
We	thank	the	referees	for	their	helpful	comments	that	have	improved	our	paper.	
	
Anonymous	Referee	#1	
Summary/General	comments:	Sheng	et	al.	present	a	high	resolution	inversion	of	SEAC4RS	aircraft	
methane	data	to	find	optimal	methane	emissions	in	that	region	in	that	time	frame.	They	find	the	
new,	 gridded	EPA	 inventory	 is	 consistent	with	 their	 observations,	while	WETCHIMP	methane	
emissions	are	found	to	be	too	high.	This	paper	is	well	placed	in	ACP.	Overall	the	paper	is	well	
written,	 clear,	 and	adds	 to	our	understanding	of	methane	emissions	 in	 the	US.	 I	 have	only	 a	
couple	of	concerns	–	once	these	are	addressed	I	would	encourage	publication.	
	
Major	 comments:	 I	 have	 two	 larger	 concerns:	 The	definition	 of	 region:	 The	 region	 studied	 is	
defined	as	the	Southeast	US	and	is	illustrated	in	Figure	1.	My	problem	is	that	the	SEAC4RS	data	
does	 not	 constrain	 emissions	 for	 this	 whole	 region.	 In	 fact,	 less	 than	 half	 the	 domain	 has	 a	
significant	sensitivity	(AK	sensitivity)	and	thus	is	informed	by	the	analysis.	Important	regions	that	
have	large	fluxes	in	the	prior	inventories	(fossil	in	TX,	wetland	in	FL,	GA,	SC)	are	not	constrained	
by	 the	 work	 but	 are	 included	 in	 the	 regional	 flux	 estimates.	 This	 should	 be	 corrected.	 At	 a	
minimum,	the	area	defined	should	be	compressed	to	not	include	large	expanses	with	minimal	
surface	sensitivity	in	the	west.	Even	better,	would	be	to	use	the	AK	sensitivity	to	filter	only	the	
domain	where	there	is	significant	surface	constraint.	This	could	be	illustrated	in	Figure	1,	and	that	
mask	could	be	applied	to	the	domain	for	flux	estimation.	This	would	be	straightforward	for	the	
authors	to	do	and	would	make	the	results	more	robust.		
We	have	updated	Figure	1,	Figure	5,	and	the	text	accordingly.	
	
Transport	error/60	ppb:	I’m	a	little	unclear	on	how	60	ppb	was	settled	on	as	the	observation-
model	 error.	 Transport	 error	 could	 be	 significant,	 and	 I	 would	 like	 to	 see	 more	
discussion/explanation	 of	 how	 that	 is	 accounted	 for.	 If	 the	 60	 ppb	 is	 derived	 from	 the	
observations.	I	wonder	if	it	is	more	representative	of	atmospheric	variability?	
60	 ppb	 is	 derived	 from	 the	 statistics	 of	 residual	 errors	 (differences	 between	 observed	 and	
simulated	values	after	removing	the	mean	model	bias).	We	have	expanded	discussion.	
	
Minor	comments:	Page	1	Line	3:	The	%	will	be	lower	once	accounting	for	the	above	comment.	
We	 have	 updated	 the	 text	 as:	 “The	 Southeast	 US	 is	 a	 major	 source	 region	 for	 US	methane	
emissions	including	large	contributions	from	oil/gas	production	and	wetlands.”	
	
Page	1	Line	11:	It’s	not	clear	you	can	state	your	work	is	in	contrast	with	national	scale	work.	Not	
only	is	the	work	on	different	scales,	it	is	for	different	years,	and,	more	importantly,	different	times	
of	year.	This	study	is	focused	on	only	Aug-Sept,	whereas	other	studies	have	used	1+	year	of	data.	
This	needs	to	be	made	clearer	throughout	that	the	results	are	for	Aug.-Sept.	only.	
Little	 regional	 or	 interannual	 variability	 is	 expected	 for	 anthropogenic	 emissions	 and	 so	 our	
results	have	general	applicability.	This	is	now	stated	in	the	text	with	references.	For	wetlands	we	
have	added	a	few	statements	that	our	results	are	for	Aug-Sep	2013.		
	
Page	2	Line	9:	Should	indicate	here	at	least	once	if	Tg	C	or	Tg	CH4.	
Done.	



	
Page	2	Lines	15-20:	This	is	not	strictly	accurate.	Miller	et	al.,	2013	did	not	rely	on	EDGAR,	as	a	
geostatistical	approach	was	used.	I	would	suggest	changes	phrasing	here	to	correct	this.	(A	side	
comment:	 the	 Miller	 work	 did	 have	 little	 data	 in	 the	 Southeast	 so	 it	 was	 essentially	
unconstrained).	
We	corrected	this.	
	
	
Page	4	Lines	5-6:	I	have	some	concerns	about	the	way	the	flask	data	has	been	aggregated	onto	a	
grid	here.	It	would	be	very	helpful	to	see	some	continuous	variables	for	the	flights	and	where	the	
flasks	 were	 sampled.	 This	 would	 enable	 the	 reader	 to	 assess	 if	 averaging	 the	 discrete	 flask	
samples	is	representative	of	0.25	degree	boxes,	or	if	the	samples	are	representative	of	smaller	
atmospheric	features	(such	as	plumes).	
We	now	plot	the	continuous	data	in	Fig.	2,	and	update	the	text	accordingly.	
	
	
Page	4	Line	17:	I’d	like	more	on	the	60	ppb.	
See	the	response	in	major	comments.	
	
Page	6	Lines	10-20.	Care	is	needed	here	as	mentioned	before	not	all	these	studies	relied	to	this	
level	on	EDGAR.	Also,	many	of	those	studies	were	rather	unsensitive	to	the	SE,	so	they	likely	do	
not	 see	 the	 wetland	 emissions,	 as	 opposed	 to	 falsely	 attributing	 those	 emissions	 to	
anthropogenic	sources.	At	the	least,	we	cannot	make	the	conclusion	in	lines	18-19.	
Agree.	We	now	omit	this	conclusion.	
	
	
Page	6	lines	29-31:	these	fractions	will	come	down	when	accounting	for	region	of	sensitivity.	
Done.		
	
Page	6	line	7:	Should	specify	this	finding	of	regional	consistency	is	for	Aug.-Sept.	only.	
See	response	above.	
	
Figure	1:	Zoom	and	add	contours	as	described	in	major	comment.	
We	have	updated	Fig.	1.	
	
Figure	2:	I	struggle	with	the	map	figure	as	it	is	hard	to	interpret	the	methane	concentration	on	a	
map	like	this	where	we	don’t	know	if	it	is	when	the	mixing	layer	is	deep	or	shallow	or	what	the	
background	 value	 is	 on	 the	 given	 day.	 For	 example,	 are	 regions	 with	 blue	 and	 red	 adjacent	
indicative	of	high	spatial	variability	or	from	different	sampling?	
See	the	response	for	“Page	4	Lines	5-6:…”	
	
Figure	5:	Update	when	updating	domain	definition.	
Done.	
	



	
	
	
	
	
Anonymous	Referee	#2	
Received	and	published:	13	February	2018	
General	comments	
This	study	uses	observations	of	CH4	from	aircraft	campaigns	in	Aug-Sep	2013	to	estimate	
CH4	emissions	in	the	southeast	US,	a	region	with	importance	to	the	US	total	
anthropogenic	CH4	emission	and	with	significant	areas	of	wetlands.	The	authors	use	
a	Bayesian	inversion	method	to	estimate	the	emissions	and	uncertainties.	The	method	
is	scientifically	sound	and	the	manuscript	is	well-written.	However,	there	are	a	few	
outstanding	points	that	should	be	clarified	before	publication.	In	particular,	I	think	the	
results	of	the	study	would	be	strengthened	by	adding	a	sensitivity	test	to	determine	the	
sensitivity	of	the	results	to	the	prior	wetlands	emission	estimate	used	(see	also	specific	
comments).	In	summary,	I	recommend	publication	after	minor	revisions.	
See	the	response	below	in	specific	comment.	
	
Specific	comments	
P1,	L13:	The	authors	state	that	the	results	of	previous	inversions	finding	higher	emissions	
than	EPA	estimates	were	owing	to	too	low	estimates	for	wetland	emissions.	What	
estimate	for	the	wetland	emissions	is	the	reference	here?	
We	have	removed	this	statement	(see	response	to	Referee	#1).	It’s	not	relevant	now.	
	
P2,	L19-20:	While	errors	in	the	prior	can	bias	the	results,	the	extent	to	which	this	is	a	
problem	is	dependent	on	the	constraint	from	the	observations	and	on	the	uncertainty	
assigned	to	the	prior	estimates,	or	in	other	words	the	degrees	of	freedom	to	adjust	the	
prior.	This	statement	should	be	qualified	bearing	in	mind	these	other	factors	too.	
We	now	add:	“…	this	depends	on	the	constraint	from	the	observations	and	on	the	uncertainty	
assigned	to	the	prior	estimates.”	
	
P3,	Eq.1:	Strictly	speaking,	the	RHS	of	this	equation	should	be	multiplied	by	½	
We	have	corrected	the	equation.	
	
P3,	L14:	Here	the	authors	say	that	inversions	of	methane	are	usually	solved	numerically,	
however,	that	is	not	the	case.	While	global	inversions	of	CH4	over	many	years	
usually	use	numerical	adjoint	methods,	regional	inversions	(as	in	this	study)	also	often	
use	the	analytical	solution.	
We	have	updated	the	text	as:		
“…analytically	or	numerically	using	an	adjoint	method	(Jacob	et	al.,	2016).	Unlike	adjoint-based	
inversions,	analytical	solution	provides	direct	error	characterization	…”.	
	
P3,	L15:	While	it	is	true	that	the	analytical	method	allows	the	posterior	error	covariance	



to	be	calculated	directly,	some	numerical	methods	allow	it	to	be	estimated.	
We	have	added	‘direct’	
	
P3,	L26:	Did	the	global	simulation	optimized	with	GOSAT	also	include	surface	observations?	
This	should	be	mentioned.	Also,	it	has	been	shown	that	satellite-only	optimizations	can	lead	to	
be	biases	due	to	errors	 in	the	retrievals.	Have	comparisons	of	the	CH4	mixing	ratios	from	the	
optimized	simulation	against	surface	and/or	aircraft	observations	been	made?	
The	GOSAT	optimized	emissions	are	evaluated	with	independent	surface	observations.	We	now	
mention	this	in	the	text.	
	
P4,	L12:	I	think	it	would	be	helpful	if	the	authors	would	briefly	explain	the	residual	
method,	which	is	used	to	calculate	the	observation	error	variances.	
We	now	do	so.	See	response	to	Referee	#1.	
	
P4,	L28-29:	I’m	not	sure	how	the	inversion	can	return	information	at	the	fine	scale	
when	it	is	performed	at	coarser	scale.	I	think	further	explanation	would	be	helpful	here.	
The	statement	is	not	strictly	accurate.	We	have	removed	it.	
	
P5,	L20-25:	There	is	a	little	bit	of	overlap	in	the	locations	of	the	anthropogenic	and	wetland	
sources	(see	Fig.	1).	Has	this	been	factored	into	the	posterior	emission	estimates	
per	source	type?	
The	sources	are	in	fact	well	separated	on	the	0.25ox0.3125o	grid	and	we	now	say	so.	
	
P6,	L8-9:	The	WetCHARTs	ensemble	mean	was	used	as	the	prior	for	the	inversion,	
therefore,	it	is	not	surprising	that	the	ensemble	mean	has	the	lowest	RMSE	compared	
to	the	posterior	emissions,	as	the	two	estimates	are	not	independent	from	one	another.	
This	should	be	stated.	Also,	have	the	authors	looked	at	the	Gain	matrix	to	determine	
how	well	constrained	the	wetland	emissions	are	by	the	observations?	It	would	be	
valuable	to	test	how	sensitive	the	results	are	to	using	a	different	prior	for	the	wetland	
emissions.	
We	agree	and	now	state	this.		
Results	will	be	sensitive	to	different	wetland	ensemble	members	in	particular	those	smallest	or	
largest	members,	assuming	the	same	prior	uncertainty.	We	now	also	state	this	in	the	text.	
	
Technical	comments	
P1,	L5:	I	don’t	think	the	term	“state-of-science”	exists	(or	at	least	I’ve	never	heard	it	
before).	I	suggest	replacing	with	“state-of-the-art”	or	“up-to-date”	(also	elsewhere	in	
the	manuscript).	
Done.	
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Abstract. We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US

in August-September 2013 to estimate methane emissions in that region through an inverse analysis with up to 0.25◦×
0.3125◦ (25× 25 km2) resolution and with full error characterization. The Southeast US accounts for about half of total US

anthropogenic emissions according to the gridded EPA national inventory and also has extensive
::
is

:
a
:::::
major

::::::
source

::::::
region

:::
for

:::::::
methane

::::::::
including

::::
large

:::::::::::
contributions

::::
from

::::::
oil/gas

:::::::::
production

:::
and

:
wetlands. Our inversion uses state-of-science

::::::::::::
state-of-the-art5

emission inventories as prior estimates, including a gridded version of the anthropogenic EPA Greenhouse Gas Inventory and

the mean of the WetCHARTs ensemble for wetlands. Inversion results are independently verified by comparison with sur-

face (NOAA/ESRL) and column (TCCON) methane observations. Our posterior estimates for the Southeast US are 12.8±0.9
Tg a−1 for anthropogenic sources (no significant change from the gridded EPA inventory) and 9.4±0.8 Tg a−1 for wetlands

(27% decrease from the mean in the WetCHARTs ensemble). The largest source of error in the WetCHARTs wetlands ensem-10

ble is the landcover map specification of wetland areal extent. We find no regional bias in the anthropogenic EPA inventory,

including for different source sectors, in contrast with previous inverse analyses that found the EPA inventory to be too low at

national scales. These previous inversions relied on prior anthropogenic source patterns from the EDGAR v4.2 inventory that

have considerable error, and also assumed low wetland emissions. Despite the regional-scale consistency, we find significant

local errors in the EPA inventory
:::
Our

::::::
results

::::::
support

:::
the

::::::::
accuracy

::
of

:::
the

::::
EPA

::::::::::::
anthropogenic

::::::::
inventory

:::
on

:
a
:::::::
regional

:::::
scale

:::
but15

::::
there

:::
are

:::::::::
significant

::::
local

::::::::::::
discrepancies for oil/gas production fields , suggesting that emission factors are more variable than

assumed in the
::::
EPA inventory.

1



1 Introduction

Methane is an important greenhouse gas (Myhre et al., 2013)for which individual countries report
:
.
::::::::
Individual

::::::::
countries

:::::
must

:::::
report

::::
their

:
national emissions to the United Nations Framework Convention on Climate Change (UNFCCC; United Nation,

1992). Observations of atmospheric methane reviewed by Brandt et al. (2014) have implied that the US national inventory

reported by the Environmental Protection Agency (EPA) may be greatly underestimated. Here we use aircraft observations5

from the NASA SEAC4RS aircraft campaign over the Southeast US (Toon et al., 2016), together with a newly gridded version

of the EPA inventory (Maasakkers et al., 2016), in a fine-resolution inversion with detailed error characterization to better

quantify the sources of methane emissions over this major source region.

The EPA (2016) reports a national anthropogenic emission total of 29.2 Tg
::::
CH4 a−1 for 2014, with no significant trend over

the past decade and less than ±3% interannual variability. Major contributors are livestock (32%) , the oil/gas industry (32%),10

waste (22%), and coal mining (8%). The EPA (2016) inventory is consistent with Lyon et al. (2015) for oil/gas systems and

Wolf et al. (2017) for livestock, and 8% higher than the previous versions (EPA, 2013, 2014), largely due to updated oil/gas

emissions. There is also a highly uncertain natural source from wetlands, estimated at 4.5-14 Tg a−1 for the contiguous US in

the WETCHIMP compilation of inventories (Melton et al., 2013). Inverse analyses of atmospheric methane observations have

suggested that the EPA bottom-up inventory (EPA, 2013, 2014) is too low by about 30% (Miller et al., 2013; Turner et al.,15

2015; Alexe et al., 2015), but they .
:::::::::
However,

:::::::::::::::::::
Turner et al. (2015) and

::::::::::::::::
Alexe et al. (2015) relied on prior estimates from the

global EDGAR v4.2 inventory (European Commission, 2011) that have large errors in source patterns particularly for oil/gas

systems (Maasakkers et al., 2016; Sheng et al., 2017). For example, EDGAR v4.2 does not account for the large source from

oil/gas production in the Southeast US but the gridded EPA inventory does (Maasakkers et al., 2016). Errors in source patterns

used as prior estimates can greatly bias inversion results (Jacob et al., 2016).
:
,
::::::
though

:::
this

::::::::
depends

::
on

::::
the

::::::::
constraint

:::::
from20

::::::::::
observations

:::
and

:::
on

:::
the

::::::::::
uncertainty

:::::::
assigned

::
to

:::
the

::::
prior

:::::::::
estimates.

::::::::::::::::::::
Miller et al. (2013) used

:
a
:::::::::::
geostatistical

::::::::
inversion

::::
that

:::
did

:::
not

:::
rely

:::
on

:::
any

::::
prior

:::::::::
estimates,

:::
but

:::
had

::::
little

::::::::::
constraints

::
in

:::
the

::::::::
Southeast

:::
US.

:

The SEAC4RS aircraft campaign conducted in August-September 2013 offers an opportunity for better estimating methane

emissions in the Southeast US, a region that accounts for about half of
::::
total anthropogenic methane emissions in the US

according to the gridded EPA inventory (Maasakkers et al., 2016) and also has extensive wetlands. The aircraft flights provided25

extensive boundary-layer
:::::::
boundary

:::::
layer

:
measurements of methane across the region. We conduct an inverse analysis of the

SEAC4RS data with the GEOS-Chem chemical transport model (CTM) at 0.25◦× 0.3125◦ resolution, using state-of-science

::::::::::::
state-of-the-art

:
prior estimates from the gridded EPA inventory of Maasakkers et al. (2016) and the WetCHARTs extended

ensemble wetlands inventory of Bloom et al. (2017). This allows us to evaluate the EPA inventory with better accuracy and

resolution than has been done before, and also to gain better understanding of US wetland emissions.30

2 Methods

We derive an optimized estimate of spatially resolved methane emissions in the Southeast US (domain of Fig. 1) by Bayesian

inverse analysis of atmospheric methane observations from the SEAC4RS aircraft campaign. Let the vector x represent a

2



gridded ensemble of methane emissions in the region (state vector for the inversion).The inversion minimizes the cost function

J(x) by solving∇xJ(x) = 0:

J(x) = (x−xA)(x) =
::::

1

2
(x−xA)
:::::::

TS−1
A (x−xA)+ (y−Kx)S−1

A (x−xA)+
::::::::::::

1

2
(y−Kx)
::::::::

TS−1
O (y−Kx). (1)

Here the methane observations are assembled as a vector y, xA is the prior emission estimate, K is the Jacobian matrix

describing the sensitivity of concentrations to emissions, and SA and SO are the prior and observational error covariance5

matrices, respectively.
::::
The

:::::::::::
observational

::::
error

::::::::
includes

:::::::::::
contributions

::::
from

::::
both

:::
the

:::::::::
instrument

:::::
error

:::
and

:::
the

::::::
model

::::::::
transport

::::
error.

:

Analytical solution of∇xJ(x) = 0 yields the optimal estimate x̂, the posterior error covariance matrix Ŝ, and the associated

averaging kernel matrix A (Rodgers, 2000; Brasseur and Jacob, 2017)

x̂= xA +SAKT (KSAKT +SO)−1(y−KxA), (2)10

Ŝ−1 =K
T
S−1
O K+S−1

A , (3)

A= In− ŜS−1
A . (4)

where In is the identity matrix with n being the dimension of the state vector x. Inversions of atmospheric methane observations15

usually
::::
may solve∇xJ(x) = 0

::::
either

::::::::::
analytically,

::
or
:
numerically using an adjoint method (Henze et al., 2007). The analytical

solution has the advantage of providing complete
::::::::::::::::
(Jacob et al., 2016).

::::::
Unlike

::::::::::::
adjoint-based

:::::::::
inversions,

::::::::
analytical

::::::::
solution

:::::::
provides

:::::
direct

:
error characterization of the optimal estimate x̂ through its error covariance matrix Ŝ. The related averaging

kernel matrix A describes the sensitivity of the optimal estimate x̂ to the true emissions x. The trace of A quantifies the

Degrees of Freedom For Signal (DOFS), i.e., the number of pieces of information in the observing system for constraining the20

methane emissions (DOFS ≤ n).

The Jacobian matrix K for the inversion is constructed with the GEOS-Chem CTM (http://www.geos-chem.org), which

relates methane emissions to atmospheric concentrations through simulation of atmospheric transport. We use a nested version

of GEOS-Chem as described by Kim et al. (2015) with 0.25◦×0.3125◦ horizontal resolution over the North America window

and adjacent oceans (9.75◦-60◦N, 130◦-60◦W), driven by GEOS-FP assimilated meteorological data from the NASA Global25

Modeling and Assimilation Office (GMAO). The same version of the GEOS-Chem has been applied to simulation of other

chemical observations from the SEAC4RS campaign (Kim et al., 2015; Fisher et al., 2016; Marais et al., 2016; Travis et al.,

2016; Zhu et al., 2016; Yu et al., 2016; Chan Miller et al., 2017). The boundary conditions for the nested-grid simulation are

from a 4◦×5◦ global simulation by Turner et al. (2015) using methane emissions optimized with three years of GOSAT satellite

data. The model
:::::::::::::::
GOSAT-optimized

::::::::
emissions

:::::
have

::::
been

::::::::::::
independently

::::::::
evaluated

::::
with

::::::::::
atmospheric

:::::::
methane

::::::::::
observations

:::::
from30

::
the

:::::::
NOAA

::::::
surface

:::::::
network

:::::::::::::::::
(Turner et al., 2015).

::::
The

:::::::::::
GEOS-Chem uses a 3-D archive of monthly average OH concentrations

from Park et al. (2004)
::
to

:::::::
compute

:::
the

:::::::
methane

::::
sink, with a lifetime of 8.9 years in the troposphere consistent with observational

constraints (Prather et al., 2012; Turner et al., 2017). Loss by OH
:::
The

:::
sink

:
is irrelevant for our North American simulation since

3
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ventilation of the domain is much faster(Wecht et al., 2014). Since we treat OH concentrations as decoupled from methane in

the inversion, the relationship between emissions and concentrations is
::::::
strictly linear, so that K fully describes the GEOS-Chem

model as applied to our problem
::
for

:::
the

:::::::
purpose

::
of

:::
the

::::::::
inversion.

The prior emission estimates for the inversion are taken from the 0.1◦× 0.1◦ gridded version of the EPA anthropogenic

greenhouse gas emission inventory for 2012 (Maasakkers et al., 2016) and the mean wetland emissions from the 0.5◦× 0.5◦5

monthly WetCHARTs extended ensemble for 2013 (Bloom et al., 2017). Figure 1 (top panels) shows the distribution of these

prior methane emissions over the inversion domain for August-September 2013. Emissions total 13.3 Tg a−1 for anthropogenic

sources and 13.0 Tg a−1 for wetlands over these two months (expressed on an annual basis).
::::::::::::
Anthropogenic

::::::::
emissions

:::
in

::
the

:::::
EPA

::::::::
inventory

::::
have

::::
little

::::::::
seasonal

::
or

::::::::::
interannual

:::::::::
variability

:::::::::::::::::::::::::::::::::::::
(Turner et al., 2015; Maasakkers et al., 2016),

:::::
while

:::::::
wetland

::::::::
emissions

::::
have

:
a
:::::
large

:::::::
seasonal

::::::::
variation.

:
10

The SEAC4RS DC-8 aircraft conducted 21 flights over the Southeast between August 6 and September 21, 2013. Methane

was measured by gas chromatography from whole air flask samples and calibrated to the NOAA standard. Figure 2 (left panel)

shows the SEAC4RS flight tracks and the spatial distribution of the methane
::::
flask

:
measurements below 2 km altitudeaveraged

over the 0.25◦× 0.3125◦ model grid. The mean observed vertical profile is shown in the right panel of Figure 2, and compared

to the GEOS-Chem profile using the prior emissions. The model is unbiased in the free troposphere above 2 km, implying15

a successful representation of background methane by the boundary conditions. Model overestimation in the boundary layer

below 2 km suggests that the prior US emissions are too high. In what follows we will
:::
For

:::
the

::::::::
inversion,

:::
we use the SEAC4RS

observations over the Southeast US below 2 km altitude for the inversion. This represents a total data set of m= 652 methane

observations averaged over the 0.25◦×0.3125◦ GEOS-Chem grid for individual flights.
:::
This

:::::::::
represents

:::
652

:::::::::
individual

:::::::
methane

:::::::::::
observations.20

We use the residual error method (Heald et al., 2004) to estimate the diagonal elements of the observational error covariance

matrix SO. The method assumes that the mean
:::::
model

:
bias between the observations and the model with prior emissions is

:
is
::::
due

::
to

:::::
error

::
in

::::
prior

:::::::::
emissions to be corrected by the inversion, while the residual error represents .

::::
The

::::::::
residuals

:::
are

:::
the

:::::::::
differences

:::::::
between

::::::::
observed

:::
and

::::::::
modeled

:::::
values

:::::
after

::::::::
removing

:::
the

:::::
mean

:::::
model

::::
bias.

::::
The

:::::::
residual

::::
error

::::::::
standard

::::::::
deviation

:::::
(RSD)

::
is

:::::
taken

::
to

::::::::
represent the observational error including contributions from the instrument and the transport model. Figure25

3 shows the vertical profile of the residual error standard deviation (RSD )
::::
RSD for the ensemble of the SEAC4RS data over the

Southeast US. The RSD is about 60 ppb below 2 km and 20 ppb in the free troposphere above. Subsetting the data by latitudinal

bands gives similar results. We thus use 60 ppb for the standard deviation of the observational error (diagonal elements in SO).

The instrument precision is better than 2 ppb (Simpson et al., 2002), thus most of that observational error is from the transport

model(including representation error). We take SO to be diagonal since error correlations between boundary-layer
::::::::
boundary30

::::
layer observations on the GEOS-Chem grid are not significant (Wecht et al., 2014).

The inversion can in principle optimize emissions at the 0.25◦× 0.3125◦ grid resolution of the GEOS-Chem model, repre-

senting 3004 grid cells over the inversion domain. However,
:::
But

:
the aircraft observations do not have sufficient information to

constrain emissions at that resolution. In order to reduce the dimensionality of the state vector, we project the 3004 grid cells

onto 216 elements of a Gaussian mixture model (GMM) with radial basis functions based on spatial proximity and source type35
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patterns (Turner and Jacob, 2015). The use of the GMM allows us to retain high resolution of up to 25 km for major localized

sources while degrading resolution in areas of weak or broadly distributed sources. Areas dominated by wetlands have reso-

lution of 100-200 km in the GMM because they are broadly distributed. Individual state vector elements in the GMM have

weighted influence functions over the 0.25◦× 0.3125◦ GEOS-Chem grid, so that the inversion effectively returns information

on that fine grid even though the actual resolution of the inversion is coarser (Turner and Jacob, 2015).5

The anthropogenic inventory of Maasakkers et al. (2016) and the wetlands inventory of Bloom et al. (2017) both include

gridded error estimates that serve as the diagonal elements of the prior error covariance matrix SA. Maasakkers et al. (2016)

found no significant spatial error correlation at 0.1◦× 0.1◦ resolution in their inventory while a variogram analysis across the

elements of the WetCHARTS ensemble indicates a spatial error correlation length scale of 130 km. Therefore we
::::
Here

:::
we

:::::
ignore

:::
this

::::::::::
correlation

:::
and

:
take SA to be diagonal.10

3 Results and discussion

Figure 1 (bottom panels) shows the results of the inversion including the optimized posterior emissions, the corrections to the

prior emissions, and the DOFS as measured by the diagonal elements of the averaging kernel matrix. Figure 4 (top panels)

compare the observed boundary layer methane concentrations to the values simulated by GEOS-Chem with prior and posterior

emissions (Figure 1). The simulation with prior emissions has a positive bias that is effectively corrected when using posterior15

emissions. The coefficient of determination (R2) between model and observations increases from 0.30 to 0.50 when using

posterior emissions. Figure 4 also evaluates the SEAC4RS inversion results with independent surface air observations from

the three NOAA/ESRL surface network sites in the region (Andrews et al., 2014) and with methane column observations to

from the TCCON site in Lamont, Oklahoma (Wunch et al., 2011; Wennberg et al., 2017). The posterior emissions improve

the simulation of these independent data sets. GOSAT satellite observations are another source of independent data but the20

2-month period is too sparse for useful evaluation (Wecht et al., 2014).

Total posterior emissions over the SEAC4RS domain are 15% (4 Tg a−1) lower than the prior estimate (Figure 1). The

inversion is able to constrain about 10 pieces of information in the spatial distribution of methane emissions as measured by

the DOFS. It is strongly sensitive to the Gulf Coast and to large anthropogenic source areas such as the Floyd Shale in central

Alabama.
:::
For

:::
the

::::::
regions

:::::
with

::::::::
averaging

:::::
kernel

:::::::::
sensitivity

:::::
larger

::::
than

:::::
0.05,

::::::::
posterior

::::::::
emissions

:::
are

::::
35%

:::::
lower

::::
than

:::
the

:::::
prior25

:::::::
estimate.

:
The posterior errors are 18%-30% over these regions. The scaling factors show large downward corrections of prior

emissions in Louisiana and Mississippi, and along the Gulf Coast, where wetlands are the dominant sources. There are also

downward corrections in southern West Virginia, where coal mines are dominant, and in the Haynesville Shale gas production

region of northern Louisiana and southern Arkansas. On the other hand, there are significant upward corrections for the coal

mines of southern Illinois and for the Floyd Shale in central Alabama.30

We can attribute the 0.25◦× 0.3125◦ scaling factors from the inversion to specific methane source sectors by using the

sector-resolved spatial patterns in the prior emission inventories, as described by Turner et al. (2015) but here with the improved

anthropogenic source patterns from Maasakkers et al. (2016) and wetland emissions from (Bloom et al., 2017).
::::::::::::
Anthropogenic
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:::
and

:::::::
wetland

:::::::
sources

:::
are

::::
well

::::::::
separated

:::::::
spatially

::
in
:::::

these
::::::::::
inventories.

:
Figure 5 compares our results with the prior emission

totals for the different sectors in the Southeast US. We find a significant 27% (3.6 Tg a−1) reduction in regional wetland emis-

sions
::::::
relative

::
to

:::
the

::::
prior

::::::::
estimate (mean of the WetCHARTs extended ensemble).

:::
For

:::
the

::::::::::
subdomain

::::
with

::::::::
averaging

::::::
kernel

::::::::
sensitivity

:::::
larger

::::
than

:::::
0.05

:::
that

::::::::
reduction

::
is
:::::
42%.

:
By contrast, we find no significant regional bias in the EPA anthropogenic

inventory for any of the major source sectors .
:::
for

:::
the

:::::
period

::
of

::::::::::::::::
August-September

:::::
2013.

::::::::
However,

:::::
there

::
are

:::::
large

::::
local

::::::
biases5

:::
that

::::
tend

::
to

::::::
cancel

::::
each

:::::
other

::
on

::
a
:::::::
regional

::::
scale

:::::
(e.g.,

::::::::::
Haynesville

:::::
Shale

:::
vs.

:::::
Floyd

:::::
Shale

:::
for

::::::
natural

:::::
gas).

::::
This

:::::::
suggests

::::
that

:::::::
methane

:::::::
emission

::::::
factors

:::
for

:::
the

::::::
oil/gas

:::::
sector

:::
are

:::::
more

:::::::
variable

::::
than

:::::::
assumed

::
in

:::
the

::::::::::::::::::
EPA (2016) inventory.

:

The WetCHARTs extended ensemble includes 18 wetland methane emission models intended to encompass the uncertain-

ties in estimating wetland emissions (Bloom et al., 2017). The different models (ensemble members) use different datasets

for wetland extent fraction A [m2 wetlands per m2 surface area], heterotrophic respiration rate R [mg C day−1 per m2 of10

wetland areas
:::
area], temperature-dependent factor qT/10

10 of C respired as CH4 [mg CH4 per mg C] where T is the surface skin

temperature, and global scaling factors s. The wetland methane emission flux E [mg CH4 m−2 day−1] at a time t and location

x for each of these members is given by

E(t,x) = sA(t,x)R(t,x)q10
T (x,t)T (t,x)/10

::::::
. (5)

The 18-member ensemble consists of three temperature dependence factors (q10 = 1,2,3), three global scale factors (s=15

125,166,208), and two wetland extent maps (A) from the Global Lakes and Wetlands Database (GLWD; Lehner and Dölla,

2004) and GLOBCOVER (Bontemps et al., 2011). The heterotrophic respiration rate (R) is the median output from the carbon

data model framework (CARDAMOM; Bloom et al., 2016), and is not varied across that ensemble.

Figure 6 shows the Southeast US wetland emissions for each WetCHARTs member, along with the root-mean-square error

(RMSE) of its spatial distribution relative to our optimized posterior estimate on the 0.25◦× 0.3125◦ grid. Consistency in20

spatial distribution with our optimized estimate is indicated by a low RMSE. We find that the specification of wetland extent

is the most systematic source of error in wetland emission estimates; all GLOBCOVER-based models underestimate wetland

emissions, while all GLWD-based models overestimate emissions. Estimates using q10 = 1 (no temperature dependence in the

CH4:C respiration ratio) exhibit the lowest RMSE values. The WetCHARTs ensemble mean used as prior for our inversion

performs better than any individual member.25

For anthropogenic emissions, Figure 5 shows that the inversion is consistent on the regional scale with the EPA sectoral

inventory gridded by Maasakkers et al. (2016). Previous inversions using the EDGAR v4.2 inventory as prior found large

underestimates over the Southcentral US that they attributed to a combination of oil/gas and livestock sources (Miller et al., 2013; Alexe et al., 2015; Turner et al., 2015).

This is in contrast with our finding in particular for East Texas and Louisiana. The EDGAR v4.2 inventory has large errors in

its source patterns (see Fig. 3 of Maasakkers et al. (2016)). It places almost all oil/gas emissions in distribution centers instead30

of in production fields, and the resulting methane concentration underestimate over production fields (e.g., Floyd shale in East

Texas) would be interpreted as a model error. These previous inverse studies also used low prior estimates of wetland emissions

(2.7-5.9 Tg a−1 for the contiguous US, 1.6-3.5 Tg a−1 for the Southeast US, at the low end of the WetCHARTs ensemble in

Figure 5), leading them to erroneously attribute methane underestimates to nearby anthropogenic sources.
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Despite the good regional agreement of our inversion with the EPA (2016) inventory for the Southeast US for different

sectors, there are large local biases that tend to cancel each other on a regional scale (e.g., Haynesville Shale vs. Floyd Shale

for natural gas). This suggests that methane emission factors for the oil/gas sector are more variable than assumed in the

EPA (2016) inventory
:::
has

:::
the

::::::
lowest

::::::
RMSE,

::::::::
although

:::
this

::::
may

::::::
reflect

::
its

::::::::
influence

::
on

:::
the

::::::::
posterior

:::::::
solution.

4 Conclusions5

We used extensive boundary layer methane observations from the SEAC4RS aircraft campaign over the Southeast US in

August-September 2013 to optimize methane emissions in that region with up to 0.25◦×0.3125◦ spatial resolution and with de-

tailed error characterization. The inversion used new state-of-science
::::::::::::
state-of-the-art inventories as prior information, including

the gridded version of the EPA (2016) national anthropogenic inventory from Maasakkers et al. (2016) and the WetCHARTs

wetlands extended ensemble from Bloom et al. (2017). The inversion domain over the Southeast US accounts for 45% of10

national methane emissions in the EPA inventory, and for 56% of wetland emissions over the contiguous US in the mean

WetCHARTs estimate.

Our inversion results suggest that the EPA emission inventory has no significant bias on the regional scale for the ma-

jor
::::::::::::
anthropogenic source sectors (livestock, oil/gas, waste, coal), while the mean of the WetCHARTs wetland ensemble

needs to be reduced by 27% over the inversion domain. These results are supported by independent methane observations15

from the NOAA/ESRL surface network and from the TCCON site in Lamont, Oklahoma. The specification of wetland areal

extent is the dominant source of error in the WetCHARTs ensemble. Results also indicate that a low temperature depen-

dence for the CH4:C heterotrophic respiration ratio best explains the spatial variability of the posterior emissions. The mean

of the WetCHARTs ensemble performs better than any individual ensemble member. Our finding of regional consistency

::::::
Despite

:::::::
regional

:::::::::
agreement

:
with the EPA anthropogenic inventoryis in contrast with previous inverse studies that found large20

underestimates. These inversions relied on EDGAR v4.2 anthropogenic source patterns that have large errors and also assumed

low wetland emissions. Despite regional agreement
:
, we still find significant local discrepancies with the EPA inventory for the

oil/gas sector, suggesting that methane emission factors are more variable than assumed in the inventory.
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Figure 1. Methane emissions in the Southeast US in August-September 2013. The top panels show the prior anthropogenic and wetland

methane emissions, and the bottom panels show the inversion results including posterior emissions, scaling factors (posterior/prior emission

ratios), and the diagonal elements of the averaging kernel matrix for
:::::::::
representing the

:::::::
sensitivity

::
of

:::
the inversion

:::::
results

::
to

:::
the

:::::::::
observations.

The sum of these diagonal elements
::::
over

::
the

::::::
domain

:
(trace of the averaging kernel matrix) quantifies the degrees of freedom for signal

(DOFS) of the inversion. Annual
::::::
Numbers

::::
inset

::
in
:::
the

:
emission

::::
panels

:::
are

:::
the

::::::
regional

:::::
totals

:::::::
expressed

::
as
::::::

annual
:::::
means

:::
for

:::::
clarity

::::
(i.e.,

:::::::
assuming

:::
that

::::::::::::::
August-September

:::::::
emission

:
rates

:::
hold for the SEAC4RS period

:::
rest

::
of

:::
the

::::
year).

::::::
Values

::
in

:::::::::
parentheses are shown inset

::
the

::::
totals

::
for

:::
the

:::::
region

::::
with

:::::::
averaging

:::::
kernel

:::::::::
sensitivities

:::::
larger

:::
than

::::
0.05

:::::::
(stippled

::::
areas

::
in

::::
lower

:::
left

:::::
panel).
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Figure 2. Boundary layer methane concentrations over the Southeast US measured during the SEAC4RS aircraft campaign (August 6-

September
:::::::::
6-September

:
21, 2013). The left panel shows the flight tracks in grey and the methane measurements at 0-2 km altitudeaveraged

over the 0.25◦ × 0.3125◦ GEOS-Chem grid. The three NOAA/ESRL sites at SGP (Southern Great Plains, Oklahoma; 36.6◦N, 97.5◦W) ,

WKT (Moody, Texas; 31.3◦N, 97.3◦W), and SCT (Beech Island, South Carolina; 33.4◦, 81.8◦W) are indicated. SGP is co-located with the

TCCON site at Lamont, Oklahoma. The right panel shows the mean methane vertical profiles over the Southeast US domain measured from

the aircraft and simulated by GEOS-Chem using the prior and posterior emissions.
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Figure 3. Residual standard deviations
:::::::
deviation (RSDs

::::
RSD) of the difference between SEAC4RS methane observations and the GEOS-

Chem model with prior emissions, for 1-km altitude bins. These RSDs are used to define
:::
The

::::
RSD

:::::
defines

:
the observational error standard

deviations for the inversion as described in the text. The observational error is mainly from GEOS-Chem (see text). Values are shown for two

latitudinal ranges
:::::
bands.
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Figure 4. Evaluation of the SEAC4RS inversion of methane emissions in the Southeast US for the August 6 - September 21, 2013 period. The

top panels compare GEOS-Chem methane concentrations with the SEAC4RS observations, using prior emissions (left) and posterior emis-

sions (right). The middle panels compare GEOS-Chem methane concentrations with independent observations from the three NOAA/ESRL

surface sites in the inversion domain (see Fig. 2 and caption). The bottom panels compare GEOS-Chem methane columns with TCCON

hourly column observations at Lamont, Oklahoma (Wennberg et al., 2017), after correction for stratospheric bias in the model (Turner et al.,

2015). The 1:1 lines (dashed) and the reduced-major-axis (black solid line) linear regressions are also shown, along with the coefficients of

determination (R2) and the slopes (±1σ) derived from the bootstrap method.
11



Figure 5. Prior and posterior methane emissions for
:
in

:
the Southeast US

:
(domain of Fig. 1.

:
1)
:::

for
::::::::::::::
August-September

:::::
2013.

:
The prior

anthropogenic emissions are from the EPA national inventory for 2012 (EPA, 2016; Maasakkers et al., 2016) and the prior wetland emissions

are the means of the WetCHARTs extended ensemble (Bloom et al., 2017). Error bars (one standard deviation) on sectoral emissions are

from the prior and posterior error variances of our inversion.
::::::
Methane

::::::::
emissions

::
in

:::
the

::::::::
subdomain

::::
with

:::::::
averaging

:::::
kernel

:::::::::
sensitivities

:::::
larger

:::
than

::::
0.05

:::::
(Figure

::
1)
:::
are

:::
also

::::::::
indicated.
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Figure 6. Range of wetland emission estimates for
:
in

:
the Southeast US (domain of Figure 1) .

::
for

::::::::::::::
August-September

::::
2013. The figure shows

the spread of the WetCHARTs extended ensemble and compares with the posterior emission estimate from our inversion in terms of emission

total and root-mean-square error (RMSE) on the 0.25◦ × 0.3125◦ spatial grid.
:::
The

:::::
RMSE

::
of

:::
the

:::::::
posterior

:::::::
emission

::::::
estimate

::::
with

::::
itself

::
is

:::
zero

::
by

::::::::
definition.

:
WetCHARTs ensemble members use wetland areal extent data from either the GLOBCOVER (Bontemps et al., 2011)

or GLWD (Lehner and Dölla, 2004) databases, as well as different estimates of temperature sensitivity q10 and global scaling factors s (see

equation (5) and text). The posterior wetland emission estimate from our inversion is shown as dashed line
::::
black

::::
solid

:::::::
diamond with

::
its

:::::::
associated

:
error standard deviationshaded. The mean of the WetCHARTs ensemble used as prior for our inversion is shown as blue solid

circle with its associated error standard deviation.
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