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Abstract. We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US in

August-September 2013 to estimate methane emissions in that region through an inverse analysis with up to 0.25◦× 0.3125◦

(25×25 km2) resolution and with full error characterization. The Southeast US is a major source region for methane including

large contributions from oil/gas production and wetlands. Our inversion uses state-of-the-art emission inventories as prior

estimates, including a gridded version of the anthropogenic EPA Greenhouse Gas Inventory and the mean of the WetCHARTs5

ensemble for wetlands. Inversion results are independently verified by comparison with surface (NOAA/ESRL) and column

(TCCON) methane observations. Our posterior estimates for the Southeast US are 12.8±0.9 Tg a−1 for anthropogenic sources

(no significant change from the gridded EPA inventory) and 9.4±0.8 Tg a−1 for wetlands (27% decrease from the mean in the

WetCHARTs ensemble). The largest source of error in the WetCHARTs wetlands ensemble is the landcover map specification

of wetland areal extent. Our results support the accuracy of the EPA anthropogenic inventory on a regional scale but there are10

significant local discrepancies for oil/gas production fields suggesting that emission factors are more variable than assumed in

the EPA inventory.
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1 Introduction

Methane is an important greenhouse gas (Myhre et al., 2013). Individual countries must report their national emissions to the

United Nations Framework Convention on Climate Change (UNFCCC; United Nation, 1992). Observations of atmospheric

methane reviewed by Brandt et al. (2014) have implied that the US national inventory reported by the Environmental Protection

Agency (EPA) may be greatly underestimated. Here we use aircraft observations from the NASA SEAC4RS aircraft campaign5

over the Southeast US (Toon et al., 2016), together with a newly gridded version of the EPA inventory (Maasakkers et al.,

2016), in a fine-resolution inversion with detailed error characterization to better quantify methane emissions over this major

source region.

The EPA (2016) reports a national anthropogenic emission total of 29.2 Tg CH4 a−1 for 2014, with no significant trend over

the past decade and less than ±3% interannual variability. Major contributors are livestock (32%) , the oil/gas industry (32%),10

waste (22%), and coal mining (8%). The EPA (2016) inventory is consistent with Lyon et al. (2015) for oil/gas systems and

Wolf et al. (2017) for livestock, and 8% higher than the previous versions (EPA, 2013, 2014), largely due to updated oil/gas

emissions. There is also a highly uncertain natural source from wetlands, estimated at 4.5-14 Tg a−1 for the contiguous US in

the WETCHIMP compilation of inventories (Melton et al., 2013). Inverse analyses of atmospheric methane observations have

suggested that the EPA bottom-up inventory (EPA, 2013, 2014) is too low by about 30% (Miller et al., 2013; Turner et al., 2015;15

Alexe et al., 2015). However, Turner et al. (2015) and Alexe et al. (2015) relied on prior estimates from the global EDGAR v4.2

inventory (European Commission, 2011) that have large errors in source patterns particularly for oil/gas systems (Maasakkers

et al., 2016; Sheng et al., 2017). Errors in source patterns used as prior estimates can greatly bias inversion results (Jacob et al.,

2016), though this depends on the constraint from observations and on the uncertainty assigned to the prior estimates. Miller

et al. (2013) used a geostatistical inversion that did not rely on any prior estimates, but had little constraints in the Southeast20

US.

The SEAC4RS aircraft campaign conducted in August-September 2013 offers an opportunity for better estimating methane

emissions in the Southeast US, a region that accounts for about half of total anthropogenic methane emissions in the US

according to the gridded EPA inventory (Maasakkers et al., 2016) and also has extensive wetlands. The aircraft flights provided

extensive boundary layer measurements of methane across the region. We conduct an inverse analysis of the SEAC4RS data25

with the GEOS-Chem chemical transport model (CTM) at 0.25◦× 0.3125◦ resolution, using state-of-the-art prior estimates

from the gridded EPA inventory of Maasakkers et al. (2016) and the WetCHARTs extended ensemble wetlands inventory of

Bloom et al. (2017). This allows us to evaluate the EPA inventory with better accuracy and resolution than has been done

before, and also to gain better understanding of US wetland emissions.

2 Methods30

We derive an optimized estimate of spatially resolved methane emissions in the Southeast US (domain of Fig. 1) by Bayesian

inverse analysis of atmospheric methane observations from the SEAC4RS aircraft campaign. Let the vector x represent a

gridded ensemble of methane emissions in the region (state vector for the inversion).The inversion minimizes the cost function

2



J(x) by solving∇xJ(x) = 0:
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Here the methane observations are assembled as a vector y, xA is the prior emission estimate, K is the Jacobian matrix

describing the sensitivity of concentrations to emissions, and SA and SO are the prior and observational error covariance

matrices, respectively. The observational error includes contributions from both the instrument error and the model transport5

error.

Analytical solution of∇xJ(x) = 0 yields the optimal estimate x̂, the posterior error covariance matrix Ŝ, and the associated

averaging kernel matrix A (Rodgers, 2000; Brasseur and Jacob, 2017)

x̂= xA +SAKT (KSAKT +SO)−1(y−KxA), (2)

10 Ŝ−1 =K
T
S−1
O K+S−1

A , (3)

A= In− ŜS−1
A . (4)

where In is the identity matrix with n being the dimension of the state vector x. Inversions of atmospheric methane observations

may solve ∇xJ(x) = 0 either analytically, or numerically using an adjoint method (Jacob et al., 2016). Unlike adjoint-based15

inversions, analytical solution provides direct error characterization of the optimal estimate x̂ through its error covariance

matrix Ŝ. The related averaging kernel matrix A describes the sensitivity of the optimal estimate x̂ to the true emissions x. The

trace of A quantifies the Degrees of Freedom For Signal (DOFS), i.e., the number of pieces of information in the observing

system for constraining the methane emissions (DOFS ≤ n).

The Jacobian matrix K for the inversion is constructed with the GEOS-Chem CTM (http://www.geos-chem.org), which20

relates methane emissions to atmospheric concentrations through simulation of atmospheric transport. We use a nested version

of GEOS-Chem as described by Kim et al. (2015) with 0.25◦×0.3125◦ horizontal resolution over the North America window

and adjacent oceans (9.75◦-60◦N, 130◦-60◦W), driven by GEOS-FP assimilated meteorological data from the NASA Global

Modeling and Assimilation Office (GMAO). The same version of the GEOS-Chem has been applied to simulation of other

chemical observations from the SEAC4RS campaign (Kim et al., 2015; Fisher et al., 2016; Marais et al., 2016; Travis et al.,25

2016; Zhu et al., 2016; Yu et al., 2016; Chan Miller et al., 2017). The boundary conditions for the nested-grid simulation are

from a 4◦×5◦ global simulation by Turner et al. (2015) using methane emissions optimized with three years of GOSAT satellite

data. The GOSAT-optimized emissions have been independently evaluated with atmospheric methane observations from the

NOAA surface network (Turner et al., 2015). The GEOS-Chem uses a 3-D archive of monthly average OH concentrations from

Park et al. (2004) to compute the methane sink, with a lifetime of 8.9 years in the troposphere consistent with observational30

constraints (Prather et al., 2012; Turner et al., 2017). The sink is irrelevant for our North American simulation since ventilation

of the domain is much faster(Wecht et al., 2014). Since we treat OH concentrations as decoupled from methane in the inversion,

the relationship between emissions and concentrations is strictly linear, so that K fully describes the GEOS-Chem model for

the purpose of the inversion.
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The prior emission estimates for the inversion are taken from the 0.1◦× 0.1◦ gridded version of the EPA anthropogenic

greenhouse gas emission inventory for 2012 (Maasakkers et al., 2016) and the mean wetland emissions from the 0.5◦× 0.5◦

monthly WetCHARTs extended ensemble for 2013 (Bloom et al., 2017). Figure 1 (top panels) shows the distribution of these

prior methane emissions over the inversion domain for August-September 2013. Emissions total 13.3 Tg a−1 for anthropogenic

sources and 13.0 Tg a−1 for wetlands over these two months (expressed on an annual basis). Anthropogenic emissions in the5

EPA inventory have little seasonal or interannual variability (Turner et al., 2015; Maasakkers et al., 2016), while wetland

emissions have a large seasonal variation.

The SEAC4RS DC-8 aircraft conducted 21 flights over the Southeast between August 6 and September 21, 2013. Methane

was measured by gas chromatography from whole air flask samples and calibrated to the NOAA standard. Figure 2 (left panel)

shows the SEAC4RS flight tracks and the spatial distribution of the methane flask measurements below 2 km altitude. The10

mean observed vertical profile is shown in the right panel of Figure 2, and compared to the GEOS-Chem profile using the prior

emissions. The model is unbiased in the free troposphere above 2 km, implying a successful representation of background

methane by the boundary conditions. Model overestimation in the boundary layer below 2 km suggests that the prior US

emissions are too high. For the inversion, we use the SEAC4RS observations below 2 km altitude averaged over the 0.25◦×
0.3125◦ GEOS-Chem grid for individual flights. This represents 652 individual methane observations.15

We use the residual error method (Heald et al., 2004) to estimate the diagonal elements of the observational error covariance

matrix SO. The method assumes that the mean model bias between the observations and the model is due to error in prior

emissions to be corrected by the inversion. The residuals are the differences between observed and modeled values after

removing the mean model bias. The residual error standard deviation (RSD) is taken to represent the observational error

including contributions from the instrument and the transport model. Figure 3 shows the vertical profile of the RSD for the20

ensemble of the SEAC4RS data over the Southeast US. The RSD is about 60 ppb below 2 km and 20 ppb in the free troposphere

above. Subsetting the data by latitudinal bands gives similar results. We thus use 60 ppb for the standard deviation of the

observational error (diagonal elements in SO). The instrument precision is better than 2 ppb (Simpson et al., 2002), thus most

of that observational error is from the transport model. We take SO to be diagonal since error correlations between boundary

layer observations on the GEOS-Chem grid are not significant (Wecht et al., 2014).25

The inversion can in principle optimize emissions at the 0.25◦× 0.3125◦ grid resolution of the GEOS-Chem model, repre-

senting 3004 grid cells over the inversion domain. But the aircraft observations do not have sufficient information to constrain

emissions at that resolution. In order to reduce the dimensionality of the state vector, we project the 3004 grid cells onto 216

elements of a Gaussian mixture model (GMM) with radial basis functions based on spatial proximity and source type patterns

(Turner and Jacob, 2015). The use of the GMM allows us to retain high resolution of up to 25 km for major localized sources30

while degrading resolution in areas of weak or broadly distributed sources. Areas dominated by wetlands have resolution of

100-200 km in the GMM because they are broadly distributed.

The anthropogenic inventory of Maasakkers et al. (2016) and the wetlands inventory of Bloom et al. (2017) both include

gridded error estimates that serve as the diagonal elements of the prior error covariance matrix SA. Maasakkers et al. (2016)

found no significant spatial error correlation at 0.1◦× 0.1◦ resolution in their inventory while a variogram analysis across35
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the elements of the WetCHARTS ensemble indicates a spatial error correlation length scale of 130 km. Here we ignore this

correlation and take SA to be diagonal.

3 Results and discussion

Figure 1 (bottom panels) shows the results of the inversion including the optimized posterior emissions, the corrections to the

prior emissions, and the DOFS as measured by the diagonal elements of the averaging kernel matrix. Figure 4 (top panels)5

compare the observed boundary layer methane concentrations to the values simulated by GEOS-Chem with prior and posterior

emissions (Figure 1). The simulation with prior emissions has a positive bias that is effectively corrected when using posterior

emissions. The coefficient of determination (R2) between model and observations increases from 0.30 to 0.50 when using

posterior emissions. Figure 4 also evaluates the SEAC4RS inversion results with independent surface air observations from

the three NOAA/ESRL surface network sites in the region (Andrews et al., 2014) and with methane column observations10

from the TCCON site in Lamont, Oklahoma (Wunch et al., 2011; Wennberg et al., 2017). The posterior emissions improve

the simulation of these independent data sets. GOSAT satellite observations are another source of independent data but the

2-month period is too sparse for useful evaluation (Wecht et al., 2014).

Total posterior emissions over the SEAC4RS domain are 15% (4 Tg a−1) lower than the prior estimate (Figure 1). The

inversion is able to constrain about 10 pieces of information in the spatial distribution of methane emissions as measured by15

the DOFS. It is strongly sensitive to the Gulf Coast and to large anthropogenic source areas such as the Floyd Shale in central

Alabama. For the regions with averaging kernel sensitivity larger than 0.05, posterior emissions are 35% lower than the prior

estimate. The posterior errors are 18%-30% over these regions. The scaling factors show large downward corrections of prior

emissions in Louisiana and Mississippi, and along the Gulf Coast, where wetlands are the dominant sources. There are also

downward corrections in southern West Virginia, where coal mines are dominant, and in the Haynesville Shale gas production20

region of northern Louisiana and southern Arkansas. On the other hand, there are significant upward corrections for the coal

mines of southern Illinois and for the Floyd Shale in central Alabama.

We can attribute the 0.25◦× 0.3125◦ scaling factors from the inversion to specific methane source sectors by using the

sector-resolved spatial patterns in the prior emission inventories, as described by Turner et al. (2015) but here with the improved

anthropogenic source patterns from Maasakkers et al. (2016) and wetland emissions from (Bloom et al., 2017). Anthropogenic25

and wetland sources are well separated spatially in these inventories. Figure 5 compares our results with the prior emission

totals for the different sectors in the Southeast US. We find a significant 27% reduction in regional wetland emissions relative

to the prior estimate (mean of the WetCHARTs extended ensemble). For the subdomain with averaging kernel sensitivity larger

than 0.05 that reduction is 42%. By contrast, we find no significant regional bias in the EPA anthropogenic inventory for any

of the major source sectors for the period of August-September 2013. However, there are large local biases that tend to cancel30

each other on a regional scale (e.g., Haynesville Shale vs. Floyd Shale for natural gas). This suggests that methane emission

factors for the oil/gas sector are more variable than assumed in the EPA (2016) inventory.
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The WetCHARTs extended ensemble includes 18 wetland methane emission models intended to encompass the uncertainties

in estimating wetland emissions (Bloom et al., 2017). The different models (ensemble members) use different datasets for

wetland extent fraction A [m2 wetlands per m2 surface area], heterotrophic respiration rate R [mg C day−1 per m2 of wetland

area], temperature-dependent factor qT/10
10 of C respired as CH4 [mg CH4 per mg C] where T is the surface skin temperature,

and global scaling factors s. The wetland methane emission flux E [mg CH4 m−2 day−1] at a time t and location x for each5

of these members is given by

E(t,x) = sA(t,x)R(t,x)q
T (t,x)/10
10 . (5)

The 18-member ensemble consists of three temperature dependence factors (q10 = 1,2,3), three global scale factors (s=

125,166,208), and two wetland extent maps (A) from the Global Lakes and Wetlands Database (GLWD; Lehner and Dölla,

2004) and GLOBCOVER (Bontemps et al., 2011). The heterotrophic respiration rate (R) is the median output from the carbon10

data model framework (CARDAMOM; Bloom et al., 2016), and is not varied across that ensemble.

Figure 6 shows the Southeast US wetland emissions for each WetCHARTs member, along with the root-mean-square error

(RMSE) of its spatial distribution relative to our optimized posterior estimate on the 0.25◦× 0.3125◦ grid. Consistency in

spatial distribution with our optimized estimate is indicated by a low RMSE. We find that the specification of wetland extent

is the most systematic source of error in wetland emission estimates; all GLOBCOVER-based models underestimate wetland15

emissions, while all GLWD-based models overestimate emissions. Estimates using q10 = 1 (no temperature dependence in the

CH4:C respiration ratio) exhibit the lowest RMSE values. The WetCHARTs ensemble mean used as prior for our inversion has

the lowest RMSE, although this may reflect its influence on the posterior solution.

4 Conclusions

We used extensive boundary layer methane observations from the SEAC4RS aircraft campaign over the Southeast US in20

August-September 2013 to optimize methane emissions in that region with up to 0.25◦× 0.3125◦ spatial resolution and with

detailed error characterization. The inversion used new state-of-the-art inventories as prior information, including the gridded

version of the EPA (2016) national anthropogenic inventory from Maasakkers et al. (2016) and the WetCHARTs wetlands

extended ensemble from Bloom et al. (2017). The inversion domain over the Southeast US accounts for 45% of national

methane emissions in the EPA inventory, and for 56% of wetland emissions over the contiguous US in the mean WetCHARTs25

estimate.

Our inversion results suggest that the EPA emission inventory has no significant bias on the regional scale for the major

anthropogenic source sectors (livestock, oil/gas, waste, coal), while the mean of the WetCHARTs wetland ensemble needs

to be reduced by 27% over the inversion domain. These results are supported by independent methane observations from the

NOAA/ESRL surface network and from the TCCON site in Lamont, Oklahoma. The specification of wetland areal extent is the30

dominant source of error in the WetCHARTs ensemble. Results also indicate that a low temperature dependence for the CH4:C

heterotrophic respiration ratio best explains the spatial variability of the posterior emissions. Despite regional agreement with
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the EPA anthropogenic inventory, we still find significant local discrepancies with the EPA inventory for the oil/gas sector,

suggesting that methane emission factors are more variable than assumed in the inventory.
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Figure 1. Methane emissions in the Southeast US in August-September 2013. The top panels show the prior anthropogenic and wetland

methane emissions, and the bottom panels show the inversion results including posterior emissions, scaling factors (posterior/prior emission

ratios), and the diagonal elements of the averaging kernel matrix representing the sensitivity of the inversion results to the observations.

The sum of these diagonal elements over the domain (trace of the averaging kernel matrix) quantifies the degrees of freedom for signal

(DOFS) of the inversion. Numbers inset in the emission panels are the regional totals expressed as annual means for clarity (i.e., assuming

that August-September emission rates hold for the rest of the year). Values in parentheses are the totals for the region with averaging kernel

sensitivities larger than 0.05 (stippled areas in lower left panel).
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Figure 2. Boundary layer methane concentrations over the Southeast US measured during the SEAC4RS aircraft campaign (August 6-

September 21, 2013). The left panel shows the flight tracks in grey and the methane measurements at 0-2 km altitude. The three NOAA/ESRL

sites at SGP (Southern Great Plains, Oklahoma; 36.6◦N, 97.5◦W) , WKT (Moody, Texas; 31.3◦N, 97.3◦W), and SCT (Beech Island, South

Carolina; 33.4◦, 81.8◦W) are indicated. SGP is co-located with the TCCON site at Lamont, Oklahoma. The right panel shows the mean

methane vertical profiles over the Southeast US domain measured from the aircraft and simulated by GEOS-Chem using the prior and

posterior emissions.
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Figure 3. Residual standard deviation (RSD) of the difference between SEAC4RS methane observations and the GEOS-Chem model with

prior emissions, for 1-km altitude bins. The RSD defines the observational error standard deviations for the inversion as described in the text.

Values are shown for two latitudinal bands.
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Figure 4. Evaluation of the SEAC4RS inversion of methane emissions in the Southeast US for the August 6 - September 21, 2013 period. The

top panels compare GEOS-Chem methane concentrations with the SEAC4RS observations, using prior emissions (left) and posterior emis-

sions (right). The middle panels compare GEOS-Chem methane concentrations with independent observations from the three NOAA/ESRL

surface sites in the inversion domain (see Fig. 2 and caption). The bottom panels compare GEOS-Chem methane columns with TCCON

hourly column observations at Lamont, Oklahoma (Wennberg et al., 2017), after correction for stratospheric bias in the model (Turner et al.,

2015). The 1:1 lines (dashed) and the reduced-major-axis (black solid line) linear regressions are also shown, along with the coefficients of

determination (R2) and the slopes (±1σ) derived from the bootstrap method.
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Figure 5. Prior and posterior methane emissions in the Southeast US (domain of Fig. 1) for August-September 2013. The prior anthropogenic

emissions are from the EPA national inventory for 2012 (EPA, 2016; Maasakkers et al., 2016) and the prior wetland emissions are the means

of the WetCHARTs extended ensemble (Bloom et al., 2017). Error bars (one standard deviation) on sectoral emissions are from the prior and

posterior error variances of our inversion. Methane emissions in the subdomain with averaging kernel sensitivities larger than 0.05 (Figure

1) are also indicated.
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Figure 6. Range of wetland emission estimates in the Southeast US (domain of Figure 1) for August-September 2013. The figure shows the

spread of the WetCHARTs extended ensemble and compares with the posterior emission estimate from our inversion in terms of emission

total and root-mean-square error (RMSE) on the 0.25◦ × 0.3125◦ spatial grid. The RMSE of the posterior emission estimate with itself is

zero by definition. WetCHARTs ensemble members use wetland areal extent data from either the GLOBCOVER (Bontemps et al., 2011)

or GLWD (Lehner and Dölla, 2004) databases, as well as different estimates of temperature sensitivity q10 and global scaling factors s (see

equation (5) and text). The posterior wetland emission estimate from our inversion is shown as black solid diamond with its associated error

standard deviation. The mean of the WetCHARTs ensemble used as prior for our inversion is shown as blue solid circle with its associated

error standard deviation.
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