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Abstract 11 

 The aerosol asymmetry factor (g) is one of the most important factors for assessing direct aerosol 12 

radiative forcing. However, little attention has been paid to the measurements and parameterization of 13 

g. In this study, the characteristics of g are studied based on field measurements over the North China 14 

Plain by using the Mie scattering theory. The results show that calculated g values for the dry aerosol 15 

can vary over a wide range (between 0.54 and 0.67). When ambient relative humidity (RH) reaches 16 

90%, g is significantly enhanced by a factor of 1.2 due to aerosol hygroscopic growth. For the first 17 

time, a novel method to calculate g based on measurements from the humidified nephelometer system 18 

is proposed. This method can constrain the uncertainty of g within 2.56% for dry aerosol populations 19 

and 4.02% for ambient aerosols, where the aerosol hygroscopic growth has been taken into account. 20 

Sensitivity studies show that aerosol hygroscopicity plays a vital role in the accuracy of predicting g.  21 

1 Introduction 22 

In addition to aerosol optical depth and aerosol single-scattering albedo, the aerosol phase function 23 

is the most important factor for assessing direct aerosol radiative forcing (DARF) (Andrews et al., 24 

2006;Russell et al., 1997). The Henyey-Greenstein phase function (PFHG) is a widely used method to 25 

parameterize the phase function (Toublanc, 1996;Boucher, 1998;Pandey and Chakrabarty, 2016) 26 

because it uses the aerosol asymmetry factor (g) as the only free parameter. The PFHG is expressed as 27 

𝑃𝐹𝐻𝐺 (𝜃) =
1−𝑔2

(1+𝑔2−2𝑔𝑐𝑜𝑠𝜃 )3/2
, (1) 28 

where 𝜃 is the angle between the incident light direction and the scattered light direction. In this 29 
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respect, the free parameter g can reflect the angular aerosol scattering energy distribution.  30 

g is defined as: 31 

g =
1

2
∫ cos𝜃𝑃(𝜃) sin(𝜃)𝑑𝜃
𝜋

0
, (2) 32 

where P(θ) is the normalized scattering phase function. As a result, g can be a computationally 33 

efficient parameter to replace the phase function in the study of aerosol radiative transfer properties 34 

(Toublanc, 1996;Hansen, 1969;Boucher, 1998). This replacement proves to be useful and has been 35 

widely accepted in previous researches (Hansen, 1969;Wiscombe and Grams, 1976;Sagan and Pollack, 36 

1967;Andrews et al., 2006) but significant bias may arise in g-related PFHG when estimating 37 

photo-dissociation rates (Toublanc, 1996) and aerosol radiative forcing effects (Boucher, 1998). Up to 38 

now, there have been few studies that have assessed the deviation when replacing the ambient phase 39 

function with the g-related PFHG (Pandey and Chakrabarty, 2016;Boucher, 1998;Wiscombe and Grams, 40 

1976) and there is no study that uses field measurements of aerosol optical properties to estimate the 41 

bias. Moreover, variations in g can influence the evolution of the atmospheric vertical structure 42 

through its effects on the atmospheric radiative distribution. Kudo et al. (2016) also found that the 43 

vertical profile of the asymmetry factor plays an important role in altering vertical variations in the 44 

solar heating rate. Marshall et al. (1995) reported that a 10% overestimation of g can systematically 45 

reduce aerosol climatic forcing by 12% or more. Andrews et al. (2006) found that a 10% reduction in g 46 

would result in a 19% overestimation of atmosphere radiative forcing at the top of atmosphere (TOA). 47 

An accurate estimation of g can greatly help improve the assessment of the aerosol radiative effect. 48 

There are several methods available to derive the g of aerosol particles under the dry and ambient 49 

condition respectively. Horvath et al. (2016) measured the phase function of aerosols, calculated the g 50 

of aerosols, and found that the g-related PFHG can be used as a good approximation of the measured 51 

phase function. Many works used the Mie model (Bohren and Huffman, 2007) to calculate the phase 52 

function and proved its reliability (Andrews et al., 2006;Marshall et al., 1995;Shettle and Fenn, 53 

1979;Bian et al., 2017). Comprehensive attempts have been made to relate g with the hemispheric 54 

backscatter fraction (b). The value of b is the ratio of light scattered into the backward hemisphere 55 

compared to total light scattered in all directions (Wiscombe and Grams, 1976;Andrews et al., 56 

2006;Horvath et al., 2016), with the definition of  57 
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b =
∫ 𝑃(𝜃)∙𝑠𝑖𝑛𝜃∙𝑑𝜃
𝜋
𝜋
2

∫ 𝑃(𝜃)∙𝑠𝑖𝑛𝜃∙𝑑𝜃
𝜋
0

. (3) 58 

The main advantage of the backscatter ratio is that it can be measured with an integrating 59 

nephelometer equipped with a backscatter shutter (Charlson et al., 1974). 60 

 The free parameter g varies significantly for different aerosol types and different seasons. In 61 

previous study, the g values are studied mainly by using the Mie scattering theory and the measured 62 

aerosol particle numbers size distribution (PNSD). D'Almeida et al. (1991) suggested that g at a 63 

wavelength of 500 nm ranges from 0.64 to 0.83 depending on the aerosol type and season. A mean 64 

value of 0.67 at an ambient relative humidity (RH) was also recommended (D'Almeida et al., 1991). 65 

Hartley and Hobbs (2001) reported a median g value of 0.7 for aerosols along the east coast of the 66 

United States. Formenti et al. (2000) measured Saharan dust aerosol and found that the aerosol g 67 

values ranged from 0.72-0.73. Biomass burning aerosols in Brazil had a low g value of 0.54 (Ross et 68 

al., 1998). 69 

Some works have studied the impacts of aerosol hygroscopic growth on the parameter g (Hartley 70 

and Hobbs, 2001;Kuang et al., 2015;Andrews et al., 2006) and found that variations in g with RH can 71 

have significant influences on aerosol radiative effects (Kuang et al., 2015;Kuang et al., 2016;Andrews 72 

et al., 2006). A parameterization scheme of g, that takes RH and aerosol hygroscopic growth into 73 

account, is necessary. 74 

 When exposed to the ambient atmosphere, aerosols can grow by taking up water, which causes 75 

their corresponding optical properties to change considerably. The -Köhler theory (Petters and 76 

Kreidenweis, 2007) is widely used to describe the hygroscopic growth of aerosol particles by using a 77 

single aerosol hygroscopic growth parameter () and the -Köhler equation, which is shown as  78 

𝑅𝐻

100
=

𝑔𝑓3−1

𝑔𝑓3−(1−)
∙ exp(

4𝜎𝑠 /𝑎𝑀𝑤𝑎𝑡𝑒𝑟

𝑅∙𝑇∙𝐷𝑑 ∙𝑔𝑓∙𝜌𝑤
), (4) 79 

where Dd is the dry particle diameter; gf(RH) is the aerosol growth factor, defined as the ratio of the 80 

aerosol diameter at a given RH to the dry aerosol diameter (𝐷𝑅𝐻/𝐷𝑑); T is the temperature; σs/a is the 81 

surface tension of the solution; 𝑀𝑤𝑎𝑡𝑒𝑟  is the molecular weight of water; R is the universal gas 82 

constant and ρw is the density of water. The aerosol hygroscopic growth parameter  can be further 83 

used to investigate the influence of aerosol hygroscopic growth on aerosol optical properties (Tao et al., 84 

2014;Kuang et al., 2015;Zhao et al., 2017) and aerosol liquids water contents (Bian et al., 2014). 85 
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According to the Mie theory, g is associated with aerosol particle number size distribution, the 86 

particle complex refractive index, the aerosol mixing state and ambient RH. At the same time, the 87 

aerosol morphology has significant influence on g. Datasets from the humidified nephelometer system 88 

can partially account for all of these factors. The humidified nephelometer system consists of two 89 

parallel nephelometers, one of which measures dry aerosol scattering properties and the other measures 90 

aerosol scattering properties under well-controlled RH conditions. This system can give the light 91 

scattering enhancement factor (fRH), which is defined as fRH()= σsca()/σsca(), or the ratio of the aerosol 92 

scattering coefficient under given RH conditions to that under dry conditions. Each nephelometer can 93 

provide a scattering coefficient (σsca) and back-scattering coefficient (βsca) at three wavelengths (450, 94 

525 and 635nm). σsca can be used to calculate the aerosol scattering Ångstrom index, which reflects the 95 

aerosol PNSD to some extent. In general, a larger value for the Ångstrom index always corresponds to 96 

a smaller predominant aerosol size. Variations in βsca and σsca can be used to deduce the aerosol BC 97 

mixing state (Ma et al., 2012). At the same time, datasets from the humidified nephelometer system 98 

can also be used alone to measure the aerosol hygroscopicity and provide an overall hygroscopic 99 

parameter  (Kuang et al., 2017). In conclusion, measurements from the humidified nephelometer 100 

system might be used for estimating g under the given RH conditions. However, there is no clear 101 

relationship between the measured datasets from the humidified nephelometer and g. The non- linear 102 

influence of the above listed factors on g makes it difficult to parameterize the g. 103 

Random forest machine learning model is a powerful technique that can be used for classification 104 

and non- linear regression (Huttunen et al., 2016;Breiman, 2001;Hu et al., 2017). This model is a 105 

widely used nonparametric machine learning algorithm that has several strengths. First, it involves 106 

fewer assumptions regarding the dependence between observations and outcomes when compared with 107 

traditional parametric regression models. Second, strict relationships among variables are not needed 108 

before implementing the random forest model. Third, this learning model requires much less 109 

computing resource than deep learning. Finally, this model has very low risk of over fitting by 110 

averaging over an ensemble of decision trees. Thus, the random forest machine learning model is used 111 

in this work to study the calculation of g based on the datasets of the humidified nephelometer system. 112 

In this study, the Mie scattering theory and field measurements over the North China Plain (NCP) 113 

are used to study the characteristics of g. Section 2 describes the related datasets used in this study. 114 

Details of the study on the characteristics of g and impacts of aerosol hygroscopic growth on g are 115 
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shown in section 3.1. A new method, which is based on a random forest machine learning model, is 116 

introduced to calculate g in section 3.2. We also discuss the impacts of g variations on the uncertainties 117 

of DARF in section 3.3, and the corresponding results are presented in section 4.3. Section 4.1 gives 118 

the calculated characteristics of g and section 4.2 proves the feasibility of using the machine learning 119 

model to calculate g. At the same time, this method is validated by the ambient aerosol phase function 120 

measured with a charge-coupled device - laser aerosol detective system (CCD-LADS). Conclusions are 121 

in section 5. 122 

2. Instruments and datasets 123 

Datasets used in this study come from three field campaigns, which were conducted at three 124 

different sites in the NCP. These three field measurements were conducted at Gucheng in Hebei 125 

Province (Gucheng, 39°09’ N, 115°44’ E) from 15 October to 25 November in 2016, the AERONET 126 

BEIJING_PKU station in Beijing (PKU, 39°59’ N, 116°18’ E) from 21 March to 10 April in 2017, and 127 

the Yanqi Campus of the University of Chinese Academy of Sciences (UCAS, 40°24’ N, 116°40’ E) in 128 

the Huairou district, Beijing from 3 January to 27 January in 2016. Details of these locations are 129 

shown in Fig. S1. The PKU station is located at the northwest of Beijing, between the 4th and 5th ring 130 

road. It is 11km from the center of the Megacity Beijing, which is adjacent to Hebei Province and the 131 

megacity Tianjin. In the above three cities, the industrial manufacturing has led to heavy air pollution. 132 

Datasets for this location are representative of urban aerosols in the NCP. Gucheng is located between 133 

two megacities (120 km from Beijing and 190 km from Shijiazhuang) of NCP and the pollution 134 

conditions of Gucheng can be a good representation of the continental background in the NCP. Details 135 

for the Gucheng station can be found at Kuang et al. (2017). The UCAS station is 60 km away from 136 

the center of Beijing and is at the edge of the NCP, which makes it suitable for measuring the regional 137 

pollution properties of the NCP (Ma et al., 2016). More details of the measurement sites are available 138 

in section 1 of the supplementary materials. 139 

Table 1 lists the information for the field campaigns and the datasets used in this study. During the 140 

campaigns, sampled aerosols that had an aerodynamic diameter of less than 10 µm are selected by an 141 

impactor (Mesa Labs, Model SSI2.5) at the inlet. These aerosols are then dried to below 30% RH with 142 

a Nafion drying tube and then lead to each instrument. Aerosol PNSDs ranging from 3 nm to 10 µm 143 

are measured by using the scanning mobility particle size spectrometer (SMPS, TSI Inc., model 3936) 144 

and an aerodynamic particle sizer (APS, TSI Inc., model 3321) with a temporal resolution of 5 min. 145 
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Black carbon (BC) mass concentrations are measured by a multi-angle absorption photometer (MAAP 146 

model 5012, Thermo, Inc., Waltham, MA USA) at UCAS and by an Aethalometer 33 (Hansen et al., 147 

1984;Drinovec et al., 2015) at PKU and Gucheng. The aerosol σsca at wavelengths of 450 nm, 525 nm 148 

and 635 nm is measured by an Aurora 3000 nephelometer and the corresponding values are recorded 149 

every minute (Müller et al., 2011).  150 

The fRH is measured by a self-constructed humidified nephelometer system. In this system, a 151 

humidifier is used to control the RH of the sample aerosol and σsca is measured for each of the 152 

controlled RH. The sample aerosol is humidified through a Gore-Tex tube, which is surrounded by a 153 

circulating water layer in a stainless steel tube. The RH is changed by changing the temperature of the 154 

circulating water, which is controlled by the water bath and software. For each cycle, the RH points are 155 

set to range from about 50% to about 90% over 45 minutes. For most of the cases, the aerosol PNSDs 156 

are consistent over the cycle. These cycles of fRH values are abandoned when the measured maximum 157 

and the minimum σsca value are beyond the range of 1.4 and 0.6 times of the mean measured scattering 158 

coefficient of each cycle. The detail information of the humidified nephelometer is described by Kuang 159 

et al. (2017). 160 

Ambient aerosol phase function with a time resolution of 5 minutes is measured at UCAS by using 161 

a CCD-LADS. This system consists of a continuous laser, two charge-coupled device cameras and the 162 

corresponding fish eye lenses. The wavelength of the laser is 532nm and a quarter-wave plate was 163 

mounted in front of the laser emitter to change the polarization state of the laser from linear to circular. 164 

The CCD-LADS can measure the ambient aerosol phase function at a wide angular range of 10-170° 165 

with a high resolution of 0.1°. More details of the measurement system can be found at Bian et al. 166 

(2017). 167 

3. Methodology 168 

3.1 Calculating characteristics of g based on the Mie scattering theory (𝐠𝑴𝒊𝒆) 169 

 The Mie model (Bohren and Huffman, 2007) is applied to calculate the characteristics of g𝑀𝑖𝑒. 170 

When running the Mie model, aerosol PNSD, aerosol complex refractive index, BC mixing state and 171 

BC mass concentration are essential. Its results include aerosol phase function, and g𝑀𝑖𝑒 can be 172 

calculated by the definition shown in formula 2.  173 

Mixing states of the BC come from the measurements of the field measurements. From the work 174 

of Ma et al. (2012), the mixing states of BC in the NCP were presented as both core-shell mixed and 175 
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externally mixed. Ma et al. (2012) provides the ratio of BC mass concentrations under an externally 176 

mixed state, Mext_BC, to total BC mass concentration, MBC，as follows: 177 

r𝑒𝑥𝑡_𝐵𝐶 =
𝑀𝑒𝑥𝑡_𝐵𝐶

𝑀𝐵𝐶
. (5) 178 

The mean value of rext_BC=0.51 (Ma et al., 2012) is used in this study. The size-resolved 179 

distribution of BC mass concentration is the same as that used by Ma et al. (2012). The -Köhler 180 

theory and the Mie scattering model are employed to calculate g𝑀𝑖𝑒under different RH conditions. 181 

When the aerosol grows by taking up water, the BC is treated as a non-hygroscopic and insoluble core. 182 

The real time value , which is derived from the measurement of fRH, is used to account for aerosol 183 

hygroscopic growth. For each RH value, the growth factor can be calculated based on formula 4. The 184 

corresponding ambient aerosol PNSD at a given RH can be determined too by applying the  and 185 

formula 4. The refractive index (�̃�), which accounts for water content in the particle, is derived as a 186 

volume mixture between the dry aerosol and water (Wex et al., 2002a):  187 

�̃� = 𝑓𝑉,𝑑𝑟𝑦 �̃�𝑎𝑒𝑟𝑜,𝑑𝑟𝑦 + (1 − 𝑓𝑉,𝑑𝑟𝑦 )�̃�𝑤𝑎𝑡𝑒𝑟, (6) 188 

where fv,dry is the ratio of the dry aerosol volume to the total aerosol volume under a given RH 189 

condition;�̃�𝑎𝑒𝑟𝑜,𝑑𝑟𝑦  is the refractive index for dry ambient aerosols and �̃�𝑤𝑎𝑡𝑒𝑟 is the refractive 190 

index of water.  191 

The refractive indices of BC, non- light-absorbing aerosols and water, which are used in this study, 192 

are 1.8+0.54i (Kuang et al., 2015), 1.53+10-7i (Wex et al., 2002b) and 1.33+10-7 i, respectively. Then, 193 

the corresponding g values under the given RH and PNSD can also be calculated. More details on 194 

using the Mie model to calculate the aerosol phase function for different RH conditions can be found 195 

in Zhao et al. (2017). 196 

3.2 Calculating g by using the random forest machine learning model (𝒈𝑴𝑳) 197 

 In this study, the random forest machine learning model from the Scikit-Learn machine learning 198 

library (Hu et al., 2017;Pedregosa, 2011) was used to calculate g. The random forest model has two 199 

parameters: the number of input variables (npre) and the number of trees grown (ntree). In this study, the 200 

npre and ntree are determined by minimize the relative difference of the gML and gMie. Details of 201 

choosing the values of npre and ntree are shown in section 2 of the supplementary. The npre and ntree are 202 

set as eight and thirty-two in this study, respectively. The eight input parameters include the three dry 203 

scattering coefficients, three dry backscattering coefficients, RH and .  204 
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The measured datasets are divided into two parts: one as the training data for the random forest 205 

model, and the other as the testing data. All training datasets come from field measurements at 206 

Gucheng station, whereas the datasets from PKU are employed to test the accuracy of the model. With 207 

split datasets from different sites, the feasibility of the random forest model in the NCP can be 208 

guaranteed. Before calculating g𝑀𝑖𝑒, we compare the measured σsca from the dry nephelometer and 209 

calculate σsca from the Mie scattering model. These data, where the relative difference between the 210 

measured and calculated σsca is within 30%, are used for the following analyses. With this, the 211 

inaccuracy form the measurement of the instruments can be avoided to some extent. More details 212 

regarding the used data are shown in section 3 of the supplementary material. 213 

To further avoid the uncertainties of the measurements when training the random forest machine 214 

learning model, both the required input parameters and the predictors, g values, come from the 215 

calculation of the Mie scattering model using the measurement of the aerosol PNSD and BC from the 216 

field campaign of Gucheng. For each measured PSND and BC, the corresponding σsca and sca under 217 

dry condition at the wavelength of 450nm, 525nm and 635nm are modeled based on the Mie theory. 218 

With the concurrently measured values from the humidified nephelometer, the gMie values under 219 

different RH can be determined too. Then the modeled σsca, sca under dry condition, the values and 220 

the RH are used as the input data for the model and the corresponding gMie values are used as the 221 

prediction data. 222 

3.3 Aerosol DARF estimations 223 

 The earth-atmosphere systems can be significantly influenced by aerosols through the scattering 224 

and absorption of the energy. In this study, the Santa Barbara DISORT (discrete ordinates radiative 225 

transfer) Atmospheric Radiative Transfer (SBDART) model (Ricchiazzi et al., 1998) is employed to 226 

estimate the DARF. The characteristics of DARF with the variations in g are studied. 227 

The instantaneous DARF is calculated at the TOA for cloud-free conditions. DARF is defined as 228 

the difference between radiative flux at the TOA under present aerosol conditions and aerosol- free 229 

conditions: 230 

DARF = (𝑓𝑎 ↓ −𝑓𝑎 ↑)− (𝑓𝑚 ↓ −𝑓𝑚 ↑), (7) 231 

where (𝑓𝑎 ↓ −𝑓𝑎 ↑) is the downward radiative irradiance flux with given aerosol distributions and 232 

(𝑓𝑚 ↓ −𝑓𝑚 ↑) is the radiative irradiance flux under aerosol free conditions. The DARF at 50km is 233 

calculated because almost all of the aerosols are distributed within the height of 50 km in the 234 
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parameterization scheme (Liu et al., 2009). The wavelengths in the range from 0.25 to 4 µm are 235 

calculated for irradiance in this study.  236 

 Input data for the SBDART are listed below. Vertical profiles of the aerosol optical properties, 237 

which include the aerosol extinction coefficient (σext), aerosol single scattering albedo (SSA) and g. 238 

They all have a vertical resolution of 50 m and come from the results of the Mie scattering and the 239 

parameterized aerosol vertical distributions. Methods for parameterization and calculation of the 240 

aerosol optical profiles can be found in section 4 of supplementary material or refer to Kuang et al. 241 

(2016) and Zhao et al. (2017). Atmospheric meteorological parameter profiles come from the results of 242 

the intensive radiosonde observations at the Meteorological Bureau of Beijing (39°48’ N, 116°28’ E) 243 

at the local time of 13:30 from July to September in 2008. Kuang et al. (2016) studied these measured 244 

profiles and found that the vertical distributions of these parameters, which include profiles for water 245 

vapor, pressure and temperature, can be used as a good representation of the meteorological parameter 246 

profiles in the NCP during the summer. The corresponding measured mean results during field 247 

measurement are used in this study and the details of these profiles are shown in section 4 of the 248 

supplementary material. Surface albedo values are obtained from the Moderate Resolution Imaging 249 

Spectroradiometer (MODIS) V005 Climate Modeling Grid (CMG) Albedo Product (MCD43C3). The 250 

mean results of the surface albedo of Beijing from July to September in 2008 are used. The remaining 251 

input data for the SBDART are set to their default values (Ricchiazzi et al., 1998). 252 

4 Results and Discussion 253 

4.1 Characteristics of 𝐠𝑴𝒊𝒆 254 

4.1.1 Characteristics of 𝐠𝑴𝒊𝒆 at different sites 255 

 Fig. 1 gives the statistical results for the calculated g properties at Gucheng, PKU and UCAS. The 256 

RH at the three sites shows almost the same diurnal variation pattern in Fig. 1 (a) (b) and (c). The RH 257 

reaches a peak in the morning at approximately 6:00 am, and then reaches its lowest value at 258 

approximately 16:00 in the afternoon. However, the mean values of RH are 77.7%±20.9% at Gucheng, 259 

47.8%±20.8% at PKU and 33.49±15.22% at UCAS. The g𝑀𝑖𝑒 values under dry conditions that are 260 

calculated by the measured PNSD have almost no diurnal patterns. The g𝑀𝑖𝑒  values at PKU 261 

(0.614±0.025) are slightly lower than those at Gucheng (0.601±0.021) and UCAS (0.595±0.023) as 262 

shown in Fig. 1 (d), (e) and (f). The difference in g𝑀𝑖𝑒values results from different aerosol properties 263 

at these sites. From fig. S6, the peak diameter of the mean and median PNSD at Gucheng locates 264 
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around 150nm. However, the peak diameter of the mean and median PNSD at PKU locates at around 265 

100nm. The peak values of the mean and median diameter of the aerosol PNSD at UCAS locates at 266 

around 60nm. At the same time, there are large partitions of small particles that are lower than 60nm at 267 

PKU and UCAS. However, these particles, which are lower than 100nm, contribute little to the total 268 

aerosol scattering. The aerosol PNSD at PKU is more dispersed than that of the Gucheng and UCAS, 269 

which corresponds to a larger variation in the g values. From fig. S6 (h), (i) and (j), the size 270 

distribution of the aerosol scatter coefficient at around 500nm contributes less to the scatter coefficient 271 

at PKU than at that of the Gucheng and UCAS. Thus these particles with the diameter larger than 272 

500nm contribute more to the aerosol scattering coefficient. As g𝑀𝑖𝑒  increase with the aerosol 273 

diameter, the aerosol g𝑀𝑖𝑒 under dry conditions at PKU tends to be larger than that at Gucheng and 274 

UCAS.  275 

However, ambient g𝑀𝑖𝑒 values have different patterns at different sites, as shown in Fig. 1 (h), (i) 276 

and (j). The g𝑀𝑖𝑒 values have an RH-related diurnal pattern at Gucheng, with a mean value of 277 

0.668±0.073, but show no diurnal variation at PKU and UCAS, where the mean values ofg𝑀𝑖𝑒 are 278 

0.639±0.049 and 0.618±0.033, respectively. The variations of ambient gMie values are mainly resulted 279 

from the variation of the aerosol hygroscopic growth under the ambient condition, which is highly 280 

related to the ambient RH. The g𝑀𝑖𝑒 value is significantly influenced by RH when the RH is higher 281 

than 80%, which will be detailed in section 4.1.2. Ambient g𝑀𝑖𝑒 values at Gucheng, PKU and 282 

UCAS can vary from 0.57 to 0.8, 0.55 to 0.76 and 0.56 to 0.72 respectively, comparable to those of 283 

Andrews et al. (2006), which range from 0.59 to 0.72.  284 

4.1.2 Influence of RH on g 285 

 To assess the influence of RH on g, the g𝑀𝑖𝑒 values are calculated under different RH conditions 286 

for each aerosol PNSD. The statistical results of g𝑀𝑖𝑒 versus RH are shown in Fig. 2. The g𝑀𝑖𝑒 value 287 

has a wide variation range between 0.54 and 0.67 with the mean value located at 0.61 under dry 288 

conditions. However, the mean g𝑀𝑖𝑒 value can change from 0.65 to 0.8 when the RH reaches 90%. 289 

The g𝑀𝑖𝑒 enhancement factor, which is defined as the ratio of g𝑀𝑖𝑒 at a given RH and g𝑀𝑖𝑒 under 290 

dry conditions, can reach a mean value of 1.2 at an RH of 90%, which means that the g𝑀𝑖𝑒 value 291 

under wet conditions is approximately 20% higher than that under the dry conditions. This finding is 292 

consistent with that of Hartley and Hobbs (2001), who found that g is highly related to the RH.  293 
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 Contrary to RH, the aerosol complex refractive index has little influence on g and the uncertainties 294 

for g are less than 0.004 based on the Monte Carlo simulation of the g at different complex refractive 295 

index values. More details of discussing the influence of aerosol complex refractive index on g can be 296 

referred to insection 6 of the supplementary materials. 297 

4.2 Calculating 𝐠𝑴𝑳 by using the machine learning model 298 

4.2.1 Feasibility of using the random forest model 299 

 We establish two independent random forest machine learning models to predict g𝑀𝐿 values 300 

under dry conditions and under ambient RH conditions separately.  301 

 When the random forest machine learning model are run for g values under dry conditions, σsca 302 

and βsca at three different wavelengths, are used as the input for independent variables. The other two 303 

input parameters, RH and , are set equal to zero. The predictor g values come from the results of the 304 

Mie scattering model. Fig. 3(a) shows the calculated g𝑀𝑖𝑒 values and predicted g𝑀𝐿 values by the 305 

random forest machine learning model under dry conditions at the site of PKU. The results show that 306 

the g𝑀𝑖𝑒values and g𝑀𝐿 values have good consistency with an R2 value of 0.98. There are 95% of 307 

the cases that the relative difference between gMie and gML are within the relative differences of 2.56%. 308 

Fig. 3(b) shows the comparison of the predicted g𝑀𝐿 values under different RH conditions and 309 

g𝑀𝑖𝑒 values calculated by the Mie scattering model. The correlation coefficient between gMie and gML 310 

reaches 0.93 and 95% of the relative differences are within 4.02%. The random forest model can be a 311 

good method to predict g values under different RH conditions with high accuracy and the 312 

uncertainties of predicting g values using the random forest machine learning model is estimated to be 313 

4.02%. 314 

The filled colors of the dots in Fig. 3 represent the concurrently measured σsca. It is shown that 315 

with an increase in σsca, g values tend to be larger, which is in accordance with the particle scattering 316 

properties. When a particle has larger diameters, the σsca of the particle is higher, and there tends to be 317 

a larger partition of forward scattering light. 318 

 Wiscombe and Grams (1976) studied the relationship between b and g and gave the expression 319 

between them as follows: 320 

g = −7.143889 ∙ b3 +7.464439 ∙ b2 − 3.96356 ∙ b + 0.9893 (8). 321 

This equation is widely used to calculate g from b (Andrews et al., 2006;Horvath et al., 322 

2016;Kassianov et al., 2007). We use the field measurement results to test its reliability. The 323 
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comparison results between calculated g values from the Mie scattering model and parameterized g 324 

values from equation 6 are shown in Fig.S9. From fig.S9, we can see that the parameterized g values 325 

are prevalently larger than the calculated g values by approximately 10%. When the σsca is smaller, the 326 

deviations become larger. Some other empirical relationships between b and g (Moosmüller and Ogren, 327 

2017) are also tested. These parameterization scheme has almost the same result as Wiscombe and 328 

Grams (1976). This result means that the previously established parameterization scheme is not 329 

applicable in the NCP 330 

4.2.2 Sensitivity of the random forest model 331 

 Sensitivity studies are carried out to assess the influence of each input variable on g𝑀𝐿. Based on 332 

the works of Müller et al. (2011), the uncertainties in total scattering are 4% (450nm), 2% (525nm), 5% 333 

(635nm) for experiments with ambient air and laboratory generated white particles. For backscattering, 334 

the differences are higher and amount 7% (450nm), 3% (525nm) and 11% (635nm). The uncertainties 335 

of the measured RH by the RH sensors is 1.7% for RH ranges from 0 to 90%(Kuang et al., 2017) and 336 

the uncertainties of the derived  values is 6% (Kuang et al., 2017). The Monte Carlo simulations are 337 

conducted to study the sensitivities of the gML to the input parameters in three steps. First, the mean 338 

results of the measured dry σsca, dry βsca, RH and values are used to predict the g value. Second, the 339 

dry σsca at 450 nm are randomly changed with a mean value of 0 and standard deviation of 4% and the 340 

other input are kept unchanged as the input. The corresponding standard deviation of the predicted g 341 

value is used as the sensitivities of the gML to the σsca at 450nm. At last, the sensitivities are carried out 342 

accordingly for each of the input parameter. The uncertainties of gML values to the input parameters are 343 

estimated. The total uncertainties of predicting g RH are derived when all of the input parameters are 344 

randomly changed with their corresponding uncertainties. For each test, the Monte Carlo simulations 345 

are carried out for 20000 times. 346 

 Table 2 gives the two time of the standard deviation of the gML values corresponding to the 347 

uncertainties of the input parameters. Form table 2, it is shown that the uncertainties of measured σsca 348 

has little influence of the gML with 0.487%, 0.492% and 0.486% for wavelength of 450nm, 525nm and 349 

635nm respectively. However, the measurement of the three βsca have larger uncertainties and lead to 350 

greater influence on predicting gML with 0.651%, 0.486% and 0.710%. The uncertainty of the RH has 351 

little influence on predicting gML with 0.487%. However, the uncertainty of derived values (6%) 352 

influence the g values most with 1.92%. The total uncertainties of predicting g due to the uncertainties 353 
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of the measurment is 1.95%. All in all, the total uncerntaities of predicting the gML is estimated to be 354 

4.47% considering the 4.02% uncertainties of the random forest machine learning model from section 355 

4.2.1. 356 

4.2.3 Validation of the random forest machine learning model 357 

 Datasets of the UCAS campaign are also used to validate the random forest machine learning 358 

model. On one hand, the g𝑀𝐿 values are calculated by using the random forest machine learning 359 

model with the measurements of the humidified nephelometer. On the other hand, ambient g values are 360 

calculated by using the measured phase function from the CCD-LADS g𝐶𝐶𝐷 according to the 361 

definition shown in formula 2. Then the g values calculated with the two methods are compared. 362 

Comparison results of these two kinds of g values are shown in fig. 4. Form fig.4, the values of 363 

g𝑀𝐿 and g𝐶𝐶𝐷 show good consistence. There are 95% of the conditions that the relative differences 364 

between the g𝑀𝐿 and g𝐶𝐶𝐷 are in the range of 6.5% which is a little higher than the relative 365 

difference of the g values (4.02%) between machine learning method and the Mie scattering method. 366 

During the period, the σsca range from 30 to 260 Mm-1 which lead to cleaner conditions in UCAS than 367 

in Gucheng and PKU. Correspondingly, most of the g𝑀𝑖𝑒 values are small and locate at the range of 368 

0.54 to 0.62 which are obviously lower than those in other campaigns. At the same time, the 369 

surrounding condition at UCAS during the winter is relative dry, which results to small g values. These 370 

conditions may partially explain the relatively higher difference between the g𝑀𝐿 and g𝐶𝐶𝐷. With this 371 

validation, we conclude that the random forest machine learning model can give a reasonable g value 372 

based on the measurements of the humidified nephelometer system. 373 

4.3 Estimating the impacts of g on DARF 374 

4.3.1 Uncertainties of replacing the calculated phase function with the PFHG 375 

 When the PFHG is used to parameterize the calculated phase function by using the Mie theory 376 

(PFMie), there are some deviations and the influence of these deviations should be estimated. The 377 

relative difference between the DARF from the PFMie and from the PFHG is used to estimate 378 

uncertainties when using the PFHG. First, the PFMie profiles are used as inputs to estimate DARFs. The 379 

PFMie is then replaced with the g-related PFHG which is parameterized by g𝑀𝑖𝑒 from the PFMie, and the 380 

DARFs are calculated again. These relative differences between the DARFs from the above two steps 381 

are recorded and compared. The relative differences at different zenith angle conditions are calculated 382 

to comprehensively estimate the influence of the PFHG. 383 
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 Fig.5 shows the estimated DARFs at different zenith angles. In Fig. 5(a), DARF at the TOA can 384 

vary from -2.55 to -4.8 w/m2. When the PFMie is replaced by the PFHG, the calculated DARF ranges 385 

from -2.6 to -5.1 w/m2. The relative difference of the DARFs between the two methods ranges from 386 

1.3% to 7.1%, as shown in Fig. 5(b). It is concluded that using the g-related PFHG to replace the PFMie 387 

to estimate aerosol radiative effects is applicable in the NCP, with a deviation of less than 7%. 388 

4.3.2 Impacts of g variations on DARF estimation 389 

 Variations in g can lead to significant changes in the estimated DARF (Kuang et al., 390 

2016;Andrews et al., 2006;Mccomiskey et al., 2008). In this study, the uncertainties of the g values 391 

from the input parameter is estimated to be 1.95% and the total variation in running the random forest 392 

machine learning model is estimated to be 4.47%. At the same time, the g can varies about 10% for 393 

different aerosol PNSD and can be enhanced by 20% with the increment of RH from 30% to 90%. It is 394 

very important to know the extent of the variation in DARF corresponding to the uncertainties from g. 395 

The variation in DARF from the uncertainties of g is calculated by increasing or decreasing g by 396 

1.95%, 4.47%, and 10% to the original g values, and then comparing the corresponding DARFs with 397 

the original ones. To study the influence of RH on g and DARF, the DARF with the g values 398 

calculated from the dry parameterized aerosol population profile, is estimated. 399 

Fig. 6 shows the estimated DARFs with different variation in g and the corresponding variations 400 

in the estimated DARF. The results show that when g varies by 1.95%, the DARF can vary 4%. 401 

However, variations of 4.47% and 10% in g values can lead to variations in the estimated DARF with 402 

9.4% and 21%, respectively. 403 

The estimated DARF using the parameterized aerosol profile, which considers the aerosol 404 

hygroscopic growth, is smaller than the DARF using the g profiles from the dry aerosol population. 405 

The g values under dry condition are smaller than that of the wet ambient. Thus, there is larger 406 

partition of energy that is scattered forward which leads to less outgoing backscattering energy and a 407 

larger value of the estimated DARF.  408 

When the DARF are estimated ignoring the impacts of aerosol hygroscopic growth on g, the 409 

relative difference can be as high as 20% for all of the zenith angles. Thus, it is necessary to consider 410 

the aerosol hygroscopic growth when calculating the g values. 411 

5 Conclusions 412 
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 The characteristics of g in the NCP are studied based on the Mie scattering theory and field 413 

measurements from sites of Gucheng and PKU. The results show that g𝑀𝑖𝑒 values are 0.604±0.025 at 414 

Gucheng and 0.615±0.021 at PKU. The ambient g𝑀𝑖𝑒 values at Gucheng show obvious diurnal 415 

variations due to variations in RH. When the ambient RH reaches 90%, g𝑀𝑖𝑒 can be enhanced by 20% 416 

and the g values from different aerosol population can vary 10%. Comparison of the calculated g𝑀𝑖𝑒 417 

values from the Mie scattering model and the parameterized g values from the Wiscombe and Grams 418 

(1976) method shows that the parameterized g is overestimated by approximately 10% and that the 419 

deviations are become larger when the measured σsca is below 200 Mm-1.  420 

The random forest machine learning model and datasets from the humidified nephelometer are 421 

employed to calculate g𝑀𝐿 values. The input data of the random forest model contain measured σsca 422 

and βsca at three wavelengths, RH and the hygroscopic parameter . Except for RH, all input data came 423 

from measurements from the humidified nephelometer system (Kuang et al., 2017). The random forest 424 

model can significantly improve the accuracy ofg𝑀𝐿 prediction. The uncertainties of the predicted 425 

g𝑀𝐿 values are constrained within 2.56% under dry conditions and 4.02% under ambient conditions 426 

and the uncertainties from the measurement of the humidified nephelometer can lead to a variation of 427 

1.95% in g, which is mainly resulted from the inaccuracy of the derived. The total uncertainty of g 428 

calculation using the random forest machine learning model is 4.47%. This is the first time that 429 

machine learning model and datasets from the humidified nephelometer system are combined to study 430 

g. At the same time, this method can accounting for the influence of aerosol hygroscopic growth on g.  431 

This new method for calculating g is validated by comparing the g𝑀𝐿 values from the random 432 

forest machine learning model and the g𝐶𝐶𝐷 values from the measured phase function by using the 433 

CCD-LADS. The g values with this two methods show good consistence with 95% of the data within 434 

the relative difference of 6.5%.  435 

 SBDART model is used to study the impacts of g on DARF. We first studied the relative 436 

differences between the estimated DARFs by using the PFHG and the calculated phase function by 437 

using the Mie theory, the measured mean aerosol PNSD and BC mass concentration at the site of 438 

Gucheng and PKU. The results show that the relative differences in DARF can be contained within 7.1% 439 

when replacing the PFMie with g-related PFHG. The PFHG can be a feasible parameterization scheme to 440 

study DARF in the NCP. 441 
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The sensitivity study shows that the maximum uncertainties of DARF are 4%, 9.4% and 21%, 442 

which correspond to the uncertainties of the g from the instrument measurement, the machine learning 443 

model and the variation of aerosol PNSD. However, when the DARF are estimated ignoring the effects 444 

of aerosol hygroscopic growth on g, the relative differences of the DARF is as large as 20% for all of 445 

the zenith angles. It is necessary to parameterize the g accounting for the effect of aerosol hygroscopic 446 

growth. 447 

This work can further our understanding of the role of g in the aerosol radiative effects and can 448 

help reduce uncertainties in estimating DARF. 449 
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 571 

Table 1. Field information, dataset information and instruments that are used in this study. 572 

Field information Datasets and instruments 

Location Time period PSND BC σsc fRH 

Phase 

function 

Gucheng, Hebei 

(39°09’ N, 115°44’ E) 

15 Oct to 25 

Nov, 2016 

SMP, 

APS 
AE33 

Aurora 

3000 

Humidified 

Nephelometer 
None 

PKU, Beijing 

(39°59’ N, 116°18’ E) 

21 Mar to 10 

Apr, 2017 

SMPS, 

APS 
AE33 

Aurora 

3000 

Humidified 

Nephelometer 
None 

UCAS, Beijing 

(40°24’ N, 116°40’ E) 

3 Jan to 27 

Jan, 2016 

SMPS, 

APS 
MAAP 

Aurora 

3000 

Humidified 

Nephelometer 

CCD- 

LADS 

 573 

  574 
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Table 2. The sensitivities of g to the input parameters. 575 

Parameter σsca,450 σsca,525 σsca,635 βsca,450 βsca,525 βsca,635 RH  total 

Parameter(%)*1 4 2 5 7 3 11 6   

g(%)*2 0.487 0.492 0.486 0.651 0.487 0.710 0.486 1.920 1.950 

*1. The uncertainties of the measured parameters. 576 

*2. The uncertainties of g values due to the uncertainties of the measurement parameters. 577 
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 579 

Figure 1. (a)(b)(c) Average diurnal pattern of RH, (d)(e)(f) g values calculated from dry aerosols, and 580 

(h)(i)(g) g values from ambient aerosols. The panels (a), (d) and (h) are the results from Gucheng. 581 

Panels (b), (e) and (i) are the results from PKU. Panels (c),(f) and (g) are the results of UCAS. The box 582 

and whisker plots represent the 5th, 25th, 75th and 95th percentiles. 583 
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 585 

Figure 2. Probability distributions of g under different RH conditions. The ticks on the left show g 586 

values at different RH values, and the ticks on the right show the g enhancement factor, which is 587 

defined as the ratio of g at a given RH to the g value at dry conditions (RH=30%). The solid line (cyan) 588 

shows the mean result of g values and the enhancement factor at different RH values. 589 
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 591 

 592 

Figure 3. Comparison of calculated g values (gMie) from the Mie model and predicted g values (gML) 593 

from the random forest model under (a) dry conditions and (b) ambient conditions at the site of PKU. 594 

Colored dots represent the concurrently measured σsca corresponding to the time of g.   595 
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Figure 4. Comparison of the calculated g values (gCCD) from the CCD-LADS measured phase function 596 

and the  calculated g values (gML) by using the random forest machine learning model. 597 
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 599 

Figure 5. (a) Estimated DARFs at different zenith angles when using the g-related PFHG (dotted line) 600 

and the phase function calculated by using the Mie scattering theory (solid line). (b) The relative 601 

difference between the DARFs in (a). 602 
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Figure 6. The variation in DARF when g varies by a range of 1.95% (the filled dark color), 10% (grey 605 

color), and 20% (light grey color). Different line styles represent the corresponding mean relative 606 

differences in DARF compared to the original value. 607 


