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Abstract 11 

 The aerosol asymmetry factor (g) is one of the most important factors for assessing direct  aerosol 12 

radiat ive forcing. So far, few studies have focused onHowever, litt le attent ion has been paid to the 13 

measurements and parameterizat ion of g. In this study, tThe characterist ics of g are studied based on 14 

field measurements over the North China Plain by  using the Mie scattering theory. The results show 15 

that  calculated g values for the dry  aerosol can vary  over a wide range (between 0.54 and 0.67). When 16 

ambient  relat ive humidity (RH) reaches 90%, g is significant ly  enhanced by  a factor of 1.2 due to 17 

aerosol hygroscop ic growth of the continental aerosol. For the first  t ime, a novel method to calculate g 18 

based on measurements from the humidified nephelometer system is proposed. This method can 19 

constrain the uncertainty of g within 2.56% for dry aerosol populat ions and 4.02% for ambient 20 

aerosols, where the taking into account  aerosol hygroscop ic growth has been taken into account. 21 

Sensit ivity  studies show that aerosol hygroscop icity is the most  important  factor that influences the 22 

accuracy  of p redicting gp lay s a vital role in the accuracy  of p redicting g.  23 

1 Introduction 24 

In addit ion to aerosol opt ical depth and aerosol single-scattering albedo, the aerosol phase funct ion 25 

is the most  important  factor for assessing direct  aerosol radiat ive forcing (DARF) (Andrews et  al., 26 

2006;Russell et  al., 1997). The Henyey-Greenstein phase funct ion (PFHG) is a widely  used method to 27 

parameterize the phase funct ion (Toublanc, 1996;Boucher, 1998;Pandey and Chakrabarty, 2016) 28 

because it  uses the aerosol asymmetry factor (g) as the only  free parameter. The PFHG is exp ressed as 29 
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𝑃𝐹𝐻𝐺 (𝜃) =
1−𝑔2

(1+𝑔2−2𝑔𝑐𝑜𝑠𝜃)3/2
, (1) 30 

where 𝜃 is the angle between the incident light  direct ion and the scattered light  direct ion. In this 31 

respect, the free parameter g can reflect  the angular aerosol scat tering energy  distribution.  32 

g is defined as: 33 

g =
1

2
∫ cos 𝜃𝑃(𝜃) sin(𝜃) 𝑑𝜃
𝜋

0
, (2) 34 

where P(θ) is the normalized scattering phase funct ion. As a result , g can be a computat ionally 35 

efficient  factor that replacesparameter to replace the phase funct ion to in the study of aerosol radiat ive 36 

transfer propert ies (Toublanc, 1996;Hansen, 1969;Boucher, 1998). This rep lacement proves to be 37 

useful and has been widely  accepted in previous researches Some researchers have widely  accepted the 38 

use of g as a rep lacement  of the phase funct ion (Hansen, 1969;Wiscombe and Grams, 1976;Sagan and 39 

Pollack, 1967;Andrews et al., 2006) but  significant  bias may arise in. However, the g-related PFHG 40 

may  cause significant  bias when est imating photo-dissociat ion rates (Toublanc, 1996) and aerosol 41 

radiat ive forcing effects (Boucher, 1998). Up to now, there have been few studies that  have assessed 42 

the bias deviat ion when rep lacing the ambient  phase funct ion with the g-related PFHG (Pandey  and 43 

Chakrabarty, 2016;Boucher, 1998;Wiscombe and Grams, 1976) and there is no study that uses field 44 

measurements of aerosol opt ical propert ies to est imate the bias. Moreover, variat ions in g can 45 

influence the evolut ion of the atmospheric vert ical structure through its effects on the atmospheric 46 

radiat ive distribut ion. Kudo et al. (2016) also found that the vert ical profile of the asymmetry factor 47 

plays an important role in altering vert ical variat ions in the solar heat ing rate. Marshall et al. (1995) 48 

reported that a 10% overest imation of g can systematically  reduce aerosol climatic forcing by 12% or 49 

more. Andrews et  al. (2006) found that a 10% reduction in g would result in a 19% overest imation of 50 

atmosphere radiat ive forcing at  the top of atmosphere (TOA). An accurate est imation of g can greatly 51 

help  improve the assessment of the aerosol radiat ive effect. 52 

There are many  several methods available to derive the g of aerosol g part icles under for the dry 53 

and ambient  condit ion respect ively . Horvath et  al. (2016) measured the phase funct ion of aerosols, 54 

calculated the g of aerosols, and found that  the g-related PFHG can be used as a good approximation of 55 

the measured phase funct ion. Many works used the Mie model (Bohren and Huffman, 2007) to 56 

calculate the phase funct ion and proved its reliability (Andrews et al., 2006;M arshall et  al., 57 

1995;Shett le and Fenn, 1979;Bian et  al., 2017). Comprehensive attempts have been made to relate g 58 
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with the hemispheric backscatter fract ion (b). The value of b is the rat io of light  scattered into the 59 

backward hemisphere compared to total light  scattered in all direct ions (Wiscombe and Grams, 60 

1976;Andrews et  al., 2006;Horvath et  al., 2016), with the definit ion of  61 

b =
∫ 𝑃(𝜃)∙𝑠𝑖𝑛𝜃∙𝑑𝜃
𝜋
𝜋

2

∫ 𝑃(𝜃)∙𝑠𝑖𝑛𝜃∙𝑑𝜃
𝜋

0

. (3) 62 

The main advantage of the backscatter rat io is that it  can be measured with an integrat ing 63 

nephelometer equipped with a backscat ter shutter (Charlson et  al., 1974). 64 

 The free parameter g varies significant ly  for different  aerosol types and different  seasons. In the 65 

previous study, the g values are studied mainly  by  using the M ie scattering theory and the measured 66 

aerosol part icle numbers size distribut ion (PNSD). D'Almeida et al. (1991) suggested that g at  a 67 

wavelength of 500 nm ranges from 0.64 to 0.83 depending on the aerosol type and season. A mean 68 

value of 0.67 at  an ambient  relat ive humidity (RH) was also recommended (D'Almeida et  al., 1991). 69 

Hart ley and Hobbs (2001) reported a median g value of 0.7 for aerosols along the east coast of the 70 

United States. Formenti et  al. (2000) measured Saharan dust aerosol and found that the aerosol g 71 

values ranged from 0.72-0.73. Biomass burning aerosols in Brazil had a low g value of 0.54 (Ross et 72 

al., 1998). 73 

Some works have studied the impacts of aerosol hygroscopic growth on the parameter g (Hartley 74 

and Hobbs, 2001;Kuang et al., 2015;Andrews et  al., 2006) and found that variat ions in g with RH can 75 

have significant  influences on aerosol radiat ive effects (Kuang et  al., 2015;Kuang et  al., 2016;Andrews 76 

et al., 2006). A parameterizat ion scheme of g, that takes RH and aerosol hygroscopic growth into 77 

account , is necessary . 78 

 When exposed to the ambient atmosphere, aerosols can grow by taking up  water, which causes 79 

their corresponding optical propert ies to considerable change considerably . The -Köhler theory 80 

(Petters and Kreidenweis, 2007) is widely  used to describe the hygroscopic growth of aerosol part icles 81 

by  using a single aerosol hygroscop ic growth parameter () and the -Köhler equat ion, which is shown 82 

as  83 

𝑅𝐻

100
=

𝑔𝑓3−1

𝑔𝑓3−(1−)
∙ exp⁡(

4𝜎
𝑠/𝑎

𝑀𝑤𝑎𝑡𝑒𝑟

𝑅∙𝑇∙𝐷
𝑑
∙𝑔𝑓 ∙𝜌𝑤

), (4) 84 

where Dd is the dry part icle diameter; gf(RH) is the aerosol growth factor, which is defined as the 85 

rat io of the aerosol diameter at  a given RH and to the dry  aerosol diameter (𝐷𝑅𝐻 /𝐷𝑑); T is the 86 
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temperature; σs/a is the surface tension of the solut ion; 𝑀𝑤𝑎𝑡𝑒𝑟  is the molecular weight  of water; R is 87 

the universal gas constant and ρw is the density of water. The aerosol hygroscop ic growth parameter  88 

can be further used to invest igate the influence of aerosol hygroscop ic growth on aerosol optical 89 

propert ies (Tao et al., 2014;Kuang et  al., 2015;Zhao et  al., 2017) and aerosol liquids water contents 90 

(Bian et  al., 2014). 91 

According to the M ie theory, g is associated with aerosol part icle number size distribut ion, the 92 

part icle complex refract ive index, the aerosol mixing state and ambient  RH. At the same t ime, the 93 

aerosol morphology  has significant influence on g. Datasets from the humidified nephelometer system 94 

can part ially  account for all of these factors. The humidified nephelometer system consists of two 95 

parallel nephelometers,: one nephelometer of which measures dry aerosol scattering p ropert ies and the 96 

other measures aerosol scattering properties under well-controlled RH condit ions. This results 97 

insystem can give the light  scattering enhancement  factor (fRH), which is defined as fRH()= 98 

σsca()/σsca(), or the rat io of the aerosol scattering coefficient  under given RH condit ions to that  of 99 

under dry condit ions. Each nephelometer can provide a scattering coefficient  (σsca) and back-scattering 100 

coefficient  (βsca) at three wavelengths (450, 525 and 635nm). σsca can be used to calculate the aerosol 101 

scattering Ångstrom index, which reflects the aerosol PNSD to some extent . In general, a larger value 102 

for the Ångstrom index always corresponds to a smaller predominant aerosol size. Variat ions in βsca 103 

and σsca can be used to deduce the aerosol BC mixing state (M a et  al., 2012). At the same t ime, 104 

datasets from the humidified nephelometer system can also be used alone to measure the aerosol 105 

hygroscopicity and provide an overall hygroscopic parameter   (Kuang et  al., 2017). All in allIn 106 

conclusion, measurements from the humidified nephelometer system might  be used for est imating g 107 

under the given RH condit ions. However, there is no clear relat ionship between the measured datasets 108 

from the humidified nephelometer and g. The non-linear influence of the above listed factors on g 109 

makes it  difficult  to parameterize the g. 110 

Random forest machine learning model is a powerful technique that can be used for classificat ion 111 

and non-linear regression (Huttunen et  al., 2016;Breiman, 2001;Hu et  al., 2017). This model is a 112 

widely used nonparametric machine learning algorithm that has several strengths. First , it  involves 113 

fewer assumptions regarding the dependence between observat ions and outcomes when compared with 114 

tradit ional parametric regression models. Second, strict  relat ionships among variables are not  needed 115 

before implementing the random forest model. Third, this learning model requires much less 116 
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computing resource than that of the deep learning. Finally , this model has very low risk of over fitt ing 117 

by  averaging over an ensemble of decision trees. Thus, the random forest  machine learning model is 118 

used in this work to study  the calculat ion of g based on the datasets of the humidified nephelometer 119 

system. 120 

In this study, the Mie scattering theory and field measurements over the North China Plain (NCP) 121 

are used to study the characterist ics of g. Sect ion 2 describes the related datasets used in this study. 122 

Details of the study on the characterist ics of g and impacts of aerosol hygroscopic growth on g are 123 

shown in sect ion 3.1. A new method, which is based on a random forest  machine learning model, is 124 

introduced to calculate g in sect ion 3.2. We also discuss the impacts of g variat ions on the uncertaint ies 125 

of DARF in sect ion 3.3, and the corresponding results are presented in sect ion 4.3. Sect ion 4.1 gives 126 

the calculated characterist ics of g and sect ion 4.2 proves the feasibility  of using the machine learning 127 

model to calculate g. At  the same t ime, this method is validated by  the ambient  aerosol phase funct ion 128 

measured with a charge-coup led device -laser aerosol detect ive system (CCD-LADS). Conclusions are 129 

in sect ion 5. 130 

2. Instruments and datasets 131 

Datasets used in this study come from three field campaigns, which were conducted at  three 132 

different sites in the NCP. These three field measurements are were conducted at Gucheng in Hebei 133 

Province (Gucheng, 39°09’ N, 115°44’ E) from 15 October to 25 November in 2016, the AERONET 134 

BEIJING_PKU stat ion in Beijing (PKU, 39°59’ N, 116°18’ E) from 21 March to 10 April in 2017, and 135 

the Yanqi Campus of the University of Chinese Academy of Sciences (UCAS, 40°24’ N, 116°40’ E) in 136 

the Huairou district , Beijing from 3 January to 27 January in 2016. Details of these locat ions are 137 

shown in Fig. S1. The PKU stat ion is located at  the northwest of Beijing, between the 4th and 5th ring 138 

road. It  is 11km from the center of the Megacity Beijing, which is adjacent  to Hebei Province and the 139 

megacity Tianjin. In the above three cit ies, the industrial manufacturing has led to heavy air pollut ion. 140 

Datasets for this locat ion are representat ive of urban aerosols in the NCP. Gucheng is located between 141 

two megacit ies (120 km from Beijing and 190 km from Shijiazhuang) of NCP and the pollut ion 142 

condit ions of Gucheng can be a good representat ion of the continental background in the NCP. Details 143 

for the Gucheng stat ion can be found at  Kuang et  al. (2017). The UCAS stat ion is 60 km away from 144 

the center of Beijing and is at  the edge of the NCP, which makes it  suitable for measuring the regional 145 
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pollut ion propert ies of the NCP (Ma et  al., 2016). More details of the measurement  sites can refer to 146 

are available in sect ion 1 of the supplementary materials. 147 

Table 1 lists the information for the field campaigns and the datasets used in this study. During the 148 

campaigns, sampled aerosols that  had an aerodynamic diameter of less than 10 µm are selected by an 149 

impactor (Mesa Labs, Model SSI2.5) at  the inlet . These aerosols are then dried to below 30% RH with 150 

a Nafion dry ing tube and then lead to each instrument . Aerosol PNSDs ranging from 3 nm to 10 µm 151 

are measured by using the scanning mobility part icle size spectrometer (SMPS, TSI Inc., model 3936) 152 

and an aerodynamic part icle sizer (APS, TSI Inc., model 3321) with a temporal resolut ion of 5 min. 153 

Black carbon (BC) mass concentrat ions are measured by  a mult i-angle absorption photometer (MAAP 154 

model 5012, Thermo, Inc., Waltham, MA USA) at  UCAS and by  an Aethalometer 33 (Hansen et al., 155 

1984;Drinovec et  al., 2015) at  PKU and Gucheng. The aerosol σsca at  wavelengths of 450 nm, 525 nm 156 

and 635 nm is measured by an Aurora 3000 nephelometer and the corresponding values are recorded 157 

every  minute (Müller et al., 2011).  158 

The fRH is measured by  a self-constructed humidified nephelometer system. The detail information 159 

of the humidified nephelometer is described elsewhere (Kuang et  al., 2017). Some brief descript ions 160 

about  the humidified nephelometer are introduced here. A In this system, a humidifier is used to 161 

control the RH of the sample aerosol and σsca is measured for each of the controlled RH. The sample 162 

aerosol is humidified through a Gore-Tex tube, which is surrounded by a circulat ing water layer in a 163 

stainless steel tube. The RH is changed by changing the temperature of the circulat ing water, which is 164 

controlled by  the water bath and software. For each cycle, the RH points are set  to range from about  50% 165 

to about  90% over 45 minutes. For most  of the cases, the aerosol PNSDs are consistent over the cycle. 166 

These cycles of fRH values are abandoned when the measured maximum and the minimum σsca value 167 

are beyond the range of 1.4 and 0.6 t imes of the mean measured scattering coefficient  of each cycle. 168 

The detail information of the humidified nephelometer is described by  Kuang et  al. (2017). 169 

Ambient  aerosol phase funct ion with a t ime resolut ion of 5 minutes is measured at UCAS by using 170 

a CCD-LADS. This system consists of a continuous laser, two charge-coup led device cameras and the 171 

corresponding fish eye lenses. The wavelength of the laser is 532nm and a quarter-wave p late was 172 

mounted in front of the laser emitter to change the polarizat ion state of the laser from linear to circular. 173 

The CCD-LADS can measure the ambient  aerosol phase funct ion at  a wide angular range of 10-170° 174 
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with a high resolut ion of 0.1°. More details of the measurement system can be found at Bian et  al. 175 

(2017). 176 

3. Methodology 177 

3.1 Calculating characteristics of g based on the Mie scattering theory (𝐠𝑴𝒊𝒆) 178 

 The M ie model (Bohren and Huffman, 2007) is employedapp lied to calculate the characterist ics of 179 

g𝑀𝑖𝑒 . When running the M ie model, aerosol PNSD, aerosol complex refract ive index, BC mixing state 180 

and BC mass concentrat ion are essent ial. Its results include aerosol phase funct ion, and g𝑀𝑖𝑒  can be 181 

calculated by  the definit ion shown in formula 2.  182 

Mixing states of the BC come from the measurements of the field measurements. From the work 183 

of Ma et al. (2012), the mixing states of BC in the NCP were presented as both core-shell mixed and 184 

externally  mixed. Ma et al. (2012) provides the rat io of BC mass concentrat ions under an externally 185 

mixed state, M ext_BC, to total BC mass concentration, M BC，as follows: 186 

r𝑒𝑥𝑡 _𝐵𝐶 =
𝑀
𝑒𝑥𝑡_𝐵𝐶

𝑀
𝐵𝐶

. (5) 187 

The mean value of rext_BC=0.51 (Ma et al., 2012) is used as a representat ion of the mixing state in 188 

this study. The size-resolved distribut ion of BC mass concentrat ion is the same as that  used by Ma et al. 189 

(2012). The -Köhler theory and the Mie scattering model are emp loyed to calculate g𝑀𝑖𝑒under 190 

different RH condit ions. When the aerosol grows by taking up  watergets hygroscop ic growth, the BC 191 

is treated as a non-hygroscopic and insoluble corethe water is assumed to mix only  with the shell. The 192 

real t ime value  , which is derived from the measurement of fRH, is used to account  for aerosol 193 

hygroscopic growth. For each RH value, the growth factor can be calculated based on formula 4. The 194 

corresponding ambient  aerosol PNSD at  a given RH can be determined too by app lying the   and 195 

formula 4. The refract ive index (𝑚̃), which accounts for water content  in the part icle, is derived as a 196 

volume mixture between the dry aerosol and water (Wex et  al., 2002a):  197 

𝑚̃ = 𝑓𝑉,𝑑𝑟𝑦 ⁡𝑚̃𝑎𝑒𝑟𝑜 ,𝑑𝑟𝑦 + (1− 𝑓𝑉 ,𝑑𝑟𝑦 )⁡𝑚̃𝑤𝑎𝑡𝑒𝑟, (6) 198 

where fv,dry is the rat io of the dry  aerosol volume to the total aerosol volume under a given RH 199 

condit ion;⁡𝑚̃𝑎𝑒𝑟𝑜 ,𝑑𝑟𝑦  is the refract ive index for dry ambient  aerosols and ⁡𝑚̃𝑤𝑎𝑡𝑒𝑟  is the refract ive 200 

index of water.  201 

The refract ive indices of BC, non-light-absorbing aerosols and water, which are used in this study, 202 

are 1.8+0.54i (Kuang et  al., 2015), 1.53+10-7i (Wex et  al., 2002b) and 1.33+10-7i, respect ively . Then, 203 
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the corresponding g values under the given RH and PNSD can also be calculated. More details on 204 

using the M ie model to calculate the aerosol phase funct ion for different RH condit ions can be found 205 

in Zhao et  al. (2017). 206 

3.2 Calculating g by using the random forest machine learning model (𝒈𝑴𝑳 ) 207 

 In this study, the random forest  machine learning model from the Scikit -Learn machine learning 208 

library (Hu et al., 2017;Pedregosa, 2011) was used to calculate g. The random forest model has two 209 

parameters: the number of input  variables (npre) and the number of trees grown (ntree). In this study, the 210 

npre and ntree are determined by minimize the relat ive difference of the gML and gMie. Details of 211 

choosing the values of npre and ntree are shown in sect ion 2 of the supplementary. The npre and ntree are 212 

set  as eight and thirty-two in this study, respect ively . The eight  input  parameters include the three dry 213 

scat tering coefficients, three dry backscattering coefficients, RH and  .  214 

The measured datasets are divided into two parts: one for as the training data of for the random 215 

forest model, and the other for as the test ing data. All training datasets come from field measurements 216 

at Gucheng stat ion, whereas the datasets from PKU are emp loyed to test the accuracy of the model. 217 

With split  datasets from different  sites, the feasibility of the random forest  model in the NCP can be 218 

guaranteed. Before calculat ing g𝑀𝑖𝑒 , we compare the measured σsca from the dry  nephelometer and 219 

calculate σsca  from the Mie scattering model. These data, where the relat ive difference between the 220 

measured and calculated σsca is within 30%, are used for the following analyses. With this, the 221 

inaccuracy  form the measurement of the instruments can be avoided to some extent . More details 222 

regarding the used data are shown in sect ion 3 of the supplementary material. 223 

To further avoid the uncertaint ies of the measurements when training the random forest  machine 224 

learning model, both the required input  parameters and the predictors, g values, come from the 225 

calculat ion of the Mie scattering model using the measurement of the aerosol PNSD and BC from the 226 

field campaign of Gucheng. For each measured PSND and BC, the corresponding σsca and sca under 227 

dry  condit ion at  the wavelength of 450nm, 525nm and 635nm are modeled based on the M ie theory. 228 

With the concurrent ly measured values from the humidified nephelometer, the gMie values under 229 

different RH can be determined too. Then the modeled σsca, sca under dry condit ion, the values and 230 

the RH are used as the input  data for the model and the corresponding gMie values are used as the 231 

prediction data. 232 

3.3 Aerosol  DARF estimations 233 
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 The earth-atmosphere systems can be significant ly  influenced by aerosols through the scattering 234 

and absorption of the energy ., which scatter and absorb the energy . In this study, the Santa Barbara 235 

DISORT (discrete ordinates radiat ive transfer) Atmospheric Radiat ive Transfer (SBDART) model 236 

(Ricchiazzi et  al., 1998) is employed to est imate the DARF. The characteristics of DARF with the 237 

variat ions in g are studied. 238 

The instantaneous DARF is calculated at  the TOA for cloud-free condit ions. DARF is defined as 239 

the difference between radiat ive flux at  the TOA under present  aerosol condit ions and aerosol-free 240 

condit ions: 241 

DARF = (𝑓𝑎 ↓ −𝑓𝑎 ↑)− (𝑓𝑚 ↓ −𝑓𝑚 ↑), (7) 242 

where (𝑓𝑎 ↓ −𝑓𝑎 ↑) is the downward radiat ive irradiance flux with given aerosol distribut ions and 243 

(𝑓𝑚 ↓ −𝑓𝑚 ↑) is the radiat ive irradiance flux under aerosol free condit ions. The DARF at  50km is 244 

calculated because almost  all of the aerosols are distributed within the height  of 50 kmlocated at  the 245 

range of 0 and 50km in the parameterizat ion scheme of aerosol vert ical distribut ion (Liu et al., 2009). 246 

The wavelengths in the range from 0.25 to 4 µm are calculated for irradiance in this study.  247 
 Input  data for the SBDART are listed below. Vert ical profiles of the aerosol optical properties, 248 

which include the aerosol ext inct ion coefficient  (σext), aerosol single scattering albedo (SSA) and g. 249 

They all have a vert ical with a height  resolut ion of 50 m and, come from the results of the M ie 250 

scattering and the parameterized aerosol vert ical distribut ions. Methods for parameterizat ion and 251 

calculat ion of the aerosol opt ical profiles can be found in sect ion 4 of supp lementary  material or relate 252 

refer to Kuang et  al. (2016) and Zhao et  al. (2017). Atmospheric meteorological parameter profiles 253 

come from the results of the intensive radiosonde observat ions at the Meteorological Bureau of Beijing 254 

(39°48’ N, 116°28’ E) at the local t ime of 13:30 from July to September in 2008. Kuang et  al. (2016) 255 

studied these measured profiles and found that the vert ical distribut ions of these parameters, which 256 

include profiles for water vapor, pressure and temperature, can be used as a good representat ion of the 257 

meteorological parameter profiles in the NCP during the summer. The corresponding measured mean 258 

results during field measurement  are used in this study  and the details of these profiles are shown in 259 

sect ion 4 of the supp lementary material. Surface albedo values are obtained from the Moderate 260 

Resolut ion Imaging Spectroradiometer (MODIS) V005 Climate Modeling Grid (CMG) Albedo 261 

Product  (MCD43C3). The mean results of the surface albedo of Beijing from July to September in 262 
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2008 are used. The remaining input data for the SBDART are set  to their default values (Ricchiazzi et 263 

al., 1998). 264 

4 Results and Discussion 265 

4.1 Characteristics of 𝐠𝑴𝒊𝒆 266 

4.1.1 Characteristics of 𝐠𝑴𝒊𝒆 at different sites 267 

 Fig. 1 gives the stat ist ical results for the calculated g propert ies at  Gucheng, PKU and UCAS. The 268 

RH at the three sites shows almost the same diurnal variat ion pattern in Fig. 1 (a) (b) and (c). The RH 269 

reaches a peak in the morning at  approximately  6:00 am, and then reaches its lowest value at 270 

approximately  16:00 in the afternoon. However, the mean values of RH are 77.7%±20.9% at  Gucheng, 271 

47.8%±20.8% at  PKU and 33.49±15.22% at  UCAS. The g𝑀𝑖𝑒 values under dry condit ions that  are 272 

calculated by  the measured PNSD have almost  no diurnal patterns. The g𝑀𝑖𝑒  values at PKU 273 

(0.614±0.025) are slight ly lower than those at  Gucheng (0.601±0.021) and UCAS (0.595±0.023) as 274 

shown in Fig. 1 (d), (e) and (f). The difference in g𝑀𝑖𝑒values results from different aerosol propert ies 275 

at  these sites. From fig. S6, the peak diameter of the mean and median PNSD at  Gucheng locates 276 

around 150nm. However, the peak diameter of the mean and median PNSD at  PKU locates at around 277 

100nm. The peak values of the mean and median diameter of the aerosol PNSD at  UCAS locates at 278 

around 60nm. At the same t ime, there are large part it ions of small part icles that  are lower than 60nm at 279 

PKU and UCAS. However, these part icles, which are lower than 100nm, contribute litt le to the total 280 

aerosol scattering. The aerosol PNSD at PKU is more dispersed than that of the Gucheng and UCAS, 281 

which corresponds to a larger variat ion in the g values. From fig. S6 (h), (i) and (j), the size 282 

distribut ion of the aerosol scatter coefficient  at  around 500nm contributes less to the scatter coefficient 283 

at  PKU than at  that  of the Gucheng and UCAS. Thus these part icles with the diameter larger than 284 

500nm contribute more to the aerosol scattering coefficient . As g𝑀𝑖𝑒  increase with the aerosol 285 

diameter, the aerosol g𝑀𝑖𝑒  under dry condit ions at  PKU tends to be larger than that  at  Gucheng and 286 

UCAS.  287 

However, ambient  g𝑀𝑖𝑒 values have different patterns at  different sites, as shown in Fig. 1 (h), (i) 288 

and (j). The g𝑀𝑖𝑒  values have an RH-related diurnal pattern at  Gucheng, with a mean value of 289 

0.668±0.073, but  show no diurnal variat ion at  PKU and UCAS, where the mean values of⁡g𝑀𝑖𝑒 are 290 

0.639±0.049 and 0.618±0.033, respect ively. The variat ions of ambient  gMie values are mainly  resulted 291 

from the variat ion of the aerosol hygroscopic growth under the ambient condit ion, which is highly 292 
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related to the ambient  RH. The g𝑀𝑖𝑒 value is significant ly influenced by RH when the RH is higher 293 

than 80%, which will be detailed in sect ion 4.1.2. Ambient  g𝑀𝑖𝑒 values at Gucheng, PKU and 294 

UCAS can vary from 0.57 to 0.8, 0.55 to 0.76 and 0.56 to 0.72 respect ively , comparable to those of 295 

Andrews et al. (2006), which range from 0.59 to 0.72.  296 

4.1.2 Influence of RH on g 297 

 To assess the influence of RH on g, the g𝑀𝑖𝑒 values are calculated under different RH condit ions 298 

for each aerosol PNSD. The stat ist ical results of g𝑀𝑖𝑒 versus RH are shown in Fig. 2. The g𝑀𝑖𝑒 value 299 

has a wide variat ion range between 0.54 and 0.67 with the mean value located at 0.61 under dry 300 

condit ionsa mean of 0.61 at  dry condit ions and can vary widely  (0.54 to 0.67), which corresponds to 301 

approximately  10% of the variat ion. However, the mean g𝑀𝑖𝑒 value can vary  change from 0.65 to 0.8 302 

when the RH reaches 90%. The g𝑀𝑖𝑒 enhancement  factor, which is defined as the rat io of g𝑀𝑖𝑒 at a 303 

given RH and g𝑀𝑖𝑒  under dry  condit ions, can reach a mean value of 1.2 at  an RH of 90%, which 304 

means that  the g𝑀𝑖𝑒 value under wet condit ions is approximately  20% higher than that under the dry 305 

condit ions. This finding is consistent with that of Hart ley and Hobbs (2001), who found that g is 306 

highly  related to the RH.  307 

 HoweverContrary to RH, the aerosol complex refract ive index has litt le influence on g and the 308 

uncertaint ies for g are less than 0.004 based on the Monte Carlo simulat ion of the g at  different 309 

complex refract ive index values. M ore details of discussing the influence of aerosol complex refract ive 310 

index on g can be referred to in relate to section 6 of the supplementary materials. 311 

4.2 Calculating 𝐠𝑴𝑳  by using the machine learning model 312 

4.2.1 Feasibility of using the random forest model 313 

 We establish two independent random forest machine learning models to predict  g𝑀𝐿  values 314 

under dry  condit ions and under ambient  RH condit ions separately.  315 

 When running the random forest machine learning model are run for g values under dry condit ions, 316 

σsca and βsca at  three different wavelengths, are used as the input for independent variables. The other 317 

two input  parameters, RH and  , are set  equal to zero. The predictor g values come from the results of 318 

the Mie scattering model. Fig. 3(a) shows the calculated g𝑀𝑖𝑒  values and predicted g𝑀𝐿  values by 319 

the random forest machine learning model under dry  condit ions at  the site of PKU. The results show 320 

that  the g𝑀𝑖𝑒 ⁡values and g𝑀𝐿  values have good consistency with an R2 value of 0.98. There are 95% 321 
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of the cases that  the relat ive difference between gMie and gML are within the relat ive differences of 322 

2.56%. 323 

Fig. 3(b) shows the comparison of the predicted g𝑀𝐿  values under different  RH condit ions and 324 

g𝑀𝑖𝑒  values calculated by  the Mie scattering model. The correlat ion coefficient  between gMie and gML 325 

reaches 0.93 and 95% of the relat ive differences are within 4.02%. The random forest model can be a 326 

good method to predict  g values under different  RH condit ions with high accuracy  and the 327 

uncertaint ies of predict ing g values using the random forest  machine learning model is est imated to be 328 

4.02%. 329 

The filled colors of the dots in Fig. 3 represent the concurrent ly measured σsca. It is shown that 330 

with an increase in σsca, g values tend to be larger, which is in accordance with the part icle scattering 331 

propert ies. When a part icle has larger diameters, the σsca of the part icle is higher, and there tends to be 332 

a larger partition of forward scattering light . 333 

 Wiscombe and Grams (1976) studied the relat ionship between b and g and gave the exp ression 334 

between them as follows: 335 

g = −7.143889 ∙ b3 +7.464439 ∙ b2 − ⁡3.96356 ∙ b + ⁡0.9893 (8). 336 

This equat ion is widely  used to calculate g from b (Andrews et  al., 2006;Horvath et al., 337 

2016;Kassianov et  al., 2007). We use the field measurement results to test  its reliability. The 338 

comparison results between calculated g values from the M ie scattering model and parameterized g 339 

values from equation 6 are shown in Fig.S9. From fig.S9, we can see that  the parameterized g values 340 

are prevalent ly larger than the calculated g values by  approximately  10%. When the σsca is smaller, the 341 

deviat ions become larger. Some other empirical relat ionships between b and g (Moosmüller and Ogren, 342 

2017) are also tested. These parameterizat ion scheme has almost  the same result  as Wiscombe and 343 

Grams (1976). This result  means that  the previously established parameterizat ion scheme is not 344 

applicable in the NCP 345 

4.2.2 S ensitivity of the random forest model 346 

 Sensit ivity studies are carried out  to assess the influence of each input variable on g𝑀𝐿 . Based on 347 

the works of Müller et  al. (2011), the uncertaint ies in total scattering are 4% (450nm), 2% (525nm), 5% 348 

(635nm) for experiments with ambient  air and laboratory generated white part icles. For backscattering, 349 

the differences are higher and amount 7% (450nm), 3% (525nm) and 11% (635nm). The uncertaint ies 350 

of the measured RH by the RH sensors is 1.7% for RH ranges from 0 to 90%(Kuang et al., 2017) and 351 
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the uncertaint ies of the derived  values is 6% (Kuang et al., 2017). The Monte Carlo simulat ions are 352 

conducted to study the sensit ivit ies of the gML to the input parameters in three steps. First , the mean 353 

results of the measured dry σsca, dry βsca, RH and values are used to predict  the g value. Second, the 354 

dry  σsca at  450 nm are randomly  changed with a mean value of 0 and standard deviat ion of 4% and the 355 

other input are kept unchanged as the input . The corresponding standard deviat ion of the predicted g 356 

value is used as the sensit ivit ies of the gML to the σsca at  450nm. At last , the sensit ivit ies are carried out 357 

accordingly  for each of the input  parameter. The uncertaint ies of gML values to the input  parameters are 358 

est imated. The total uncertaint ies of predict ing g RH are derived when all of the input parameters are 359 

randomly  changed with their corresponding uncertaint ies. For each test , the Monte Carlo simulat ions 360 

are carried out  for 20000 t imes. 361 

 Table 2 gives the two t ime of the standard deviat ion of the gML values corresponding to the 362 

uncertaint ies of the input parameters. Form table 2, it  is shown that  the uncertaint ies of measured σsca 363 

has litt le influence of the gML with 0.487%, 0.492% and 0.486% for wavelength of 450nm, 525nm and 364 

635nm respect ively . However, the measurement of the three βsca have larger uncertaint ies and lead to 365 

greater influence on predict ing gML with 0.651%, 0.486% and 0.710%. The uncertainty of the RH has 366 

litt le influence on predict ing gML with 0.487%. However, the uncertainty of derived values (6%) 367 

influence the g values most  with 1.92%. The total uncertaint ies of predict ing g due to the uncertaint ies 368 

of the measurment is 1.95%. All in all, the total uncerntait ies of predict ing the gML is est imated to be 369 

4.47% considering the 4.02% uncertaint ies of the random forest  machine learning model from sect ion 370 

4.2.1. 371 

4.2.3 Validation of the random forest machine learning model 372 

 Datasets of the UCAS campaign are also used to validate the random forest  machine learning 373 

model. On one hand, the g𝑀𝐿  values are calculated by  using the random forest  machine learning 374 

model with the measurements of the humidified nephelometer. On the other hand, ambient  g values are 375 

calculated by  using the measured phase funct ion from the CCD-LADS g𝐶𝐶𝐷  according to the 376 

definit ion shown in formula 2. Then the g values calculated with the two methods are compared. 377 

Comparison results of these two kinds of g values are shown in fig. 4. Form fig.4, the values of 378 

g𝑀𝐿  and g𝐶𝐶𝐷 show good consistence. There are 95% of the condit ions that  the relat ive differences 379 

between the g𝑀𝐿  and g𝐶𝐶𝐷  are in the range of 6.5% which is a litt le higher than the relat ive 380 

difference of the g values (4.02%) between machine learning method and the Mie scattering method. 381 
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During the period, the σsca range from 30 to 260 Mm-1 which lead to cleaner condit ions in UCAS than 382 

in Gucheng and PKU. Correspondingly , most of the g𝑀𝑖𝑒  values are small and locate at  the range of 383 

0.54 to 0.62 which are obviously  lower than those in other campaigns. At  the same t ime, the 384 

surrounding condit ion at  UCAS during the winter is relat ive dry, which results to small g values. These 385 

condit ions may part ially  exp lain the relat ively  higher difference between the g𝑀𝐿  and g𝐶𝐶𝐷. With this 386 

validat ion, we conclude that the random forest  machine learning model can give a reasonable g value 387 

based on the measurements of the humidified nephelometer system. 388 

4.3 Estimating the impacts of g on DARF 389 

4.3.1 Uncertainties of replacing the calculated phase function with the PFHG 390 

 When the PFHG is used to parameterize the calculated phase funct ion by  using the Mie theory 391 

(PFMie), there are some deviat ions and the influence of these deviat ions should be est imated. The 392 

relat ive difference between the DARF from the PFMie and from the PFHG is used to est imate 393 

uncertaint ies when using the PFHG. First , the PFMie profiles are used as inputs to est imate DARFs. The 394 

PFMie is then rep laced with the g-related PFHG which is parameterized by g𝑀𝑖𝑒  from the PFMie, and the 395 

DARFs are calculated again. These relat ive differences between the DARFs from the above two steps 396 

are recorded and compared. The relat ive differences at  different zenith angle condit ions are calculated 397 

to comprehensively estimate the influence of the PFHG. 398 

 Fig.5 shows the est imated DARFs at  different  zenith angles. In Fig. 5(a), DARF at  the TOA can 399 

vary from -2.55 to -4.8 w/m2. When the PFMie is replaced by the PFHG, the calculated DARF ranges 400 

from -2.6 to -5.1 w/m2. The relat ive difference of the DARFs between the two methods ranges from 401 

1.3% to 7.1%, as shown in Fig. 5(b). It is concluded that using the g-related PFHG to rep lace the PFMie 402 

to est imate aerosol radiative effects is applicable in the NCP, with a deviat ion of less than 7%. 403 

4.3.2 Impacts of g variations on DARF estimation 404 

 Variat ions in g can lead to significant  variat ions changes in the estimated DARF (Kuang et  al., 405 

2016;Andrews et al., 2006;M ccomiskey et al., 2008). In this study, the uncertaint ies of the g values 406 

from the input  parameter is est imated to be 1.95% when predict ing g and the total variat ion in running 407 

the random forest  machine learning model is est imated to be 4.47%. At the same t ime, the g can varies 408 

about  10% for different aerosol PNSD and can be enhanced by  20% with the increment  of RH from 30% 409 

to 90%. It is very important to know the extent of the variat ion in DARF corresponding to the 410 

uncertaint ies from g. 411 



15 

 

The variat ion in DARF from the uncertaint ies of g is calculated by increasing or decreasing g by 412 

1.95%, 4.47%, and 10% to the original g values, and then comparing the corresponding DARFs with 413 

the original DARFsones. To study the influence of RH on g and DARF, the DARF with the g values 414 

calculated from the dry parameterized aerosol population profile, is est imated. 415 

Fig. 6 shows the est imated DARFs with different  variat ion in g and the corresponding variat ions 416 

in the est imated DARF. The results show that  when g varies by 1.95%, the DARF can vary 4%. 417 

However, variat ions of 4.47% and 10% in g values can lead to variat ions in the est imated DARF with 418 

9.4% and 21%, respectively. 419 

The est imated DARF using the parameterized aerosol profile, which considers the aerosol 420 

hygroscopic growth, is smaller than the DARF using the g profiles from the dry aerosol populat ion. 421 

The g values under dry  condit ion are smaller than that  of the wet  ambient . Thus, there is larger 422 

part it ion of energy  that  is scattered forward which leads to less outgoing backscattering energy  and a 423 

larger value of the est imated DARF.  424 

When the DARF are est imated ignoring the impacts of aerosol hygroscop ic growth on g, the 425 

relat ive difference can be as high as 20% for all of the zenith angles. Thus, iIt is necessary to 426 

considering the aerosol hygroscopic growth when calculat ing the g values. 427 

5 Conclusions 428 

 The characterist ics of g in the NCP are studied based on the M ie scattering theory and field 429 

measurements from sites of Gucheng and PKU. The results show that g𝑀𝑖𝑒  values are 0.604±0.025 at 430 

Gucheng and 0.615±0.021 at  PKU. The ambient  g𝑀𝑖𝑒 values at  Gucheng show obvious diurnal 431 

variat ions due to variat ions in RH. When the ambient  RH reaches 90%, g𝑀𝑖𝑒 can be enhanced by  20% 432 

and the g values under from different aerosol populat ion can vary 10%. Comparison of the calculated 433 

g𝑀𝑖𝑒  values from the Mie scattering model and the parameterized g values from the Wiscombe and 434 

Grams (1976) method shows that  the parameterized g is overest imated by  approximately  10% and that 435 

the deviat ions are even greaterbecome larger when the measured σsca is below 200 M m-1.  436 

The random forest  machine learning model and datasets from the humidified nephelometer are 437 

employed to calculate g𝑀𝐿  values. The input  data of the random forest model contain measured σsca 438 

and βsca at  three wavelengths, RH and the hygroscop ic parameter  . Except  for RH, all input data came 439 

from measurements from the humidified nephelometer system (Kuang et  al., 2017). The random forest 440 

model can significant ly improve the accuracy of predict ing g𝑀𝐿  p redict ion. The uncertaint ies of the 441 
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predicted g𝑀𝐿  values are constrained to be within 2.56% under dry condit ions and 4.02% under 442 

ambient condit ions and the uncertaint ies from the measurement  of the humidified nephelometer can 443 

lead to a variat ion of 1.95% in g, which is mainly  resulted from the inaccuracy  of the derived . The 444 

total uncertainty of calculat ing g calculat ion using the random forest  machine learning model is 4.47%. 445 

This is the first t ime that machine learning model and datasets from the humidified nephelometer 446 

system and machine learning are combined to study g. At  the same t ime, this method can accounting 447 

for the influence of aerosol hygroscopic growth on g.  448 

Thise new method for calculat ing g is validated by  comparing the g𝑀𝐿  values from the random 449 

forest machine learning model and the g𝐶𝐶𝐷 values from the measured phase funct ion by using the 450 

CCD-LADS. The g values with this two methods show good consistence with 95% of the data within 451 

the relat ive difference of 6.5%.  452 

 SBDART model is used to study the impacts of g on DARF. We first  studied the relat ive 453 

differences between the est imated DARFs by  using the PFHG and the calculated phase funct ion by 454 

using the M ie theory, the measured mean aerosol PNSD and BC mass concentrat ion at  the site of 455 

Gucheng and PKU. The results show that the relat ive differences in DARF can be contained within 7.1% 456 

when replacing the PFMie with g-related PFHG. The PFHG can be a feasible parameterizat ion scheme to 457 

study DARF in the NCP. 458 

The sensit ivity study shows that  the maximum uncertaint ies of DARF are 4%, 9.4% and 21%, 459 

which correspond to the uncertaint ies of the g from the instrument  measurement, the machine learning 460 

model and the variat ion of aerosol PNSD. However, when the DARF are est imated ignoring the effects 461 

of aerosol hygroscopic growth on g, the relat ive differences of the DARF is as large as 20% for all of 462 

the zenith angles. It is necessary to parameterize the g with accounting for the effect of aerosol 463 

hygroscopic growth. 464 

This work can further our understanding of the role of g in the aerosol radiat ive effects of aerosols 465 

and can help  reduce uncertaint ies in est imating DARF. 466 
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 588 

Table 1. Field information, dataset information and instruments that are used in this study. 589 

Field information Datasets and instruments 

Locat ion Time period PSND BC σsc  fRH 

Phase 

funct ion 

Gucheng, Hebei 

(39°09’ N, 115°44’ E) 

15 Oct  to 25 

Nov, 2016 

SM P, 

APS 
AE33 

Aurora 

3000 

Humidified 

Nephelometer 
None 

PKU, Beijing 

(39°59’ N, 116°18’ E) 

21 M ar to 10 

Apr, 2017 

SM PS, 

APS 
AE33 

Aurora 

3000 

Humidified 

Nephelometer 
None 

UCAS, Beijing 

(40°24’ N, 116°40’ E) 

3 Jan to 27 

Jan, 2016 

SM PS, 

APS 
M AAP 

Aurora 

3000 

Humidified 

Nephelometer 

CCD- 

LADS 

 590 
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Table 2. The sensit ivit ies of g to the input parameters. 592 

Parameter σsca ,450 σsca ,525 σsca ,635 βsca,450 βsca,525 βsca,635 RH  total 

Parameter(%)*1 4 2 5 7 3 11 6   

g(%)*2 0.487 0.492 0.486 0.651 0.487 0.710 0.486 1.920 1.950 

*1. The uncertaint ies of the measured parameters. 593 

*2. The uncertaint ies of g values due to the uncertainties of the measurement parameters. 594 
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 596 

Figure 1. (a)(b)(c) Average diurnal pattern of RH, (d)(e)(f) g values calculated from dry aerosols, and 597 

(h)(i)(g) g values from ambient  aerosols. The panels (a), (d) and (h) are the results from Gucheng. 598 

Panels (b), (e) and (i) are the results from PKU. Panels (c),(f) and (g) are the results of UCAS. The box 599 

and whisker p lots represent the 5th, 25th, 75th and 95th p ercentiles. 600 

  601 



23 

 

 602 

Figure 2. Probability distribut ions of g under different RH condit ions. The t icks on the left show g 603 

values at  different RH values, and the t icks on the right  show the g enhancement factor, which is 604 

defined as the rat io of g at  a given RH to the g value at  dry condit ions (RH=30%). The solid line (cyan) 605 

shows the mean result  of g values and the enhancement  factor at different RH values. 606 
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 608 

 609 

Figure 3. Comparison of calculated g values (gMie) from the Mie model and predicted g values (gML) 610 

from the random forest model under (a) dry condit ions and (b) ambient  condit ions at the site of PKU. 611 

Colored dots represent the concurrently measured σsca corresponding to the t ime of g.   612 
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Figure 4. Comparison of the calculated g values (gCCD) from the CCD-LADS measured phase function 613 

and the  calculated g values (gML) by  using the random forest machine learning model. 614 
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 618 

Figure 5. (a) Estimated DARFs at different zenith angles when using the g-related PFHG (dotted line) 619 

and the phase function calculated by  using the M ie scattering theory (solid line). (b) The relat ive 620 

difference between the DARFs in (a). 621 
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Figure 6. The variat ion in DARF when g varies by  a range of 1.95% (the filled dark color), 10% (grey 624 

color), and 20% (light  grey  color). Different line styles represent the corresponding mean relat ive 625 

differences in DARF compared to the original value. 626 


