
We thank the reviewers for their careful reading and their helpful questions and remarks. Their comments 

are shown in black, and our responses are shown in blue. The revised manuscript follows. 

Reviewer 1 

The sensitivity / error analysis only addresses assumptions for the error covariance matrices, and also a 

clustering approach for optimization. Model errors are not addressed. This gravity of this is lessened by 

the fact that many of the key variables have been separately evaluated with SEAC4RS data in prior 

publications. However, remaining errors in these parameters can still be expected to affect your results. A 

more thoughtful error analysis should be done, and would make your results more convincing. For 

example, a more comprehensive set of sensitivity inversions with altered assumptions for key variables 

(e.g., model NOx, temperature, mixing heights, OMI cloud threshold, . . .).  

Our understanding of the HCHO-isoprene relationship is supported by the extensive evaluation of 

modeled NOx, temperature, and mixing heights provided in previous work, alongside validated 

OMI retrievals. Changing these parameters would take substantial effort, and provide either 

predictable or negligible differences. Specifically: 

• Using uncorrected GEOS-FP mixing depths decreases modeled average midday HCHO 

columns by less than 10%. Because modeled vertical profiles are used to interpret OMI 

observations, we expect this to have a low impact on our inversion. 

• Comparison with SEAC4RS observations allows us to correct for bias in GEOS-FP 

temperatures (discussed further in following point). An error of +1K would result in an 

8% difference in the temperature correction factor, which is well below the correction 

derived from our inversion.  

• Our results highlighted in Figure 8 demonstrate the sensitivity of modeled HCHO to NOx. 

Running multiple inversions at different NOx levels is beyond the scope of this work.  

• Our OMI data filtering and correction is based on the validation of Zhu et al. (2016). 

Validation has not been performed for other filtering criteria.  

We have included the following statement to section 2.5 (error analysis): 

 “A general assumption in Bayesian optimization is that observational errors are randomly 

distributed, as opposed to systematic bias. Previous analyses of SEAC4RS observations 

provide some confidence as to this lack of bias. The validation work of Zhu et al. (2016) led 

to removal of bias from the OMI HCHO satellite data. The work of Travis et al. (2016) and 

Fisher et al. (2016) removed bias in the GEOS-Chem simulation relating isoprene emission 

to HCHO production. GEOS-FP biases in temperature and mixing depths were corrected 

by Fisher et al. (2016) and Zhu et al. (2016), respectively. All of these corrections have been 

implemented in our simulation.”   

How accurate are the GEOS-FP temperatures over these regions? What model temperature (skin, surface, 

2m, lowest-box) is used to compute emissions? Are we sure that meteorological biases are not a 

significant part of the discrepancies you see? 

GEOS-FP temperatures were compared to temperatures measured during the SEAC4RS 

campaign. A small positive bias was observed at high temperatures, which was corrected in this 

and all previous SEAC4RS publications (for GEOS-FP T>293 K, corrected temperature (K) = 

0.792 × (GEOS-FP +76.5K)). We assume this bias also effect GEOS-FP skin temperatures used 



to calculate MEGAN emissions, and use the same correction approach. We have added this 

description to the discussion of isoprene emissions (section 2.2): 

“GEOS-FP temperatures in the boundary layer averaged 1 K higher than the SEAC4RS 

observations, and a downward correction is applied to the skin temperatures used in the 

computation of isoprene emissions in GEOS-Chem.” 

8-11. “ We attribute this to a bias in the background”. This implies that your background correction 

approach is not working properly. The background bias would then also apply to the high-isoprene areas. 

Since isoprene gives rise to an HCHO enhancement on top of that background, wouldn’t this mean that 

your downward isoprene adjustments should be even larger? I.e. if the blue color everywhere in Fig 4 is 

really due to a background bias unrelated to isoprene, then surely if the isoprene adjustments were 

physically correct one would expect the same blue color throughout Figure 4 (bottom right panel). 

Visually it appears that the high-isoprene areas average to ∼zero in the a posteriori, but this is not the case 

elsewhere in the domain.  

We agree that this suggests the background correction approach for the OMI-SAO product may 

be insufficient. Zhu et al (2016) derive a 37% bias. A more accurate correction may involve a 

smaller multiplicative term and an offset (i.e, rather than Corrected = A × OMI, Corrected = A’ × 

OMI + B).  

Regardless of the formulation, the corrected OMI columns would have the same value over the 

high emitting regions, which are the derived in the Zhu et al. (2016) paper. A two-term correction 

would therefore yield the same isoprene scaling for high emitting regions.  

Figure 4. It is interesting that while the inversion clearly improves agreement over the high-isoprene 

areas, it appears to make the low-bias worse in adjoining areas like Tennessee/Kentucky and east Texas. 

Posteriori biases there look to be larger than the generic background bias elsewhere. What do you make of 

this? Does this imply an over-correction of the isoprene emissions, or some spatial mis-representation of 

the isoprene-HCHO conversion?  

The reviewer is correct that posterior biases are worse in some regions such as Eastern Texas and 

Tennessee/Kentucky. This is likely an over-correction that is an artifact of two aspects of our 

optimization approach. 

First, the prior estimate xa=0.85 weighs on the inversion such that larger scaling factors (xa >>1) 

are not explored even in regions where the prior yields a negative bias in HCHO columns.  



Second, the relative term in the observational error could lead to an overcorrection. In each grid 

cell, the observational term of the cost function 

are calculated as 

Jobs(x) =
(𝐲 − 𝐅(x))

2

𝛔𝑶
2  

where x is the scaling factor, y are observed 

HCHO columns, F(x) are modeled HCHO 

columns, and 𝛔𝐎
2  is the observational error 

variance. 

The figure to the right demonstrates the 

asymmetry in Jobs(x), using the example of 

σo=0.20y+0.3, where 0.20 represents the relative 

error associated with the air mass factor and b 

represents the spectral fitting error. Because a portion of σO is relative to y, there is a larger 

penalty associated with overestimating low values than underestimating higher values. That is, for 

a gridcell with large variability in observed HCHO columns, the inversion preferentially 

optimizes isoprene emissions to match lower observations. 

Though the values we show in Figure 4 are weighted by the observational error, the cost function 

scales with the variance (error squared). 

Fig 7- The improved agreement with respect to (nearly) all the related SEAC4RS tracers is a very nice 

result. Do you attribute any significance to the fact that agreement worsened somewhat for ISOPN?  

The worsening agreement with modeled ISOPN is a product of a subset of measurements where 

measured ISOPN is greater than 100 ppt. For this group of points, modeled NOx is 

underestimated. ISOPN is more sensitive to NOx than HCHO, and these points weigh heavily on 

the regression. 

2-10, where is this 1/3 estimate coming from? 

We have clarified the references in this statement as follows: 

Isoprene from vegetation comprises about one third of the global emission of volatile 

organic compounds (VOCs) (Guenther et al., 2006). Emissions in the southeastern United 

States during summertime are some of the highest in the world (Guenther et al., 2012). 

2-24, “the largest uncertainty stems from the base emission rates”. I don’t think this is necessarily 

categorically true anymore. Certainly it will depend on the location and spatial scale being examined. If 

the land cover is wrong (are there oak trees or not, for example) that will give a very large emission error. 

Assimilated meteorological fields are frequently wrong by a degree or 3, which again can cause major 

emission biases. In some cases and places I’m sure you’re right that emission capacities are the biggest 

source of error but I disagree that is always the case.  

We agree that errors in assimilated meteorological fields can cause large errors in isoprene 

emissions. However, here we are discussing uncertainties in the construction of bottom-up 

inventories rather than errors that can arise during their use. This is now specified in the text: 



“The largest uncertainty in the construction of bottom-up inventories stems from the base 

emission rates” 

2-26, yes, the environmental factor dependencies are fairly well understood but that doesn’t mean a model 

has the temperature right, or for that matter the distribution of temperature through a plant canopy.  

The reviewer’s point is well taken. We have added the following statement to the text:  

“Factor dependences on environmental variables are better understood, the dominant 

factor of variability being temperature (Palmer et al., 2006), though any uncertainties in 

temperature will propagate into uncertainties in isoprene emission estimates.” 

P9-L10 “The relatively low correlation between spatially averaged isoprene and formaldehyde (r = 0.49, 

Figure 6) illustrates the importance of accounting for transport in inversions of HCHO data to infer 

isoprene emissions.” Sure, but this importance depends on the resolution at which one is attempting to 

compute emissions. At the resolution used here it is clearly quite important. 

We have edited this sentence to specify that this is important at high resolution. 



Reviewer 2: 

There seems to be a contradiction between the GEOS-Chem simulation in the present manuscript and in 

Zhu et al. (2016), regarding the comparison with the SEAC4RS CAMS data. In Zhu et al. (2016), GEOS-

Chem HCHO columns had to be increased by 10% in order to match SEAC4RS CAMS data. This might 

be partly explained by the 15% reduction of MEGAN isoprene fluxes in that paper. But still, it is very 

surprising that the GEOS-Chem model is now found to overestimate HCHO by a factor of 1.47 compared 

to the same CAMS data. I have serious doubts about the fact that the 24% increase in HCHO yield in the 

ISOPO2+NO reaction can lead to an overestimate of 47%, and if so, this should be demonstrated.  

Before beginning out inversion work, we reproduced the Travis et al. (2016) modeled HCHO 

along the SEAC4RS flight path (not shown in their publication). The differences between the Zhu 

et al. (2016) simulation and Travis et al. (2016) simulation include updates to anthropogenic 

emissions, deposition, the isoprene oxidation mechanism, and the inclusion of alpha-pinene and 

limonene oxidation mechanisms.  

The Zhu et al. (2016) paper finds a -3% model bias in boundary layer HCHO concentrations 

(page 13483 line 4). In our work, using unscaled isoprene emissions unscaled and the isoprene 

oxidation mechanism of Travis et al. (2016), the modeled v. measured slope is 1.47 and the 

intercept is -0.5 ppb, giving a normalized mean bias of 24%.  

We find that scaling isoprene emissions down 85% and using the Travis et al. (2016) mechanism 

gives a normalized mean bias of 16%. Scaling isoprene emissions down 85% and using the Zhu 

et al. (2016) mechanism gives a normalized mean bias of 8%. 

The remaining differences between our work and Zhu et al. (2016) could likely be explained by 

other updates not included in the Zhu et al. (2016) paper, or by the slightly smaller domain used 

in this work.  

We now include a more detailed list of the differences between this work and Zhu et al. (2016). 

p.3, l.7 : I suggest to remove ’older chemical mechanisms and’ from the sentence. ‘Old’ is always relative 

and for example the latest findings in isoprene chemistry (Bates et al. 2016, Teng et al. 2017, etc.) are not 

considered in the present study. 

This point is well taken, and the phrase has been removed. 

In Section 2.2, the effect of soil moisture stress on the bottom-up isoprene fluxes is not discussed. Have 

you accounted for it in your simulations? The Edwards Plateau in Central Texas is often affected by 

drought. The strong flux decrease derived in this region might be partly explained by the neglect of soil 

moisture stress in MEGAN. This warrants some discussion.  

We have not accounted for soil moisture stress in our simulations. It is possible that this could 

explain some of the overestimate in our prior isoprene emissions.  

The soil moisture correction applies only when the soil moisture falls below a prescribed wilting 

point (in units of degree of saturation, expressed as the ratio of soil moisture to the porosity of 

soil). During the SEAC4RS period, GEOS-FP root zone and top soil wetness were consistently 

over 0.4 in the Edwards Plateau. This is above the ECMWF wilting point value of 0.171 (Müller 

et al., 2008). However, the MERRA-2 wilting point, which more closely corresponds to the 

catchment model used to generate the GEOS-FP soil moisture dataset, is approximately 0.6 in the 

Edwards Plateau. Previous simulations including the soil moisture activity parameter have found 



a pronounced difference in Texas, but little changes in other regions of the southeastern US 

(Sindelarova et al., 2014).  

We have the following to our discussion of the Edwards Plateau:  

“Uncertainty in the dependence of isoprene emission on soil moisture could also affect 

isoprene emission estimates for the Edwards Plateau (Sindelarova et al., 2014).” 

p.6, l.2 : I’m a bit confused here. In Travis (2016), not only mobile NOx emissions are reduced by 60% 

but all non-power plant sources (or alternatively 30% reduction of non-power plant sources and no soil 

NO emissions). In Chan Miller et al. (2017) a decrease of 50% in anthropogenic NOx emissions relative 

to NEI 2011 is applied. Please clarify what you actually did in the present work and why. Note 

furthermore that soil NO emissions were found to be too low over the Ozarks by Wolfe et al. (2015).  

We apologize for the confusion. In our simulation, we reduce all anthropogenic sources of NOX 

other than power plants by 60%. This results in a 50% reduction of total anthropogenic NOX 

relative to NEI. The downscaling of anthropogenic NOX is consistent between Travis et al (2016), 

Chan Miller et al. (2017), and this work. This has been clarified in the text. 

We also reduce soil NO emissions by 50% as in a Travis et al. (2016), which is based on the 

previous work of Vinken et al. (2014). We have included a note in the text which mentions the 

uncertainty in soil NOX emissions.  

p. 6, l. 15 : Still, it would be useful to give percentage estimate of contribution of other NMVOCs to the 

formaldehyde columns in Southeast US.  

In a simulation without isoprene emissions, maximum HCHO columns are near 1 x 1016 

molecules cm-2, which is about 5 x 1015 cm-2 higher than the background concentrations over the 

ocean. This enhancement is less than 20% of the total enhancement in HCHO column observed 

using MEGANv2.1 uniformly scaled by 0.85. This is consistent with previous analysis (Millet et 

al., 2006; Palmer et al. 2003). 

We have changed the text to read: 

“Non-methane VOCs other than isoprene contribute less than 20% to the HCHO column 

enhancements over the Southeast US (Palmer et al., 2003; Millet et al., 2006) and are not 

optimized as part of the inversion.” 

p.7, l. 14 : I don’t see what is the motivation of the first sensitivity inversion (with reduced errors). Please 

explain.  

The motivation for the first sensitivity test is to examine the influence of SO on the inversion 

results. In our base inversion configuration, spectral fitting errors are increased relative to the 

values provided in the OMI-SAO product. The first inversion configuration uses the reported 

instrument uncertainty, as would be typical in the absence of a validation study.   

p.10, l.4 : 50%, do you mean factor of 2 or 1.5?  

Factor of two. We have clarified this in the text. 

Figure 1 : The OMI SAO columns over the SEAC4RS period do not look the same as in Figure 5 of Zhu 

et al. (2016). What is the difference? Why did you use error-weighted means? Please specify how these 

means are calculated (relative or absolute).  



We show OMI SAO columns computed using the GEOS-Chem air mass factor, which gives 

some of the difference. The remainder can be attributed to error weighting. We show error-

weighted means because the observations are weighted according to error in the optimization. 

The elements of SO (i.e., the instrument uncertainty in the base inversion configuration) are used 

in the figures. 

Figure 2 : The MEGAN base emission factors shown in the upper left panel should be the same as in Zhu 

et al. (2016) (both use Hu et al. 2015). They are however about 10 times higher that in Figure 3 of Zhu et 

al. (2016). Please explain. 

We thank the reviewer the careful reading. The MEGAN base emissions factors used in this work 

are the same as in Zhu et al. (2016).  The Zhu et al. (2016) colorbar is mislabeled (personal 

communication). 
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Abstract. Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. ‘Bottom-up’ 25 

isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land 

cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield 

isoprene oxidation product, provide ‘top-down’ information to evaluate isoprene emission inventories through inverse 

analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the 

time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for 30 

the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain 

isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model 

at 0.25° × 0.3125° horizontal resolution to interpret observations over the Southeast US in August-September 2013. It takes 

advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to 

validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and 35 

independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations 

propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which 



 

2 

 

was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. 

We find in our inversion that isoprene emissions from the widely-used MEGAN v2.1 inventory are biased high over the 

Southeast US by 40% on average, although the broad-scale distributions are correct including maximum emissions in 

Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of Southeast Missouri. A particularly large 

discrepancy is in the Edwards Plateau of Central Texas where MEGAN v2.1 is too high by a factor of 3, possibly reflecting 5 

errors in land cover. The lower isoprene emissions inferred from our inversion, when implemented into GEOS-Chem, decrease 

surface ozone over the Southeast US by 1–3 ppb and decrease the isoprene contribution to organic aerosol from 40% to 20%. 

1 Introduction 

Isoprene from vegetation comprises about one third of the global emission of volatile organic compounds (VOCs), and 

emissions) (Guenther et al., 2006). Emissions in the southeastern United States during summertime are some of the highest in 10 

the world (Guenther et al., 20062012). Isoprene oxidation fuels tropospheric ozone formation in both rural and urban regions 

(Monks et al., 2015), and isoprene oxidation products contribute significantly toare a major source of organic aerosol (Carlton 

et al., 2009). Regional air-quality predictions are heavily dependent on isoprene emission estimates (Pierce et al., 1998; Fiore 

et al., 2005; Hogrefe et al., 2011; Mao et al., 2013). The uncertainty in isoprene emissions on a global scale is estimated to be 

factor of 2 or more, with larger uncertainties on local-to-regional scales (Guenther et al., 2012). Here, we use observations of 15 

formaldehyde (HCHO) columns from the satellite-based Ozone Monitoring Instrument (OMI) in the first high-resolution 

adjoint-based inverse analysis of isoprene emissions at ecosystem-relevant scales, taking advantage of detailed chemical 

measurements available over the Southeast US to demonstrate the capability of the satellite-based inversion. 

 

Process-based “bottom-up” isoprene emission inventories are constructed by estimating base leaf-level emission rates for 20 

individual plant functional types (PFTs), mapping them onto gridded PFT distributions, and applying factor dependences on 

environmental variables (temperature, insolation, leaf area index and leaf age, soil moisture) (Guenther et al., 2006, 2012). 

The largest uncertainty in the construction of bottom-up inventories stems from the base emission rates, which are extrapolated 

from very limited observations (Arneth et al., 2008). PFT distributions are an additional source of uncertainty, with different 

land-cover maps producing as much as a factor of two difference in isoprene emissions (Millet et al., 2008). Environmental 25 

factor dependences are better understood, the dominant factor of variability being temperature (Palmer et al., 2006). Isoprene 

emissions can undergo large changechanges over decadal scales in response to changing land cover (Purves et al., 2004; Zhu 

et al., 2017a). Factor dependences on environmental variables are better understood, the dominant factor of variability being 

temperature (Palmer et al., 2006), though any uncertainties in temperature will propagate into uncertainties in isoprene 

emission estimates.  30 
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Satellite observations of formaldehyde atmospheric columns provide “top-down” constraints on isoprene emissions to test 

inventories (Palmer et al., 2003, 2006; Millet et al., 2008; Barkley et al., 2013; Marais et al., 2014). HCHO is formed promptly 

and in high yield from isoprene oxidation, at least when concentrations of nitrogen oxides (NOx ≡ NO + NO2) originating from 

combustion or soils are relatively high (Wolfe et al., 2016). A common approach has been to assume a local linear relationship 

between HCHO columns and isoprene emissions (Palmer et al., 2003, 2006; Millet et al., 2008), but this does not capture the 5 

spatial offset between the point of isoprene emission and the resulting HCHO column. This spatial offset can be hundreds of 

km, depending in particular on NOx levels (Marais et al., 2012). Tracing the observed HCHO back to the location of isoprene 

emission requires accounting for this coupling between chemistry and transport. Previous studies have applied adjoint-based 

global inversions to account for transport in the isoprene-HCHO source-receptor relationship (Stavrakou et al., 2009; Fortems-

Cheiney et al., 2012; Stavrakou et al., 2015; Bauwens et al., 2016), but they used older chemical mechanisms and horizontal 10 

resolutions of hundreds of km that do not capture the chemical time scales for isoprene conversion to HCHO.  

 

Here we apply the adjoint of the GEOS-Chem chemistry-transport model at 0.25° × 0.3125° horizontal resolution in an 

inversion of OMI HCHO observations to infer isoprene emissions in the Southeast US during the summer of 2013. Our 

inversion takes advantage of extensive aircraft observations of chemical composition from the NASA SEAC4RS campaign 15 

(Toon et al., 2016). These observations corrected and validatedwere used to validate the OMI HCHO retrievals (Zhu et al., 

2016), and allowed a thorough evaluation of isoprene and NOx chemistry in GEOS-Chem including time-dependent HCHO 

yields from isoprene oxidation as a function of NOx and time (Travis et al. 2016; Fisher et al., 2016; Chan Miller et al., 2017). 

They further showed that the 0.25° × 0.3125° resolution of GEOS-Chem captures the spatial segregation between isoprene and 

NOx emissions that would be lost at coarser model resolution and introduce error in the HCHO yield (Yu, K. et al. 2016). The 20 

SEAC4RS observations provide unprecedented testbed for determining the value of satellite HCHO observations to quantify 

isoprene emissions on ecosystem-relevant scales.  

2 Methods 

2.1 OMI observations 

We use the OMI-SAO v003 Level 2 HCHO data as described by González Abad et al. (2015). The OMI spectrometer flies 25 

aboard the NASA Aura research satellite and provides daily global mapping with a local overpass time of 1330 and a nadir 

resolution of 24 × 13 km2. Slant column densities (SCD, Ωs) of HCHO are calculated by direct fitting of OMI radiances. The 

SCD over a remote Pacific reference sector is subtracted to giveand the difference is the enhancement over the background 

(ΔΩs). The SCD is related to the vertical column density (VCD, Ω) by an air mass factor (AMF), which accounts for the 

sensitivity of the backscattered radiances to the HCHO vertical profile. The final VCD is calculated by adding the background 30 

VCD (Ωo) from the GEOS-Chem simulation over the Pacific reference sector:  
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.Ω =
∆Ω𝑠

𝐴𝑀𝐹
+ Ωo                (1) 

The background contribution averages 3.8 × 1015 molecules cm-2, small relative to the enhancements over the Southeast US. 

 

Zhu et al. (2016) validated the OMI-SAO v003 HCHO VCD satellite data during SEAC4RS by comparison to two independent 

in situ HCHO measurements aboard the aircraft. They showed that the satellite data have accurate spatial and temporal patterns 5 

in the satellite data but a 37% low bias, which they attributed to errors in spectral fitting and in assumed surface reflectivity. 

Following the recommendation of Zhu et al. (2016), we correct this bias by applying a uniform scalingmultiplicative factor of 

1/(1-0.37) = 1.59 to the satellite data. Independent evaluation with ground-based HCHO observations provides support for this 

correction factor (Zhu et al., 2017b).  

 10 

Simulation of the OMI data with the GEOS-Chem model requires that we use an AMF consistent with the model vertical 

profile when converting observed SCDs to VCDs (or equivalently when converting model VCDs to SCDs). Here we calculate 

the AMF by applying the local OMI scattering weights from the operational retrieval to the GEOS-Chem HCHO vertical 

profile (Qu et al., 2017). The satellite data are filtered by the OMI-SAO quality flag, cloud fractions less than 0.3, solar zenith 

angles less than 60o, and values within the range -0.5 to 10 × 1016 molecules cm-2 (Zhu et al., 2016). We accumulate 192,889 15 

individual scenes over the 8-week period with an average of 35 single-scene observations per 0.25o × 0.3125o grid cell. 

 

Single-scene measurement error includes (1) the spectral fitting error reported as part of the operational product, and (2) the 

error in the AMF calculation, which increases from 15% under clear sky conditions to 20% at a cloud fraction of 0.3 (Millet 

et al, 2006). We increase the spectral fitting error by a factor of 1.59, the same factor used to correct the mean bias in OMI 20 

VCDs. If the conversion of radiances to HCHO columns is the cause of the bias, we would expect this bias to translate to the 

spectral fitting error. This assumption is tested in section 3.32.5. Spectral fitting dominates the error budget, so that individual 

retrievals typically have an 80% error over the Southeast US. This error decreases when averaging over a large number of 

retrievals (Boeke et al., 2011). 

 25 

Figure 1 shows the error-weighted mean OMI HCHO VCD during the August-September 2013 SEAC4RS period on the 0.25 

× 0.3125° GEOS-Chem grid. The regional enhancement over the Southeast US is well known to be due to isoprene emission 

(Abbott et al., 2003; Palmer et al., 2003, 2006; Millet et al., 2006, 2008). The location of the maximum varies from year to 

year depending on temperature (Palmer et al., 2006). 

2.2 MEGAN emissions 30 

We use as prior estimate of isoprene emission the MEGAN v2.1 inventory (Guenther et al., 2012), as implemented in GEOS-

Chem by Hu et al. (2015a2015). Base emission factors (top left panel of Fig. 2) are taken from the MEGAN v2.2 land cover 
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map and correspond to emissions under standard conditions (temperature of 303 K, leaf area index=5, canopy 80% mature, 

10%, old and 10% growing, and photosynthetic photon flux density of ∼1500 µmol m−2s−1 at the canopy top). MEGAN v2.2 

land cover was constructed for the year 2008 based on the National Landcover Dataset (NLCD, Homer et al., 2004) and 

vegetation speciation from the Forest Inventory and Analysis (FIA, www.fia.fs.fed.us). It uses the 16-PFT classification 

scheme of the Community Land Model 4 (CLM4) and further specifies regionally variable base emission factors based on 5 

speciation. For example, the PFT base emission factor for the “Broadleaf Deciduous Temperate Tree” category varies 

depending on the relative abundance of isoprene emitters (e.g., oak) and non-emitters (e.g., maple). The highest base emission 

factors are in the Ozarks of Southeast Missouri where pine-oak forests dominate the land cover (Wiedinmyer et al., 2005). 

 

Actual isoprene emissions are computed locally by multiplying the base emission factors by environmental factors to account 10 

for local conditions of leaf area index and leaf age, derived from MODIS observations (Myneni et al., 2007), and temperature 

and direct and diffuse solar radiation, taken from the GEOS-FP assimilated meteorological data used to drive GEOS-Chem. 

GEOS-FP temperatures in the boundary layer averaged 1 K higher than the SEAC4RS observations, and a downward correction 

is applied to the skin temperatures used in the computation of isoprene emissions in GEOS-Chem. The resulting emissions are 

shown in the top right panel of Figure 2. The pattern differs from the base emission factors, primarily because of temperature. 15 

The highest emissions are in Louisiana and Arkansas, where temperatures are particularly high. The general spatial patterns 

of OMI HCHO (Fig. 1) and MEGAN v2.1 emissions show broad similarities but also substantial differences. For example, 

OMI shows no enhancement over the Edwards Plateau in Texas where MEGAN v2.1 predicts high isoprene emissions. These 

differences will be analyzed quantitatively in our inversion. 

2.3 GEOS-Chem and its adjoint 20 

We use the GEOS-Chem chemical transport model and its adjoint (Henze et al., 2007), driven by assimilated NASA GEOS-

FP meteorological data in a nested configuration at 0.25° × 0.3125° horizontal resolution (Zhang et al., 2015, 2016; Kim et al., 

2015). Our model domain covers the Southeast US (102.812-77.188°W, 28.75-42.25°N; Fig. 1), taking initial and dynamic 

boundary conditions from a global simulation with 4° × 5° horizontal resolution. We simulate an 8-week period (1 August – 

25 September 2013) at the 0.25° × 0.3125° horizontal resolution. 25 

 

The GEOS-Chem adjoint version is v35k, which is based on version v8 of GEOS-Chem with updates through v9 

(http://acmg.seas.harvard.edu/geos). Here we update the chemical mechanism in v35k to GEOS-Chem v9.02 (Mao et al., 2010, 

2013) and further update isoprene chemistry to GEOS-Chem v11-02 as described by Fisher et al. (2016) and Travis et al. 

(2016) in their simulation of SEAC4RS observations. These updates include in particular (1) explicit representation of isoprene 30 

peroxy radical (ISOPO2) isomerization and subsequent hydroperoxy-aldehyde (HPALD) formation, (2) formation of isoprene 

epoxides (IEPOX) and their oxidation, and (3) a 24% increase in the HCHO yield from reaction of ISOPO2 with NO. The 

updated oxidation mechanism better reproduces the time- and NOx-dependence of HCHO production in the fully-explicit 
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Master Chemical Mechanism v3.3.1 (Jenkin et al., 2015) and agrees with the HCHO yields derived from SEAC4RS and 

SENEX aircraft measurements over the Southeast US (Wolfe et al., 2016; Chan Miller et al., 2017; Marvin et al., 2017).  

 

US anthropogenic emissions in GEOS-Chem are from the 2011 National Emissions Inventory (NEI11) of the US 

Environmental Protection Agency, scaled to 2013 (NEI, 2015). We decrease mobileall anthropogenic sources of NOx 5 

emissionsother than power plants by 60% from that inventory, as%, resulting in a total reduction of 50%. This was shown by 

Travis et al. (2016) to be necessary to reproduce SEAC4RS and other 2013 observations for NOx and its oxidation products 

including OMI observations of NO2 (Travis et al., 2016; Chan Miller et al., 2017).. Subsequent work has supported this 

downward correction of US anthropogenic NOx emissions (Chan Miller et a., 2017; Lin et al., 2017; McDonald et al., 2018). 

Soil NOx emissions are reduced by 50% across the Midwestern United states as in Travis et al. (2016), based on previous 10 

analysis of OMI NO2 observations (Vinken et al., 2014) We note that Wolfe et al. (2015) found GEOS-Chem soil NO emissions 

to be too low over the Ozarks. Fire emissions, lightning NOx emissions, soil NOx emissions, non-isoprene MEGAN emissions, 

and updates to deposition are as in Travis et al. (2016). GEOS-FP diagnosed mixing depths are reduced by 40% to better match 

aerosol lidar observations during SEAC4RS (Zhu et al., 2016).   

2.4 Inversion approach 15 

The state vector x to be optimized in the inversion consists of temporally invariant scaling factors on the 0.25o × 0.3125o 

GEOS-Chem grid applied to the prior MEGAN v2.1 isoprene emissions for the August-September 2013 SEAC4RS period. It 

consists of 4138 elements covering the land grid cells of the domain in Figure 1. Zhu et al. (2016) previously found that 

decreasing MEGAN v2.1 emissions by 15% improved the simulation of SEAC4RS HCHO observations and we include this 

correction in our prior estimate. Non-methane VOCs other than isoprene sources of HCHO do not contribute significantlyless 20 

than 20% to the HCHO column enhancements over the Southeast US (Palmer et al., 2003; Millet et al., 2006; Zhu et al., 2014) 

and hence are not optimized as part of the inversion.  

 

The observation vector y consists of daily OMI HCHO columns (VCDs) calculated from OMI SCDs and GEOS-Chem AMFs 

mapped onto the 0.25ox0.3125o GEOS-Chem grid. We relate y to x using GEOS-Chem, denoted as F and representing the 25 

forward model for the inversion:  

𝐲 = 𝐅(𝐱) + 𝛆𝐎  (2) 

GEOS-Chem HCHO columns are sampled at the OMI overpass time and filtered according to the same requirements outlined 

in section 2.1. The observational error vector εO includes contributions from the forward model error, the representation error, 

and the measurement error (Brasseur and Jacob, 2017). The representation error can be neglected here because the GEOS-30 

Chem resolution is commensurate with the size of OMI pixels, and the forward model error is expected to be small compared 

to the ~80% measurement error for individual scenes. Thus we take the measurement error as given in Sectionsection 2.1 to 
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represent the observational error. The resulting observational error standard deviation averages 1.5 × 1016 molecules cm-2 for 

the domain of the inversion. 

 

Assuming Gaussian error distributions and applying Bayes’ theorem to weigh the information from the observations and the 

prior estimate, the solution to the optimization problem involves minimization of the cost function J(x) (Brasseur and Jacob, 5 

2017):  

𝐽(𝐱) = (𝐱 − 𝐱𝐀)
𝑇𝐒A

−1(𝐱 − 𝐱𝐀) + (𝐅(𝐱) − 𝐲)T𝐒𝐎
−1(𝐅(𝐱) − 𝐲).  (3) 

where xA = (0.85, …0.85)T is the prior estimate for x, SA
 is the corresponding prior error covariance matrix, and SO = E[εOεO

T] 

is the observational error covariance matrix. We construct the prior error covariance matrix SA by assuming 100% uncertainty 

in bottom-up emissions with no spatial error correlation. The sensitivity of the inversion to our assumptions for SA and SO will 10 

be tested in what follows.  

 

The adjoint-based inversion enables a computationally tractable solution to the minimization of the cost function (3) when the 

forward model is highly non-linear, as is the case here. Starting from xA as a first guess, the GEOS-Chem adjoint model 

calculates the local gradient of the cost function (∇𝐽(𝐱𝐀)) and passes it through the L-BFGS-B algorithm (Byrd et al., 1995; 15 

Zhu et al., 1997) to determine a next guess x1. It then recomputes (∇𝐽(𝐱𝟏)) and so on until convergence to the optimal value. 

Convergence is reached when the cost function decreases by less than 1% over three consecutive iterations. 

2.5 Error analysis 

We examined the sensitivity of the inversion results to different assumptions made regarding the specification of errors. In the 

first and all subsequent sensitivity analyses, we use the reported spectral fitting error in the operational retrieval without the 20 

factor of 1.59 increase. This gives an average observational error standard deviation of 0.9 × 1016 molecules cm-2, 40% smaller 

than in the standardbase case.  

 

Our assumed prior error estimate of 100% on the MEGAN v2.1 isoprene emissions in the standardbase inversion is deliberately 

large to allow for the possibility of emissions being misplaced on the 0.25o×0.3125o grid. We conducted a sensitivity analysis 25 

with a 50% prior error estimate.  

 

The prior errors in the standardbase inversion have no spatial error correlation (i.e., SA is diagonal), but some error correlation 

may in fact be expected depending on the homogeneity of land cover types. To test this, we conducted a sensitivity simulation 

where the state vector x of emission scaling factors is not optimized on the 0.25o×0.3125o grid but instead on a coarser irregular 30 

grid defined using a hierarchical clustering algorithm (Johnson, 1967; Wecht et al., 2014) with geographical proximity and 

commonality of MEGAN v2.1 emissions as clustering parameters. The resulting state vector is composed of 500 clusters, ~10 

times fewer than the number of grid cells at 0.25o × 0.3125o resolution.  
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A general assumption in Bayesian optimization is that observational errors are randomly distributed, as opposed to systematic 

bias. Previous analyses of SEAC4RS observations provide some confidence as to this lack of bias. The validation work of Zhu 

et al. (2016) led to removal of bias from the OMI HCHO satellite data. The work of Travis et al. (2016) and Fisher et al. (2016) 

removed bias in the GEOS-Chem simulation relating isoprene emission to HCHO production. GEOS-FP biases in temperature 5 

and mixing depths were corrected by Fisher et al. (2016) and Zhu et al. (2016), respectively. All of these corrections have been 

implemented in our simulation.  

3 Results 

3.1 Optimal estimate of isoprene emissions 

Figure 2 shows optimized scaling factors for our standardbase inversion, and the resulting isoprene emissions (optimized 10 

emissions = MEGAN emissions × scaling factors). Isoprene emissions are lower than MEGAN v2.1 by 40% on a regional 

average over the Southeast US domain, with decreases of more than a factor of 3 in some areas. Figure 3 summarizes the 

results from the sensitivity analyses with different error assumptions. The standardbase inversion and the different sensitivity 

analyses show similar spatial patterns for emissions, with correlation coefficients r = 0.96-0.98 on the 0.25o × 0.3125o grid. 

The decrease in total regional emissions relative to MEGAN v2.1 ranges between 40% and 54%. The cluster inversion shows 15 

the largest decrease, because the smaller-dimension state vector allows for stronger fit from observations. However, 

aggregation errors in that inversion could cause overfit (Turner and Jacob, 2015). 

 

Figure 4 shows the simulated HCHO columns from GEOS-Chem using the MEGAN v2.1 emissions and using the optimized 

emissions from the standardbase inversion (Fig. 32). The positive bias over high isoprene emitting regions using MEGAN 20 

v2.1 disappears when using the optimized emissions. The negative bias (-3 × 1015 molecules cm-2) that persists over low-

isoprene emitting regions is not corrected due to the high error associated with the OMI observations, and the low isoprene 

emissions in those regions. We attribute this to a bias in the background, unrelated to isoprene emission. The best agreement 

between OMI and GEOS-Chem is provided by the standardbase inversion configuration, as shown in Figs. 2 and 4. The 

standardbase inversion also provides the best agreement with SEAC4RS data, as presented below. 25 

3.2 Comparisons with SEAC4RS data 

In situ measurements of isoprene and its oxidation products aboard the SEAC4RS aircraft provide an independent test of the 

inversion results. HCHO was measured in SEAC4RS by two different techniques: mid-IR absorption spectroscopy using the 

CAMS (Richter et al., 2015), and laser-induced fluorescence using the NASA GSFC ISAF (Cazorla et al., 2015). The two 

measurements are well correlated (r = 0.96 in the mixed layer), with ISAF ~10% higher than CAMS measurements (Zhu et 30 

al., 2016). Here we use the CAMS measurements, as these measurements were used in the validation of the OMI SAO product 
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(Zhu et al., 2016). The associated measurement uncertainty is 4%. Isoprene and the sum of methyl vinyl ketone and 

methacrolein (MVK + MACR) were measured by PTR-MS (deGouw and Warneke, 2007), with reported uncertainties of 5% 

and 10%, respectively. Isoprene hydroperoxides (ISOPOOH) and isoprene nitrates (ISOPN) were measured by the Caltech 

CIMS (Crounse et al., 2006; Paulot et al., 2009a; St Clair et al., 2010), with respective uncertainties of 30 ppt + 40% and 10 

ppt + 30%.  5 

 

MVK+MACR measurements are corrected to account for the interference caused by the degradation of ISOPOOH on 

instrument surfaces (Rivera-Rios et al., 2014). The correction is calculated as MVK+MACRcorrected= MVK+MACRmeasured – Χ 

× ISOPOOHmeasured, where X = 0.44 with a relatively large uncertainty of +0.21/-0.12. Formaldehyde measurements may suffer 

from a similar, but smaller interference. In the ISAF instrument, conversion of ISOPOOH to HCHO contributes negligibly 10 

(<4%) to the observed signal in ISOPOOH- and HCHO-rich environments, but a delay in ISOPOOH conversion and a rapid 

transition in sampling environments can manifest in more substantial (<10%) interferences (St. Clair et al., 2016). This has not 

yet been examined for the CAMS instrument. 

 

We exclude data influenced by urban plumes ([NO2] > 4 ppb), open fire plumes ([CH3CN] > 200 ppt), and stratospheric air 15 

([O3]/[CO] > 1.25 mol mol-1), and focus solely on measurements within the daytime boundary layer (0900-1800LT, <1.5km). 

In all comparisons with model results, observations are averaged over the GEOS-Chem grid at 10 min time steps. 

 

Figure 5 shows the distribution of SEAC4RS observations. The aircraft flew over the Ozarks on several hot days, leading to 

the particularly high concentrations of isoprene and its oxidation products in the region. ISOPOOH is produced by the low-20 

NOx pathway for isoprene oxidation, while ISOPN is produced by the high-NOx pathway. MVK and MACR are produced 

mostly by the high-NOx pathway. The spatial patterns reflect the contributions of both pathways across the Southeast US 

(Travis et al., 2016). Formaldehyde is more distributed because of the time lag in HCHO production from isoprene emission 

(Chan Miller et al., 2017). The relatively low correlation between spatially averaged isoprene and formaldehyde (r = 0.49, 

Figure 6) illustrates the importance of accounting for transport in inversions of HCHO data to infer isoprene emissions. at fine 25 

resolution.  

 

Figure 7 compares observed mixing ratios for isoprene and its oxidation products to the values simulated by GEOS-Chem 

using either MEGAN v2.1 isoprene emissions or the optimal estimate from the inversion. MEGAN v2.1 emissions lead to a 

factor of 2.5 overestimate in SEAC4RS observations of isoprene and ISOPOOH, a 50% overestimate in HCHO, factor of 2 30 

overestimate for MVK+MACR, and 20% overestimate for ISOPN. The optimal estimate decreases the simulated 

concentrations and produces agreement with all observations within measurement uncertainty. The effect on isoprene and 

ISOPOOH is particularly large because the correction of emissions is strongest in high-emitting regions, which happen to also 

have low NOx (Figure 6).; Yu, K. et al., 2016). The reduction in HCHO, MVK+MACR, and ISOPN is less pronounced. Zhu 



 

10 

 

et al. (2016) previously found no netGEOS-Chem model bias relative to the SEAC4RS HCHO observations using MEGAN 

v2.1 emissions reduced by a uniform 15%, but they used an older GEOS-Chem version that did not include updates to 

anthropogenic emissions, deposition, the isoprene oxidation mechanism (including a lowerhigher HCHO yield from the 

ISOPO2 + NO reaction), and did not compare to other speciesthe inclusion of alpha-pinene and limonene oxidation. Travis et 

al. (2016) previously reported a factor of 2 overestimate of ISOPOOH in their SEAC4RS simulation with MEGAN v2.1 5 

reduced by 15%, and the lower emissions in our optimal estimate effectively correct that bias. 

 

Much of the residual scatter in the comparison of simulated vs. observed HCHO using optimized isoprene emissions appears 

to be caused by local bias in NOx (Figure 8). There is no mean NOx bias in our inversion (Travis et al., 2016) but there can be 

local bias. We find that local model biases in simulating HCHO observations are strongly correlated with corresponding model 10 

errors in NOx, reflecting the NOx-dependence of HCHO production from isoprene (Figure 6 and Chan Miller et al., 2017). 

When excluding points with more than 50% error in NOx, the correlation between measured and simulated HCHO improves 

from r = 0.62 to r = 0.70 (n = 1222 to n = 708). This emphasizes the importance for inversions of HCHO data to use unbiased 

NOx concentrations.  

4 Implications for isoprene emission inventories 15 

Our results indicate that MEGAN v2.1 isoprene emissions over the Southeast US should be decreased by an average of 40%, 

consistent with previous analyses of OMI HCHO data that inferred 25-50% decreases (Millet et al., 2008; Bauwens et al., 

2016). MEGAN v2.1 isoprene emissions are typically ~50%a factor of two higher than the emissions calculated from the 

BEIS3 inventory often used in US air quality models (Warneke et al., 2010; Carlton and Baker, 2011). BEIS and MEGAN 

both follow the emissions algorithms outlined in Guenther et al. (2006), but they use different canopy models and base emission 20 

factors (Bash et al., 2016). The geographic specificity of our high-resolution inversion allows us to examine potential causes 

of the MEGAN v2.1 overestimate in various environments. Below, we discuss three ecoregions in greater detail. 

 

The high base isoprene emission factors in the Ozarks ecoregion (Figure 2) have led this region to be dubbed the “isoprene 

volcano” (Wiedinmyer et al., 2005). We find a 46% reduction in emissions in the region relative to MEGAN v2.1, in good 25 

agreement with a SEAC4RS estimate derived from isoprene flux profiles measurements from SEAC4RS (Wolfe et al., 2015). 

Independent aircraft measurements over the Southeast US during the summer of 2013 found that MEGAN v2.1 was biased 

high by a factor of two for mixed pine-oak forests that are typical of the Ozarks (Yu, H. et al., 2017). These authors suggest 

that non-emitting trees in the upper canopy may shade emitting trees, leading to lower than anticipated isoprene emissions.  

 30 

The hot spot of isoprene emissions in the South Central Plains (Figure 2) is also reduced by 48% in our inversion relative to 

MEGAN v2.1. This region is dominated by needle leaf trees, with isoprene emissions stemming from the sweetgum/tupelo 
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understory. Again, vertical heterogeneity or an incorrect fraction of emitters could lead to the MEGAN overestimate of 

emissions. Alternatively, the base emission factor of sweetgum and tupelo could be significantly less than the assigned 

MEGAN value.  

 

The Edwards Plateau in central Texas is a major isoprene source region in MEGAN v2.1, with base emission factors as high 5 

as in the Ozarks (Fig. 2), but our inversion decreases emissions in that region by more than a factor of three. In contrast, aA 

land cover map used for BEIS (BELD4) shows no isoprene emission hotspot in the region (Wang et al., 2017).), consistent 

with our result. Both land cover maps are derived from the NLCD, but they follow different methodologies for translating 

NLCD classifications to base emission factors. Land cover estimates vary widely for this region. NLCD-based maps show the 

Edwards Plateau dominated by broadleaf trees, whereas the MODIS land cover product is dominated by grasses, leading to a 10 

factor of 10 lower isoprene emissions (Huang et al., 2015). Given Uncertainty in the wide rangedependence of land-cover 

andisoprene emission factoron soil moisture could also affect isoprene emission estimates, a better understanding of land-

cover is needed to probe for the causes of bias in this region.Edwards Plateau (Sindelarova et al., 2014).  

5 Implications for surface air quality 

Isoprene emissions can either increase or decrease surface ozone in air quality models, depending on the local chemical 15 

environment and the chemical mechanism used (Mao et al., 2013). We find in GEOS-Chem that our optimized isoprene 

emissions lead to a decrease in mean surface afternoon O3 concentrations by ~1-3 ppb over the Southeast US relative to the 

standard simulation using MEGAN v2.1 emissions. The GEOS-Chem simulation of Travis et al. (2016) previously found an 

8 ppb overestimate of surface ozone over the Southeast US during SEAC4RS, which a subsequent analysis by Travis et al. 

(2017) attributed in part to unresolved surface layer gradients and an overestimate of vertical mixing; we find here that the 20 

overestimate of isoprene emissions could also; excessive isoprene emissions could contribute. 

 

Isoprene is also a precursor for organic aerosol (OA), which is a dominant contributor to fine particulate matter (PM2.5) in 

surface air (Zhang et al., 2007). Kim et al. In a previous(2015) found in their GEOS-Chem simulation of the SEAC4RS period, 

Kim et al. (2015) found that isoprene contributes 40% of total OA over the Southeast US in summer, assuming a 3% mass 25 

yield from isoprene oxidation and MEGAN v2.1 isoprene emissions reduced by 15%. A more mechanistic study of OA 

formation from isoprene oxidation under the SEAC4RS conditions found a 3.3% mass yield, most of which was produced in 

the low-NOx pathway (Marais et al., 2016). Our work finds a factor of 2 decrease in ISOPOOH relative to the simulation using 

MEGAN v2.1 emissions reduced by 15%, and consistent with observations (Fig. 6). This suggests that isoprene OA formation 

may be only half of the value found by Kim et al. (2015), implying that other sources such as terpenes may make more 30 

important contributions to OA (Pye et al., 2010, 2015; Xu et al., 2015)., Zhang et al., 2018).   
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6 Conclusions 

We used newly validated HCHO observations from the OMI satellite instrument to demonstrate the capability for applying 

these satellite observations to fine-resolution inversion of isoprene emissions from vegetation. Our work focused on the 

Southeast US where aircraft observations from the NASA SEAC4RS campaign provide detailed chemical information on 

isoprene and its oxidation products (including HCHO) to independently evaluate the inversion. The inversion used the adjoint 5 

of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution and leveraged on previous studies that 

applied GEOS-Chem to simulation of the SEAC4RS observations including in particular for NOx. HCHO yields from isoprene 

oxidation are highly sensitive to NOx levels, and the high resolution of the GEOS-Chem inversion allowed us to properly 

describe the spatial segregation between isoprene and NOx emissions.  

 10 

We found that the MEGAN v2.1 inventory of isoprene emissions commonly used in atmospheric chemistry models is biased 

high on average by 40% across the Southeast US. This is consistent with several previous top-down studies and recent analyses 

using flight-based flux and eddy covariance measurements. Our optimized emissions produce better agreement with SEAC4RS 

observations of isoprene and its oxidation products including HCHO. Local model errors in simulating HCHO observations 

along the aircraft flight tracks are highly correlated with local model errors in NOx. This highlights the importance of accurate 15 

NOx fields in inversions of HCHO observations to infer isoprene emissions.  

 

The high resolution of our inversion allows us to quantify isoprene emissions and analyze MEGAN v2.1 biases on ecosystem-

relevant scales. We find that MEGAN v2.1 is biased high everywhere across the Southeast US but is correct in placing 

maximum 2013 emissions in Arkansas/Louisiana/Mississippi. The Ozarks Plateau in Southeast Missouri has particularly high 20 

base emission factors in MEGAN v2.1, reflecting the abundance of oak trees, but isoprene emissions there are dampened by 

relatively low temperatures and our results further suggest an overestimate in the base emission factors. Another prominent 

overestimate is over the Edwards Plateau in central Texas where MEGAN v2.1 emissions are biased high by a factor of 3, 

possibly reflecting errors in land cover. Our results suggest that the BEIS inventory may yield more accurate isoprene emissions 

for these areas.  25 

 

Our downward correction of isoprene emissions in GEOS-Chem as a result of the inversion leads to a 1-3 ppb reduction in 

modeled surface O3, correcting some of the overestimate previously found in the model. It also decreases the contribution of 

isoprene to organic aerosol, possibly suggesting a greater role for terpenes. 

 30 

HCHO observations from space are expected to improve considerably in the near future. TROPOMI, launched in October 

2017 will provide global HCHO and NO2 observations at 7 km × 7 km nadir resolution daily (Veefkind et al., 2012), as 

compared to 24 km ×13 km for OMI. Concurrent HCHO and NO2 observations can provide a check against model bias in NOx 
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affecting the yield of HCHO from isoprene (Marais et al., 2012). The TEMPO geostationary instrument to be launched in the 

2019-2022 window will provide HCHO and NO2 observations at 2 km × 4.5 km pixel resolution multiple times per day 

(Zoogman et al., 2017). Coupled with the high-resolution inversion framework shown here, these future observations may 

greatly improve our ability to quantify US isoprene emissions from space.  

7 Data availability 5 

The OMI-SAO Version-3 Formaldehyde Product is available at the NASA Goddard Earth Sciences Data and Information 

Services Center (https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMHCHO.003/). SEAC4RS observations are 

available from the NASA LaRC Airborne Science Data for Atmospheric Composition (https://www-air.larc.nasa.gov/cgi-

bin/ArcView/seac4rs, doi:10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud). The adjoint of the GEOS-Chem model is 

available at http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. 10 
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Figure 1:  Error-weighted mean OMI HCHO vertical column densities for the SEAC4RS time period (1 Aug 2013 – 25 Sept 2013). 

The Edwards Plateau (EP), Ozarks (OZ), and South Central Plains (SCP) ecoregions are denoted with black outlines 

(https://www.epa.gov/eco-research/ecoregions, level 3 and 4 data). 
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Figure 2: Isoprene emissions in the Southeast US. Top: MEGAN v2.1 base isoprene emission factors and emissions for the SEAC4RS 

time period. Bottom: Scaling factors from the inversion and optimized emissions. The color scale differs for MEGAN and optimized 

emissions. The Edwards Plateau (EP), Ozarks (OZ), and South Central Plains (SCP) ecoregions are denoted with black outlines.  
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Figure 3: Total isoprene emissions for the Southeast US domain of Figure 1 over the period 1 Aug-25 Sept 2013. The MEGAN v2.1 

inventory value is compared to results from the base inversion applied to the OMI formaldehyde data (optimized emissions in Figure 

2) and to sensitivity inversions using different error specifications (see text for details).  Numbers on top of each bar are the total 

isoprene emissions, and correlation coefficients (r) describe the spatial consistency between the base inversion (r = 1) and the 5 
sensitivity inversions. 
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Figure 4: Simulated HCHO vertical column densities and model bias using prior and optimized isoprene emissions. Values are 

averages for 1 Aug – 25 Sep 2013 at the OMI overpass time (1330 local), weighted by the OMI measurement error as in Figure 1. 

The right panels show the differences between the simulated columns and the OMI observations from Figure 1. 
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Figure 5: Mean boundary layer concentrations of isoprene and its oxidation products measured in the SEAC4RS aircraft campaign 

(1 Aug – 25 Sep 2013).  The observations are for daytime (0900-1800 LT) below 1.5 km altitude, and exclude urban and fire plumes 

as described in the text. 
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Figure 6: Spatially averaged concentrationsRelationship of boundary layer isoprene and HCHO measured during SEAC4RS, 

colored by observed NOx. Data are the same as in Figure 5.  
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Figure 7: Comparison of SEAC4RS observations and modeled mixing ratios using either MEGAN v2.1 (blue) or the optimized 

isoprene emissions (red) from the base inversion of OMI HCHO data (Figure 2). The dashed line indicates 1:1 agreement.  The 

colored lines are the reduced major axis linear regressions and the inset numbers are the corresponding slopes, with error standard 

deviations inferred from bootstrap sampling.  5 
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Figure 8: Comparison of simulated and observed HCHO concentrations along the SEAC4RS flight tracks, using the model with 

optimized isoprene emissions from the base inversion. The dashed line indicates 1:1 agreement. Data are the same as in Figure 7 

(upper middle) but are colored by the local ratio of simulated to observed NOx concentration.  
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