
Response to reviewer#1 

Thanks for the reviewer’s helpful suggestions! The comments are addressed 

point-by-point and responses are listed below. 

 

Comments: Summary: In this paper, the authors use measurements of dry and 

humidified aerosol properties to validate a new machine learning algorithm for 

determining the asymmetry parameter based on routinely measured properties. The 

asymmetry parameter (g) is important in some radiative forcing models that are based 

on the Henyey-Greenstein approximation of aerosol scattering phase function, a 

function only of g. The algorithm for determining g using dry and humidified 

nephelometer measurements is validated with the CCD-LADS, a new instrument that 

directly measures the aerosol scattering phase function. An attempt is then made to 

connect these results with radiative forcing models. 

Reply: We thank the anonymous reviewers’ comments and suggestions. 

 

Comments: General comments: It would be useful to have more information about the 

different aerosol properties at the three different ground sites. For example, how do the PNSD 

and BC fraction vary between the different sites, as well as seasonally and diurnally? In 

particular, examples of the PNSD (dry and ambient) averaged for the different sites would be 

a useful figure to have since particle size is such an important factor in determining 

asymmetry  

Reply: Thanks for the comments. We give the characteristics of the measured mean 

PNSD in section 5 of the supplementary and in section 4.1.1 of the main manuscript. 

 Fig. S6 gives the measured distribution of the aerosol particle number size 

distrubion (PNSD) at Gucheng and PKU. The red line gives mean results of aerosol 

PNSD and the red line gives the median aeorosl PNSD. At the same time, the aerosol 

PNSD at the ambient relative humidity are calculated by using the measured aerosol 

PNSD, the ambient RH and the aerosol hygroscopic growth factor κ, which is derived 

from the datasets of the humidified nephlometer (Kuang et al., 2017). Αt the same 

time, we calculated the aerosol scattering coefficient distibution under the dry 



condition by using the Mie scattering theory and the measured aerosol PNSD. There 

are totoal 8613 and 5298 different aerosol PNSDs are measured at Gucheng and PKU 

respectively. 

 From fig. S6, the peak diameter of the mean and median PNSD at Gucheng 

locates around 150nm. However, the peak diameter of the mean and median PNSD at 

PKU locates at around 100nm. At the same time, there are large partitions of small 

particles that are lower than 60nm at PKU. However, these particles, which are lower 

than 100nm, contribute little to the total aerosol scattering. The aerosol PNSD at 

Gucheng is more dispersed than that of the PKU, which corresponds to a larger 

variation in the g values. When compared with the dry aerosol PNSD, the calculated 

ambient aerosol PNSD at Gucheng varies more than that of the PKU, which is 

resulted from the high relative humidity of the ambient condition. 

 The size distribution of the aerosol scatter coefficient at around 500nm 

contributes more to the scatter coefficient at Gucheng than at that of the PKU. Thus 

these particles with the diameter larger than 500nm contribute less to the aerosol 

scattering coefficient. As g increases with the aerosol diameter, the aerosol g under 

dry conditions at Gucheng tends to be smaller than that at PKU. 

We are willing to show the measurement results of the aerosol PNSD and mass of 

the BC concentrations to the reviewers. Fig.R1 and fig.R2 give the measurement 

results of the Gucheng and PKU respectively. 

However, we are preparing the characteristics of the measurement of aerosol 

PNSD and BC fraction in other works. We decide not to give the detail discussion 

about these measurements results in the main manuscript, which is not the main scope 

of this work.  



 
Fig. R1. The measurement data at the station of Gucheng. The time series in the 

figure represents (a) the wind speed and wind direction, (b) the temperature (in red), 

the relative humidity (in blue), (c) the scattering coefficient at 550 nm, (d) the BC 

mass concentrations and (e) the aerosol PNSD. 

 
Fig. R2. The measurement data at the station of PKU. The time series in the figure 

represents (a) the wind speed and wind direction, (b) the temperature (in red), the 

relative humidity (in blue), (c) the scattering coefficient at 550 nm, (d) the BC mass 

concentrations and (e) the aerosol PNSD. 



 

Comments: The weakest part of the study is the machine learning algorithm section. 

The use of the random forest algorithm is not well-justified, nor is there sufficient 

discussion of the parameterizations used. 

Reply: Thanks for the comments. We have made some revisions according to the 

suggestion. Some discussions were added in the introduction in the manuscript. At the 

same time, section 2 in the supplementary material is added and gives some detail 

discussion of using the machine learning algorithm. 

 

Comments: I find the label “calculated phase function” and “measured phase 

function”, used extensively in the discussion and throughout the figures, confusing. 

Please clarify whether referring to theoretical phase functions determined using the 

PNSD, Mie theory, and assumed refractive index, or phase functions directly 

measured by CCD-LADS and be consistent with how these are referred to. 

Reply: Thanks for the comments. We have made some revisions according to the 

suggestion. Most of the revisions are done in section 4.3.1. At the same time, we also 

made some revisions about the g values by using different method. The calculated g 

value by using the Mie theory are labeled as g!"#. The value predicted by using the 

random forest machine learning model is labeled as g!". The calculated value by the 

phase function measured from the CCD-LADS are labeled as g!!". 

 

Comments: I think it would strengthen the discussion to include estimations of the 

uncertainties of the various measured properties. These can then be used for 

sensitivity analysis instead of arbitrary deviations. 

Reply: Thanks for the comments. We think the reviewer gives a good view of 

conducting the uncertainties test. The method of estimating the uncertainties is 

reconstructed following the reviewer’s opinion. The uncertainties from the measured 

properties are analyzed and the corresponding uncertainties are estimated by using the 

Monte Carlo simulations. The results are mainly discussed in section 4.2.2 of the 

manuscript. 



 

Comments: The authors should be careful about the input parameters of the random 

forest algorithm, particularly for their sensitivity analysis. The measured quantities 

σsca and βsca for a specific wavelength are related to each other, and therefore I think it 

is important to question whether they can be treated as independent input variables. 

Reply: Thanks for the comments. We agree with the reviewer’s idea and 

reconstructed the method of conducting the sensitivity analysis. Some discussions 

were added in section 2 of the supplementary material to determine the input 

parameters. 

 

Comments: Please ensure that axes labels on figures legible (text size difficult to read 

on e.g. Figure 7) 

Reply: Thanks for the comments. We have made some revisions according to the 

suggestion. 

 

Comments: Specific comments: P1 L15-16: Does this range only apply to dry 

aerosol? 

Reply: The reported g values apply to the dry aerosol. We made some revisions at the 

corresponding line. For the g values under different RH values, it can have a wider 

range as shown in the fig. 2 of the manuscript. 

 

Comments: P1 L16-17: Specify what types of aerosol this enhancement applies to 

Reply: The enhancement value 1.2 of the g value applies to the continental aerosol. 

We made some revisions at the corresponding line. 

 

Comments: P1 L25: Reference desired for this information. 

Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P1 L26-28: HG reference 



Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P1 L27: “The HG phase function (PHG(θ)) is...” 

Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P2 L34: “P(θ) is the normalized scattering phase function” 

Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P2 L37: More references would be useful here. 

Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P2 L39: “few studies” – which ones? 

Reply: Thanks for the comments. We have made the revision according to the 

comment. Pandey and Chakrabarty (2016) measured the phase function of fractal 

black carbon aerosols and compared the difference of the direct aerosol radiative 

forcing between using the measured phase function and the HG phase function. 

Boucher (1998) and Wiscombe and Grams (1976) simulated the difference by 

simulating the aerosol phase function using the Mie scatter theory. However, there is 

no study, to our knowledge, that uses the filed measurement of the aerosol optical 

properties to estimate the difference. 

 

Comments: P2 L49: What is meant by “no available method to measure g directly” – 

surely a measurement of P(θ) is a fairly direct measurement technique? (i.e. Bian, 

Dolgos instruments) 

Reply: We agree with the editor’s suggestion and make the revision according to the 

comments. The corresponding text is changed as ‘There are many methods to derive 



the aerosol g for the dry and ambient condition.’ 

 

Comments: P2 L55: Define backward hemisphere angles 

Reply: The hemispheric backscatter ratio b is the fraction of the scattered intensity 

that is redirected into the backward hemisphere of the scattering particle (Marshall et 

al., 1995), with the definition of  

b =
! ! ∙!"#$∙!"!

!
!
! ! ∙!"#$∙!"!

!
.         (1). 

The main advantage of the backscatter ratio is that it can be measured with an 

integrating nephelometer equipped with a backscatter shutter (Charlson et al., 1974). 

We also made the revision at the corresponding line. 

 

Comments: P2 L56: It would be appropriate perhaps to also cite Horvath et al, 2016 

(J. Aerosol Sci.) 

Reply: Thanks for the comment. We have made the revision according to the 

comments. 

 

Comments: P3 L57-63: How were these values determined – observations (if so, 

which instruments used?) or models?  



Reply: In the previous study, almost all of the aerosol asymmetry factor values are 

determined by using the Mie scattering theory. We have made the revision according 

to the comments at the beginning of paragraph 3. 

 

Comments: P3 L64-66: Can you discuss difficulties measuring g under ambient RH 

vs dry conditions? 

Reply: Thanks for the comments. We give some of the difficulties of measuring g 

under ambient RH vs dry conditions below. 

Aerosol g is derived by measuring the aerosol phase function. However, it is very 

difficult to measure the aerosol phase function accurately.  

Figure R3. The aerosol phase functions under different RH conditions. Different 

colors represent the different RH. 

 

Fig. R3 gives one example of the calculated phase function under different 

relative humidity by using the Mie scattering theory and the measured mean aerosol 

PNSD at the measurement site of PKU. Detail of calculating different phase function 

under different relative humidity can refer to the main manuscript and Zhao et al. 

(2017). From fig. R3, the aerosol phase function under dry condition can change from 

0.2 to 12 at different angle. For the calculated phase function at relative humidity of 

90%, the phase function can change from 0.1 to 30. For some other studies, the 

aerosol phase function can be as low as 0.002 (Horvath et al., 2016). As the aerosol 

phase function can change significantly at different angle, measurement of aerosol 



phase function has very high requirement of the instrument. Up to now, there are few 

commercial instruments that can measure the aerosol phase function such as 

nephelometer aurora 4000 (Chamberlain-Ward and Sharp, 2011). However, these 

instruments are not widely accepted and used. Measurement of the phase function is 

very difficult.  

 

At the same time, there is no method to measure the aerosol phase function 

covering all the angles from 0 to 180 degree. The phase function changes significantly 

at the range of 0~10 degree and 170~180 degree. Many of the studies derive the 

aerosol phase function by interpolation. 

As for measuring the phase function of the ambient RH, the most important 

requirement is that the RH of the aerosol should not be changed when conducting the 

measurement. The method developed by Bian et al. (2017) can be used to measure the 

ambient phase function. 

At the same time, the aerosol phase function change significantly with the aerosol 

morphology, aerosol size, aerosol complex refractive index and the incident light 

wavelength. Knowledge of the aerosol phase function is very limited. The calculation 

of the ambient aerosol phase function by using the Mie scattering theory requires 

more information such as the aerosol PNSD and aerosol hygroscopic growth 

properties. 

 

Comments: P3 L64-66: It would be appropriate to cite Andrews et al. again here 

Reply: Thanks for the comments. We made the revision according to the comments. 

 

Comments: P3 L68: Particles do not absorb water –they can take up water, or water 

can condense on them 

Reply: Thanks for the comments. We made the revision according to the comments. 

 

Comments: P3 L73-76: Define Mwater 

Reply: Thanks for the comments. We made the revision according to the comments. 



𝑀!"#$% is the molecular weight of water. 

 

Comments: P3 L79-80: Should specify that Mie theory only applies to spherical 

particles – g can also vary by morphology 

Reply: Thanks for the comments. We made the revision according to the comments. 

 

Comments: P3 L84: Can you use subscript for fRH to reduce confusion (instead of 

fRH)? 

Reply: Thanks for the comments. We have changed all of the fRH to fRH in the 

manuscript. 

 

Comments: P4 L87: Define back-scattering coefficient. 

Reply: Thanks for the comments. We give the definition of the back-scattering 

coefficient below. However, back-scattering coefficient is widely used for those who 

are familiar with the instrument of the nephelometer. We decide to not add the 

definition of the back-scattering coefficient to the main manuscript. 

 The back-scattering coefficient is defined as  

𝛽!"# = 𝐹! 𝜃 𝑑𝜃!"#°

!"°             (2), 

where the angular scattering function of the particle population 𝐹! 𝜃  is defined as 

F! 𝜃 = 𝑓!(𝜃,𝑚!,𝑑!) ∙
!"(!!)
!"#$(!!)
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!
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where 𝑓!(𝜃,𝑚!,𝑑!) is the angular scattering function of the individual particles with 

complex refractive 𝑚!  and diameter 𝑑!  and !"(!!)
!"#$(!!)

  is the aerosol particle 

number size distribution. More details of the definition of the back-scattering 

coefficient can refer to Müller et al. (2011). 

 

Comments: P4 L106-110: Please provide seasonal information about these field 

campaigns, as well as whether they covered the full diurnal cycle. 

Reply: Thanks for the comments. We have made the revision according to the 

comments at paragraph 4. As shown in fig. R1, theses datasets covered the full diurnal 



cycle. 

 

Comments: P4 L110-111: For people who are unfamiliar with Beijing, please 

describe the location in terms of either distance from the centre or relative population 

density – some more general metric 

Reply: Thanks for the comments. We have made the revision according to the 

comments at paragraph 4 and section 1 in the supplementary material. PKU station is 

11km from the center of the Megacity Beijing, which is adjacent to Hebei Province 

and the megacity Tianjin. In the above three cities, the industrial manufacturing has 

led to heavy air pollution. 

  



Comments: P4 L110-P5 L116: Can you also describe the general wind patterns (i.e. 

are the sites downwind or upwind of the urban centres?) 

Reply: Thanks for the comments. We have made the revision according to the 

comments at paragraph 4 and section 1 in the supplementary material. At the same 

time, the wind patterns can be recognized by fig.R1, fig.R2, and fig.S1. 

 

Comments: P5 L118-119: Type of impactor? Is 10 µm the 50% cut-point? 

Reply: Thanks for the comments. We have added the information about the impactor. 

10 µm is the 50% cut-point of the ambient aerosol particles. 

 

Comments: P5 L119: How is RH measured? 

Reply: Thanks for the comments. At the Gucheng site, the RH of the sample aerosols 

is measured by the temperature and humidity probe, which is installed after the 

Nafion drying tube and the RH is all the way lower than 30%. For the RH at PKU, it 

is measured at the beginning of the field measurement using the same way as 

Gucheng, and the RH is lower than 30%. One day later, the probe was removed. We 

believe that the RH at PKU is all the way lower than 30% because the Nafion drying 

tube works well during the filed measurement and the RH at PKU is significantly 

lower than that of Gucheng. 

 

Comments: P5 L121-122: Are particles assumed to be spherical for SMPS and APS 

retrievals of size? 

Reply: The SMPS measure the aerosol PNSD by scanning the electrical mobility. The 

particles are assumed to be spherical when relating the aerosol electrical mobility with 

the aerosol electrical mobility diameter. The APS 3321 is a time-of-flight 

spectrometer that measures the velocity of particles in an accelerating air flow through 

a nozzle. It measures the aerodynamic size. The retrievals of the size of the APS do 

not require assumption of the particle to be spherical. However, when relating the 

aerodynamic size and the electrical mobility diameter, the particles are assumed to be 

spherical. 



 

Comments: P5 L119: How low was RH? How sensitive are results to variations in 

RH at these low levels (presumably it is not sensitive due to low gf in this region but 

would be useful to say this explicitly)? 

Reply: The RH may change when the RH and temperature of the ambient aerosol 

changes. However, we just need to confirm that the measured sample aerosols are 

lower than 30% (In some fields measurement when the ambient RH is high and the 

temperature is high, the RH of the sample aerosol may be acceptable to be dried to 

below 40%). When the RH of the sample RH is lower than 30%, the aerosol physical 

properties change little because the growth factor is very low. We assume that all of 

the measurement results measured by the instruments are at dry condition when the 

RH of the sample aerosol is lower than 30%, which is widely accepted when 

conducting the measurements. 

 

Comments： P5 L119-132: Please provide error/uncertainty margins on key 

instrumentation (i.e. RH ±1%?) 

Reply: Thanks for the comments. We have made the revision according to the 

comments. The uncertainties of the key input parameters are given in section 4.2.2 

when doing the sensitivity test. 

 

Comments：P5 L129: Provide laser wavelength and polarization characteristics 

(circular or linear) 

Reply: Thanks for the comments. We have made the revision according to the 

comments. The wavelength of the laser is 532nm and a quarter-wave plate was 

mounted in front of the laser emitter to change the polarization state of the laser from 

linear to circular. 

 

Comments: P5 L126: Please be consistent about f(RH) vs fRH 

Reply: Thanks for the comments. We have made the revision according to the 

comments. We have changed all of the f(RH) and fRH to fRH 



 

Comments:	 P5 L127: This is a very long measurement period – can you ignore 

changes in aerosol population over this timescale? 

Reply: Thanks for the comments. We agree with the editor’s opinion that the aerosol 

population over 45 minutes may changes and can’t be ignored. We made some quality 

control when retrieving the aerosol hygroscopic growth factor κ. The aerosol 

scattering coefficient and backscattering coefficient are recorded every minute. The 

scattering coefficient can catch the variation of the aerosol population. The 

hygroscopic growth factor κ are retrieved when the maximum and the minimum value 

of the measured scattering coefficient are within the ranges of 1.4 and 0.6 times of the 

mean measured scattering coefficient. For most of the cases, the scattering 

coefficients do not have large variations. Fig. R4 gives one example of the measured 

scattering coefficient at dry and a given relative humidity conditions. We can see that 

the scattering coefficient is relative stable during the period. Fig. R5 gives part of the 

measured time series of κ. Form fig. R5, the retrieved κ values can reflect the 

variation of the aerosol hygroscopicity. 

At the same time, some revisions are made accordingly at paragraph 5. 

Figure R4. The measured scatter coefficient time series at dry condition and the given 

relative conditions. 



 

Figure R5. The time series of the measured κ during the field measurement at PKU. 

 

Comments: P5 L128: What is time resolution of CCD-LADS? 

Reply: Thanks for the comments. We have made the revision at paragraph 5. The 

time resolution of the CCD-LADS during the UCAS field measurement was set to 5 

minutes. 

 

Comments: P5 L136: Please clarify BC mixing state and BC fraction determination 

earlier. 

Reply: Thanks for the comments. We have made the revision accordingly at section 

3.1.  

 

Comments: P5 L127: Need more details about “self-constructed humidified 

nephelometer system” – what range/steps of RH? Is the population sufficiently 

consistent? Is 45 min for range of RH or single RH set point? How was RH altered? 

How was RH monitored? Is there another reference with more details about this 

instrument? 

Reply: Thanks for the comments. Some revisions are made at paragraph 5. Some 

revisions are made in the manuscript accordingly. The detail information of the 

humidified nephelometer is described elsewhere (Kuang et al., 2017) and we give 

some brief description here. The humidifier is used to control the RH of the sample 



aerosol and σsca is measured for each of the controlled RH. The sample aerosol is 

humidified through a Gore-Tex tube, surrounded by a circulating water layer in a 

stainless steel tube. The RH is changed by changing the temperature of the circulating 

water, which is controlled by the water bath and software. For each cycle, the RH 

points are set to range from about 50% to about 90% over 45 minutes. For most of the 

cases, the aerosol PNSDs are consistent over the cycle. These cycles of fRH values are 

abandoned when the measured maximum and the minimum σsca value are beyond the 

range of 1.4 and 0.6 times of the mean measured scattering coefficient of each cycle. 

Two combined RH and temperature sensors (Vaisala HMP110; accuracy of 0.2 and 

1.7% for RH ranges from 0 to 90 %, respectively, and accuracy of 2.5% for RH 

ranges from 90 to 100% according to the manufacturer) are placed at the inlet and 

outlet of the wet Neph, and the measured RHs and temperatures are defined as 

RH1/T1 and RH2/T2, respectively. The dew points at the inlet and outlet of wet 

nephelometer were calculated using the measured RH1/T1 and RH2/T2, and the 

average value was considered as the dew point of the sample air. The sampled RH can 

be calculated through the derived dew point and the sample temperature, which is 

measured by the sensor inside the sample cavity of the nephelometer. 

 

Comments: P6 L148: Why use volume mixing ratio vs, for example, 

Maxwell-Burnett or mass? 

Reply: Thanks for the comments. The method of deriving the refractive index by 

using the volume mixture ratio is widely used in the previous work (Kuang et al., 

2017; Wex et al., 2002; Zhao et al., 2017) and justified by Wex et al. (2002). However, 

we didn’t measure the complex refractive index during the field measurement and 

can’t decide whether the method of using the Maxwell-Burnett or mass mixture ratio 

is better for our study. 

 

Comments: P6 L150: If using a core-shell model with BC in the centre, do you 

assume water only mixes with shell, or with both core and shell? 

Reply: Thanks for the comments. In our work, we assume the BC to be 



non-hygroscopic and the water mixes only with the shell. We make some revision 

accordingly at section 3.1. 

 

Comments: P6 L147: How is the corresponding ambient aerosol PNSD at given RH 

computed? 

Reply: Thanks for the comments. The ambient aerosol PNSD at given RH were 

computed by using the measured dry aerosol PNSD, aerosol hygroscopic factor 

κ, derived from the dataset of humidified nephelometer, and formula (4) in the 

manuscript. For each aerosol, the growth factor can be calculated by using κ  and 

formula (4). Then the corresponding aerosol diameter of the dry aerosol diameter can 

be calculated and then the ambient aerosol PNSD at given RH were computed. Fig. 

R6 gives one example of the calculated aerosol PNSD at different RH. 

 
Figure R6. The changes of aerosol PNSD with RH. 

 We have made some revisions accordingly in the main manuscript. 

 

Comments: P6 L157-158: Can you provide references going into more detail about 

random forest model algorithms? 

Reply: Thanks for the comments. We made the revision according to the comments. 

In the manuscript, we added the reference that can be used to know more detail about 

random forest model algorithms such as (Breiman, 2001; Huttunen et al., 2016; 



Pedregosa, 2011). However, the random forest machine learning model is a new 

technique that can be used for the regression. There are few studies that use the 

random forest machine learning model. 

 

Comments: P6 L158-162: Why is the random forest model appropriate for this 

specific example? 

Reply: Thanks for the comments. We have made some revision at section 3.2 and 

the introduction section. Random forest machine learning model is a powerful 

technique that can be used for classification and non-linear regression (Breiman, 2001; 

Hu et al., 2017; Huttunen et al., 2016). This model is a widely used nonparametric 

machine learning algorithm that has several strengths. First, it involves fewer 

assumptions regarding the dependence between observations and outcomes when 

compared with traditional parametric regression models. Second, strict relationships 

among variables are not needed before implementing the random forest model. The 

relationship between the aerosol optical properties measured by humidified 

nephelometer and g is highly non-linear. Thus, the random forest machine learning 

model is used in this work to study the calculation of g based on the datasets of the 

humidified nephelometer system.  

 

Comments: P6 L164: How was the number of trees determined? What is the 

sensitivity of the results to npre and ntree? 

Reply: This comment is replied together with the next comments. Please refer to the 

next reply of the next comments.  

 

Comments: P6 L163-168: Can you provide more justification for your chosen 

parameterization? Does the connection between measured scatter and backscatter 

coefficients affect the suitability of the algorithm, or the accuracy of the results? 

Reply: Thanks for the comments. We ignore that there are many factors that may be 

influenced by the number of trees. For different number of trees, the accuracy of the 

random forest machine learning model and the time for running the model would 



change. For different numbers of npre, the accuracy and the time for running the model 

would change too. 

The influence of the ntree on the accuracy of the model and the times for training 

the model is studied to determine the best ntree for the model. The input data of the 

model come from the dataset of Gucheng and the test data comes from the dataset of 

PKU. Difreent values of ntree are used in the model and then the time for running the 

model the accuracy of the model is compared. The accuracy of the model is estimated 

by comparing the calculated g values (gMie) and the predicted g values by the random 

forest machine learning model (gML) of PKU. The correlation coefficient (R2) between 

gMie and gML, the mean relative differences between gMie and gML, and the standard 

deviation (Std) of the relative differences between gMie and gML are studied. The 

results are shown in fig. R7. From fig. R7, we can see that the R2 increases with the 

increment of ntree from 0.934 to 0.95 when ntree is lower than 32 and changes slightly 

when ntree is larger than 32, which means that the random forest machine learning 

model can increase the accuracy of predicting g with the increment of ntree when is 

lower than 32. At the same, the mean relative difference between gMie and gML is all 

the time lower than 1%, which means that the g can be unbiased estimated by the 

random forest machine learning model. The Std fluctuates between 1% and 1.2% 

which is also a very small value. The time of training the model increases with the 

increment of ntree form 0.2s to 1.2s when the ntree increase from 2 to 100. However, the 

time for predicting the data is slightly changed with the increment of ntree. Therefore, 

the time of running the model is not a main concerning when choosing the ntree. With 

the discussion above, the ntree is chosen to be 32 with the accuracy and time of 

running the model taken into consideration.  



 

Figure R7. The comparison of gML and gMie,dry under different values of ntree. The 

panels give (a) the correlation coefficient, (b) the mean value of the difference, (c) the 

standard deviation of the difference valued between gML and gMie,dry and (d) the times 

for running the machine learning model. 

 

 Different input parameters can result in different behavior of the machine 

learning model. The number of npre is also changed to test the performance of the 

model by changing the input parameters. From section 3.1.2 of the manuscript, it is 

obviously that the κ and RH is necessary when predicting the g. We discussed the 

accuracy of the model by using different combination of the scattering coefficient and 

back-scattering coefficient as the input of the random forest machine learning model. 

There are total six group of tests were carried out. These tests contains (1) all of the 

three σ!"# and three 𝛽!"#; (2) two σ!"# and two 𝛽!"#; (3) one σ!"# and two 𝛽!"#; 

(4) three σ!"#; (5) three 𝛽!"# and (6) single parameters of the σ!"# or 𝛽!"#. The 

details of the tests and the results are shown in Table. R1. These results include the R2, 

the mean relative differences and the Std of the relative differences between gMie and 

gML. If all of the three σ!"# and three 𝛽!"# are used as the input, the model can work  



 
Table R1. The influence of the input parameters on the model performance. 

*1. The mean and the standard deviation of the relative difference between the gML 

and gmie. 
*2. If the value is True, the corresponding parameter is used as the input parameter of 

the random forest machine learning model. 

 

well as the R2 can reach 0.949 and the relative difference is 0.8±1.28. For those of 

tests (2), the best results come from the test that using the σ!"# and 𝛽!"# at 525 and 

635nm with R2=0.962 and mean value of 1.3±1.32. Despite the fact that the R2 is 

N
 σ!"#,!"# σ!"#,!"!	 σ!"#,!"#	 β!"#,!"#	 β!"#,!"!	 β!"#,!"#	 R2 Mean±Std (%)*1 

1 True*2 True True True True True 0.955 0.8±1.28 

2 

True True False True True False 0.936 0.9±1.36 

True False True True False True 0.939 0.8±1.36 

False True True False True True 0.962 1.3±1.32 

3 

True False False True False False 0.864 0.7±1.79 

False	 True False False	 True False 0.961 1.7±1.32 

False	 False True False	 False True 0.936 2.2±1.25 

4 
True True True False False False 0.613 1.4±2.75 

False False False True True True 0.817 2.3±1.99 

5 

True True False False False False 0.568 1.4±2.90 

True False True False False False 0.588 2.3±2.82 

False True True False False False 0.624 2.3±2.75 

6 

True False False False False False 0.401 2.6±3.3 

False True False False False False 0.386 2.7±3.39 

False False True False False False 0.355 2.8±3.49 

False False False True False False 0.323 2.9±3.58 

False False False False True False 0.344 2.8±3.52 

False False False False False True 0.325 2.9±3.56 



slightly higher than that of test (1), both the mean and the standard deviation of the 

relative difference between gMie and gML is larger than that of (1). However, the test 

that uses the σ!"# and 𝛽!"# at 525 only at (3) gets almost the same result. The 

results of the other tests are much worse than test (1). From test (4) and (5), the 

corresponding R2 is much lower when the σ!"# and 𝛽!"# are not used as the input at 

the same time. It is concluded that the backscattering coefficient is very important for 

estimating the g. 

 For these tests of test (1), the third one in test (2) and the second one in test (3), it 

is hard to decide which group to be best one as the input parameters. However, it is 

concluded the test (1) is the most stable when comparing the mean±std of the relative 

difference. Thus, the three σ!"#, three 𝛽!"#, κ and RH are chosen as the input of the 

model and the npre is set to be eight. 

 

Comments: P6 L165: scattering coefficients for dry aerosol? Or humidified? If 

humidified, isn’t there a relationship between κ and the scattering coefficients? 

Reply: Thanks for the comments. The three scattering coefficients and backscattering 

coefficients are all for dry aerosol. We made the revision accordingly at the 

manuscript. 

 

Comments: P L170-171: Why did you use separate data sets for training vs testing? 

Why not use a subset of each, or subset of one and test on the other subset? 

Reply: Thanks for the comments. It does not matter to choose different subset for 

training and testing. The more amounts of effective data are used as training data, the 

better the model can be used to predict the result. Thus we picked some data as testing 

data and all of the rest data as the training data. By using the datasets as training data 

at Gucheng site and the datasets as testing at PKU site, we can say that the random 

forest machine learning model can be used to predict the g values for the continental 

aerosols in the North China Plain. 

At the same time, we conducted the random forest machine learning model by 

using a subset data as the test data and the other part as the training data at the field 



measurement of Gucheng. The results are better than the results shown in the main 

manuscript. However, the aerosol population of the testing subset might be very 

similar to the aerosol population of the training data as both of the dataset come from 

the same measurement sites and thus the results using this method might be not that 

convincing.  

 

Comments: P6 L173: Specify humidified vs dry nephelometer 

Reply: Thanks for the comments. We have made the revision according to the 

comments. The scattering coefficient and backscattering coefficient are all come from 

the dry nephelometer. 

 

Comments: P7 L189-191: What is ceiling (maximum altitude) of your SBDART 

model? 

Reply: For our study, the aerosol distribution in the vertical direction is parameterized 

based on Liu et al. (2009). There is almost no aerosol above 50km. So the ceiling of 

the SBDART model in our study is 50km. 

 

Comments: P7 L191-192: Assume HG phase functions or Mie phase functions in 

SBDART? 

Reply: Thanks for the comments. We have made some revision accordingly to make 

this sentence more clearly. The profiles of the aerosol extinction coefficient, aerosol 

single scattering albedo and g are the results from the calculating of the Mie scattering 

model. The input of the Mie scattering Mie model comes from the parameterization of 

the aerosol vertical distributions. At the same time, we add some supporting 

information in section 5 of the supplementary to detail the vertical distributions of the 

aerosols. 

 

Comments: P7 L194-195: Mean results from a specific span of time? Different times 

of day? Please be more specific. 

Reply: Thanks for the comments. We have changed the manuscript accordingly. 



Atmospheric meteorological parameter profiles come from the results of the intensive 

radiosonde observations at the Meteorological Bureau of Beijing (39°48’ N, 116°28’ 

E) at the local time of 13:30 from July to September in 2008. Kuang et al. (2016) 

studied these measured profiles and found that the vertical distributions of these 

parameters, which include profiles for water vapor, pressure and temperature, can be 

used as a good representation of the meteorological parameter profiles in the NCP 

during the summer. The mean results during the measurements, which is shown in fig. 

S4, are used in this study. 

 

Comments: P7 L199: Please provide reference for SBDART defaults values 

Reply: Thanks for the comments. We added the reference for the SBDART defaults 

values. At the same time, the default value can found in the manual of the SBDARF 

model, which can be inquired from the internet 

https://www.paulschou.com/tools/sbdart/. 

 

Comments: P7 L192-199: I am a bit confused – were radiosonde data from the 

summer combined with albedo data from the winter? Can you explain? 

Reply: Thanks for the comments. We changed the surface albedo value to the mean 

results of the surface albedo of Beijing from Jul to September in 2008, which is 

corresponded to the time and the location of the field measurements of the 

meteorological profiles used in this study. 

 At the same time, we found the results of our study are scarcely influenced 

because we are concerning the variation in the DARF due to the change of the aerosol 

asymmetry but not the absolute values of the DARF. 

 

Comments: P8 L232: Does setting RH and κ values give different results from 

removing them as input variables and setting npre=6? 

Reply: Thanks for the comments. The two methods of using the input of the model 

result in almost the same results. Fig. R8 gives the results of using the method. Fig. 

R8(a) gives the results of without the RH and κ values and fig. R8(b) gives the results 



with the RH and κ values equaling to zeros. From fig. R8, it’s concluded that using 

this two methods has almost no different results. 

 
Figure R8. Comparison of the calculated gMie values and the machine learning 
predicted gML values (a) without the RH and κ values and (b) with the RH and κ 
values equaling to zeros. 
 

 

Comments:P9 L238-239: Sensitivity of calculated g values to input RH and κ? 

Reply: Thanks for the comments. We just want to show the results of the comparison 

of the gML and gMie at different RH. This corresponding paragraph is reconstructed. 

 

Comments:P9 L247: Should mention that other empirical relationships have been 

given between g and b (i.e. Sheridan and Ogren, 1999 (JGR); Moosmüller and Ogren, 

2017 (Atmos.); Marshall et al, 1995 (Appl. Opt.)) Perhaps one of the others is more 

accurate in these cases? 

Reply: Thanks for the comments. We have add some discussion about the mentioned 

empirical relationships between g and b. The relationship between g and b used in this 

study is the most widely accepted parameterization scheme. Sheridan and Ogren 

(1999) used the relationship between g and b and up scatter fraction based on the 

work of Wiscombe and Grams (1976), which is basically, the same as the one in our 

discussion. Moosmüller and Ogren (2017) summarized the recent development of 



relating the g and b. They give a corrected scheme of Wiscombe and Grams (1976) 

as: 

g = −6.347b! + 6.906𝑏! − 3.859𝑏 + 0.9852    (4). 

Another simplified parameterization scheme is also given in this study as: 

g=1-2b                                    (5). 
The comparison of gMie and the parameterized g using formula (4) and (5) are shown 
in fig. R9. Results show that neither of the schemes works well for the continental 
aerosols in the NCP. However, the parameterization scheme by Marshall et al. (1995) 
depends on the assumption about the aerosol size distribution, which is not suitable in 
this study. 

 Figure R9: Comparison of the gMie and the parameterized g by using (a) formula (4) 
and (b) formula (5). 
  



 

Comments:P9 L256-261: Why random/arbitrary deviations in input values? Can you 

use the specified/measured uncertainties in the measurements themselves? 

Reply: Thanks for the comments. The reviewer gives a good view of doing the 

sensitivity test. We have made the revision accordingly. We give the uncertainties of 

the measured parameters, which are used as the input of the machine learning model. 

The Monte Carlo tests were carried out to study the sensitivity of predicted g to each 

input parameter. Details of the discussion are shown in section 4.2.2 of the 

manuscript. 

 

Comments:P10 L269: Based on your own comments earlier in the paragraph isn’t the 

model simply more sensitive to completely independent input variables, which 

happen to be RH and κ in this example? What happens if you only input σsca, or 

specify that σsca and βsca must vary in the same way? 

Reply: Thanks for the comments. We have changed the method of conducting the 

sensitivity test. The Monte Carlo tests were carried out to study the sensitivity of 

predicted g to the uncertainties of each input parameter. We find that κ is the most 

important factor that may influence the accuracy of predicting g because the κ has 

great uncertainties as the input parameter. More details of the discussion are sown in 

section 4.2.2 of the manuscript. 

 

Comments:P10 L274-276: Can you clarify what you mean by “actual calculated 

aerosol phase function” – does this imply those measured directly by CCD-LADS, or 

those calculated using Mie theory? If the latter, can you also compare DARF using 

directly measured phase functions using CCD-LADS? 

Reply: Thanks for the comments. We have made some revision to make the 

discussion more clear. The ‘actual calculated aerosol phase function’ implies the 

phase function calculated by using the Mie theory.  

 We don’t think it is proper to using the measured phase functions by CCD-LADS 

at this section for study. As shown by Bian et al. (2017), the measured phase function 



by CCD-LADS shows good consistence with the calculated phase function, which to 

some extent means that the calculated phase function by using Mie theory is reliable. 

However, there still exist some uncertainties of the measured phase function. The 

phase function calculated by using the Mie theory is a better choice for testing the 

uncertainties of DARF in the using of HG phase function. 

 

Comments:P10 L289: Suggest citing McComiskey et al, 2008 (JGR) 

Reply: Thanks for the comments. We have made the revision accordingly. 

 

Comments:P10 L289-290: It is unclear how this section ties into the rest of the paper, 

or what novelty comes from the discussion. As you point out, previous studies have 

also undertaken to study how modeled DARF varies with input parameters like 

asymmetry parameter. Can you add anything unique to the literature regarding g and 

DARF? 

Reply: Thanks for the comments. The revisions were made accordingly in section 

4.3.2. The logic of this section is briefly described here. In this study, we use the 

random forest machine learning model to calculate the g. The uncertainties of the g 

values from the input parameter is estimated to be 1.95% when predicting g and the 

total variation in running the random forest machine learning model is estimated to be 

4.47%. At the same time, the g can varies about 10% for different aerosol PNSD and 

can be enhanced by 20% with the increment of RH from 30% to 90%. It is very 

important to know the extent of the variation in DARF corresponding to the 

uncertainties from g. At the same time, it is very important to know the uncertainties 

of the DARF when using the random forest machine learning to predict g. 

 

Comments:P10 L290-298: Would it be perhaps more appropriate to vary g according 

to a typical RH profile? You show that g tends to be higher when RH >90%, 

conditions which are only likely to occur in specific layers of the atmosphere 

depending on the local meteorology.  

Reply: Thanks for the comments. We have changed the method of estimating the 



influence of RH on g and DARF. It is estimated by calculating the DARFs with the g 

values calculated from the dry parameterized aerosol population profile and g values 

calculated from the RH and aerosol population profiles. 

 

Comments:P10 L291: Where does 2.3% come from?  

Reply: Thanks for the comments. We have made the revision accordingly. We attend 

to estimate the uncertainty of DARF form the uncertainties of the random forest 

machine learning model. It is worthy note that the values 2.3% is changed because the 

method of estimate the uncertainties of predicting g is changed. 

 

Comments:P12 L339: Regarding “actual phase function”, please clarify (see general 

comments)  

Reply: Thanks for the comment. We have made the revision accordingly. 

 

Comments:Figure 1: What about Hauirou? Can you also provide graphs of average 

PNSDs for each site?  

Reply: Thanks for the comments. We have added the information of the Huairou 

(UCAS) in the figure and corresponding text was changed. 

 

Comments:Figure 3: Clarify which data used for these calculations – which site.  

Reply: Thanks for the comments. We have made the revision at section 4.2.1 and the 

corresponding section. 

 

Comments:Figure 4: Please explain in text a possible justification for the higher 

dependence on σsca,635 compared to other wavelengths. Also, why is g very 

dependent on 5% variation in κ, but not significantly affected by greater deviations?  

Reply: Thanks for the comments. We reconstructed the method of conducting the 

sensitivity study. We found some of the result unacceptable in the figure. And the 

figure is removed from the manuscript. 

 



Comments:Figure 5: Clarify “calculated phase function” (see general comments)  

Reply: Thanks for the comments. We have made the revision accordingly. 

 

Comments:Figure 7: Please clarify figure in caption by changing order: gCCD,Cal as 

a function of gMachine,cal 

Reply: Thanks for the comments. We have made the revision accordingly. 

 

Comments:Technical comments 

P6 L157: Please correct “tress” to “trees” 

Reply: Thanks for the comments. We have changed the manuscript accordingly. 
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