
Reply to Referee E. Ray (ACP-2017-1143)

We thank E. Ray for the positive and constructive comments 
on our manuscript. Below we summarize our answers to his 
specific comments.  Moreover the manuscript is changed 
taking into account the comments (changed manuscript with 
changes highlighted is attached to this reply) . 

Note that during the review process we found, that the 
calculation of w* is treated inconsistent within the different 
models, as in some models a fixed scale height was used to 
transform w* from Pa/s to m/s, while in other models the actual
density was used for this transformation. The different 
calculation methods of w* can lead to large differences in w*. 
To facilitate a quantitative model comparison we recalculated 
w* from the given v* fields. Thus we recalculated the RCTTs, as
well as the mixing efficiencies, however the conclusions of the 
paper do not change. We now provide a supplement (attached 
to this reply). 

Specific issues:
p 2, line 11:  switch "also" and "be"
→ done

p7., line 13:  "Karlsruhe, Germany" seems to be a mistake
→ Thank you, error fixed.

Pg. 8, line 30: remove "allows" and change to "separates"
→ done

Pg. 10 and references: Problem with the "Ray and Andrews,
2017" reference.
→ Thanks, corrected.

Pg. 11, line 22: add "of" after "question"
→ done

Pg. 16: I was unsure in reading the first paragraph of Section
4.2 whether the correlations shown in Figure 4 were done for
all of the models or not. At the end of the paragraph you do
mention the sample size of 17 models but I would mention that
up  front  to  make  it  clearer.  How  much  variability  in  the
correlations is there between models?
→  Thank  you  for  pointing  this  out,  we  will  move  the
information about the 17 models up in the paragraph. In fact,
the correlation seems to be quite robust. Excluding the one or



the other model from this analysis hardly changes the overall
picture. We will add some words on this, however, we did (and
still do) not see the need for a decent analysis here, so we will
keep it very basic.

Pg. 16, lines 22,23: add commas after "RCTTs" and "tropical
pipe"
→ done

Pg. 17, line 16: add "a" before "measure"
→ done

Pg.  18,  line  10:  change  to  "different"  and  remove  "strong
relative"
→ rephased: “mixing leads to different magnitudes in the relat-
ive enhancement of AoA.”

Pg. 18, line 20: remove "exemplary"
→ done

Pg. 22, line 5: remove "also" and add comma in that space,
change "in parts" to something like "partly"
→ done

Pg. 24, line 3: change "to" to "by"
→ done

Pg. 24, line 6: remove "here"
→ done

Pg. 24, lines 8-9: ".  .  .twice in the figure, once each for the
CCMI-1 and CCMVal-2 simulations."
→ done

Pg. 24, figure 8: A more descriptive title on the figure would be
helpful.
→ We will switch title and x-Axis description and change the
caption as follows: ... contribution on tropical upwelling (calcu-
lated  as  EPFD  contribution  of  downward  control  calculated
tropical upwelling divided by overall tropical upwelling) 30 …

Pg. 25, lines 2-3: The statement that wave driving differences
can’t explain mixing efficiency differences might be too strong
based on the small sample size statement made later in the
paragraph.
→ We will extend the sentence by:
...has to be rejected for now, however, more model data is re-
quired to ultimately confirm this statement.

Pg. 25, line 9: change to "explain"
→ changed



Pg. 25, line 12: change to "influence"
→ changed

Pg. 25, line 31: change to "sample"
→ changed

Pg. 25-26: The discussion of the model’s advection schemes
and resolution in these two pages could be shortened in my
opinion. The results are interesting but the discussion section
is long. Since there is no systematic relationship found among
the advection schemes it would be sufficient to just mention
that without going into the details.
→  We  tried  to  reword  the  section,  in  order  to  shorten  it.
However we think all information is important, thus we still like
to include them.

Pg. 27, line 23: remove "could" and change to "showed"
→done

Pg. 27, line 25: add comma after "Thus"
→ done

Pg. 28, line 3: change "is" to "were"
→changed

Pg. 28, line 4: change "do" to "did", change "also do except" to
"expect"
→ changed

Pg. 28, line 6: remove "does" and change to "caused"
→ done

Pg. 29, line 6: change to "explain"
→ changed
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Abstract. Stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to

simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled

chemistry-climate models (CCMs). Compared to observational estimates simulated AoA is mostly too low. Here we attempt

to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA

is influenced by both mean transport along
::
by

:
the residual circulation and two-way mixing; we quantify the effects of these5

processes using data from the CCM inter-comparison projects CCMVal-2 and CCMI-1. Transport along the residual circulation

is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional

aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in

AoA between the models is primarily caused by differences in the effects of mixing, and only to some extent by differences in

residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase of AoA10

by mixing. The mixing efficiency varies strongly between the models from 0.21 to 0.99
::::
0.24

::
to

::::
1.02. We show that the mixing
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efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes

for the differences in the models’ mixing efficiencies are discussed. Differences in subgrid scale mixing (including differences

in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences

in the relative contribution of resolved versus parametrized wave forcing do not appear to be related to differences in mixing

efficiency or AoA.5

1 Introduction

The Brewer-Dobson-circulation (BDC) affects the stratospheric distribution of radiative active trace gases, which strongly

contribute to the radiative forcing of the climate system. Stratospheric mean age of air (AoA) is a measure of the strength

of transport along the BDC and is defined as the mean transport time of an air parcel from the entry region at the tropical

tropopause to any region in the stratosphere (??). AoA is a useful measure for the analysis of stratospheric transport, as it in-10

cludes both the effects of the slow overturning residual circulation and the effect of the two-way mass exchange of air parcels,

referred to as (eddy) mixing (e.g. ?). AoA can also be derived from observations of conserved tracers whose tropospheric con-

centrations increase approximately linearly over time, such as balloon-borne and satellite observations of SF6 or CO2 mixing

ratios (e.g. ?????). AoA derived from observations then can be directly compared to AoA simulated by GCMs and CCMs (as

done e.g. in ??). The concept of stratospheric AoA is very helpful, as it is the only
:
a possible observation-based measure of the15

BDC. However, it is important to note that the AoA diagnostic bears information on both mean residual circulation and effects

of two-way mixing, as it is the integrated effect of all transport processes.

In the past model-inter-comparison studies with GCMs, chemical transport models (CTMs) and CCMs (e.g. ???) showed a

significant model spread in AoA. In comparison to observations, simulated AoA was too low in many models, mainly in the20

middle and upper stratosphere. The model-inter-comparison activity CCMVal-2 (Chemistry-Climate Model Validation activity

2) was conducted with the goal to improve the understanding of stratosphere-resolving CCMs. In the SPARC (Stratospheric

Processes and their Role in Climate Project) CCMVal-2 report (?) the AoA diagnostics of 15 CCMVal-2 models were analyzed

at a wide range of latitudes and altitudes. The models AoA was compared to in-situ observations of ? and ? (see the tropical

and mid-latitude AoA profiles and the latitudinal AoA distribution at 50 hPa in figure 5.5 of ?). It was shown that 7 out of 1525

models match closely the observed AoA at 50 hPa at all latitudes and also their vertical tropical AoA profiles are within the

uncertainties of the observations at all altitudes. However, for most of these models AoA is too low in the middle stratosphere

when compared to in-situ observations. Moreover, the spread of simulated AoA between the models is high.

To understand the model spread in AoA and their discrepancy to observations, the processes that drive stratospheric trans-

port need to be disentangled, namely the effects of residual transport and mixing. Several methods for this separation have30

been used. ? have used a methodology based on the conceptual one-dimensional tropical leaky pipe (TLP) model (see ?) to

constrain the circulation strength and mixing strength across the subtropical barrier in a model by observed concentrations of

long-lived tracers. In ? several diagnostics were employed to measure transport characteristics like tropical ascent or tropical
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to mid-latitude mixing. Those diagnostics were based on tracer concentrations, allowing for a comparison to observations.

However, with most diagnostics it is not possible to entirely separate the different effects. It was found that most models appear

to have too strong tropical-to-mid-latitude mixing and too fast tropical ascent. As those two biases compensate, it is argued that

despite those model biases a reasonable AoA can be produced in the models. Overall, a good relationship between the model’s

ability to simulate mean AoA to the ability to simulate both , tropical lower stratospheric ascent, and tropical-mid-latitude5

mixing was found (see ?, their Fig. 5.20).

Recent
:::::::
Previous

:
studies have developed diagnostics to

:::::::
measure

:::::::::
dispersive

:::::::::::
stratospheric

::::::::
transport

:::::::::
associated

::::
with

:::::
eddy

::::::
mixing

:::::::::
(e.g. ???) .

:::::::::
Transport

::::::
times,

:
i.
:::

e.
:::::
AoA,

:::
are

::::::::
affected

::
by

::::
the

:::::::::::::
path-integrated

::::::
effects

::
of

:::::
local

:::::
eddy

:::::::
mixing.

:::::::
Several

::::::::
theoretical

:::::::
concept

:::::::
studies

::::
with

::::::::
idealized

::::::
models

::::::
found

::::
that

::::::
overall

::::::
mixing

::::::::
increases

:::::
AoA

::::
due

::
to

::::::::
enhanced

::::::::::::
re-circulation10

::::::::
(e.g. ??) .

:::::
More

:::::
recent

::::::
studies

:::::
have

:::::::::
developed

:::::::::
diagnostics

::
to
:

quantify the effect of mixing on AoA from
:::::
global

:
model data

(e.g. ???). ? quantified the effect of mixing on AoA (termed as aging by mixing) with the global climate model ECHAM6

(European Centre/Hamburg version 6). They analyzed the difference of simulated AoA and the transit time of the hypothetical

transport along the residual circulation only (in the following termed as residual circulation transit time, RCTT). They found

that additional aging by mixing can be found in most of the stratosphere, because mixing between the tropics and extratropics15

causes air to recirculate, and thus AoA is increased. Only in the lowermost stratosphere, where air mass exchange with young

tropospheric air occurs, mixing leads to a reduction of AoA. ? confirmed these results with the Lagrangian chemistry transport

model CLaMS (Chemical Lagrangian Model of the Stratosphere) by explicitly calculating aging by mixing on resolved scales

through integration of local eddy mixing tendencies along the residual circulation trajectories. In the explicit calculation of

aging by mixing, parametrized and numerical diffusion are not included. ? combined the two methods of calculating aging by20

mixing and thus the effects of resolved and unresolved mixing on AoA (latter termed aging by diffusion) can be separated.

By analyzing simulation data of the CCM EMAC (ECHAM/MESSy Atmospheric Chemistry) and of CLaMS, they found that

aging by diffusion enhances AoA, contradicting some previous thoughts, which assumed that diffusion makes air younger (e.g.

???). However, the contribution of unresolved mixing was found to only play a minor role (impact of 5-10% on AoA) in both

models.25

By applying the concept of the idealized TLP model, ? derived the so-called ’mixing efficiency’. The mixing efficiency is

defined as the ratio of the two-way mixing mass flux across the subtropical barrier to the net residual mass flux. This mix-

ing efficiency controls the ratio of tropical mean AoA to RCTT, and thus describes the relative increase in AoA by mixing.

? investigated the mixing efficiency for three different climate equilibrium states (pre-industrial (1860), present-day (1990),

and future (2050)) and found that the strength of two-way mixing is tightly coupled to the strength of the lower stratospheric30

residual circulation. The ratio of mixing strength to residual circulation strength is almost constant in the three different climate

states (i.e. the mixing efficiency is constant). ? proposed that the comparison of the relative aging by mixing (or of the mixing

efficiency) between models can provide useful insights in the widely known model deficits in the AoA simulation.
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In this study we seek to gain a better quantitative understanding of the processes that control the BDC, in order to explain

the differences in climatological AoA between CCMs. To do so the effects of residual transport and of mixing on AoA are an-

alyzed and investigated for various recent CCMs. We use the data of the hind-cast simulations of the inter-comparison projects

CCMVal-2 and CCMI-1 (Chemistry Climate Model Initiative, phase 1). A brief description of the models and simulations is

presented in Section 2. The methods of calculating AoA, RCTT, aging by mixing, the mixing efficiency and tropical upwelling5

are shortly introduced in Section 3. Annual mean AoA, RCTT, aging by mixing and mixing efficiency are analyzed in Sec-

tion 4. In Section 5 we discuss possible causes for the inter-model differences in mixing, including effects of vertical dispersion

and model characteristics. A summary and concluding remarks are given in Section 6.

2 CCM simulations analyzed in this study

In the present study, we analyze the model output from 17 state-of-the-art CCM simulations. The output of 8 simulations is10

obtained from the coordinated model inter-comparison Chemistry-Climate Model Validation activity 2 (CCMVal-2, ??) and

the output of the other 9 simulations from the ongoing Chemistry Climate Model Initiative phase 1 (CCMI-1, ??). A list of

these CCMs is provided in Table 1, together with references and relevant information on the model setups, namely the vertical

and horizontal resolution, the height of the model top, and the advection scheme. This sub-set of models that contributed to

CCMVal-2 and CCMI-1 is chosen according to the availability of the necessary data (AoA and residual circulation velocities).15

In the following, we briefly describe some aspects of the CCMs that are relevant for our study. A detailed overview of all

models that participated in CCMVal-2 and CCMI-1 is provided by ??. Note that many CCMI-1 models have a predecessor

model in CCMVal-2, thus the development since CCMVal-2 (e.g. improvements in chemistry and physics or higher resolution)

can be studied. Note also that there are family relationships between different models, e.g. the models ACCESS-CCM and20

NIWA-UKCA are identical and the models EMAC and SOCOL are both based on the ECHAM5 climate model. Moreover, we

use the EMAC model in two different vertical resolutions (i.e. EMAC-L47 and EMAC-L90MA).

The models’ horizontal resolutions vary between ∼5◦and ∼2◦and the vertical resolutions range from 26 to 126 levels with the

top of the different models between 0.07 hPa up to 0.00005 hPa.

Several types of advection schemes are used in the CCMVal-2 and CCMI-1 models. Numerical diffusion in GCMs is linked to25

the discrete nature of grids which are used for transport processes. Generally, advection schemes are designed to minimize nu-

merical diffusion, however, for stability reasons several models require explicit diffusion (??). The different advection schemes

are also provided in Table 1. Note that in CCMVal-2 there are two models (MRI and SOCOL) that use different schemes for

meteorological and chemical tracers. Thus, in these models, the advection of the different types of tracers is physically not

self-consistent (?). The SOCOL model has changed the advection scheme between CCMVal-2 and CCMI-1. Differences in the30

advection scheme may cause differences in the distribution of chemical species and AoA, particularly in the lower stratosphere

(??).

The BDC is driven by the momentum deposition of breaking waves (?) with small-scale gravity waves contributing signifi-
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cantly, but these small-scale waves are not resolved in most GCMs. Numerous parametrization schemes for the calculation of

gravity wave drag (GWD) are applied in the different CCMVal-2 and CCMI-1 models. Based on the generation of the gravity

wave scheme, the computation of their drag is separated into orographic and non-orographic parameterization schemes. For

the non-orographic gravity wave drag, various methods are used to determine the sources as well as the launch levels of the

gravity waves. Basically, each model uses another combination of these schemes , an overview is provided
:::
The

::::::
gravity

:::::
wave5

:::::::
schemes

::::
used

::
by

:::
the

::::::::
different

::::::
models

:::
are

:::::
listed in Table S9 of ? and in Table 3 of ?.

The simulations evaluated here are the long transient (free running) reference simulations REF-B1 of CCMVal-2 (covering

the recent past from 1960-2006) and REF-C1 of CCMI-1 (covering the recent past from 1960-2010). The long-term mean

over those years provides the base for our inter-comparison. The REF-B1 and REF-C1 reference simulations were performed10

analogously, using observational forcings, including all anthropogenic and natural forcings based on changes in trace gases,

solar variability, volcanic eruptions and sea surface temperatures. Some of these forcings, however, differ between CCMVal-2

and CCMI-1. All details of the REF-B1 and REF-C1 simulations are documented by ?? and follow the designs of ? or ?.
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Table 1. Overview of the CCMs and their simulation set-ups used in the present study. The reference(s), the horizontal and vertical res-

olution (number of model layers), the model top and the advection schemes (of chemical tracers) of the individual models of CCMVal-2

(upper rows) and CCMI-1 (lower rows) are listed. For the spectral models, horizontal resolution is given as triangular truncation of the spec-

tral domain, with T21≈ 5.65◦x5.65◦, T30/T32≈3.75◦x3.75◦,T42≈2.8◦x2.8◦, T47≈2.5◦x2.5◦. TL159≈ 1.1◦x1.1◦ The advection schemes

are SP=spectral, FFSL=flux-form semi-Lagrangian, SL=semi-Lagrangian, STFD=spectral transform and finite difference, FFEE=flux form

Eulerian explicit, FV=finite volume (for details see ?).

Model Reference(s) Resolution Top of model Advection Scheme

CCMVal-2

CMAM ? T31, L71 0.00081hPa SP

GEOSCCM ? 2.0◦x2.5◦, L72 0.015hPa FFSL

LMDZrepro ? 2.5◦x3.8◦, L50 0.07hPa FV

MRI ? T42, L68 0.01hPa STFD*

SOCOL ? T30, L39 0.01 hPa SL*

ULAQ ? 11.5◦x22.5◦, L26 0.04 hPa FFEE

UMUKCA-METO ? 2.5◦x3.8◦, L60 84km SL

WACCM ? 1.9◦x2.5◦, L66 0.00005hPa FFSL

CCMI-1

ACCESS-CCM ??? 2.5◦x3.8◦, L60 84km SL

CMAM ? T47, L71 0.0008hPa SP

?

CESM1-WACCM ?? 1.9◦x2.5◦, L66 140kCCMI20171203.texm FFSL

?

EMAC-L90 ?? T42, L90MA 0.01hPa FFSL

EMAC-L47 ?? T42, L47 0.01hPa FFSL

GEOSCCM ?? 2◦x2.5◦, L72 0.015hPa FFSL

??

MRI ? TL159, L80 0.01 hPa SL

??

SOCOL ?? T42, L39 0.01 hPa FFSL

NIWA-UKCA ?? 2.5◦x3.8◦, L60 84km SL

?

ULAQ ? T21, L126 0.04hPa FFEE

*these models use different transport schemes for meteorological tracers
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3 Methods

3.1 Calculation of AoA, RCTT and aging by mixing

Stratospheric mean age of air is defined as the residence
:::::
transit

:
time of air parcels in the stratosphere, starting at the tropical

tropopause (e.g ??) and is affected both by the residual circulation, and by eddy mixing. In almost all CCMs, the AoA tracer

is implemented as an inert tracer with prescribed lower boundary conditions ( in some models the lower boundary condition5

is applied globally in others only in the tropics) that linearly increase in mixing ratio over time (“clock-tracer”; ?). Diagnosed

AoA at a certain grid point in the stratosphere is then calculated as the time lag between the local tracer mixing ratio (at this

certain grid point) and the current mixing ratio at a reference point. As this reference point does vary among the models (e.g.

boundary layer, tropical thermal tropopause, 100hPa), we subtract the AoA value at each model’s individual tropical thermal

tropopause from AoA (so that AoA=0 there), to obtain consistency between the models. Only the CCMVal-2 model CMAM10

uses a stratospheric source AoA tracer (for details see ?)

The residual circulation transit time (RCTT) is the hypothetical age air would have if it was only transported by the residual

circulation, i.e. without eddy mixing. RCTTs are calculated following ? by calculating backward trajectories that are driven

by the Transformed Eulerian Mean (TEM) meridional and vertical monthly velocities (
::
v̄∗

:::
and

::::
w̄∗,

:
referred to as residual15

velocities) with a standard fourth-order Runge-Kutta integration. The backward trajectories are initialized on a latitude pres-

sure grid (depending on the model). The residual meridional velocity v̄∗ and the vertical velocity w̄∗
::::::::
velocities

:
are available

in the CCMI-1 and CCMVal-2 data base. The backward trajectories are terminated when they reach the thermal tropopause.

The elapsed time is then the residual circulation transit time. A detailed description is given by ? and by ?.
:
It
::
is
:::::::::
important

::
to

:::::::
mention

::::
here,

::::
that

:::
the

:::::::::
calculation

:::
of

:::
w̄∗

::
is

::::::
treated

::::::::::
inconsistent

::::::
within

:::
the

:::::::
different

:::::::
models,

::
as

:::
in

:::::
some

::::::
models

:
a
:::::

fixed
:::::
scale20

:::::
height

::::
was

::::
used

::
to

::::::::
transform

:::
w̄∗

::::
from

:
Pa/s

:
to

:
m/s

:
,
::::
while

:::
in

::::
other

::::::
models

:::
the

::::::
actual

::::::
density

::::
was

::::
used

:::
for

:::
this

:::::::::::::
transformation.

:::
The

:::::::
different

::::::::::
calculation

:::::::
methods

::
of

:::
w̄∗

:::
can

::::
lead

::
to

::::::::::
significantly

:::::::::
differences

::
in

:::
w̄∗

::::
(e.g.

::
17%

:
at

::
70

::::
hPa

:::
for

:::::::
EMAC).

::
To

::::::::
facilitate

:
a
::::::::::
quantitative

:::::
model

::::::::::
comparison

:::
we

::::
thus

::::::::::
recalculated

:::
w̄∗

::::
from

:::
the

:::::
given

::
v̄∗

:::::
fields

:::::
using

:::
the

::::::::
continuity

::::::::
equation

::
for

:::
all

:::::::
models.

::::::
Further

::::::
details

:::
are

::::
given

::
in
:::
the

::::::::::
supplement

::
of

::::
this

:::::
paper.

25

Besides the transport through
::
by

:
the residual circulation, AoA is affected by eddy mixing (????). As pointed out by

:::
e.g. ?,

mixing of air from the mid-latitudes into the tropical pipe can cause additional aging through recirculation of aged air. This

process is called aging by mixing. In their study, ? proposed that in global models aging by mixing can be interpreted as differ-

ence between simulated AoA and RCTT. However, it has to be taken into account that aging by mixing obtained as difference

between AoA and RCTT includes mixing on unresolved scales (namely parameterized
::::::::::
parametrized

:
and numerical diffusion).30
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3.2 TLP Model and mixing efficiency

We use the concept of the Topical Leaky Pipe (TLP) model (?) to better understand the contribution of different processes

to AoA. The TLP model is a simple one-dimensional conceptual model of stratospheric transport, which includes advection

and horizontal two-way mixing between tropics and extratropics across the subtropical barrier. When neglecting vertical dif-

fusion, an analytical solution for tropical and mid-latitude AoA can be formulated. The
:::::::
solution

::
of

:::
the

::::
TLP

:::::
model

::::
with

::::::
height5

::::::::
dependent

:::::::
tropical

::::::
vertical

:::::::
velocity

:::::::
w∗T (z)

:::
for

::::::
tropical

:::::
AoA

:::::::
(AoAT )

::
is

::::::
defined

::
as

:::::::
follows:

:

AoAT =

z∫
zT

1

w∗T (z′)
dz′+ ε

α+ 1

α
(

z∫
zT

1

w∗T (z′)
dz′+H(

1

w∗T (z′)
− 1

w∗T (zT )
)) =RCTT (z) + ε

α+ 1

α
(RCTT (z) +Tcorr(z))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

::::
Here

::
H

::::::
stands

:::
for

:::
the

::::
scale

::::::
height

::
(7

:::::
km),

::
α

:::
for

:::
the

::::
ratio

::
of

:::::::
tropical

::
to

:::::::::::
extratropical

:::::
mass,

:::
zT :::

for
:::
the

::::::
height

::
of

:::
the

:::::::
tropical

:::::::::
tropopause

:::
and

:::::::::::::::::::::::::::::
Tcorr(z) =H( 1

w∗T (z′)
− 1

w∗T (zT )
)
:
.
:::::
From

::::::
Equ.1

::
it

::
is

::::
clear

::::
that

:::
the

:
two free parameters that AoA depends

on are the advective vertical velocity (i.e. the residual velocity
::::
w∗T ) and the amount of mixing between the tropics and ex-10

tratropics, controlled by the so-called mixing efficiency ε. The mixing efficiency is defined as the ratio of the mixing mass

flux to the net mass flux across the subtropical barrier. At the same time
::::::
Solving

::::::
Equ.1

:::
for

:::
the

:::::::
mixing

::::::::
efficiency

::::::
gives:

::::::::::::::::::::::
ε= (AoAT−RCTT (z))

(RCTT (z)+Tcorr(z))
α+1
α

:
,
:::
i.e.

:
the mixing efficiency is

::::::::::::
approximately

:
proportional to the relative increase of

:
in
:

AoA by

mixing, and it proved to be
:
.
::::
Thus

:::::::
mixing

::::::::
efficiency

::
is

:
a useful measure of the relative mixing effects (see ?). The mixing

efficiency can be calculated from model data given the tropical profile
:
is

:::::::::
calculated

::
as

:::
best

:::
fit

::
of

::::
Equ.

::
1

::
to

:::
the

::::::
tropical

:::::::
profiles15

of AoA and the vertical residual velocity w̄∗
:::
w∗T:::::

from
:::
the

:::::
model

::::
data

:::::
over

:
a
::::::
certain

::::::
height

:::::
range. The tropical profiles are

averaged over the latitudinal band of 20
◦
S-20

◦
N (sensitivity to the width of the tropical band is discussed in Section 4) and are

interpolated to vertical coordinates relative to the tropopause height of each model. The mixing efficiency is then obtained by

a best fit
:
,
:::
and

:::
the

::
fit

::
is

:::::::::
performed for the altitude range from the tropopause to 32 km (details for the calculation of the mixing

efficiency are given in ?).
:

20

To analyze the role of vertical diffusion for AoA profiles and the derived mixing efficiency (see Section 5.1) the TLP model

is implemented as Lagrangian model (following ?). Briefly, the model consists of three vertical “pipes” (tropics, northern

hemisphere (NH) and southern hemisphere (SH)), and particles are injected in the tropics, advected vertically with given

vertical winds, and exchanged between tropics and the NH and SH extratropics. Horizontal advection and mixing is modeled25

as “Bernoulli process” based on probabilities of parcel exchange. Vertical diffusion (which is neglected in the analytical TLP

solution) is implemented as random walk: The height of each parcel i is calculated as zi(t+δt) = zi(t)+ζ, where ζ is a random

displacement drawn from a Gaussian distribution with zero mean and variance σ2 = 2Kδt (where K is the vertical diffusivity

at this height; see ?).
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3.3 Tropical upwelling

The stratospheric circulation is driven by the dissipation of waves that propagate upwards from the troposphere to the strato-

sphere. As measure for the strength of the residual circulation, the strength of tropical upwelling is commonly used (?). Here, we

use the quasi-geostrophic approximation of the transformed Eulerian-mean (TEM) equations to calculate the streamfunction of

the residual circulation χ∗ driven by the Eliassen-Palm flux divergence (EPFD) and the sum of orographic and non-orographic5

gravity wave drag (OGWD and NOGWD) as follows:

χ∗m0
(p) =

0∫
p

[
1

cos(φ) · f

(
1

r · cosφ
∇ ·F − ∂u

∂t
+X

)]
φ=φ(m0)

. (2)

Here, F denotes the Eliassen-Palm flux, X the total zonal gravity wave drag, f the coriolis parameter, φ the given latitude, p

the given pressure and m= r ·cos(φ)(u+r ·Ωcos(φ)) the meridional gradient of the zonal mean angular momentum. Tropical

upwelling is then given by the difference in the residual streamfunction at the tropical boundaries (20
◦
S, 20

◦
N). This calculation10

linearly separates the influence of resolved planetary wave driving (EPFD: 1
r·cosφ∇·F −

∂u
∂t ) and unresolved gravity wave drag

(GWD: X) on tropical upwelling. This can provide insights into the driving mechanisms of stratospheric transport and mixing

variations, and thereby in AoA spread among the models.

4 Effects of mixing on AoA in analyzed CCMs

4.1 AoA, RCTT and aging by mixing15

The long-term climatological mean AoA, RCTT, and aging by mixing are calculated for each model listed in Table 1 and are

shown in Figure 1 for the CCMVal-2 models and in Figure 2 for the CCMI-1 models. Additionally, the residual circulation

is overlaid in the RCTT panels. The climatological means are calculated over the years 1980 to 2006 for CCMVal-2 REF-B1

models and from 1980 to 2010 for CCMI REF-C1 models, because all available simulations overlap in this period. In general,

the zonal annual mean patterns of AoA of all CCMs (Fig. 1 and Fig. 2, left panel), agree qualitatively in the typical AoA20

distribution. All models have lower AoA in the tropical lower stratosphere and old air in the extra-tropical middle stratosphere.

However, the simulated magnitude of AoA shows large variations among the different models of CCMVal-2 and CCMI-1,

mainly at high latitudes in the upper stratosphere. In this region, the AoA values range between 4.0 and 6.5 years. Gener-

ally, the highest AoA values are found in the UMUKCA-METO (CCMVal-2), lying far outside of the model spread. For the

CCMVal-2 models (Fig. 1), besides the UMUKCA-METO model, the ULAQ and MRI models simulated rather high AoA25

values and the SOCOL model has the lowest AoA values. Within the CCMI-1 models, EMAC and MRI are on the high side of

AoA values, whereas the models NIWA-UKCA, SOCOL, ULAQ and WACCM are on the low side. Furthermore, differences

in the shape of the AoA isopleths between the analyzed CCMs are apparent, ranging from peaked to flat gradients. Figure 1

and 2 show strong horizontal gradients for the models GEOSCCM and UMUKCA-METO of CCMVal-2 and for the model

MRI of CCMI-1 and low gradients for the model SOCOL of CCMVal-2 and for the models NIWA-UKCA, SOCOL and ULAQ30
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of CCMI-1. Note that the CCMs NIWA-UMUKCA and ACCESS are identical and use the same model-setup for the REF-C1

simulations, however they were conducted on two different platforms. We found that the two model runs are climatological

identical for dynamics (as seen e.g. for upwelling, residual circulation and zonal winds) and also for transport-determined

tracers (e.g. CH4). However, there are significant differences in AoA between the two models (with considerably lower AoA in

ACCESS), that we can currently not explain. If the platform dependence was the reason for differences in transport, we would5

expect that similar differences are found in other tracers. Therefore we will only show the results of NIWA-UMUKCA in the

following.

For a more quantitative comparison, we show (analogously to chapter 5 of ?) the tropical (10◦N-10◦S) and mid-latitude

(35◦N - 45◦N) annual mean AoA profile and the latitudinal distribution of AoA at 50 hPa for all analyzed CCMs together10

with the available observed AoA profiles in Fig. 3. The observational data are obtained from airbone in-situ observations of

the SF6 and CO2 profiles from different measurement campaigns during the last decades (???). For the mid-latitudes we use

the AoA profiles of ? and for the tropics the AoA profiles of ?. The observational uncertainty in AoA for the data of ? in-

cludes both, trace gas uncertainty and variability of AoA over 30 years (see ?), whereas the observed tropical AoA profiles

of ? were not reported with uncertainties. The
:::::::::::
Additionally

::
to

::::
AoA

:::::
from

::::::
in-situ

::::
data

:::
we

:::
also

::::
use

::::
AoA

:::::::::
calculated

:::::
from

:::
the15

::::::
satellite

:::::
based

::::::::::::
GOZCARDS

::::::
(Global

::::::
OZone

:::::::::
Chemistry

::::
And

:::::::
Related

::::
trace

:::
gas

:::::
Data

:::::::
records,

::
? )

::::
N2O

:::::
data,

:::::
using

:::
the

::::::::
empirical

:::::::::
relationship

:::
of

::::
N2O

::::
with

::::
AoA

::::::::
(see ??) .

:::
The

:::::
N2O

::::
AoA

::::
data

:::
are

:::::::
available

:::
for

:::
the

::::::
tropical

::::
and

::::::::::
mid-latitude

::::::
profiles

:::
for

:::
the

:::::
years

:::::::::
2007-2011.

::::
The latitudinal distribution is compared to the in-situ data of ?. As observation-based in-situ measurements of the

BDC are sparse, we also use for the latitudinal distribution AoA values derived from SF6 satellite observations from the EN-

VISAT Michelson Inferometer for Passive Atmospheric Sounding (MIPAS) (??). However, AoA derived from observed SF620

is overestimated because of the mesospheric sinks of SF6 (??). The uncertainty of
:::
this observational latitudinal AoA profile is

shown as range between maximum and minimum AoA values.
::::::::::
Additionally

::
to

::::
AoA

:::::
from

::::::
MIPAS SF6 ::::

data
::
we

:::::
again

:::
use

:::::
AoA

::::::::
calculated

::::
from

::::::::::::
GOZCARDS

::::
N2O

::::
data,

:::
as

:::
they

:::
do

:::
not

::::::
include

:::
the

::::
high

:::::::
MIPAS

::::
bias

:::
due

::
to

:
SF6:::::

sinks.

The tropical AoA profile (Fig 3a), which is influenced by the ascent in the tropics, vertical diffusion and horizontal mixing

across the subtropics (see ?), shows increasing AoA values with altitude. We find that throughout the stratosphere many models25

have lower AoA values compared to the observationsof ?
:::::
in-situ

:::
and

:::::::
satellite

:::::::::::
observations, apart from the UMUKCA-METO

model whose air is 1-2 years older. Regarding the inter-model differences in the tropical profiles of AoA, we find a large

spread between the various models: the standard deviation of the AoA multi-model mean is about 10% at 20 hPa and 30%

at 70 hPa (excluding the outlier model UMUKCA-METO). The mid-latitude AoA (Fig 3b) is influenced by the ascent in the

tropics, the mixing across the subtropical barrier, the descent in polar regions and by the degree of polar vortex isolation. Its30

profile is characterized by a rapid AoA increase with altitude in the lower stratosphere and nearly constant AoA values above.

Stratospheric air in the CCMVal-2 model UMUKCA-METO is very old (outlier), however compared to in-situ observations

(?)
:::
and

::
to

:::::
AoA

::::
from

::::::::::::
GOZCARDS

::::
N2O

::::
data

:
again AoA in most models is slightly too young. This is mainly the case for

the middle and upper stratosphere, but in the lower stratosphere AoA from many models is within the range of uncertainty.

Mid-latitude AoA profiles also show high inter-model spread, with standard deviations of about 15% at 20 hPa and 20% at35
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70 hPa. In Fig. 3c the simulated AoA (CCMVal-2 and CCMI-1) at 50 hPa at all latitudes is compared to MIPAS
::::
AoA

:::::
from

::::::
MIPAS

::::
SF6,

::
to

:::::
AoA

::::
from

:::::::::::
GOZCARDS

:::::
N2O observations and to in-situ observations of ?. Except for UMUKCA-METO, all

models show younger air than observed, particularly at high latitudes. However, especially at high latitudes AoA derived from

observed SF6 is overestimated because of the mesospheric sinks of SF6 (see ??)
::::::::
(see ???) . Overall, we can say that compared

to observations, AoA is too low in most of the models analyzed in our study. The fact that AoA in CCMVal-2 models is too5

low compared to observations has been reported before (see fig. 5.5, in chapter 5 of (?)).

As discussed in the introduction, we separate the effect of transport along the residual circulation (RCTT, Fig.1 and 2, middle

panel) and the integrated effect of eddy mixing (aging by mixing, Fig. 1 and 2, right panel) on the simulated AoA. First,

the model differences in the RCTTs are discussed. All CCMs show a quite consistent structure in the RCTTs, with strong

meridional gradients mainly in the mid-latitudes and high latitudes. All RCTTs follow the structure of the residual circulation10

(see overlaid red and blue contours in the RCTT panels). However, inter-model differences in RCTT are apparent. Maximum

RCTT values range between about 3 and 5 years in polar regions, with the ULAQ model of CCMI-1 having the lowest transit

time (and thus the fastest circulation) and the CMAM model of CCMVal-2 having the highest transit times (and thus slow-

est circulation).
::::
Note

::::
that

:::
the

::::::
RCTTs

:::
are

:::::::::
calculated

::::
with

::::::
respect

::
to
::::

the
::::::
model’s

:::::::
thermal

::::::::::
tropopause,

::
so

::::::::::
differences

::
in

::::::
RCTT

:::::::
between

::::::
models

:::
can

:::::
arise

:::
not

::::
only

:::
due

::
to

:::::::
different

:::::::
residual

:::::::::
velocities,

:::
but

::::
also

:::
due

::
to

:::::::::
differences

:::
in

:::::::::
tropopause

::::::
height.

::::
This

::
is15

::
in

::::::::
particular

::::::::
important

::::
close

::
to
:::
the

::::::::::
tropopause.

:::
For

:::
the

::::::::::
quantitative

::::::::::
calculations

::
in

:::
the

::::
next

::::::
section,

:::
we

:::::::
transfer

::::::
tropical

:::::::
profiles

::
to

:::::::::
coordinates

:::::::
relative

::
to

:::
the

::::::
tropical

::::::::::
tropopause

::
to

::::
avoid

:::
the

::::::::::
dependence

::
to
::::::::::
tropopause

::::::
height. Regarding the structures of the

RCTTs, the models CMAM, GEOSCCM,
:::::::::::
GEOSCCM,

:::::::::::
LMDZrepro, SOCOL and WACCM from CCMVal-2 and the models

CMAM, EMAC and GEOSCCM
::::::::::
GEOSCCM

:::
and

::::::::
WACCM

:
of CCMI-1 show two minima in the RCTT in the subtropics.

In contrast, the remaining CCMs show one wide RCTT minimum in the subtropics. Whether there is one wide minimum or20

two minima is probably a question of the seasonal cycle of the circulation. The CCMVal-2 model LMDZrepro has additional

circulation cells of poleward transport at high latitudes in the residual circulation. This is reflected in the RCTTs by vertical

gradients at high latitdes
::::::
latitudes.

As seen in previous studies (e.g. ?), AoA significantly differs from RCTT in magnitude and structure (see Fig. 1 and 2).25

Thus, aging by mixing (interpreted as the difference of AoA and RCTT (see ?)) plays an important role for AoA. Figures 1

and 2 (right panels) consistently show for all models that mixing leads to additional aging of air in most parts of the strato-

sphere, with maximum values in aging by mixing in the subtropical upper stratosphere. Only in the extratropical lowermost

stratosphere, where mixing with tropospheric air occurs, mixing leads to younger air (see minimum aging by mixing val-

ues there). Similar structures of aging by mixing are found in all CCMs, but quantitative differences are apparent. Aging by30

mixing varies between 2.5 and 3.5 years, with the models CMAM, SOCOL of CCMVal-2 and the models CMAM, SOCOL

and NIWA-UKCA of CCMI-1 having the lowest aging by mixing values, and the models UMUKCA-METO and LMDZrepro

of CCMVal-2 and EMAC and MRI of CCMI-1 having the highest aging
::
ag

::::::::
However,

:::::
AoA

::::::
derived

:::::
from

::::::::
observed SF6 ::

is

:::::::::::
overestimated

:::::::
because

::
of

:::
the

::::::::::
mesospheric

:::::
sinks

::
of

:
SF6:::::::

(??) ing by mixing values. Note that numerical and vertical diffusion is

included in that aging by mixing term. Recently, ? separated the effects of resolved aging by mixing (by explicitly calculating35
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daily local mixing tendencies along the residual circulation trajectories) and unresolved aging by mixing (referred to as “aging

by diffusion”) in two global models. Note that one of these models was EMAC-L90, and we analyze the identical simulation

here. They found for both models that numerical diffusion makes air slightly older (aging by diffusion impacts AoA by about

10%). Another conclusion of this study was, that the contribution of aging by diffusion on AoA is different in magnitude and

distribution in the two models, mainly because they have different advection schemes. Thus, differences in unresolved mixing5

likely contributes to inter-model differences in aging by mixing. We discuss this issue in section 5, where we qualitatively

relate model characteristics (i.e. advection scheme and resolution) to AoA.

We also address the question of whether simulated AoA (and thus CCM transport) improved in CCMI-1 compared to CCMVal-

2. ? analyzed CCMs from CCMVal-1 and reported that AoA in CCMVal-1 models is improved compared to previous model-10

data inter-comparisons. In ? CCMs that participated both in CCMVal-1 and in CCMVal-2 were compared and no clear im-

provement in the simulation of AoA could be found. In our study the AoA performance for all analyzed CCMI-1 models that

have a predecessor model in CCMVal-2, i.e. the models CMAM, MRI, GEOSCCM, SOCOL, ULAQ and WACCM (see Ta-

ble 1) are examined (Fig. 3, dashed lines for CCMVal-2 and solid lines for CCMI-1). The AoA model spread is not reduced for

the CCMI-1 REF-C1 simulations compared to the CCMVal-2 REF-B1 simulations. Additionally we find that in most CCMI-115

models air is even younger than in their CCMVal-2 predecessor models (except for MRI, and tropical AoA values of SOCOL),

and thus the simulations with the predecessor models agree better with observations. However, some forcings used in the

CCMI-1 REF-C1 and the CCMVal-2 REF-B1 simulations are not identical. E.g. one significant difference is the inclusion of

an additional major volcanic injection of aerosol into the stratosphere in the CCMI-1 volcanic forcing data-set (see ?). This

could explain the lower AoA in CCMI-1 REF-C1 simulations, as AoA in model simulations tends to be lowered by major vol-20

canic eruptions at higher altitudes (30 hPa), as recently shown by ?. However, this also means that we cannot clearly separate

the effect of differences in forcing and model improvement (e.g. higher resolution in CCMI-1 REF-C1 simulations).
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Figure 1. Zonal annual mean of AoA (left), RCTT (middle) and aging by mixing (right). Annual means show the average over the years

1980-2006 for the REF-B1 simulations of CCMVal-2. Units are given in years. Annual mean residual circulation is overlaid over the RCTT

patterns (blue and red lines).
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Figure 2. As Fig. 1, but annual means show the average over the years 1980-2010 for the REF-C1 simulations of CCMI-1.
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Figure 3. (a) Tropical (10◦N-10◦S), (b) mid-latitude (35◦N-45◦N) AoA profile and (c) latitudinal AoA distribution at 50 hPa for all analyzed

CCMVal-2 models (dashed lines) and CCMI-1 models (solid line), with AoA averaged over the years 1980-2006. AoA profiles are shown

together with the observational AoA data derived from airbone in-situ measurements of SF6 (black dots) and CO2 (black crosses). For the

extra-tropics the observations from ? and for the tropics the observations of ? are used. Uncertainties of the observational data of ? are shown

as 1σ. Observational data of ? were not reported with uncertainties.
:::::::
Moreover

::::
AoA

::::::::
determined

::::
from

::::::::::
GOZCARDS

::::
N2O

::::
data

::
is

:::
used

:::::
(grey

:::::
circles)

:::::
(??) . The latitudinal AoA distribution is shown together with

:::
AoA

::::
from

:
MIPAS

::
SF6:

data (grey
:::
gray diamond symbols),

::::
with

::::
AoA

:::
from

:::::::::::
GOZCARDS

::::
N2O

:::
data

::::
(grey

:::::
circle)

:
and

:::
with in-situ measurements of ? (black cross for CO2 and black dot for SF6). Error bars of the

observational
:::::
MIPAS

:
data at 50 hPa give the range between minimum and maximum values.
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4.2 Inter-model correlation of tropical upwelling with RCTT and AoA

The residual circulation is often measured by the strength of tropical upwelling, commonly used at 70 hPa. In the following

we investigate whether tropical upwelling is a good measure of the transport times along the residual circulation throughout

the stratosphere. We calculate the correlation of climatologies of mean tropical upwelling with the corresponding
::::::::::
inter-model

:::::::::
correlation

::
of

:::::
annual

:::::
mean

:::::::::::
climatologies

:::
of

::::::
tropical

::::::::
upwelling

::
at
::
a

:::::
certain

:::::
level

::::
with

:::
the RCTTs across all model simulations

::
175

::::::
models. Tropical upwelling is averaged between the individual turnaround latitudes of each model, respectively.

::::
Note

::::
here,

::::
that

::
all

::::::::::
correlations

:::
are

::::
quite

::::::
robust,

:::::::
meaning

::::
that

::::::::
excluding

:::
the

:::
one

::
or

:::
the

:::::
other

:::::
model

::::
from

::::
this

:::::::
analysis

:::::
hardly

:::::::
changes

:::
the

::::::
overall

::::::
picture.

:
Fig. 4 shows the correlations between RCTTs and tropical upwelling at 80 hPa, 70 hPa and 50 hPa. All panels in

Fig. 4 mostly show negative correlations, which indicates that stronger tropical upwelling leads to reduced transit times through

acceleration of the residual circulation
::
(as

::::::::
expected

::::
from

:::
the

::::::::::
dependence

::
of

::::::
RCTT

::
on

:::::::::
upwelling). The highest correlations can10

be found for tropical upwelling at 70 hPa. Here, the correlation reaches values between 0.7 and
:::::
above 0.8. These maxima can

be found in the tropical pipe as well as in the downwelling branches of the BDC in the extratropics. The maximal correlation

of tropical upwelling at 50 hPa with the RCTTs is found between 30 and 10 hPa and the structure resembles the deep BDC

branch. The correlation with the tropical upwelling at 80 hPa is generally weaker and has its maxima in the lower extratropical

stratosphere, i.e. in the region of the shallow branch of the BDC.
::::
Note

::::
that

::
if

::
we

:::::::
exclude

:::
the

::::::
model

::::::::::
LMDZrepro

::::::
(which

::::
has15

:
a
:::::::::
somewhat

:::::::
different

::::::
RCTT

::::::
pattern

::::
than

:::::
other

:::::::
models,

:::
see

::::::
section

::::
4.1)

:::
all

::::
these

:::::::::
structures

:::
are

::::
even

:::::
more

::::::::::
pronounced

::
in

:::
all

::::
three

::::::
panels.

:
These results indicates that tropical upwelling is a good measure of transport along the residual circulation, in

particular at 70 hPa, while tropical upwelling above relates to transport in the deep branch, and below to the shallow branch

of the BDC. Due to the relatively small sample size of 17 models, these correlations are statistically significant only in a few

regions. These, however, do support the basic idea of the points made above.20

Figure 4. Inter-model correlation coefficients for the correlation between RCTTs and tropical upwelling calculated at the turnaround latitudes

at 50 hPa (right), at 70 hPa (middle) and at 80 hPa (left). The contoured lines
::::::
stippled

::::::
regions mark

::::
where

:
the level of significance

::::::::
correlation

:
is
:::
not

::::::::
significant

:
on the 95% level.
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Additionally, in Fig. 5, the correlations of tropical upwelling with AoA are shown. In general, the correlations of tropical

upwelling with AoA are far weaker than for the RCTTsand thus also not significant. The patterns seen in Fig. 4 are not visible

here. Again, the highest correlations are found for tropical upwelling at 70 hPa with maxima reaching values around 0.5 in the

extratropical lower stratosphere. For tropical upwelling at 50 hPa, hardly any correlation with AoA can be seen and tropical

upwelling at 80 hPa only weakly correlates with AoA. As for the RCTTs, strongest correlations are found in the extratropical5

lower stratosphere (only in the NH). Interestingly, in particular in the tropical pipe, correlations are lower compared to the

extratropics (see 70 hPa tropical upwelling). This indicates that additional processes that act locally on AoA in the tropics

play a role here, as for example tropical vertical diffusion. The low and insignificant
:::::::::
comparably

::::
low correlations of tropical

upwelling to AoA among all models show that mixing in general plays an important role for the simulation of AoA, and that its

relative effect on AoA is differently strong in different models. A more quantitative contribution of AoA to RCTTs and mixing10

follows in Section 4.3.

Figure 5. As Fig. 4 but correlation between AoA and tropical upwelling. Note that
:::
The

::::::
stippled

::::::
regions

::::
mark

:::::
where

:
the correlations are

::::::::
correlation

:
is
:
not significant on the 95% levelanywhere.

4.3 Mixing efficiency

In section 4.1, we showed that AoA is influenced by the residual circulation and by mixing. However, these two processes

are not independent, as both are linked to wave forcing (e.g. ?). Furthermore, aging by mixing depends on the speed of re-15

circulation, so that a stronger residual circulation also leads to lower aging by mixing, even if the strength of mixing itself

does not change. To get a more independent measure of the mixing strength, we use the mixing efficiency ε. This measure is

proportional to the relative increase of AoA due to mixing (i.e ∼ (AoA−RCTT )/RCTT ,
:::
see

:::::
Equ.

:
1). Thus ε=0 refers to no

mixing (and AoA=RCTT) and increasing values of ε referring to an increase in relative mixing strength. The original definition

of the mixing efficiency stems from the theoretical concept of the TLP model (see section 3.2), where the mixing efficiency is20

defined as the ratio of the mixing mass flux to the net mass flux across the tropical barrier. However, in this formulation of the

TLP model, vertical mixing or diffusion is neglected. Any numerical or parametrized diffusion both horizontally and vertically
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will influence tracer transport in the global model. The mixing efficiency calculated from the AoA fields of the models should

therefore be interpreted as a measure of the relative enhancement of AoA by any mixing or diffusion.

Table 2 lists the derived mixing efficiencies for all model simulations. For the individual CCMVal-2 models the mixing effi-

ciency varies between 0.21 (SOCOL) and 0.99
::::
0.24

::::::::
(CMAM)

:::
and

:::::
1.02 (UMUKCA-METO). Note that the mixing efficiency

of UMUKCA-METO lies far outside the typical range of the other models’ mixing efficiency (from about 0.21-0.66
::::::::
0.24-0.47).5

The CCMVal-2 multi-model mean of ε is 0.35
::::
0.38 with a standard deviation of 38

::
32% (see Table 3, first column). Note,

however, that for calculating this multi-model mean UMUKCA-METO and ULAQ are excluded(if not: multi-model mean of

0.47 with a standard deviation of 56)
:
is
::::::::
excluded. For the CCMI-1 models the spread in mixing efficiency is smaller, ranging

from 0.21 (SOCOL) to 0.5
::::::
ranging

::::
from

::::
0.28

::::::::
(CMAM,

::::::::
WACCM)

::
to
::::
0.55

:
(MRI). The multi-model mean of the CCMI-1 model

mixing efficiency of 0.32
:::
0.36

:
is similar to that of the CCMVal-2 models. The standard deviation of 27

::
26%, however, is much10

::::::::
somewhat

:
smaller (see Table 3, first column). Taking into account all models together (CCMVal-2 and CCMI-1), the mean

mixing efficiency is 0.35
::::
0.37 with a standard deviation of 39

::
26%. Sensitivity experiments with TLP calculations for two dif-

ferent tropical pipe definitions (i.e 30◦N-30◦S and turnaround latitudes) were conducted. These sensitivity experiments show

that the variation in mixing efficiency does not decrease when using the model’s individual turnaround latitudes (see Table 3,

second and third column). Thus, it can be concluded that the large differences in ε between models cannot be explained by the15

fact that the various models have different widths of the tropical band.

The large CCMVal-2 and CCMI-1 model spreads in ε indicate that the relative mixing strength (i.e. the amount of any kind

of mixing relative to the strength of the residual circulation) varies strongly among the different models, or in other words,

mixing leads to different magnitudes in the relative enhancement of AoA.

Figure 6 shows the relationship between tropical AoA and tropical RCTT (Fig. 6a) and between tropical AoA and mixing20

efficiency (Fig. 6b) for all analyzed CCMVal-2 (crosses) and CCMI-1 (dots) models. Tropical values are all averaged over

20◦N-20◦S and are given at 10 km above the tropopause (corresponding to approximately 20 hPa). As shown in Fig. 6a,

tropical AoA is poorly correlated with tropical RCTT. The correlation coefficient for CCMVal-2 models is only 0.25, however

it increases to 0.51
::::
0.15

::::::::
(increases

::
to

::::
0.66

:
when neglecting the outlier model UMUKCA-METO). For the CCMI-1 models, the

correlation is only 0.09
::::
0.29 (see Fig. 6a), and for all models (CCMVal-2 and CCMI-1) the correlation is 0.24.

::::
0.21.

::::::::
However25

::::::::
neglecting

:::
the

::::::
outlier

::::::
model

:::::::::::::::
UMUKCA-METO

:::
the

::::::::::
correlation

:::::::
increases

::
to
:::::

0.47
::
for

:::
all

:::::::
models. Thus, the differences in AoA

between the models can be explained only to a very small
::::
some degree by differences in the strength of the residual circula-

tion. In contrast, a high correlation is found between the tropical AoA and the mixing efficiency (Fig. 6b) with a correlation

coefficient of 0.86
:::
0.85

:
for CCMVal-2, of 0.94

::::
0.82

:
for CCMI-1 and of 0.88

::::
0.85 for all analyzed models.

::::
Note

::::
here

::::
that

::::::::
excluding

:::::
again

:::
the

::::::
outlier

:::::
model

::::::::::::::::
UMUKCA-METO

::::
does

::::::::
decrease

:::
the

:::::::::
correlation

:::::::::
coefficient

::
of

:::
all

::::::
models

:::
to

::::
0.63.

:
The re-30

lation of tropical AoA to RCTT and the mixing efficiency is shown here for 10 km above the tropopause, but the result of

the strong relation of AoA to the mixing efficiency and the weak relation of AoA to RCTT holds for all heights (not shown

here). We conclude that the differences in the mixing efficiency between the models can explain large parts of the spread in

simulated AoA. For example for the outlier model UMUKCA-METO the very high AoA value can be explained with a very

high mixing efficiency of 0.99
::::
1.02, while the RCTT of UMUKCA-METO lies in the same range as other models (see Fig. 6a).35
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Thus, it is not a particularly slow circulation that leads to high AoA in UMUKCA-METO, but relatively large mixing.Similarly,

models producing the young air (SOCOL REF-B1 and REF-C1) do not have the fastest circulation, but a low mixing efficiency.

Further, we compare CCMI-1 models with their CCMVal-2 predecessor models, to analyze if there is a systematic change

with respect to mixing efficiency in the more recent CCMI-1 simulations. Table 2 shows that ε changes from CCMVal-2 to5

CCMI-1 are very small (< 3%
::::
< 2%) for GEOSCCM, MRI

:::::::
SOCOL and minor (< 15%) for CMAM,

:::::
MRI and WACCM. For

SOCOL the mixing efficiency does not change at all. The two models with the highest mixing efficiency in CCMVal-2
::::
Two

::::::
models show a significant change in ε in

:::
from

::::::::::
CCMVAl-2

:::
to CCMI-1: in ULAQ, the mixing efficiency decreases from 0.66

to 0.31
:::
0.44

::
to

:::
0.3, and in the UKCA model from 0.99 to 0.33

:::
1.02

:::
to

:::
0.4. Thus in both cases the mixing efficiency lies much

closer to the multi-model mean in CCMI-1. Reasons for this will be discussed in the Section 5.2.10

Table 2. Mixing efficiency ε for all CCMVal-2 REF-B1 (left) and CCMI-1 REF-C1 (right) simulations, used in this study. ε is derived from

the TLP model, with the border of the tropical pipe ranging between 20◦N and 20◦S.

CCMVal-2 ε CCMI-1 ε

CMAM 0.25
::::
0.24 CMAM 0.28

EMAC-L90 0.41
::::
0.47

EMAC-L47 0.29
::::
0.38

GEOSCCM 0.28
::::
0.31 GEOSCCM 0.29

::
0.3

:

LMDZrepro 0.55
::
0.6

:

MRI 0.49
::::
0.47 MRI 0.50

::::
0.55

SOCOL 0.21
::::
0.28 SOCOL 0.21

::
0.3

:

ULAQ 0.66
::::
0.44 ULAQ 0.31

::
0.3

:

UMUKCA-METO 0.99
::::
1.02 NIWA-UKCA 0.33

::
0.4

:

WACCAM 0.32
::::
0.34 CESMA-WACCM 0.27

::::
0.28

Table 3. CCMVal-2 REF-B1 and the CCMI-1 REF-C1 multi-model mean of mixing efficiency ε and its 1 σ inter-model standard deviation

(in %). ε is derived by the TLP model, using three different tropical pipe definitions: 20◦S-20◦N, 30◦S-30◦N, and turnaround latitudes (TR).

Note that the multi-model means of ε exclude the models UMUKCA-METO and ULAQ (CCMVal-2).

ε(20◦S-20◦N) ε(30◦S-30◦N) ε(TR)

CCMVal-2 0.35
::::
0.38± 39

::
32% 0.57± 38

::
30% 0.66

::::
0.89 ± 36

::
51%

CCMI-1 0.32
::::
0.36 ± 27

::
26% 0.53

::::
0.56 ± 29

::
27% 0.58

::::
0.68 ± 32

::
25%

CCMVal-2 and CCMI-1 0.35
::::
0.37±37

::
26

:
% 0.54

::::
0.57± 32

::
27% 0.64

::::
0.77±31

::
48%
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Figure 6. Scatter-plot showing the relationship between mean tropical (20◦N-20◦S) AoA and (a) mean tropical RCTT, and (b) mixing

efficiency. CCMVal-2 models are represented by cross symbols and CCMI-1 models by filled dots, except EMAC-L47, which is represented

by a triangle. Values are all given at 10 km above the tropical tropopause. The corresponding correlation coefficients R are given within the

individual panels.

5 Discussion

In the last section, we showed that differences in the simulation of AoA in different models are strongly determined by differ-

ences in the mixing efficiency, i.e. the relative enhancement of AoA by any mixing processes in the model. In the formulation of

the TLP model, the mixing efficiency is defined as the relative strength of horizontal mixing between the up- and downwelling

regions. An independent measure of the relative role of horizontal mixing and mean transport is the ratio of mean potential5

vorticity (PV) to the meridional PV gradient (dPV dy). Details for the calculation of the PV gradients diagnostic are given

in ?. The spread of mixing efficiencies across the models is, however, only weakly correlated to the PV gradient diagnostic

with highest correlations found in mid-latitudes at 450 K and correlation coefficients of about 0.5 (not shown). This weak
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correlation indicates that other processes than horizontal mixing play an important role in determining the mixing efficiency.

In the following we present a detailed discussion of the possible effects of different processes on the mixing efficiency.

In Section 5.1 we will focus on the impact of vertical dispersion and in Section 5.2 on the impact of model-dependent

representations of numerics (e.g. advection scheme and resolution) and dynamics (unresolved wave forcing).

5.1 Impact of vertical dispersion on AoA profiles5

According to the TLP model formulation, the age difference between tropics and mid-latitudes (∆AoA) is a function of the

tropical vertical velocity (w∗), but independent of horizontal mixing (?): ∆AoA= (1 + 1
α )H 1

w∗ . Here, H is the constant scale

height and α is the ratio of the mass of air in the tropics to the mass of air in the mid-latitudes.
::::::
Tropical

::::::
means

:::
are

:::::::::
calculated

:::
over

:::
20◦

::::
N-20◦

::
S,

::::::::::
extratropical

::::::
means

::::
over

::
35◦

:::
-45◦

:::
N/S.This solution is only valid when vertical diffusion is neglected. As this

is not necessarily a good assumption, the vertical velocity calculated from the AoA difference will be a tracer dependent “ef-10

fective vertical velocity” in the tropics (weff ). “Effective” refers to the effective vertical transport of the regarded tracer (i.e.

AoA) that is consistent with the TLP model. The effective vertical velocities calculated from age differences (AoA difference

see Fig. 7d) from one model (EMAC-L90) are compared to the actual tropical mean residual vertical velocity (w∗) in Fig. 7a. In

particular in the lower stratosphere, the effective vertical velocity (black line) calculated from the age difference overestimates

the actual vertical velocity w∗ (black dashed line). Note that in all the models analyzed in this study, the effective vertical15

velocity is similar to or larger than w∗ (not shown), as was also shown for the CCMVal-2 models in ? (their Fig. 5.6).

Vertical diffusion (or more generally, any process causing vertical disperison
::::::::
dispersion) reduces the AoA difference. As dis-

cussed in ? and in ? (for isentropic coordinates). In the following, the TLP model is modified by including vertical diffusion

(calculated as Lagrangian random walk model, see Sec. 3.2). Fig. 7b and c shows tropical and mid-latitude AoA profiles

simulated with the TLP model given the vertical velocity profiles from one CCM (EMAC-L90). Profiles are given in height20

coordinates above the tropical mean tropopause. The Lagrangian TLP model without diffusion (K = 0, gray line) reproduces

the analytical solution of the TLP model (mixing efficiency as estimated with the method described above). The tropical AoA

profile from the TLP model is close to the AoA profile from the full CCM (black line), but mid-latitude AoA of the CCM

is overestimated by the TLP model without diffusion between 0-8 km above the tropical tropopause. As the vertical gradient

of AoA is positive everywhere, vertical diffusion acts to reduce the vertical gradient and thus reduces AoA. Introducing ver-25

tical diffusion in the extratropics (KML = 0.2m2s−1) in the TLP model reduces extratropical AoA in the region of 0-8 km

above the tropopause (red line), and weakly influences tropical AoA. Tropical vertical diffusion (with vertical diffusivity

KTr = 0.2m2s−1) leads to younger air in the tropics, and this signal is propagated into the mid-latitudes (green line). Adding

vertical diffusion in both regions (K = 0.2m2s−1) combines the effects of tropical and extratropical vertical diffusion (not

shown). The effective vertical velocities derived from the TLP model with extratropical diffusion roughly match the effective30

vertical velocities from the CCM (see black and red line in Fig. 7a). This simple experiment with the TLP model thus indi-

cates that the deviations of the effective vertical velocities (derived from age gradients) from w∗ can be explained by vertical

dispersion, which in particular leads to a reduced vertical age gradient in the extratropical lower stratosphere. The differences

between the weff and w∗ varies across models (not shown), i.e., in some models AoA is more strongly modified by vertical
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dispersion than in others. In the simplified and conceptual TLP model, a constant vertical diffusivity was prescribed to illustrate

the effects of any processes that act like vertical diffusion have on the AoA profile. In the full CCMs, a number of processes

might contribute to the vertical dispersion. In most models, the vertical resolution is high enough to resolve some gravity waves

(or Mixed-Rossby-Gravity waves), that lead to resolved vertical dispersion. Furthermore, as we use (log-)p coordinatesalso
:
,

adiabatic mixing is in parts
::::
partly

:
projected to the vertical axis. Nevertheless, diffusion due to unresolved processes and nu-5

merical diffusion (see also next section) contribute to varying degrees to vertical dispersion. ? estimate a lower stratospheric

diffusivity of K = 0.1m2s−1 based on isentropic coordinate diagnostics. This value is consistent with earlier estimates (e.g.,

?). However, it is important to note that some vertical mixing is quasi-adiabatic and therefore implicitly included in isentropic

(= adiabatic) coordinates. ? find a much enhanced contribution to lower stratospheric water vapor transport due to vertical

diffusion in pressure coordinates.10

From the discussion of the effects of vertical dispersion on AoA the following conclusions can be drawn: 1) The AoA

difference in the lower stratosphere is not a good measure of
:
is
::

a
::::::
biased

:::::::
measure

::
of

:::
the

:
tropical vertical residual circulation

velocities
::
in

:::
the

:::::
lower

:::::::::::
stratosphere, or in other words, vertical dispersion cannot be neglected. At higher altitudes (above

about 10 km above the tropical tropopause, i.e. about 26 km or 30 hPa) the age difference is a better measure of tropical15

residual circulation velocities. This result is in agreement with ?. 2) The mixing efficiencies derived for the models will bear

non-negligible information of vertical dispersion, and are not necessarily good measures of the relative strength of horizontal

mixing. As the strength of vertical dispersion differs from model to model and thus has varying influence on the mixing

efficiency, the spread in the mixing efficiencies across models cannot be related to differences in horizontal mixing alone (i.e.

the correlation to the PV gradient diagnostic is weak, see above). When calculating mixing efficiencies based on the effective20

vertical velocities (that include the effects of vertical dispersion), the spread in those modified mixing efficiencies relates better

to horizontal mixing as measured by the PV diagnostic (with a correlation coefficient of about 0.77 at 450 K in mid-latitudes),

as the effective vertical velocities implicitly include the effects of vertical dispersion. In other words, the mixing efficiency

diagnosed from w∗ is a measure of the overall effects of both horizontal and vertical mixing.

5.2 Model characteristics that can influence mixing25

In this section, we discuss dynamical and numerical model characteristics which have the potential to influence horizontal,

vertical and numerical mixing. First, we analyze the possible role of the models’ dynamics on horizontal mixing. As mentioned

above, the dissipation of wave energy in the stratosphere largely controls the BDC. This wave energy comes from resolved

planetary and synoptic waves as well as from unresolved gravity waves. ? found an approximate ratio of 70% EPFD and 30%

GWD (20% NOGWD and 10% OGWD) that drives tropical upwelling at 70 hPa in the CCMVal-2 models. However, this30

ratio differs largely between various models. ? suggest that due to compensation effects between the different wave types, the

impact of the differences in gravity wave perturbation on the total circulation is reduced. Hence, models tend to agree more

on the total strength of the circulation than on individual components. Mixing, however, is influenced differently through the

two wave types. Rossby-wave breaking predominately causes mixing and stirring in the horizontal, while dissipation of gravity
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(a) (d) (b) (c) 

Figure 7. (a) Tropical mean (20◦N-20◦S) vertical residual velocities (black dashed) from one model (EMAC-L90) and effective tropical

velocities derived from the tropics-to-midlatitude age difference in EMAC-L90 (black solid), in a TLP model driven by vertical velocities

from EMAC-L90 and without diffusion (gray), with vertical diffusion of K=0.2m2s−1 in the tropics (green) and the extratropics (red). (b)

Tropical (20◦N-20◦S) AoA profiles from EMAC-L90 (black solid) together with AoA profiles simulated by a TLP model with no vertical

diffusion (gray line, identical to analytical TLP solution used to derive the mixing efficiencies), with vertical diffusion of K=0.2m2s−1 in the

tropics (green) and the extratropics (red). (c) For mid-latitude AoA profiles (35◦-45◦N and 35◦-45◦S). (d) Difference between mid-latitude

and tropical AoA profiles.

waves mainly leads to vertical mixing. Furthermore, gravity waves are parameterized in the models, and effects of mixing on

tracers are usually not explicitly included in the parameterizations. Thus, while all wave types drive residual transport, GWs

do not cause horizontal mixing in the same way as resolved waves do.

A resulting hypothesis is that the ratio of Rossby-wave forcing to overall wave forcing influences the strength of horizontal
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mixing and thus the mixing efficiency. This means that the models’ ratios between EPFD and total wave forcing (EPFD+GWD)

could be related to their mixing efficiencies, which could at least partly explain the AoA differences between the models.

Fig. 8 shows the climatological ratio of resolved wave drag divided to
::
by

:
the total wave drag between 100 and 10 hPa for

the CCMVal-2 REF-B1 and for the CCMI-1 REF-C1 simulations. Note that compared to the previous sections, fewer models

are included in this analysis because the EPFD and GWD data are not provided for all models. In the lower stratosphere, all5

models indicate strongest GWD contribution (low ratios), thus, here gravity wave forcing contributes strongest to
::
by the overall

forcing of the residual circulation in the analyzed height range. Towards higher altitudes (10 hPa), the impact of gravity waves

decreases, before it increases again strongly above 1 hPa (not shown). Three models are presented twice in the figure, once

::::
each

:::
for the CCMI-1 and once the CCMVal-2 simulation

:::::::::
simulations. The EMAC model is also presented twice, but once for

the simulation with 90 layers in the vertical and once with 47 layers. The two CMAM simulations show very similar wave10

type ratios, the two GEOSCCM simulations have a similar vertical structure, but with an offset. The MRI simulations differ

vastly. Note that in none of these models, any of the gravity wave parametrization
::::
both

:::::
model

:::::::::::::::
inter-comparison

:::::::
projects

:::
the

::::
same

::::::
gravity

:::::
wave

::::::::::::::
parameterization schemes have been changed from one model inter-comparison project to the other

::::
used

::
in

::
the

:::::::::
respective

::::::
models. The vertically higher resolved EMAC model has a more compact region of low wave type ratio in the

lower stratosphere but otherwise the two simulations show similar results.15

In general, the wave type ratios of the different models show a considerable spread. At 70 hPa for example, it ranges from

around 0.55 in the SOCOL (CCMVal-2) simulation to around 0.9 in the GEOSCCM (CCMVal-2) simulation.

Figure 8. Relative EPFD contribution on tropical upwelling (calculated as EPFD contribution of downward control calculated tropical

upwelling divided by overall tropical upwelling) 30◦N-30◦S as function of pressure for all CCMVal-2 and CCMI-1 models providing the

data for this analysis.
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As explained above, a larger ratio of resolved to parameterized wave forcing in the region where wave breaking leads to

transport across the subtropical barrier causes stronger horizontal mixing and therefore, leads to additional aging by mixing

of stratospheric air. However, we found no clear correlation (ranging from 0.16 to 0.56
::
0.2

::
to
:::::

0.53 depending on altitude)

between the wave type ratio and the mixing efficiency throughout this altitude range. The hypothesis that differences in mixing

efficiency can be explained by differences in wave driving therefore has to be rejected. For two of the three models that appear5

twice in the statistics (CMAM and GEOSCCM), the mixing efficiency increases while the EPFD wave type ratio decreases

from one model version to another. This behavior also stands in contrast to our possible physical explanation. Rossby-waves

can have a strengthening or weakening effect on the subtropical transport barrier depending on latitude and height of their lo-

cation of dissipation. This may be the reason why the wave type ratio is apparently not a good measure for the mixing between

tropics and extratropics. However, the sample size of the available data is too small to statistically draw robust conclusions, so10

more data could possibly still impact the results. As for now, however, this attempt does not provide
::::::
explain

:
the potential to

help explaining the AoA differences between the models.

As discussed in detail in section 5.1 vertical mixing and diffusion (both resolved and unresolved) influences AoA (and thus

the mixing efficiency). Furthermore, numerical diffusion can also enhance
::::::::
influence horizontal mixing. ? presented a method15

to separate resolved and unresolved mixing (including both vertical and horizontal unresolved mixing), by explicitly calculat-

ing the contribution of subgrid-scale mixing to aging by mixing (termed ’aging by diffusion’). Their study showed that aging

by diffusion is positive in most regions, indicating that horizontal diffusion dominates (as vertical diffusion would lead to a

reduction in AoA). The calculation as performed in ? requires the full 4-dimensional fields of dynamical quantities and AoA,

which were not available for the CCMVal-2 and CCMI-1 models. Therefore, we can only discuss the possible differences in20

subgrid-scale mixing between the models qualitatively. The two factors that most likely contribute to subgrid-scale mixing are

the advection scheme and the horizontal and vertical resolution.

First we discuss the possible role of the model’s advection schemes (see Table 1). The study of ? showed that AoA is very

sensitive to the advection scheme used to integrate the tracer continuity equation. Semi-Lagrangian schemes are known to be

overly diffusive, whereas the most accurate advection schemes are the finite volume and flux-form schemes
::
are

:::::
more

:::::::
accurate.25

However, the more recent study of ? showed that there are only small differences in AoA between spectral and flux-form ad-

vection schemes, thus errors associated with spectral advection do not accumulate (?). If we link
::::::
Linking

:
the mixing efficiency

obtained for the CCMVal-2 and CCMI-1 models to their advection scheme, we find that mixing efficiency for the
:
ε
:::
for

:
more

accurate advection schemes (FFSL, FFEE) range from 0.21 to 0.41 (0.66 ULAQ) and for the
::::
0.28

::
to

::::
0.47

:::
and

:::
for more diffusive

advection schemes (SP and SL) from 0.21 to 0.5 (0.9
:::
0.24

:::
to

::::
0.55

:::::
(1.02 UMUKCA-METO). In the SOCOL model

:::::::
SOCOL30

:::::::
changed the advection scheme was changed from SL in CCMVal-2 to FFSL in CCMI-1 . However, the mixing efficiency does

not change between the two model versions.
:::
with

::::::
nearly

::
no

:::::
effect

:::
on

::
ε. Thus, based on this information

::::::
sample, we cannot find

a
::::
clear

:
systematic relationship between mixing efficiency and the

:
ε
:::
and

:
different advection schemes, however as noted before

the simple size is very small. Moreover, models can use the same advection scheme, but
:::
with

:
additional explicit diffusionis

added, or in SL schemes higher order interpolation is possible, thus the model’s advective transport can differ although using35
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the same type of advection scheme. For example
:::
E.g., the UMUKCA-METO model and its predecessor model NIWA-UKCA

both use the same SL advection scheme, but with different polynomial interpolation. The CCMI model NIWA-UKCA used

optimized settings governing transport and advection by a higher order of interpolation. This likely strongly reduces horizontal

numerical diffusion, and thus leads to lower AoA (and a smaller mixing efficiency
::::::
smaller

:
ε) in NIWA-UKCA.

Second, we address whether the increase in spatial resolution, which is apparent for many CCMs since CCMVal-2 (see the mod-5

els’ horizontal and vertical resolution in Table 1), has an impact on the mixing efficiency. ? showed that horizontal resolution

(truncation error) has little impact on AoA, whereas a fine vertical resolution leads to higher AoA throughout the stratosphere.

Faster inter-hemispheric transport and slower mixing into and out of the stratosphere cause this behavior. The models CMAM,

MRI, SOCOL and ULAQ have increased their horizontal resolution since CCMVal-2, and the models MRI and ULAQ also

their vertical resolution. Moreover for the model EMAC in CCMI-1 two different vertical resolutions are available. The ULAQ10

model is the only model that substantially changed vertical and horizontal resolution (see Table 1). The coarse resolution (in

particular very low horizontal resolution) in the ULAQ REF-B1 simulation indicates that the transport barriers at the edge of

the tropics and at the polar vortex are likely not reproduced very well (see also ?). The quite large mixing efficiency of 0.66
::::
0.44

in CCMVal-2 significantly improved
:
is

::::
now

:::::
closer

::
to

:::
the

::::::::::
multi-model

:::::
mean

:
with the higher resolution in CCMI-1 (to 0.31

:::
0.3).

The fact that ULAQ AoA in CCMVal-2 was in a similar range as the other models, might well be due to compensation effects of15

vertical and horizontal numerical diffusion on AoA. This hypothesis is also supported by the PV gradient of ULAQ CCMVal-2

simulation, which lies far outside of the model range (figure not shown here). Regarding the two EMAC simulations within

CCMI-1
::::
with

:::::::
differing

:::::::
vertical

::::::::
resolution, the version with higher vertical resolution has a higher AoA (see Fig. 2). The finding

that higher vertical resolution leads to older air, can also be seen in the SOCOL model sensitivity simulations with different

vertical resolutions ,
::
as

::::::::
expected

::::
from

::::
less

::::::
vertical

:::::::::
diffusion.

:
A
:::::::
similar

::::
result

::::
was

:::::::
obtained

:::
for

:::::::
SOCOL

:::::::::
sensitivity

::::::::::
simulations20

(? and A. Stenke, personal communication, 2017). The mixing efficiency in the EMAC simulation with lower resolution is

reduced compared to the higher resolved model (mixing efficiency 0.41
::::
0.47 for EMAC-L90 vrs. 0.29

::::
0.38 for EMAC-L47).

However, this is likely an effect of ,
:::::
likely

::::
due

::
to

::::::::
enhanced

:
vertical numerical diffusionrather than changes in the horizontal

mixing strength.
:
.

25

In general the results presented here suggest that the vertical resolution affects AoA and mixing efficiency, as seen in the

EMAC and SOCOL sensitivity simulations and also for the ULAQ model. However, except ULAQ, the only model that changed

vertical resolution from CCMVal-2 to CCMI is MRI, all other models only have changes in the horizontal resolution, which at

this high resolution models used might not play a big role (in agreement with ?). For all other models with smaller changes in

resolution than in ULAQ, no clear effect on the mixing efficiency could be detected.30

The various factors that likely influence a models subgrid mixing or diffusion are hard to disentangle for the given set of

models. Additional sensitivity studies with one given model would be necessary to analyze the role of the different factors (i.e.

advection scheme, horizontal and vertical resolution).
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6 Summary and Conclusions

This study analyzes climatological AoA of various stratosphere-resolving CCMs, which participated in the model inter-

comparison projects CCMVal-2 and CCMI-1, in order to investigate the causes of the differences in AoA among the models.

We showed that the tropical and mid-latitude AoA profiles of most examined models have younger air compared to observa-

tions, but most AoA profiles lie within the uncertainty of values derived from observations. Moreover, there is a large spread in5

the simulated AoA between models. This result is in agreement with earlier model comparison studies (e.g. ??). We could not

detect an improvement in the simulation of AoA from CCMI-1 models compared to CCMVal-2. The CCMI-1 models tend to

simulate younger air compared to their predecessor models. However, an exact one-by-one comparison is not possible because

the forcings used in the CCMVal-2 and CCMI-1 hindcast simulations are not identical.

10

To better understand the AoA model differences, we investigated the processes that affect stratospheric transport and thus

AoA. Both, transport by the residual circulation and aging by mixing, influence the zonal structure and magnitude of AoA.

Models agree on the zonal pattern of residual transport and aging by mixing, with mixing leading to additional aging in most

of the stratosphere in all model simulations. Also the high inter-model correlation between tropical upwelling and RCTTs

and the low and insignificant correlation between tropical upwelling and AoA indicates that mixing plays an important role15

in the simulation of AoA. The strength of tropical-to-mid-latitude mixing relative to residual transport is measured by the

mixing efficiency, a quantity that can be calculated from model data given the tropical mean AoA profile and tropical vertical

residual velocities. The mixing efficiency is a measure of the relative aging by mixing in a model, independent of the strength

of the residual circulation and it varies strongly between models. However the mixing efficiency measures the overall effects

of mixing, as it accounts for both horizontal and vertical mixing and both resolved and unresolved mixing. We showed with20

the help of the Lagrangian TLP model that vertical diffusion has a significant impact on the mixing efficiency and thereby on

the structure of AoA. The consequence of this is that the mixing efficiency is not necessarily a good measure of the relative

strength of horizontal mixing alone.

We could show
::::::
showed

:
that the model spread in the simulation of AoA is mostly caused by large differences in the mixing25

efficiency, because the inter-model correlation coefficient of mixing efficiency with AoA is high (0.88) . Also, the correlation

:::::
higher

:::::::::
(0.85/0.67

:::::::::::
with/without

::::::
outlier

::::::
model)

::::::::
compared

:::
to

:::
the

:::::::::
correlation

::::
with

:::::::
residual

::::::::
transport:

:::
the

::::::::::
correlation of residual

transport (RCTT) to AoA is
::::
quite low (inter-model correlation is 0.24

:::::::
0.21/0.47

:::::::::::
with/without

::::::
outlier

:::::
model). Thus,

:
differences

in the simulated residual circulation matter less to the simulated AoA compared to the relative mixing strength. We can con-

clude that analyzing the model’s
::::::
models mixing efficiency is very useful for the understanding of their differences in AoA. The30

values of the mixing efficiency vary strongly, ranging between 0.21 to 0.99
::::
0.24

::
to

::::
1.02. The multi-model mean of the mix-

ing efficiency of the CCMVal-2 REF-B1 simulations (ε=0.35
::::
0.38) is similar to the one for the CCMI-1 REF-C1 simulations

(ε=0.32
::::
0.37), but the model spread in mixing efficiency is

::::::::
somewhat higher in the CCMVal-2 models (standard deviation of
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39
::
32% compared to 27

::
26% in CCMI-1, without outliers).

In the SPARC CCMVal report the model performance on stratospheric transport diagnostics was qualitatively evaluated.

CCMVal-2 models were graded (with grades indicating the agreement with observations) based on their mean AoA and on

measures of tropical ascent and tropical-extratropical mixing derived from tracer diagnostics (see table 5.1 in ?). The models5

with high grades in global mean AoA according to ? generally also were graded high in tropical ascent and mixing (see Fig.

5.19 in ?). It was also found that the grade of tropical ascent and mixing correlate quite strongly (see Fig. 5.20 in ?). This

finding is somewhat opposed to our results, where a perfect relation between residual transport and mixing would lead to the

same mixing efficiency for all CCMVal-2 and CCMI-1 models. However, first the measures of tropical ascent and mixing in ?

is
::::
were based on tracers that do

::
did

:
not perfectly separate the processes of mixing and residual circulation and second we also10

do except a good relationship between residual transport and the absolute amount of mixing (as both determined
::
are

::::::
driven

by wave driving), but the deviation from this relationship does cause
::::::
caused the differences in the relative mixing strength

(i.e. the mixing efficiency). In general, models that were graded high in ? (namely CMAM, GEOSCCM, MRI,
::::::
ULAQ

:
and

WACCM of CCMVal-2) were also found to have mixing efficiencies in the typical range (between 0.25 and 0.49
::::
0.24

:::
and

::::
0.47)

here. The ULAQ model (CCMVal-2) was graded high despite deficits found in the tropical ascent profile and rapid mixing15

across the subtropics. In our analysis we find a high mixing efficiency of 0.66 for the ULAQ model, i.e. mixing relative to

residual transport is strong. Thus, we can confirm that the reasonable AoA simulated in ULAQ (CCMVal-2) is likely due to

compensation of deficits in tropical ascent by strong mixing. The
:::
The models that obtained low grades in ? and that were ana-

lyzed here are SOCOL, with very young air, and UMUKCA-METO, with very old air. For SOCOL, we found that despite slow

:::
next

::
to
::::
fast tropical ascent, a

::::
quite

:
low mixing efficiency (0.21, lowest of all models) leads to

:::
0.3)

::::
also

:::::::::
contributes

::
to
:::
the

:
young20

air. For the “outlier” model UMUKCA-METO, in ? slow tropical ascent and too weak mixing was found. While weak mixing

would lead to lower AoA, we show that relative to the residual circulation mixing is strong. Thus, we find that on top of a slow

circulation, an excessive
:
a
::::
large

:
mixing efficiency (ε=0.99

::::
1.02) leads to the very old air in UMUKCA-METO. The comparison

to the stratospheric transport diagnostics used in ? shows that using the diagnostic of the mixing efficiency provides additional

information on the ability of a model to simulate stratospheric transport. We found that the relative strength of mixing in a25

model can mainly explain deficits in the simulation of AoA. However, a problem with the mixing efficiency diagnostic is the

lack of observational constraints. It would be possible to define a mixing efficiency from the observational AoA profile and the

vertical residual velocities estimated from the AoA gradients. However, those vertical velocities are substantially influenced by

vertical diffusion and thus this mixing efficiency does not measure the same thing as the model derived mixing efficiency. Thus,

we cannot identify whether deficits in the absolute circulation and mixing strength or a too strong or weak mixing efficiency30

are the cause for deviations in AoA from observations. Another problem might be that any errors in the calculation of AoA or

RCTTs would be reflected in the mixing efficiency.

Within this study we also discussed the different dynamical and numerical model characteristics, which impact horizontal,

vertical and numerical mixing. Besides vertical diffusion (section 5.1), subgrid-scale mixing likely influences the mixing ef-35
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ficiency. This assumption motivates a closer look at the possible impact of the models’ different advection schemes as well

as horizontal and vertical resolution on sub-grid-scale mixing (section 5.2). The results suggest that the vertical resolution

affects AoA and mixing efficiency, as seen from EMAC and SOCOL sensitivity simulations with different vertical resolution

(for EMAC the mixing efficiency increases from 0.29 to 0.41
::::
0.38

::
to

::::
0.47

:
with higher resolution, for SOCOL the sensitivity

simulation was not available within CCMI-1). Moreover, for the ULAQ model a substantial increase in the resolution (both5

horizontal and vertical) between CCMVal-2 and CCMI-1 strongly reduced the mixing efficiency (from 0.66 to 0.31
::::
0.44

::
to

:::
0.3).

We did not find a systematic relationship between mixing efficiency and the models different advection schemes. In general no

systematic attribution of AoA differences to advection schemes or resolution could be made. This is because more than one

parameter has been changed between the simulations. Furthermore, we presented
:::::::::::
demonstrated that the relative contribution of

resolved versus parametrized wave forcing of the circulation is very different among the models. Since resolved Rossby-wave10

forcing induces strong horizontal mixing, parametrized GW forcing induces no mixing and both drive the residual circulation,

this might have an influence on the mixing efficiency. However, since the correlation of modeled wave type ratio with the

mixing efficiency is very low, this attempt does not provide the potential to help explaining the AoA differencesbetween the

models.
::
the

:::::::::
difference

::
in

::::::
models

::::::::
resolved

:::
and

:::::::::::
parametrized

::::::
waves

::::
does

:::
not

::::::
explain

:::
the

:::::
AoA

::::::::::
differences. Concluding we can

say that we found some evidence for the differences in mixing efficiency. However, overall, dedicated sensitivity studies with15

at least one given model system will be necessary to better determine the role of possible causes for the spread in the mixing

efficiency (e.g. differences in resolution, advection scheme, GW drag).

Previous studies showed that within one model, the mixing efficiency remains constant also in a changing climate (?). If this

is true for all models, any changes in the residual circulation will be related linearly to changes in AoA (as also suggested by

?). The different values of the mixing efficiency in models would then modulate the relative increase in AoA by increase in the20

residual circulation. In a follow-up study, we will focus on AoA trends in the CCMVal-2 and CCMI-1 future change scenario

simulations and investigate how the mixing efficiency in the analyzed models evolves in a changing climate, and possible

processes for changes in the mixing efficiency will be discussed.
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Supplement to: Quantifying the effect of mixing on the mean Age of
Air in CCMVal-2 and CCMI-1 models
Dietmüller et al.

1 Inconsistencies in the calculation of residual vertical velocities in CCM data

The model inter-comparison projects CCMVal-2 and CCMI-1 include data requests for the residual velocities v̄∗ and w̄∗. The

w̄∗ fields are specified to be given in units of m/s. However, as most models use hybrid-pressure coordinates, the vertical

velocity ω̄∗ in Pa/s is usually available and has to be transformed to m/s. The exact transformation of ω to w is given by:

ω ≈ dp

dt
=

∂z

∂t

∂p

∂z
= w

−pg

RT
(1)5

I.e. on a given pressure level p the transformation is dependent on the local temperature T . Alternatively, a constant scale

height assumption can be made for the transformation:

ω ≈ w
−p

H
(2)

In the CCMI data request a scale height of H = 6950 m was suggested. Fig. 1 compares the profile of tropical mean w̄∗

from one model (EMAC) calculated with the actual density (Equ. 1, red line) and with the scale height (Equ. 2, black line).10

Differences in the lower stratosphere (between 100 to 70 hP) are more than 20%. Upon close inspection of delivered CCMI

model output, it turned out that some model data was processed converting vertical velocities with the actual density while

others used a fixed scale height. Given the large deviations of the two methods, this inconsistency has to be taken into account

for a quantitative model comparison. In the following we give an outline how those inconsistencies can be detected, and how a

consistent model comparison can be achieved.15

Given continuity, the residual vertical velocity is linked to the meridional velocity:

∂v̄∗

∂y
+

∂ω̄∗

∂p
= 0 (3)

Therefore, it is possible to deduce the residual vertical velocity ω̄∗ from the residual meridional velocity by vertical integra-

tion and meridional derivation. This vertical velocity ω̄∗ can then again be converted to w̄∗ using the given scale height. By

comparing the given w̄∗ from the model output to the w̄∗ that is calculated from v̄∗ (referred to as w̄∗
v̄∗ in the following) it can20
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Figure 1. Profile of climatological mean w̄∗ over 20N-20S for EMAC-L90. Left: w̄∗
CCMI delivered to CCMI with actual density used in the

transformation (red), w̄∗
H with scale height used for the transformation (black) and w̄∗

v̄∗ derived from v̄∗ (blue). Right: relative difference

between w̄∗
CCMI to w̄∗

H (red) and relative difference between w̄∗
v̄∗ and w̄∗

H (blue).

be tested whether the same scale height was used originally in the calculation of w̄∗. As shown in Fig. 2, tropical mean w̄∗ at 70

hPa as delivered for the CCMI models agrees with the derived w̄∗
v̄∗ within <10% for 4 models, while in 3 models to difference

is close to or above 20%. After consulting the modeling groups it turned out that the three models with the largest difference

(EMAC, NIWA-UKCA, SOCOL) indeed used the actual density to calculate w̄∗ (i.e. Equ. 1) instead of the fixed scale height.

This inconsistent calculation method inhibits quantitative model comparison of the delivered w̄∗ fields, as differences due to5

different methods are of similar magnitude than the model differences (as can be seen from Fig. 2).

To ensure consistent treatment of model data, we used in our study the w̄∗ fields derived from v̄∗. While this calculation

also introduces errors due to the vertical integration and meridional derivation, it is ensured that the model data is treated in the

same way for all models. The error made in the derivation of w̄∗
v̄∗ is shown for the EMAC model in the right panel of Fig. 1:

the difference between the w̄∗ calculated directly from ω̄∗ with the scale height and the w̄∗
v̄∗ derived from v̄∗ (blue line) is10

smaller 5%, i.e. much smaller than the difference due to scale height versus density transformation.

Based on those results we strongly encourage anyone working with residual velocities from multi-model comparison projects

to:

1. Check if the given residual vertical velocities w̄∗ are consistently calculated by comparison to the derived w̄∗
v̄∗ from v̄∗
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Figure 2. Climatological mean w̄∗ over 20◦N-20◦S at 70 hPa for all CCMI REF-C1 model simulations used in this study. The left bar is the

w̄∗ delivered by the models, the right bar is w̄∗
v̄∗ derived from v̄∗. The number at the top is the percentage difference.

2. If necessary, use those derived w̄∗
v̄∗ values for quantitative model comparison
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