNLG

:::::
(OG)

::::::
OCO-2

::::::::::
pseudo-data

:::
can

:::
be

:::::::
expected

:::
to

:::::
reflect

:::
the

:::::::::
difference

:::::::
between

::::
PBL

:::
and

::::::
column

::::::::
sampling

::::
over

::::
land

:::::::
(ocean),

:::
and

:::
not

::::::::::
differences

::
in

::::::::::::
spatiotemporal

:::::::
coverage

::::::::
between

:::::
actual

::
in

:::
situ

:::
and

:::::::
OCO-2

:::::::
samples.

2.4 Inversion framework

TM5 4DVAR is a state-of-the-art variational inversion system that has been used to estimate surface fluxes of CO2 (Basu et al.,20

2013), CO (Krol et al., 2013), CH4 (Bergamaschi et al., 2013) and N2O (Corazza et al., 2011). Given a set of prior fluxes xa

with their error covariance Sa, a set of measurements y with their error covariance Sε, and a transport model K connecting

fluxes to measurements, a Bayesian flux estimation system tries to minimize the cost function J

J = 1
2

(Kx−y)TS−1
ε (Kx− y) + 1

2
(x−xa)TS−1

a (x−xa) (1)

The posterior estimate of x, usually denoted x̂, is given by (Rodgers, 2000)25

x̂= xa +SaK
T
(
KSaK

T +Sε
)−1 (y−Kxa) = xa +G(y−Kxa) (2)

whereG= SaK
T
(
KSaK

T +Sε
)−1

is called the Kalman gain matrix and determines the weighting between prior information

and observations. Details about TM5 4DVAR have been documented by Meirink et al. (2008). In this work we use the ability

of TM5 4DVAR to assimilate in situ and total column CO2 measurements as documented by Basu et al. (2013). We run the

TM5 transport model (K in the equation above) at global 3◦×2◦×25 layer resolution, and solve for ocean and land fluxes at30
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3◦×2◦ globally. We have already described our method for constructing the synthetic observations y. Below we describe the

remaining elements of this inversion, namely Sa, Sε and xa.

2.4.1 Prior flux (xa) and covariance (Sa)

Prior ocean and land fluxes were constructed as the multi-year (2000-2015) mean of CarbonTracker 2016 posterior fluxes

(https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). Hence, the prior did not have any interannual variability, but did have a5

land sink consistent with the decadal trend of atmospheric CO2 growth rate. Fossil fuel emissions, for both the true and prior

fluxes, were taken from the ODIAC inventory (Oda and Maksyutov, 2011) and not optimized. Both the land and ocean fluxes

were optimized on a weekly time scale, on a global 3◦×2◦ grid. Ocean and land fluxes had 3-hourly variations within each

week, which were not optimized. The fossil fuel flux had daily and hourly variations according to Nassar et al. (2013). Errors

in the weekly prior ocean fluxes were assumed to be 1.57 times the absolute flux in each grid cell, with a spatial correlation10

of 1000 km and a temporal correlation of 3 weeks. Errors in the weekly prior terrestrial fluxes were assumed to be half the

heterotrophic respiration in each grid cell from the CASA biosphere model (Randerson et al., 1996), with a spatial correlation

of 250 km and a temporal correlation of 1 week. The grid scale uncertainty on terrestrial fluxes thus constructed was typically

an order of magnitude higher than for ocean fluxes. However, due to the shorter error correlation lengths and times assumed for

terrestrial fluxes, the uncertainties on the global totals for 2015 were of the same order of magnitude, 0.44 PgC/yr for oceans15

and 0.53 PgC/yr for land. The ocean uncertainty constructed this way corresponds roughly to the uncertainty on the ocean

sink imposed by decadal measurements of the atmospheric O2/N2 ratio (Keeling and Manning, 2014), while the land flux

uncertainty is large enough to allow sufficient summertime uptake over North America and Eurasia (Basu et al., 2016).

2.4.2 Data error (Sε)

The analytical error of a flask-air or continuous in situ measurement of CO2 is very small, typically 0.1-0.2 ppm. However, even20

with perfect fluxes and an unbiased transport model, we do not expect to fit all observations to that precision, because a coarse

resolution transport model cannot adequately represent sub-grid scale variations that lead to the measured mole fraction at a

point. Therefore Sε also contains the representativeness error of the transport model, which can be considered to be a random

error contributed by the model. This representativeness error is computed by evaluating the norm of the spatial gradient of the

modeled CO2 mole fraction at the scale of TM5’s lateral resolution at each sampling time and location. The total error in Sε is25

the quadrature sum of this model error and an analytical error of 0.2 ppm. Figure 2 shows the total and analytical errors at three

example sites at times when CO2 samples were taken. Tutuila, American Samoa (SMO) is a remote marine boundary layer

site with little model variability, with a model error of ~1 ppm. Niwot Ridge (NWR) is a background mountaintop site with the

continental US, and therefore has higher model variability. Finally, Beech Island (SCT) is a tall tower in the southeastern US

where seasonally coherent transport variability is convolved with strong local fluxes. It should be noted here that the numbers30

in figure 2 are somewhat smaller than typical values in the literature (e.g., Baker et al., 2006; Peylin et al., 2013). Therefore,

our estimate of the transport uncertainty for in situ CO2 inversions is likely to be on the higher side.

10
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Figure 2. Analytical (blue) and total (red) uncertainty on in situ measurements in the Sε matrix at three example sites, at times of actual

CO2 measurements. SMO is a remote, marine boundary layer site with little model variability, while LEF and WKT are continental sites

with significant model variability.

The formal reported uncertainty of OCO-2 XCO2 retrievals is an underestimate (Worden et al., 2016). Therefore, the errors

estimated for the 10 s averages are likely underestimates as well. Moreover, Sε in equation (1) is not just the measurement

error, but the covariance of the model-observation mismatch. Therefore, we construct the data error for XCO2 as the sum of

two components, σ2
10s = σ2

meas +σ2
model.

The measurement part, σ2
meas, is calculated in two steps. First, variances are calculated for 1 s averages by summing the5

inverse variances of all the soundings in that average, as reported by the retrieval algorithm. A lower threshold of ε2
base/Nret is

set on that variance, where Nret is the number of retrievals in the 1 s average, and εbase is an error floor that is 0.8 ppm over

land and 0.5 ppm over oceans. If the 1 s variance calculated this way is denoted σ2
1s, then the variance on the 10 s average is

calculated as σ−2
meas = (1/10)

∑
σ−2

1s , where the sum goes over the 1 s bins in the 10 s average. Note that the final error σmeas

does not drop by
√

10 because of the factor 1/10 in the front.10

The model part, σmodel, is calculated by considering a suite of inverse models optimized against in situ data, and calculating

their difference with OCO-2 XCO2 retrievals. The differences are binned by latitude band, month and OCO-2 sounding mode,

and averaged. For each month/latitude/mode bin, the cross-model spread in the average differences is taken to be 2×σmodel for

that bin. While there is no unique way of deriving a σmodel, this algorithm creates a σmodel that includes model variability across

multiple state-of-the-art transport models driven by realistic fluxes. In practice, σmodel is usually larger than σmeas for most 10 s15

averages. On average, σ10s is ∼1.5 ppm and ∼0.9 ppm for land and ocean soundings respectively.

One final point to note is that in OSSEs, random perturbations are often added to the data to simulate random measurement

error (e.g., Chevallier et al., 2010). However, that is relevant when the goal is to get an accurate estimate of the analytical

posterior uncertainty of the flux. In this work, however, the goal is to estimate the spread in flux estimates due to the relative

bias between different transport models. Moreover, inversion groups assimilating real OCO-2 and surface data do not add20

random error to those measurements, so differences in flux estimates between different groups have no contribution from

this kind of added random measurement error. Therefore, in this work we have not added any perturbations to our synthetic

measurements.
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2.4.3 Note about the impact of transport models

If two different transport models (K1 and K2) are used to assimilate data y starting from the same prior xa and with the same

error matrices Sa and Sε, then their respective posterior flux estimates will be (Rodgers, 2000)

x̂i = xa +
(
I − ŜiS−1

a

)
(xt−xa) (3)

Ŝi =
(
S−1
a +KT

i S
−1
ε Ki

)−1
(4)5

Where xt is the true flux. Therefore the difference between the two flux estimates will be

x̂1− x̂2 =
(
Ŝ2− Ŝ1

)
S−1
a (xt−xa) (5)

That is, the transport related flux difference depends on the distance from the prior to the true flux, as well as Ŝi, which is

determined by the interaction between the error matrices and the transport model Ki. However, equation (5) makes a crucial

assumption, namely that both transport models are unbiased, or y =Kixt+ε, where ε is the random error of y. In practice, this10

is never the case, and for flux inversions the error due to a transport model is usually because the transport model is biased with

respect to true atmospheric transport, at spatiotemporal scales of interest. In our experiment, we mimic this by letting “nature”

be each of five transport models (TM5, PCTM, LMDZ, ACTM, GEOS-Chem) in turn. As long as these models span the range

of transport in nature (Patra et al., 2011), the uncertainty in fluxes coming out of our experiment will be a reasonable estimate

of the uncertainty due to the difference between modeled and true atmospheric transport. In our experiment, the difference15

between two flux estimates from pseudo-data produced by two different transport models K1 and K2 is

x̂1− x̂2 = ŜKTS−1
ε (K1−K2)xt (6)

where xt are the true fluxes in our OSSE, and x̂i is the flux estimate when synthetic observations produced by model Ki are

assimilated in TM5 4DVAR. K represents the transport and observation operator of TM5, while Ŝ depends on K, Sa and Sε.

In a real data inversion, flux estimates from two different inversion frameworks that happen to use transport models K1 and20

K2 will not necessarily differ by the amount given in equation (6), because of other choices made in setting up the inversion

systems. Rather, equation (6) can be thought of as the range of flux estimates possible in a typical flux inversion (TM5 4DVAR

in our case) if K1 and K2 span the range of possible real atmospheric transport.
::
It

:::::
should

:::
be

:::::
noted

:::
that

:::
the

:::::
range

::
as

:::::::::
expressed

::
in

:::::::
equation (6)

::::
does

:::
not

::::::
depend

:::
on

:::
the

:::
flux

:::::
prior

:::
xa,

:::
but

::::
only

:::
on

:::
the

::::
prior

:::::::::
uncertainty

:::
Sa:::::::

through
::
its

::::::::
influence

:::
on

::̂
S.

2.5 Difference between transport models25

OCO-2 has a local overpass time of 1:30 PM, and most surface measurements assimilated in flux inversions – except for

mountaintop sites – are from the afternoon once a fully mixed planetary boundary layer (PBL) has formed. Therefore, the

mid-afternoon CO2 mole fraction difference between models, both in the PBL and in the total column, would contribute to

flux differences in our experiment. The zonal average of those differences between Dec 1 2014 and Mar 1 2016 are plotted

in figure 3, where the lowest 150 hPa is an approximation for the mid-afternoon PBL depth. Maps of these differences for30

12



summer, winter and the annual average are shown in figures B1 and B2 in the appendix. For each lateral grid cell, the median

CO2 mole fraction of all five models was subtracted from each model to highlight model differences instead of large scale

features common to all models. All modeled CO2 fields were mapped to a global 1◦×1◦ grid while conserving mass. Since

the models had varying resolutions and grid registrations, this resulted in unavoidable checkered patterns in the differences in

figure 3. That, however, did not impact the large scale model to model differences shown.5

In figure 3, the agreement across models is generally better over the Southern Hemisphere (SH) than over the north. This is

primarily driven by larger ocean masses in the south than in the north, since as figures B1 and B2 show, the agreement across

models is generally higher over oceans than over land. This is understandable since
:::::::
expected

:::::::
because

:::
(a) vertical transport, one

of the major axes of variability across models, is stronger over land than over oceans
:
,
:::
and

:::
(b)

::::::
surface

::::
flux

:::::::::
variability

::
is

::::
also

:::::
higher

::::
over

::::
land

::::
than

::::
over

::::::
oceans,

::::::::::
amplifying

::
the

:::::::::
difference

:::::::
between

::::::::
transport

::::::
models

:::::
when

::::::
viewed

::
in

:::
the CO2 :::::::::::

concentration10

::::
space. Models driven by the same parent meteorology do not necessarily show the same features in the modeled CO2 field. In

the Northern Hemisphere (NH) summer, LMDZ shows much higher venting of
:::::
faster

::::::::
exchange

:::::::
between

:
the continental PBL

:::
and

:::
the

:::
free

::::::::::
troposphere

:::::
(FT) than TM5, while PCTM shows much lower venting of

::::::::
evidenced

:::
by

:::::
higher

:
CO2 ::::

mole
::::::::
fractions

::
in the continental PBL

::
in

:::::
figure

:::
B1.

:::
By

::::::
similar

:::::
logic,

::::::
PCTM

:::::
shows

:::::
much

::::::
slower

:::::::
PBL-FT

::::::::
exchange

:
than GEOS-CHEM. In the

NH winter, LMDZ still has slightly higher venting over
::::::
contrary

::
to
:::::::::::
summertime,

::
in
:
the northern temperate latitudes compared15

to
:::::
PCTM

::::
and TM5 , while contrary to the NH summertime, PCTM shows higher venting than

::::::
exhibit

:::::
faster

:::::::
PBL-FT

::::::::
exchange

::::::::
compared

::
to

:
GEOS-CHEM

:::
and

:::::::
LMDZ

::::::::::
respectively. The two models driven by GEOS-derived winds (GEOS-CHEM and

PCTM) are significantly different in the PBL over North and South America, East Asia and Tropical Africa throughout the

year. The corresponding difference between the two models driven by ERA Interim winds (LMDZ and TM5) are considerably

smaller. ACTM has an overall low bias of∼0.5 ppm in the PBL, which shows up to a lesser extent in the total column (figure 3)20

and the total atmospheric CO2 mass (figure 1). However, such an overall bias should not affect fluxes estimated from ACTM

pseudo-observations. ACTM also appears to trap more (compared to the model median) of the wintertime respiration signal

from Boreal Eurasia
:
in

:::
the

::::
PBL

::::::
(figure

::::
B1), which should have implications for Boreal flux estimates.

In the total column, GEOS-CHEM and PCTM look very different in the NH summer, with PCTM trapping more of the

NH summertime uptake and SH wintertime respiration signals in the respective hemispheres. In the NH winter, GEOS-CHEM25

displays the Tropical Asian biomass burning signal more strongly in the total column than PCTM, while the East Asian fossil

fuel enhancement is higher in the GEOS-CHEM XCO2 throughout the year. In the NH summer, LMDZ appears to vent

:::::::
transport

:
more of the Temperate and Boreal uptake signal to the south compared to TM5, leading to slightly higher XCO2

values in the north. In the NH winter, conversely, TM5 appears to vent
:::::::
transport

:
more of the northern respiration signal to the

south.30

3 Results

Figure 4 shows the range of the annual CO2 flux from assimilating synthetic observations produced by the five different

transport models. For each region, the black horizontal line denotes the estimate from assimilating pseudo-obs generated by

13
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Figure 3. The zonal average difference between each model (ACTM, GEOS Chem, LMDZ, PCTM and TM5) and the cross-model median

at 1:30 PM local time, in ppm CO2, between Dec 1 2014 (2014.915) and Mar 1 2016 (2016.164). The left column depicts differences in the

lowest 150 hPa, which is an approximation for the PBL. The right column depicts differences in column averaged CO2. Each column has its

own colorbar
:::

color
:::
bar. Since transport differences in the total column are smaller than in the PBL, the dynamic range of the right column is

half that of the left column. 14



TM5, i.e., it is the “perfect transport” OSSE. The other four models are not distinguished here for visual clarity, but figure D1

in Appendix D marks them separately. Fluxes from joint assimilation of
:::
The

:::::
range

::
of

:::
the

::::::
annual

::::
flux

::::::::
estimates

:::::
across

:::
the

::::
five

::::::
forward

:::::::
models

::
in

:::::
figure

::
4,
::::::

which
::
is

::
a

:::::::
measure

::
of

:::
the

::::::::
transport

::::::
model

:::::::::
uncertainty

:::
in

:::
the

::::
flux

::::::::
estimates,

::
is

::::::::
tabulated

:::
for

:::
all

::::::
regions

:::
and

::::
data

:::::::
streams

:
in situ and OCO-2 data streams (e.g., LNi = LN + IS) are also shown in figure D1

:::
table

:::
C1

:::
in

:::
the

:::::::
appendix.5

Real satellite retrievals of XCO2 have spatially coherent and sampling mode-dependent biases due to interfering species

such as aerosols and water, surface effects such as albedo and elevation, and geometric effects such as the solar zenith angle.

However, synthetic data generated by the five transport models, which serve as the input in our inversions, do not have such

biases. Hence the range of flux estimates from different data sets is purely determined by the coverage difference between

different sampling modes and the type of measurement (total column versus near-surface point), while the differences between10

the flux estimates from pseudo-obs generated by different models (horizontal lines within each colored bar in figure 4) is

a measure of the inter-model transport difference as sampled by a particular observing mode/network. In this context, the

horizontal black lines in figure 4 represent “perfect transport” inversions, meaning the synthetic observations were generated

and assimilated with the same transport model. Therefore, the difference between those lines (TM5) and true fluxes (white

circles) in the figure represents the balance between Sa and Sε in our setup of TM5 4DVAR, and a smaller difference from15

a different model (any other horizontal line) is purely due to chance
:::::
should

:::
not

:::
be

:::::::::
interpreted

::
as

:::::::::
significant. It should also be

noted that our goal is not to rank models according to their proximity to true fluxes in figures 4 and D1, but rather to quantify

the spread across different models used to generate the synthetic data, and how that spread varies with sampling and coverage.

Figures 5 and 6 show the range of monthly fluxes from TRANSCOM-like land and ocean regions for each type of synthetic

data stream assimilated. For visual clarity, only the range across the five models has been shown instead of individual flux20

estimates. The land regions in figure 5 are identical to the TRANSCOM regions, except that Africa has been partitioned into

Saharan and sub-Saharan Africa instead of north and south of the equator.

4 Discussion

4.1 Global budget

All five models were run from the same initial CO2 field with the same surface fluxes. The resulting global burden of CO225

in the models were close but slightly different, as shown in figure 1. The increase in the global average CO2 mole fraction

between Jan 1 2015 and Jan 1 2016 ranged from 2.89 ppm (TM5) to 2.97 ppm (LMDZ). That 0.08 ppm range in the mole

fraction, given the dry air mass of TM5, corresponds to a range of 0.16 PgC in the change in the global CO2 burden over 2015.

Therefore, even if our pseudo-data inversions nail the global CO2 budget for 2015 exactly, we can expect a variation of up to

0.16 PgC in that budget owing to the small model-to-model differences in figure 1.30

The global total CO2 flux in figure 4 shows a spread of ∼1.5 PgC/yr for in situ inversions, which is larger than the spread

seen in earlier inverse model intercomparisons such as Peylin et al. (2013). This is because intercomparisons such as Peylin

et al. (2013) typically report the constraint on the multi-year average global growth rate, while here we are looking at the

15
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Figure 4. Annual flux estimates from land (top) and ocean (middle) regions and zonal bands (bottom). For each region, the prior and true

fluxes are shown by a grey diamond and a white circle respectively. The different colored bars correspond to different synthetic data streams

assimilated; IS = in situ, LN/LG/OG = OCO-2 land nadir/land glint/ocean glint, and LNLG = LN + LG (all land soundings).
:::
The

::::
data

:::::
streams

::::::::
IS-LNLG

:::
and

:::::
IS-OG

:::
are

::::::::
theoretical

::::
PBL

:::::::
sampling

:::::::
networks

::
at

:
OCO2:::::::

sounding
:::::::
locations

:::
and

:::::
times,

:::::::
described

::
in

::
§

::::
2.3.3. For each

color, the vertical extent of the bar denotes the range (minimum to maximum) of the flux estimates from pseudo-data produced by the five

transport models for that data stream. The black horizontal line through each bar denotes the estimate from TM5 pseudo-obs, while the fainter

horizontal lines denote the estimates from the pseudo-obs produced by the other four models. The individual models are not distinguished

here for visual clarity, but are marked separately in figure D1 in Appendix D.
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Figure 5. Monthly flux estimates from TRANSCOM-like land regions and global total land. The different colors correspond to different

synthetic data streams assimilated, as in figure 4. The different models used to generate the synthetic data have not been distinguished here

to minimise visual clutter.
:::
The

::::::::
theoretical

::::
PBL

:::::::
networks

:::::::
IS-LNLG

:::
and

:::::
IS-OG

::::
have

::::
also

:::
been

::::::
omitted

:::
for

::
the

:::::
same

:::::
reason.

:
Plots of seasonal

fluxes over many more regions, with the models distinguished, are included in the supplementary material.
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Figure 6. Same as figure 5, except over TRANSCOM ocean regions and global total ocean.

18



5.0 4.5 4.0 3.5 3.0 2.5 2.0
Northern Hemisphere flux (PgC/yr)

1.5

1.0

0.5

0.0

0.5

1.0
So

ut
he

rn
 H

em
isp

he
re

 fl
ux

 (P
gC

/y
r)

Prior
MBL
IS
LN
LG
LNLG

OG
TM5
LMDZ
ACTM
GEOS-CHEM
PCTM

-3.64 PgC/yr

4.5 4.0 3.5 3.0 2.5 2.0 1.5
Northern Extra-Tropics flux (PgC/yr)

2.0

1.5

1.0

0.5

0.0

0.5

So
ut

he
rn

 +
 T

ro
pi

ca
l f

lu
x 

(P
gC

/y
r)

Prior
MBL
IS
LN
LG
LNLG

OG
TM5
LMDZ
ACTM
GEOS-CHEM
PCTM

-3.64 PgC/yr

2.5 2.0 1.5 1.0 0.5 0.0 0.5
Southern Extra-Tropics flux (PgC/yr)

3.5

3.0

2.5

2.0

1.5

1.0

N
or

th
er

n 
+ 

Tr
op

ic
al

 fl
ux

 (P
gC

/y
r)

Prior
MBL
IS
LN
LG
LNLG

OG
TM5
LMDZ
ACTM
GEOS-CHEM
PCTM

-3.64 PgC/yr

3.5 3.0 2.5 2.0 1.5 1.0
Global Land flux (PgC/yr)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Gl
ob

al
 O

ce
an

 fl
ux

 (P
gC

/y
r)

Prior
MBL
IS
LN
LG
LNLG

OG
TM5
LMDZ
ACTM
GEOS-CHEM
PCTM

-3.64 PgC/yr

Figure 7. The partitioning of the 2015 global CO2 sink into two geographical domains, with the tropics being defined as 23.5◦north and

south latitudes. Each color represents one type of synthetic data assimilated, while each symbol shape represents one model used to generate

the synthetic data. The diagonal gray line represents the 2015 global sink of 3.64 PgC/yr in the true fluxes used to generate the synthetic data,

while the large plus sign denotes their partitioning. The scales are identical across all four figures, but not the origins.

constraint on a single year’s growth rate from in situ samples. Houweling et al. (2015) compared eight different inverse models

of a single year using in situ data, and found a spread of 1.73 PgC/yr across models for the annual growth rate, with a standard

deviation of 0.5 PgC/yr. The inversions in Houweling et al. (2015) were less controlled compared to our setup, since they used

different flux and measurement covariances as well as different transport models. Therefore, in our more controlled experiment,

a spread of 1.5 PgC/yr is reasonable among the different in situ data streams. It is noteworthy that the spread in the global total5

flux in figure 4 for the OCO-2 pseudo-data inversions is ∼0.25 PgC/yr, close to the previously calculated limit of 0.16 PgC/yr,

which suggests that an OCO-2-like instrument, with its denser sampling and .
::::
This

:::::::::
reduction

::
in

:::
the

::::::
spread

:::::
from

::
in

:::
situ

:::
to

::::::
OCO-2

:::::::::
inversions

:
is
::::::::
primarily

::::
due

::
to

:::
the

::::
more

::::::::
spatially

:::::::
extensive

::::::::
sampling

::
of
:::::::
OCO-2

:::
and

:::
not

:::::::
because

::
of

::::::::
OCO-2’s

:
sensitivity

to the total atmosphere
::::::
column

:
(as opposed to mostly the surface layer),

::::::::
evidenced

:::
by

:::
the ∼0.25 PgC/yr

:::::
spread

::
in

:::
the

::::::
global

CO2::::
flux

::::
from

::::::::
IS-LNLG

::::
and

:::::
IS-OG

:::::::::
inversions

::
in

:::::
figure

::
4.

::::
This

::::::::
suggests

:::
that

:::::::::
compared

::
to

:::
the

::::::
current

::
in

:::
situ

::::::::
network,

:
a
:::::
more10

:::::::
spatially

::::::::
extensive

::::::::
sampling

:::::::
strategy,

:::::::
whether

::::
total

::::::
column

::
or

:::::
PBL, can provide a stricter constraint on the global CO2 budget

that is less sensitive to transport model specifics.

4.2 Large scale partitioning of the global budget

The global atmospheric growth rate of CO2 (denoted C below) is determined by the fossil fuel (Fff) emissions and the global

sink from the land biosphere (Fbio) and oceans (Foce)15

dC

dt
= Fff +Fbio +Foce (7)

where Fbio includes fire emissions. CO2 inversions typically assume a known Fff and estimate Fbio and Foce from atmospheric

observations of CO2. Therefore, in a suite of inversions assuming the same Fff, the global total sink Fbio +Foce is constrained

to a number whose uncertainty is determined by how well the global CO2 budget is determined by the CO2 observations

assimilated. A plot of the estimated Foce versus Fbio from the suite should therefore be clustered around a straight line with a20

19
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Figure 8.
::

The
:::::::::

partitioning
::
of
:::

the
::::
2015

:::::
global

:
CO2 :::

sink
:::
into

::::
two

::::::::::
geographical

:::::::
domains,

:::
with

:::
the

::::::
tropics

::::
being

::::::
defined

::
as

::::
23.5◦

::::
north

:::
and

::::
south

:::::::
latitudes.

:::
This

::
is
:::::
similar

::
to
:::::
figure

::
7,

:::::
except

:::
that

::
we

::::
have

::::::::
compared

:::
two

:::
real

::::::
OCO-2

:::
and

:::
one

:::
real

:
in
:::
situ

:::::::
sampling

:::::::
schemes

::::::
(LNLG,

::::
OG,

::
IS)

::::
with

:::
the

:::
two

::::::::
theoretical

::
in

:::
situ

::::
ones

::::::::
(IS-LNLG,

::::::
IS-OG)

::
of

:
§
:::::
2.3.3.

:::
The

:::::
scales

:::
are

::::::
identical

:::::
across

::::
three

::
of

:::
the

:::
four

::::::
figures

:::
and

:::
the

::::
same

:
as
:::::

figure
::
7;

:::
the

::::::::
partitioning

::
of
:::::
global

:::
and

:::::
ocean

:::::
fluxes

:::
had

:::::::::
significantly

::::
more

::::::
spread,

:::
and

::::::
required

::
a
::::::
different

:::::
scale.

Table 3.
:::
The

:::::
spread

::
in

:::
the

:::
flux

:::::::::
partitioning

:::::
across

:::
five

::::::
models

::::
from

:::
the

:::::::::
assimilation

::
of

:::::::
different

:::::::::
pseudo-data

:::::::
streams.

:::
This

::
is
::
a

:::::::
tabulated

:::::::
summary

::
of

::
the

:::::::::
information

::
in
::::::

figures
:
7
:::
and

::
8.
:::
For

::::
each

:::::::::
pseudo-data

::::::
stream

::::
(e.g.,

:::::
MBL)

:::
and

::::
each

:::::::::
partitioning

::::
(e.g., 23.5 °N,

:::::
which

::
is

:::
the

::::::
dividing

:::
line

:::::::
between

::
the

:::::::
northern

::::::::::
extra-tropics

:::
and

::
the

:::::
rest),

::
the

::::
table

:::::::
contains

:::
the

:::::
spread

:::::
across

:::
five

::::::
models

::
of

::
the

::::
sum

:::
and

::::::::
difference

::
of

::
the

:::::
fluxes

::::::
between

:::
the

:::
two

::::::::
partitions.

:::
All

::::::
numbers

:::
are

::
in PgC/year.

Partitioning
MBL IS LN LG LNLG OG IS-LNLG IS-OG

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

:::
sum

:::
diff

::::::
Equator

:::
1.71

:::
2.27

:::
1.51

:::
3.02

:::
0.22

:::
1.44

:::
0.24

:::
1.59

:::
0.24

:::
1.49

:::
0.29

:::
1.81

:::
0.33

:::
1.66

:::
0.29

:::
2.13

::::::::
Land/ocean

:::
1.71

:::
3.74

:::
1.51

:::
2.49

:::
0.22

:::
1.99

:::
0.24

:::
1.86

:::
0.24

:::
2.35

:::
0.29

:::
0.75

:::
0.33

:::
9.71

:::
0.29

:::
1.92

23.5 °N

:::
1.71

:::
1.67

:::
1.51

:::
2.08

:::
0.22

:::
1.80

:::
0.24

:::
1.59

:::
0.24

:::
2.03

:::
0.29

:::
2.20

:::
0.33

:::
1.62

:::
0.29

:::
1.65

23.5 °S

:::
1.71

:::
2.37

:::
1.51

:::
2.12

:::
0.22

:::
1.44

:::
0.24

:::
1.59

:::
0.24

:::
1.46

:::
0.29

:::
1.95

:::
0.33

:::
1.61

:::
0.29

:::
1.84
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slope of −1. The same logic applies for any
::::
other two-way partitioning of the global sink, such as northern versus southern

hemisphere, instead of land versus ocean. Figure 7 shows
:
.
::::::
Figures

::
7
:::
and

::
8
:::::
show four different two-way partitionings of the

global total CO2 sink from our ensemble of inversions of synthetic data. The straight line with slope −1 corresponds to the

global total sink of -3.64 PgC/year in our true fluxes used to generate the observations. For each inversion estimate, the distance

from that straight line is a measure of how much the estimated global budget deviates from the true global budget for 2015,5

while the position along the line is an indication of how the inversion splits the global budget into the two partitions.
::::
Table

::
3

:::::::
contains

::::::::
summary

:::::::
statistics

:::::
from

::::::
figures

::
7
::::
and

::
8.

:::
For

:::::
each

::::
data

::::::
stream

::::
(e.g.,

::::::
MBL)

::::
and

::::::::::
partitioning

:::::
(e.g.,

:::::::
Equator,

::::::
which

::::::::::
corresponds

::
to

:::
the

::::::::::
partitioning

:::::::
between

:::
the

:::::::
northern

::::
and

:::::::
southern

::::::::::::
hemispheres),

:::
the

::::
table

:::::::
contains

:::
the

::::::
spread

::
in
:::
the

::::
sum

::::
and

::::::::
difference

::
of

::::::
fluxes

:::::::
between

:::
the

:::
two

:::::::::
partitions.

::::
The

:::::
spread

:::
in

:::
the

:::
sum

::
is
::
a
:::::::
measure

::
of

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::
global

:::::
budget

:::
as

:::::::::
constrained

:::
by

:::
that

::::
data

::::::
stream,

:::::
while

:::
the

::::::
spread

::
in

:::
the

:::::::::
difference

:
is
:::::::::
indicative

::
of

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::::
partitioning.10

In general, inversions with in situ data are spread further out from
:::
The

::::::
global

::::::
budget

:::
for

:
a
:::::
single

::::
year

::
is
::::::::::
constrained

::::::
poorly

::
by

:::::::::
inversions

::::
with

:::
IS

:::
and

:::::
MBL

:::::::::::
pseudo-data,

:::::::::
evidenced

::
by

::::
the

::::
large

::::::
spread

::
of

::::
the

:::::
global

::::
sum

::
in
:::::

table
::
3

:::
and

:::
the

::::::
scatter

:::
of

::
the

:::
IS

:::
and

:::::
MBL

::::::
points

::::::
around the -3.64 PgC/yr straight line compared to those with OCO-2 data,

:
in
::::::

figures
::

7
::::
and

::
8.

::::
This

::
is

consistent with the larger spread in the global sink estimate of inversions with in situ
::
IS

::::
and

::::
MBL

:
data in figure 4. Among

the models, PCTM pseudo-obs seem to demand a higher CO2 flux consistently, while ACTM and GEOS-CHEM pseudo-obs15

demand slightly lower CO2 fluxes. Since growth in the atmospheric CO2 burden was the same for all the models in 2015

(figure 1), these differences are due to large scale transport differences sampled by the in situ network.

Since the OCO-2 pseudo-obs in this OSSE are bias free, differences in the partitioning from different sounding modes (LN,

LG, OG and land or LNLG) are purely due to sampling differences. This includes the obvious difference of sampling the

atmosphere over land and ocean surfaces, and also a more subtle difference in the timing of the samples, coming from the20

fact that during the early part of the OCO-2 record
::
up

::
to
::::

July
:::::
2015, the satellite operated continuously for 16 days in nadir

(glint) mode before switching to glint (nadir). As a result, land nadir and land glint samples over the same location could be

separated by up to 16 days. Since CO2 fluxes can change significantly over 16 days, this can
:::
may

:
give rise to differences

in LN and LG derived flux estimates. These differences
:::
The

::::::
impact

::
of

:::::::::::::
spatiotemporal

:::::::::
differences

::
in

::::::::
sampling

:
are evident in

figure 7. Among assimilations of OCO-2 pseudo-obs (LN, LG, LNLG, OG) simulated by a single forward model, there can25

be a ∼0.5 PgC/yr spread in the partitioning across a latitude, whether the equator or one of the tropics, while the land-ocean

partitioning is more uncertain, with a spread of up to ∼1.5 PgC/yr. Interestingly, the land-ocean partitioning seems to be better

pinned down by OCO-2 ocean soundings than land soundings, evidenced by the smaller inter-model spread when assimilating

OG pseudo-obs than when assimilating LN, LG or LNLG pseudo-obs. The same does not appear to hold for any latitudinal

partitioning. Finally, the inter-model30

::::::
Finally,

:::
we

:::::::
contrast

:::
the

::::::::::
partitioning

::::
from

::::::
LNLG

:::::
(OG)

::::
with

::::
that

::::
from

:::::::::
IS-LNLG

:::::::
(IS-OG)

::
to

::::::
gauge

:::
the

::::::
impact

::
of

::::::::
transport

::::
error

::
on

::::
PBL

::::::
versus

::::
total

::::::
column

:::::::::::::
measurements.

:::
The

:::::::::
IS-LNLG

:::::::
(IS-OG)

:::::::
network,

::::::
which

:::
has

:::::::
spatially

::::::::
extensive

::::
PBL

::::::::
sampling

::::
only

:::
over

::::
land

:::::::
(ocean),

:::
has

::
a

:::::
much

:::::
larger spread in the partitioning for inversions assimilating in situ pseudo-obs is consistently

greater than the spread when assimilating only OCO-2 pseudo-obs, suggesting that boundary layer sampling has the potential to

highlight transport model biases or inter-model differences more than total column sampling (Rayner and O’Brien, 2001)
:::::::::
land/ocean35
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:::::::::
partitioning

:::::::::
compared

::
to

:::
the

::::::
LNLG

:::::
(OG)

:::::::
network

::
of

:::::::
column

:::::::
samples.

:::::
This

:::::::
suggests

::::
that

::
if

:::
the

::::
goal

::
is

::
to

:::::::
partition

::::
land

::::
and

:::::
ocean

::::::
fluxes,

::::
PBL

::::::::
sampling

:::
can

:::::::
amplify

::::::::::
differences

::::::
across

:::::::
transport

:::::::
models,

::::::
which

:::
are

:::::
larger

:::
in

:::
the

::::
PBL

::::
than

::
in
:::

the
:::::

total

::::::
column

::::::::::::::::::::::::
(Rayner and O’Brien, 2001) .

:::::::::
Moreover,

:::::::::
comparing

:::
the

::::::
spreads

::
of

:::::::::
IS-LNLG

:::
and

::::::
IS-OG

::::::::
inversions

::::::::
suggests

:::
that

:::::
these

:::::::
transport

::::::::::
differences

:::
are

:::::
larger

:::::
over

::::
land

::::
than

::::
over

::::::
ocean.

::
If
::::

the
::::
goal,

::::::::
however,

::
is
:::

to
:::::::
partition

:::
the

::::::
global

::::::
budget

::::::
across

::
a

::::::
latitude

::::
(i.e.,

:::
the

:::::
other

::::
three

:::::::::::
partitionings

::
in

::::
table

:::
3),

::::::
column

::::::::
sampling

::::
does

:::
not

::::::
appear

::
to

::::
have

::
an

:::::::
obvious

:::::::::
advantage

::::
over

::::
PBL5

::::::::
sampling.

::::
This

::
is

:::::
likely

:::::::
because

::
of

:::
the

:::
fast

:::::
zonal

::::::
mixing

::
of

:::
the

:
CO2 :::

flux
::::::
signal,

:::
i.e.,

:::
the

::::
flux

:::::
signal

::::::
missed

:::
by

::::
PBL

:::::::
samples

::
at

:::
one

:::::::
location

:::
due

::
to

:::::::::
incorrectly

::::::::
modeled

::::::
vertical

::::::
mixing

::::
will

::
be

:::::
seen

::
by

::::
PBL

::::
sites

::::::::::
downstream

::::::
within

:::
the

:::::
same

::::
zonal

:::::
band.

4.3 Annual fluxes at zonal, continental and TRANSCOM scales

Over
::::
The

:::::
spread

::
in

::::
flux

::::::::
estimates

:::::
across

:::
the

::::
five

::::::
forward

:::::::
models,

::
or

:::
the

:::::::::::::
transport-driven

::::::::::
uncertainty,

::
is

::::
very

::::::
similar

::
in

:::::
figure

::
4

:::
and

::::
table

:::
C1

:::::::
between

:::
IS

:::
and

:::::
MBL

::::
data

::::::
streams

:::
for

::::
most

:::::::
regions.

:::::
Over

::::
some

:
land regions that have seen a significant increase10

in measurement density since Baker et al. (2006),
::::
such

::
as

:::::
North

:::::::
America

:::
and

:::::::
Europe,

:
the additional measurements in IS result

in a smaller transport-induced uncertainty compared to MBLin figure 4. Over land regions where the coverage of IS and MBL

are almost identical, such as Africa and Eurasian temperate
:::::::
Tropical

::::
Asia, the uncertainties are

:::
(not

:::::::::::
surprisingly) comparable

between IS and MBL. The same holds for regions which have little or no coverage in either network, such as Tropical Asia

and South American temperate. Over ocean regions, the benefit of the added observations in IS is mixed. The uncertainties
::
IS15

:::
and

:::::
MBL

:::::::::::
uncertainties

:::
are

::::
very

::::::
similar,

::::::
except

:
over the PacificOcean and its subregions are smaller for the IS network than

for the MBL network. For most other ocean regions, the IS uncertainty is either comparable or larger than the MBL ,
::::::
where

:::
the

::::::::
increased

:::::::
coverage

::
in
:::

IS
::
on

:::
the

:::::
west

::::
coast

:::
of

:::::
North

:::::::
America

::
is
:::::
likely

::::::::::
responsible

:::
for

:::
the

::::::::
reduction

::
in
:
uncertainty. The same

conclusion holds for land and ocean regions in zonal bands. While the uncertainty in the global uptake and the global land and

ocean fluxes are slightly smaller for the IS network compared to the MBL network
:
.
:::::::
However, for most other zonal regions the20

flux estimates derived from the MBL network are either equally or less uncertain than the estimates from the IS network. This

suggests that the added value of sites that are in IS but not in MBL is manifest mainly over continental land regions where these

additional sites are located. That is, the additional sampling over continents can reduce the transport uncertainty of estimated

fluxes, even though the transport model uncertainty is typically higher over continents
::
IS

:::
and

:::::
MBL

:::::::::::
uncertainties

:::
are

:::::::
roughly

:::::
equal,

:::::
likely

:::::::
because

::
of

:::
the

:::
fast

:::::
zonal

::::::
mixing

::
in

:::
the

::::::::::
atmosphere.25

The regional annual flux estimates of figure 4 show that the spread among land flux estimates when assimilating OCO-2

pseudo-data
::::
over

::::
land

:
(LN, LG and OG

::::::
LNLG) is often smaller than when assimilating in situ data (IS, MBL). Best case

examples of this are Europe, South America and its subregions, and Africa and its subregions. This is consistent with the

hypothesis that over land, modeling vertical transport and the formation of the PBL is a source of significant uncertainty

in transport models, which affects the assimilation of measurements confined primarily to the PBL. Column average , and30

consequently assimilations, are less sensitive to vertical transport errors. There are a few regions , however, such as Boreal

North America and North Atlantictemperate, where the
::::
This

:::::
could

::
be

::
a
:::::::::::
combination

::
of

:::
the

::::
total

:::::::
column

::::::
nature

::
of

:
OCO-2

pseudo-data flux estimates are at least as uncertain as the in situ pseudo-data estimates. Over most of the
::::::::::
pseudo-data

:::
and

:::
its

::::::::
increased

:::::
spatial

:::::::::::
homogeneity

::
of

:::::::::
coverage.

::
To

:::::::
separate

:::
the

::::
two

::::::
effects,

:::
we

::::
look

::
at

:::::::::
IS-LNLG,

:::::
which

:::
has

:::
the

:::::
same

::::::::
coverage

::
as

22



:::::
LNLG

:::
but

::::
only

:::::
PBL

:::::::
samples

::::::
instead

::
of

::::
total

::::::::
columns.

::::
Over

::::::
certain

:::::::
regions,

::::
such

::
as

:::::::::
temperate

:::::
North

:::
and

:::::
South

::::::::
America,

::::
and

::::::::
temperate

:::::::
Eurasia,

:::
the

::::::::
IS-LNLG

::::::
spread

::
is

:::::
larger

::::
than

:::
the

::
IS

::::::
spread,

::::::
which

::
is

:::::
larger

::::
than

:::
the

::::::
LNLG

::::::
spread.

::::
This

:::::::
suggests

::::
that

:::
over

:::::
those

:::::::
regions,

:::
the

:::::::
transport

::::::
model

::::
error

:
–
:::::::
relative

::
to

:::
the

:::
flux

:::::
signal

::
–
::
in

:::
the

::::
total

::::::
column

::
is

::::::
smaller

::::
than

::
in

:::
the

::::
PBL,

:::::::
leading

::
to

:::::
lower

::::::::::::
transport-drive

:::::::::
uncertainty

::
in
::::
total

:::::::
column

:
CO2 ::::::::::

assimilations
::::
than

::
in

::::
situ CO2 ::::::::::

assimilation.
::::::::
Sampling

:::
the

::::
PBL

:::::
more

::::::
densely

::::
over

:::::
those

:::::::
regions

::
is

:::::
likely

::
to

:::::::
increase

::::::::::::::
transport-driven

:::::::::
uncertainty

:::
in

:::::
fluxes.

:::::
This

::
is

::::::::
consistent

::::
with

::::
the

:::::::::
hypothesis5

::
of

:::::::::::::::::::::::
Rayner and O’Brien (2001) .

:::::::::
However,

::::
over

:::::
some

:::::
other

:::::::
regions,

::::
such

::
as

::::::
boreal

:::::::
Eurasia

:::
and

:::::::
tropical

::::::
South

::::::::
America,

:::
the

::::::::
IS-LNLG

:::::
spread

::
is
:::::
much

::::::
smaller

::::
than

:::
the

::
IS

::::::
spread,

:::::::::
suggesting

::::
that

::::
over

::::
those

:::::::
regions,

:::
the

::::::::
reduction

::
in

:::::::::
uncertainty

:::::
going

:::::
from

::
IS

::
to

::::::
LNLG

::
is

::::::::
primarily

:::
due

::
to

:::
the

:::::
more

:::::::
uniform

:::::
spatial

::::::::
coverage

:::
and

:::
not

::::
due

::
to

::::
total

:::::::
column

::::::::
sampling.

::
In

::::
fact,

::::
over

:::::::
tropical

:::::
South

:::::::
America

:::
the

:::::::::
IS-LNLG

:::::
spread

::
is
:::::::
smaller

::::
than

:::
the

::::::
LNLG

::::::
spread,

:::::::::
suggesting

::::
that

:::
the

:::::::
transport

:::::
error

::
in

:::
the

::::
total

:::::::
column

:
is
::::::

larger
::::
than

:::
that

:::
in

:::
the

:::::
PBL.

::::::
Finally,

:::::
over

::::::
regions

:::::
such

::
as

:::::::
Europe,

:::
the

:::::::
ordering

:::
of

:::
IS,

::::::::
IS-LNLG

::::
and

::::::
LNLG

:::::::::::
uncertainties10

:::::::
suggests

:::
that

:::
the

::::::::
reduction

:::
in

:::::::::
uncertainty

::
in

:::::
going

:::::
from

::
IS

::
to

::::::
LNLG

::
is

:::::
partly

::::
due

::
to

:::
the

::::
more

::::::::
spatially

:::::::
uniform

:::::::
coverage

::::
and

:::::
partly

:::
due

::
to

::::
total

:::::::
column

::::::::
sampling.

::::
Over

:::::
some

:::::
ocean

:::::::
regions

::::
such

::
as

:::
the

:::::::::
temperate

:::::
North

::::::
Pacific

:::
and

::::::
South

:::::::
Atlantic,

:::
the

::::::
IS-OG

::::::
spread

::
is

:::::
larger

::::
than

:::
the

::::
OG

::::::
spread,

:::::::::
suggesting

:::
that

::::::::
modeling

:::
the

:::::
PBL

::
is

::::
more

::::::::
uncertain

::::
than

::::::::
modeling

:::
the

::::
total

:::::::
column

::::
over

:::::
those

:::::::
regions.

::::::::
However,

:::
the

:::::::
opposite

::
is

:::
true

::::
over

::::::
several

:::::
other ocean regions, there is no clear distinction between transport-driven uncertainties from in situ15

and assimilations. This is likely due to two factors. First, convective transport is weaker over oceans, and hence the uncertainty

in modeling them is less important for estimating fluxes. Second, oceanic fluxes have little or no diurnal cycle, so there is almost

no covariation between the flux and PBL height. Hence, uncertainty in modeling the PBL does not have a large impact on flux

estimates .
::::
such

::
as

:::
the

::::::::
temperate

:::::
North

:::::::
Atlantic

::::
and

:::::
South

::::::
Pacific.

:::::
Thus,

:::
the

:::::::::
hypothesis

::
of

:::::::::::::::::::::::::::::
Rayner and O’Brien (2001) cannot

::
be

::::
said

::
to

::::
hold

::::
over

:::::
most

:::::
ocean

:::::::
regions.

::::::
Finally,

::::
one

:::::::
striking

:::::::
features

::
of

:::::
ocean

::::::
fluxes

::
in

:::::
figure

::
4

:
is
::::::

worth
:::::::
pointing

:::
out

:::::
here.20

:::
The

::::::::::::::
transport-derived

::::::::::
uncertainty

:::
for

::::::::
IS-LNLG

:::::::::
estimates

:
is
:::::

often
:::
the

::::::
largest

::::::
among

:::
all

::::
data

:::::::
streams,

::::::
which

::::
leads

:::
to

:
a
:::::
large

:::::::::
uncertainty

::
in

:::
the

::::::
global

:::::::::
land/ocean

::::::::::
partitioning

::::
using

:::
the

:::::::::
IS-LNLG

:::::::
network.

::::
This

::::::::
suggests

:::
that

:::::::::
increasing

:::
the

::::
PBL

::::::::
sampling

::::
only

::::
over

::::
land

::
–
:::::
where

::::
the

::::::::
transport

::::::
models

::::::::
disagree

::::
more

::
–
::
is
::::::

likely
::
to

::::::
worsen

::::::
ocean

::::
flux

::::::::
estimates

::
in

::::
the

:::::::
presence

:::
of

::::::::
imperfect

:::::::
transport

:::::::
models.

:

The global uptake, and its partitioning between land and ocean, or Northern and Southern Hemispheres, are less uncertain for25

XCO2 assimilations than for in situ CO2 assimilations . Further zonal partitioning into
::
IS

:::
and

:::::
MBL.

::::::::
Looking

::
at

::
the

:::::::::
IS-LNLG

:::
and

::::::
IS-OG

:::::::::
inversions,

:::
we

:::::::
conclude

::::
that

:::
the

:::::::::::
improvement

::
in

:::
the

:::::
global

::::::
budget

:::
and

:::
its

:::::::::
north-south

::::::::::
partitioning

::
is

:::::
likely

:::
due

::
to
::
a

::::
more

:::::::
uniform

::::::
spatial

::::::::
coverage,

:::::
while

:::
the

:::::::::::
improvement

::
in

:::::::::
land-ocean

::::::::::
partitioning

::
is

:::::
likely

:::
due

::
to

:::
the

::::
total

::::::
column

::::::
nature

::
of

:::
the

::::::
OCO-2

:::::::::::
pseudo-data.

::::::::::
Partitioning

:::
the

:::::
budget

:::
in

::::
zonal

::::::
bands,

:::
i.e,

:
northern extra-tropics, tropics and southern extra-tropicsdoes

not show the same benefit from assimilations
:
,
:::
has

::::::::
(roughly)

:::
the

:::::
same

:::::::::
uncertainty

::::::
across

:::
all

::::::::
inversions. This is likely because30

of the predominantly
:::
due

::
to

:::
the

:::
fast

:
zonal flow in the free troposphere. Given surface fluxes, the variations in the mole fraction

at a PBL site will depend on the modeled vertical transport and PBL depth, leading to a large spread in local flux estimates

when PBL values are assimilated. However, after leaving the PBL, the flux signal is rapidly transported zonally, and eventually

shows up as a background signal at all the sites in that zonal band. This likely makes the aggregate flux estimate for that zonal

bandless sensitive to differences in vertical transport across models, which is a major axis of transport model uncertainty,
::::::
which35
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::::::
ensures

::::
that

::::::
surface

::::
flux

::::::
signals

::::::
missed

::
by

::::
one

:::
set

::
of

::::::::::::
measurements

:
–
:::::::

perhaps
::::
due

::
to

::::::::
imperfect

::::::::
transport

:
–
:::
are

::::
seen

:::
by

:::::
other

:::::::::::
measurements

::
in
:::
the

:::::
same

:::::
zonal

::::
band.

Traditionally, inversions of surface CO2 data have had larger uncertainty in tropical flux estimates compared to Northern

Temperate regions, stemming from the sparse observational coverage in the tropics (Peylin et al., 2013). The larger interannual

variability of the tropical flux, seen by several inversion studies including Baker et al. (2006) and Peylin et al. (2013), is also5

ascribed partly to the higher uncertainty in tropical flux estimates. In contrast, the uncertainty in flux estimates stemming from

uncertainties in modeled transport do not have the same correlation with observational coverage. For inversions with in situ

data, the relatively well-covered regions of North American temperate and Europe show the same transport-derived uncertainty

as the poorly covered regions of Temperate South America and Tropical Asia (figure 4). In general, we do not find that the

uncertainty
::::::::::
uncertainties in flux estimates due to transport model errors are lower over the northern temperate latitudes than10

over less measured tropical and southern temperate areas.

One final noteworthy aspect of the flux estimates of figure 4 is that for some regions (such as temperate South America, At-

lantic Tropics, Southern Ocean, South Indian temperate, tropical oceans, Indian ocean, the southern extra-tropics and southern

extra-tropical land), the range of in situ flux estimates does not overlap with the range of LN, LG, or LNLG (and sometimes

OG) flux estimates. This consistent difference between the in situ and assimilations does not arise from any bias between the15

two data sources. Rather, it arises from spatiotemporal differences in sampling the same field with a non-ideal transport model.

Therefore, in real data inversions, where the transport model is imperfect, it is entirely possible to estimate different fluxes from

in situ
:::
For

:::::
some

:::::
other

::::::
regions

::::
such

::
as

:::
the

::::::
Indian

::::::
Ocean

:::
and

:::
the

::::::::
Southern

::::::
Ocean,

::::
there

::
is
:::
no

::::::
overlap

:::::::
between

:::
the

:::::::
OCO-2

::::
land

::::
(LN,

::::
LG,

::::::
LNLG)

::::
and

:::::
ocean

:::::
(OG)

::::::::
estimates.

::::::
Since

::::
there

:::
are

:::
no

:::::
biases

::::::::
between

:::
the

:::
IS,

::::::
OCO-2

::::
land

::::
and

:::::
ocean

:::::::::::
pseudo-data,

::::
these

::::
flux

:::::::::
differences

:::::::
suggest

::::
that

::::::::::::
spatiotemporal

::::::::
coverage

::::::::::
differences

:::::::
between

::::::::
different

::::::::::
observation

::::::::
networks and OCO-220

data, even when both types of data are completely unbiased
:::::::
sampling

::::::
modes

:::
can

::::
lead

::
to
::::

flux
::::::::::
differences

:::
that

:::
are

::::::
larger

::::
than

::::::::::
uncertainties

::::
due

::
to

:::::::
transport.

4.4 Monthly fluxes

Figures 5 and 6 show the monthly flux estimates for 2015 from TRANSCOM-like land and ocean regions. As before, only

the spread across the pseudo-data generated by the five transport models is shown for visual clarity. The reduced sensitivity of25

::::::
OCO-2

::::::::::
pseudo-data

:
inversions to transport model uncertainty is obvious for most months over both land and ocean regions.

::
As

::::::
before,

::::
this

:::::::
reduced

:::::::::
sensitivity

::
is

::::
from

::
a

::::::::::
combination

::
of

::::
two

::::::
factors,

:::
(a)

::::::::
spatially

:::::::
uniform

:::::::
coverage

:::
of

::::::
OCO-2

:::::::::
compared

::
to

:::
the

::
in

:::
situ

::::::::
network,

:::
and

:::
(b)

:::
the

::::::::::
assimilation

::
of

:::::::
column

::::::
average

:
XCO2 ::

as
:::::::
opposed

::
to

::::
PBL

:
CO2:.::::

The
::::::
relative

::::::::::
importance

::
of

::
the

::::
two

::::::
factors

::
–

::
as

::::::
gauged

:::
by

:::
the

::::::
relative

:::::
sizes

::
of

:::
the

::::
bars

:::::::
between

:::
the

:::::::
OCO-2

::::
(LN,

::::
LG,

:::::::
LNLG,

::::
OG),

::::
real

::
in

::::
situ

:::
(IS)

::::
and

::::::::::
hypothetical

::
in

:::
situ

::::::::::
(IS-LNLG,

::::::
IS-OG)

::::
data

:::::::
streams

::
in

::::::
figures

:
5
::::
and

:
6
::
–

:::::
varies

::
by

::::::
region

:::
and

:::::::
season.

:::
For

::::::::
example,

::
in

:::::::
October30

::
in

::::::::::
sub-Saharan

::::::
Africa,

:::::
going

:::::
from

:::
the

:::::
sparse

:::
IS

:::::::
network

::
to

:::
the

::::
more

:::::::
uniform

:::::::::
IS-LNLG

:::::::
network

:::::::
reduces

:::
the

:::
flux

::::::::::
uncertainty

::::::::::
significantly,

::::
but

:::::
going

::::
from

:::::
PBL

::::::::::::
measurements

::::::::::
(IS-LNLG)

::
to

:::
the

:::::
total

:::::::
column

:::::::
(LNLG)

::::
does

::::
not

::::::
reduce

:::
the

::::::::::
uncertainty

::::::
further.

::
To

::::::::
contrast,

::::
over

:::
the

::::
same

::::::
region

::
in

:::::::::
December,

:::
the

::::::::
increased

::::
PBL

::::::::
sampling

:::
of

::
the

:::::::::
IS-LNLG

:::::::
network

::::::
inflates

:::
the

::::
flux

:::::::::
uncertainty

::::::::
compared

:::
to

:::
the

::
IS

:::::::
network,

:::::
while

::::::
going

::::
from

::::
PBL

::::::::
sampling

::::::::::
(IS-LNLG)

::
to

:::
the

::::
total

::::::
column

::::::::
(LNLG)

:::::
brings

::::
that
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:::::::::
uncertainty

:::::
down

:::::::::::
significantly.

::
In

:::::::
general,

::::
over

::::
most

::::
land

:::::::
regions

:::
and

::::
most

:::::::
months,

:::::
given

::::::::
OCO-2’s

::::::::::::
spatiotemporal

:::::::::
sampling,

::::::::::
assimilating

::::
total

:::::::
column CO2 :::::::

(LNLG)
::::::
results

::
in

:::::
equal

:::
or

:::::
lower

:::::::::::::
transport-driven

::::::::::
uncertainty

::::
than

:::::::::::
assimilating

::::
PBL

:
CO2

::::::::::
(IS-LNLG).

:::
The

:::::
same

::::::::::
relationship

:::::
holds

:::::::
between

::::::
IS-OG

::::
and

:::
OG

:::::::::
inversions

::::
over

:::::
ocean

:::::::
regions

::::
with

:
a
::::
few

:::::::::
exceptions

:::::
(e.g.,

:::::
South

:::::
Indian

:::::::::
temperate

::
in

::::
June

:::
and

:::::
July).

::::::::
However,

:::
the

::::::::::
relationship

:::::::
between

:::
the

::::
real

:::
(IS)

:::
and

:::::::::::
hypothetical

:::::::::
(IS-LNLG,

:::::::
IS-OG)

:::::::
networks

::
is
::::
less

:::::::
general,

:::
and

::::::
reflects

:::
the

::::::
impact

::
of

::::::::
different

::::::::
sampling.5

The transport-derived uncertainty in monthly fluxes has clear seasonality over most land and ocean regions. In general, over

temperate and boreal land regions, the uncertainty is higher in the summer than in the winter, likely due to stronger convective

transport and higher vertical
::::::::
horizontal

:
wind shear in the summer months. Temperate oceans sometimes display the opposite

behavior (e.g., temperate North Atlantic and North Pacific), whereby transport-driven uncertainty is lower in the summer and

higher in the winter. This is likely because advective and not convective transport uncertainty is the dominant uncertainty over10

oceans. Over the tropics the distinction is less clear cut, with no clear commonality between Tropical Asia and Tropical South

America. Over the Tropical Indian ocean, the uncertainty is lowest in the last third of the year, whereas in the Tropical Pacific,

the uncertainty is lowest in the middle of the year.

Over certain ocean regions (e.g., Atlantic Tropics, East Pacific Tropics, South Indian Temperate, Southern Ocean), the range

of monthly fluxes obtained from synthetic XCO2 over land (LN, LG and LNLG) often do
::::
does not overlap at all with the15

range obtained from either the ocean data (OG) or in situ data (IS). In most of these non-overlapping cases, the range of OG

inversions is closer to
:::::::::
Sometimes,

:::
the

:::::::
OCO-2

::::
land

::::::::::
pseudo-data

:::::::::
inversions

::::::
overlap

::::
with

:::
the

::::::
ocean

::::::::::
pseudo-data

:::::::::
inversions

:::
but

:::
not

::::
with the true fluxes (white circles)than the land inversions

:::
e.g.,

:::::::::
temperate

:::::
North

:::::::
Atlantic

:::
and

::::::
North

::::::
Pacific). Since there

are no coherent biases between land and ocean soundings
:
in
:::::::

OCO-2
::::::::::
pseudo-data

:
in these synthetic data experiments, these

coherent
::
the

:
differences between land and ocean XCO2 inversionscan only stem from ,

:::
or

:::::::
between

:::::
either

:::
set

::::
and

:::
the

::::
true20

:::::
fluxes,

::::
can

::::
only

::
be

:::
due

::
to
:
differences in sampling the same CO2 field with two different sets of sampling times and locations.

:::::
These

::::::::
sampling

:::::::::
differences

:::
can

::::
lead

::
to

::::
flux

:::::::::
differences

::::
that

::
are

::::::
larger

::::
than

::
the

::::::::::::::
transport-driven

:::::::::
uncertainty

::
in

::::::
fluxes.

:
As noted

earlier, this implies that in real data inversions biases can appear between land and ocean XCO2 inversions,
::
or

:::::::
between

:::::::
OCO-2

:::
and

::
in

:::
situ

:::::::::
inversions,

:
purely due to an imperfect transport model sampling the same field according to two different sampling

patterns. Therefore, inferring ocean fluxes purely from land retrievals may yield biased flux estimates in spite of no or small25

retrieval biases
:::
This

::::
can,

:::
for

::::::::
example,

:::
lead

::
to

::::::
biased

:::
flux

::::::::
estimates

:::::
when

:::::
ocean

:::::
fluxes

:::
are

:::::::
inferred

:::::
using

::::::
OCO-2

::::
land

:::::::::
soundings,

::::
even

:::::
when

::
the

::::::::
retrievals

:::
are

::::::::
unbiased.

5 Conclusions

In this work, we have used five different transport models in an OSSE to estimate the uncertainty in inversion-derived flux

estimates due to the uncertainty of the modeled transport in flux inversions. The five transport models were driven by four30

different state-of-the-art reanalyzed meteorological datasets that are commonly used in the flux inversion community, and

therefore could be expected to span the spectrum of transport model behavior. In the OSSE, we created synthetic in situ

and column CO2 measurements by running the five transport models forward with the same boundary conditions and then
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assimilated those measurements in a single flux inversion system. The spread in the flux estimates was therefore purely due to

the spread among the five transport models. We tested this setup for different sampling protocols: (a) an in situ set corresponding

to NOAA’s present-day cooperative air sampling network, (b) an in situ set of mostly background sites corresponding to

the network used by Baker et al. (2006) for the TRANSCOM 3 model intercomparison experiment, and (c) a set of XCO2

measurements corresponding to OCO-2 land nadir, land glint and ocean glint soundings, convolved with corresponding OCO-5

2 averaging kernels and priors
:
,
:::
and

:::
(d)

::
a
:::
set

::
of

::
in
::::

situ
:::::::
samples

::::::
within

:::
the

:::::
PBL

::
at

:::
the

:::::
times

::::
and

::::::::
locations

::
of

:::::::
OCO-2

::::
land

:::
and

:::::
ocean

:::::::::
soundings. This allowed us to test the interaction of imperfect transportand observational coverage,

::::::::::::
observational

::::::::
coverage,

:::
and

:::
the

::::::::::
assimilation

::
of

:::::::
column

:::::
versus

::::
PBL

:::::
mole

:::::::
fractions. Our use of the OCO-2 data – both the temporal averaging

and the errors on those averages – followed the current protocol used by OCO-2 flux modelers, and therefore our results should

be directly usable by the modelers to draw conclusions about their real data inversions. There are four important take home10

messages from this work that we would like to convey.

5.1 MBL vs IS

A comparison of the spread of flux estimates from the MBL and IS inversions suggests that the added coverage from mostly

continental sites on top of the mostly background network considered by Baker et al. (2006) can reduce transport-induced

uncertainty over land regions, despite the uncertainty in transport over continents.
::::
This

:
is
:::::
likely

::::
due

::
to

:::
the

:::::
added

:::::::::::
observations15

::::::::
averaging

:::
out

:::::
some

::
of

::::
the

:::::::
transport

::::::::::
variability. The added coverage has minimal or negative benefit in reducing transport-

induced uncertainty of ocean flux estimates, and estimates over zonal bands, except for the Pacific ocean and its temperate and

tropical subdivisions.

5.2 Geographical distribution of transport uncertainty

For inversions of in situ data, flux estimates over the tropics have been historically less certain than estimates over the northern20

temperate regions, owing to lower observational coverage over the former. In previous work, the uncertainty of fluxes purely

due to transport was also found to be slightly higher over tropical regions than over extra-tropical regions (Baker et al., 2006).

However, in this work, we see that that demarcation does not hold for flux uncertainty stemming from transport model uncer-

tainty. For example, the spread among IS inversions over Temperate North America and
:
or

:
Europe in figure 4 are

:
is as large as

their spreads
:::::
spread

:
over Tropical Asia and

::
or

:
Temperate South America

::::::::::
respectively, despite the first two being much better25

covered with CO2 samples.

5.3 Column vs PBL CO2

Over most TRANSCOM-scale and continental scale land regions, the spread in inversions is smaller than the spread in in situ

:::::::::::::::::::::::::
Rayner and O’Brien (2001) had

:::::::::::
hypothesized

::::
that

::::::::
inversions

::
of
:::::::
column

::::::
average

:
CO2 ::::

may
::
be

:::
less

::::::::
sensitive

::
to

::::::
vertical

::::::::
transport

:::::
errors

::::
than

::::
PBL CO2:,::::

since
::::::::::::
redistribution

::
of CO2 :

in
:::
the

:::::::
vertical

::::
does

:::
not

::::::
change

:::
the

:::::::
column

:::::::
average.

::::::::
However,

:::
the

::::::::
variation30

::
of

::::::
column

:
CO2 :::

due
::
to

:::::
fluxes

::
is

::::
also

:::::
much

::::::
smaller

::::
than

::
in

:::
the

:::::
PBL.

:::
The

::::::::
transport

:::::
model

:::::::::
sensitivity

::
of

:::::::
column CO2 inversions
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. This is consistent with the hypothesis that flux estimates from mainly PBL measurements of
:::::::
depends

::
on

:::
the

:::::::
balance

:::::::
between

:::
this

::::::
smaller

::::
flux

::::::
signal

:::
and

:::::::
smaller

:::::::
transport

:::::
error.

::
In
::::

our
:::::::::::
experiments,

:::
we

:::
see

:::
that

::::
over

:::::::::::::::::
TRANSCOM-scale

:::
and

::::::
larger

::::
land

::::::
regions

::::::
(except

:::::::
tropical

:::::
South

:::::::::
America),

::::::::
inversions

:::::
using

:::::::
column CO2 over land are more

::::
data

::::
over

::::
land

:::::::
(LNLG)

:::
are

::::::
indeed

:::
less

:
sensitive to transport errors and uncertainty than estimates based on column average

::::
than

:::::::::
inversions

:::::
using

::::
PBL

:
CO2 ,

the latter being somewhat insensitive to errors in modeled vertical transport . This benefit of total column assimilation is less5

apparent for ocean fluxes, since vertical transport is weaker over oceans. For zonal bands, the benefits are mixed, with column

:
at
:::
the

:::::
same

::::::::
locations

:::
and

:::::
times

::::::::::
(IS-LNLG).

:::::
Over

::::::::::::::::
TRANSCOM-scale

:::::
ocean

:::::::
regions,

:::::::
however,

:::
the

::::::
picture

::
is
:::::
more

::::::::::
ambiguous,

::
as

::::::
several

::::::
regions

:::::
(e.g.,

:::::::
Atlantic

::::::
Ocean,

:::::
South

::::::
Pacific

:::::::::
temperate,

:::::
North

:::::::
Atlantic

:::::::::
temperate,

:::::::
Southern

:::::::
Ocean)

::::::
display

:
a
:::::::
smaller

:::::::::
uncertainty

:::::
when

::::::::::
assimilating

::::
PBL

:
CO2 providing a lower uncertainty for tropical land and ocean flux estimates, and for the

north-south partitioning of the global budget. The global budget itself is constrained better by the OCO-2 pseudo-obs, likely10

because of the short time period of
:::::::
(IS-OG)

::::
than

:::::::
column CO2 :::::

(OG).
::::
This

::
is

:::::
likely

:::::::
because

:::
the

::::::::::
uncertainty

:::
in

:::::::::
convective

:::::::
transport

::::
over

:::::::
oceans

::
is

::::::
smaller

:::::
than

::
on

:::::
land.

::::
The

::::::
global

::::::
budget

::::
and

:::
the

::::::::::
partitioning

::::::
across

:::::
zonal

:::::
bands

::::
are

::::::::::
constrained

::::::
equally

::::
well

::
by

:::::::
column

:::
and

::::
PBL

:
CO2 :::::::

samples,
::::::::
provided

::::
they

::::
have

:::
the

::::
same

:::::::::::::
spatiotemporal

::::::::
coverage.

:::
The

::::::::::
partitioning

::::::
across

:::::::::
land/ocean

:::::::::
boundaries

::
is

:::::::::
noticeably

::::
more

:::::::::
uncertain

::::
when

:::::
using

:::::
PBL

:::::::
samples

::::
over

::::
land

::::
than

::::::
column

::::::::
samples,

:::::
likely

:::::::
because

::::::
vertical

::::::::
transport

:::::::::
differences

::::
near

:::
the

::::::
surface

:::
are

:::::
larger

::::
over

::::
land

::::
than

::::::
oceans.

:
15

:
It
::::::
should

:::
be

:::::
noted

::::
here

::::
that

:::
the

::::
low

:::::::::
sensitivity

:::
of

::::::
column

:::::::::::::
measurements

::
to

::::
PBL

:
CO2 ::::::::

variations
::
is

:::::
often

:::::::::
considered

::
a

::::::::
weakness,

:::::
since

:::::::
surface

:::
flux

:::::::
signals

:::
are

:::
the

::::::
largest

::
in
::::

the
:::::
PBL.

::::::
Efforts

:::
are

::::::::
currently

:::::::::
underway

::
to

::::::::
construct

:::::
active

:::::::
remote

::::::
sensing

::::::::::
instruments

::::
that

:::
are

:::::::::::
preferentially

::::::::
sensitive

::
to
::::

the
:::::
lower

::::::::::
troposphere

:::::::::::::::::
(Wang et al., 2014) .

::::
Our

::::::
OSSEs

:::::::
suggest

::::
that

::::
were

::::
such

::
an

::::::::::
instrument

::
to

::
be

::::::::
deployed,

:
the inversion

:::::::::
uncertainty

::
of

:::::::
surface

:::
flux

::::::::
estimates

:::::::
derived

::::
from

:::
that

::::::::::
instrument

:::::
might

::::
very

::::
well

::
be

::::::
larger

::::
than

::::
from

:::
an

::::::::::
OCO-2-like

:::::::
column CO2 :::::::::

instrument
:::
due

::
to
::::::::

transport
::::::
model

::::::::::
uncertainty

::::
near

:::
the

:::::::
surface.20

::
In

:::
the

::::
long

:::::
term,

:::::::::
significant

:::::::::::
improvement

::
in

::::::::
transport

::::::::
modeling

::::
will

::
be

::::::
needed

:::
to

::::::
benefit

::::
from

::
a
::::::
remote

:::::::
sensing

:::::::::
instrument

:::::::::::
preferentially

:::::::
sensitive

::
to

:::::::::::
near-surface CO2.

5.4 Impact of coverage

In our synthetic data inversions, the difference between the fluxes inferred from the same forward model run but different

sampling strategies is purely due to the interaction between non-ideal transport and data coverage, and not because of biases25

between the different samples. Despite this lack of bias, there are several regions where the entire spread of flux estimates

across the five forward models has no overlap between certain types of data
:
,
::
or

::::
with

:::
the

:::::
truth. For example, LN, LG and

LNLG annual flux estimates from the Indian ocean have no overlap with either IS or OG estimates
:::::::
estimate

::
or

:::
the

::::
truth, while

XCO2 estimates of temperate South American fluxes are completely detached from all IS estimates. This effect is even more

pronounced for monthly flux estimates. This suggests that in the presence of imperfect transport and no measurement bias,30

different coverage and sampling can generate biases in flux estimates that are larger than their uncertainty due to transport. We

should therefore avoid trying to infer
::::::
infering, say, oceanic fluxes by using only OCO-2 land soundings.
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6 Applicability of our work and future steps

While we have not used any real in situ or OCO-2 data in this work, the transport-driven uncertainty estimates we have

presented can be used by other inverse modeling studies to test the robustness of their conclusions
:
,
:::::
when

:::::
using

:
a
:::::::

similar

:::::::
network

::
of

::
in

::::
situ

:::
and

:::::::
column CO2 :::::::::::

measurements. In future inversion intercomparisons along the lines of Houweling et al.

(2015) and Peylin et al. (2013), which aggregate multiple model results, our uncertainty estimates can be used to infer whether5

the inter-model spread is driven primarily by transport model spread or by non-transport factors such as data selection and

inversion methodology. We also plan to extend our work to multiple years to answer the question of whether the interannual

variability (IAV) of flux estimates are more robust to differences in modeled transport than individual years. Baker et al. (2006)

considered the same question for in situ data, but did not have IAV in their meteorology. By extending our study to multiple

years in the future, we will be able to separate out the impact of just transport model differences on the IAV for different10

sampling networks and observing platforms.

Code and data availability. All inversions for this work were performed in TM5 4DVAR, available publicly at https://sourceforge.net/

projects/tm5. The OCO-2 soundings and their quality flags used to sample the models were obtained from https://disc.gsfc.nasa.gov/uui/

datasets/OCO-2_L2_Standard_V7r/summary. The in situ sampling locations and times for sampling the models were obtained from NOAA’s

ObsPack portal at https://www.esrl.noaa.gov/gmd/ccgg/obspack. The times and locations of JR-STATION CO2 samples were obtained from15

the National Institute for Environmental Studies at http://www.cger.nies.go.jp/en/climate/pj1/tower/.

Appendix A: Adjusting PCTM mole fractions at South Pole

During this analysis, we discovered that the PCTM CO2 field produced by our version of PCTM had a problem at the South

Pole (SPO). There were low values of modeled CO2 mole fraction high over SPO, which were propagating down over the

sampling site and out over the Ross ice shelf. This caused unrealistically low modeled values and unrealistically high variations20

of CO2 in PCTM at the SPO sampling site. Lacking a fix for this transport model artifact, we moved the SPO sampling site

2◦ north along the Greenwich meridian, which greatly reduced the problem. The time series of modeled CO2 from all the

models at the NOAA flask sampling times, along with the fixed sampling in PCTM, is shown in figure A1. We used this

modified sampling of PCTM at SPO in this work. Until this bug is fixed, real data inversions with PCTM will use this or a

similar modified sampling scheme at SPO as well.25

Appendix B: Maps of transport differences

Figure 3 showed the temporal evolution of the zonal average difference between each transport model and the model median.

In figures B1 and B2, we show how that difference is distributed geographically in summer, winter and the annual average. The

method of constructing these is exactly the same as for figure 3. All modeled CO2 fields were mapped to a global 1◦×1◦ grid
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Figure A1. The modeled time series of the CO2 mole fraction at NOAA flask sampling times at the South Pole station from all the models.

PCTM (“PCTM (flawed)” here) is seen to have a problem, giving unrealistically low CO2 values with unrealistically high variability. Moving

the sampling site north by 2◦ along the Greenwich meridian, just for PCTM, greatly alleviates the problem (“PCTM (adjusted)”).

while conserving mass. Since the models had varying resolutions and grid registrations, this resulted in unavoidable checkered

patterns in the differences in figures B1 and B2. That, however, did not impact the large scale model to model differences

shown. The color scale of figure B2 covers half the range of figure B1, since variations in the PBL are much larger than

variations in the column.

Appendix C:
::::::
Spread

::
in

:::::::
annual

:::
flux

:::::::::
estimates

::
as

:
a
::::::::
function

::
of

:::
the

:::::::::::
pseudo-data

:::::::
stream5

:::::
Figure

::
4

:::::::
displays

::
the

::::::
spread

::
in

::::::
annual

:::
flux

::::::::
estimates

::::
over

::::::
various

:::::::::::
geographical

::::::
regions

::::
from

::::::::::
assimilating

:::::::::::
pseudo-data

::::::::
generated

::
by

:::
the

:::
five

:::::::
forward

:::::::
models.

:::::
Table

::
C1

::::::::
tabulates

::::
these

:::::::
spreads

:::::::::
(minimum

::
to

:::::::::
maximum)

:::
for

::::
each

:::::
region

::::
and

:::::
choice

::
of

::::::::::
assimilated

::::::::::
pseudo-data

::::::
stream.

Appendix D: Annual flux estimates differentiated by forward model

In figure 4, the range of flux estimates for each data stream is shown, without distinguishing the flux estimates stemming from10

different forward models. Here, for the sake of completeness, we give the estimates from pseudo-data generated by each of the

five models. In the plots below, different colored bars correspond to different synthetic data streams, while different marker
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Figure B1. The difference between each model (ACTM, LMDZ, GEOS Chem, PCTM and TM5) and the cross-model median at 1:30 PM

local time in the lowest 150 hPa, which is an approximation for the planetary boundary layer (PBL). The left column shows the difference

averaged over all of 2015, the middle column is averaged over northern hemisphere summer months (Jun–Aug 2015), and the right column

is averaged over northern hemisphere winter months (Dec 2015 to Feb 2016). Differences are shown in ppm CO2.
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Figure B2. Same as figure B1, except averaged over the total column. The dynamic range here is half that of figure B1, since transport

differences in the total column signal are smaller than in the PBL signal.
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Table C1.
:::
The

:::::
spread

::
in

:::::
annual

::::
flux

:::::::
estimates

:::
for

::::
2015

:::::
across

:::
the

:::
five

::::::
forward

::::::
models.

:::::
These

:::
are

:::
the

::::::
vertical

:::::
extents

::
of
:::

the
::::::
colored

::::
bars

:
in
:::::

figure
::
4.

:::
The

::::
true

:::
and

::::
prior

::::
fluxes

::::::
(white

::::
circle

:::
and

::::
grey

:::::::
diamond

::
in

::::
figure

::
4)
:::
are

:::
also

:::::::
included

::
as

:::
the

:::
last

:::
two

:::::::
columns

::
of

::
the

:::::
table.

:::
All

::::::
numbers

:::
are

::
in PgC/year.

:::::
Region

: ::::
MBL

: ::
IS

::
LN

::
LG

:::::
LNLG

:::
OG

: :::::::
IS-LNLG

: :::::
IS-OG

:::
True

::::
Prior

::::
North

:::::::
America

: :::
1.86

:::
0.83

: :::
0.34

: :::
0.24

: :::
0.23

: :::
0.42

: :::
1.31

: :::
1.23

: ::::
0.22

::::
-0.55

::::
South

:::::::
America

: :::
2.76

:::
2.01

: :::
0.65

: :::
0.50

: :::
0.48

: :::
0.47

: :::
1.24

: :::
1.57

: ::::
0.69

::::
0.15

:::::
Africa

:::
0.93

:::
1.11

: :::
0.45

: :::
0.42

: :::
0.41

: :::
0.57

: :::
1.47

: :::
1.28

: ::::
-1.48

::::
-0.35

::::
Asia

:::
1.69

:::
1.28

: :::
0.96

: :::
0.97

: :::
1.09

: :::
0.75

: :::
2.71

: :::
1.65

: ::::
-1.06

::::
-1.40

::::
North

::::::::
American

:::::
boreal

:::
0.90

:::
0.41

: :::
0.24

: :::
0.36

: :::
0.31

: :::
0.45

: :::
0.24

: :::
0.47

: ::::
-1.05

::::
-0.19

::::
North

::::::::
American

::::::::
temperate

:::
1.67

:::
1.03

: :::
0.16

: :::
0.48

: :::
0.18

: :::
0.40

: :::
1.26

: :::
0.82

: ::::
1.15

::::
-0.37

::::
South

::::::::
American

::::::
tropical

:::
2.32

:::
1.61

: :::
0.72

: :::
0.55

: :::
0.61

: :::
0.51

: :::
0.36

: :::
1.10

: ::::
-0.25

::::
0.35

::::
South

::::::::
American

::::::::
temperate

:::
1.02

:::
0.94

: :::
0.44

: :::
0.35

: :::
0.42

: :::
0.48

: :::
1.18

: :::
0.69

: ::::
1.07

::::
-0.17

::::::
Saharan

:::::
Africa

: :::
0.55

:::
0.60

: :::
0.09

: :::
0.09

: :::
0.10

: :::
0.13

: :::
0.43

: :::
0.33

: ::::
-0.21

::::
-0.07

:::::::::
Sub-Saharan

::::::
Africa

:::
0.90

:::
0.95

: :::
0.53

: :::
0.48

: :::
0.51
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Figure D1. Annual flux estimates from TRANSCOM-like regions (top), zonal bands (middle) and large land and ocean regions (bottom).

The different colors correspond to different synthetic data streams assimilated, IS = in situ, LN = land nadir, LG = land glint, OG = ocean

glint, LNLG = LN + LG, LNi/LGi/OGi = IS + LN/LG/OG.
::::
The

:::::::
IS-LNLG

:::
and

:::::
IS-OG

:::
are

::::::::::
hypothetical

:::
PBL

:::::::
networks

::::::::
described

::
in

:
§
::::
2.3.3.

For each color, the different symbols denote the forward model used to produce the pseudo-data that was assimilated by TM5 4DVAR.

shapes (such as square for TM5 and upright triangle for ACTM) correspond to the different transport models used to generate

the synthetic data.

In figure D1, the TM5 symbols represent a “perfect transport” case, meaning the synthetic observations were generated

and assimilated with the same transport model. Therefore, the difference between TM5 and Truth in the figure represents the

balance between Sa and Sε in TM5 4DVAR, and a smaller difference from a different data stream (such as LMDZ with IS data5

over tropical land) is purely due to chance. It should also be noted that our goal in presenting the different models together in

figure D1 is not to evaluate model performance by their proximity to either the Truth or perfect transport (TM5) results, but to
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evaluate the spread across different models used to generate the synthetic data, and how that spread varies with sampling and

coverage.
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