¹ Supplementary Information

² Adjoint inversion of Chinese non-methane volatile organic

³ compound emissions using space-based observations of

⁴ formaldehyde and glyoxal

- 5 Hansen Cao¹, Tzung-May Fu^{1, *}, Lin Zhang¹, Daven K. Henze², Christopher Chan
- 6 Miller³, Christophe Lerot⁴, Gonzalo Gonz alez Abad³, Isabelle De Smedt⁴, Qiang
- 7 Zhang⁵, Michel van Roozendael⁴, Kelly Chance³, Jie Li⁶, Junyu Zheng⁷, Yuanhong
- 8 Zhao¹
- 9

10 ¹Department of Atmospheric and Oceanic Sciences and Laboratory for Climate and Ocean-Atmosphere

- 11 Studies, School of Physics, Peking University, Beijing, China,100871
- 12 ²Department of Mechanical Engineering, University of Colorado, Boulder, USA
- 13 ³Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge,
- 14 Massachusetts, USA
- 15 ⁴Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
- 16 ⁵Center for Earth System Science, Tsinghua University, Beijing, China
- 17 ⁶Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- 18 ⁷College of Environmental Science and Engineering, South China University of Technology,
- 19 Guangzhou, China
- 20
- 21 Correspondence to: Tzung-May Fu (tmfu@pku.edu.cn)
- 22

23 Table S1. Ground-based MAX-DOAS measurements of formaldehyde and glyoxal vertical column densities over

24 China

Reference	Location	Time		Vertical column densities				
				9-10 LT	13-14 LT			
Formaldehyde [10 ¹⁶ molecules cm ⁻²]								
Wang et al.	Wuxi	2011 - 2014	JF	0.7 ^a	0.8 ^a			
(2017)	(31.57°N,120.31°E)		MA	0.9±0.15 ^a	1.1±0.26 ^a			
			MJ	1.5±0.12 ^a	1.9±0.15 ^a			
			JA	1.7±0.10 ^a	2.2±0.26 ^a			
			SO	1.2±0.12 ^a	1.7±0.12 ^a			
			ND	0.8±0.30 ^a	1.4±0.32 ^a			
Lee et al. (2015)	Beijing	August 16 to Septemb			1.79			
	(39.59°N, 116.18°E)	11, 2006						
De Smedt et al.,	Beijing	2008 - 2013	DJF	0.9±0.2 ^b	0.8±0.2 ^b			
(2015)	(39.98°N,116.38° E)		MAM	1.3±0.3 ^b	1.2±0.2 ^b			
			JJA	2.0±0.6 ^b	2.5±0.5 ^b			
			SON	1.3±0.3 ^b	1.6±0.3 ^b			
Li et al. (2013)	Back Garden,	July 2006		1.3±1.0 °	1.3±0.7 °			
	Guangdong							
	(23.50°N, 113.03°E)							
Glyoxal [10 ¹⁴ molecules cm ⁻²]								
Li et al. (2013)	Back Garden,	July 2006		6.8±5.2 ^d	11.4±6.8 ^d			
	Guangdong							
	(23.50°N, 113.03°E)							

25 ^a Bimonthly mean computed from Figure 12 of Wang et al. (2017)

26 ^b From hourly data in Figure 10 of De Smedt et al. (2015)

27 ^c From Figure 4 of Li et al. (2013)

28 ^d From Figure 5 of Li et al. (2013)

30 Table S2. Ground-based and ozonesonde measurements of surface ozone concentrations over China.

Reference	Location	Platform	Time	Mixing ratio (ppb)
Wang et al. (2012)	Beijing	Ozonesonde	14:00 LT, June	100-120
	(39.8°N, 116.47°E)		2002-2010	
			14:00 LT, December	<30
			2002-2010	
Sun et al. (2016)	Mt. Tai	Ground-based	Maximum daily	108
	(36.25°N, 117.10°E,		8h-average, June	
	1533m a.s.l.)		2006-2015	
Li et al. (2007)	Mt. Tai	Ground-based	13-17 LT, December	46
	(36.25°N, 117.10°E,		2004	
	1533m a.s.l.)			
Li et al. (2007)	Mt. Hua (110.09°E, 34.49°N, 2064m a.s.l.)	Ground-based	13-17 LT, June 2004	76
			13-17 LT, December	38
			2004	
Xu et al. (2008)	Lin'an (30°3N, 119°7E)	Ground-based	13-17 LT, June	62
			2005-2006	
			13-17 LT, December	27
			2005-2006	
Xu et al. (2016)	Waliguan	Ground-based	11-16 LT, June	61
	(36.28°N, 100.9°E, 3816m a.s.l.)		1994-2013	
			11-16 LT, December	41
			1994-2013	
Zheng et al. (2010)	Huizhou (114.4°E,23.09°N)	Ground-based	13-17 LT, June 2007	34
			13-17 LT, December	66
			2007	
J.M. Zhang et al.	Lanzhou	Ground-based	13-17 LT, June 2006	74
(2009)	(36.13°N, 103.69°E,			
	1631m a.s.l.)			
Li et al. (2015)	Changchun (43.9°N, 125.2°E)	Ozonesonde	14 LT, June 13, 2013	62
Wang et al. (2015)	Akedala (47.1°N, 87.5°E, 502m a.s.l.)	Ground-based	13-17 LT, July 2013	53
				21
			13-1/ LI, November	21
			2013	

Figure S1. Finite difference test (July 1th to 7th, 2007) for adjoint model. (a): sensitivities of global glyoxal burden to biogenic isoprene emission scale factor; (b): sensitivities of global formaldehyde burden to biogenic isoprene emission scale factor; (c) sensitivities of global glyoxal burden to anthropogenic xylene emission scale factor; (d): sensitivities of global formaldehyde burden to anthropogenic xylene emission scale factor. ADJOINT sensitivities and FD sensitivities were calculated by adjoint model and forward model, respectively. 'k' and 'R2' represent regression slope and square of correlation coefficient, respectively. '2nd Order', '1st Pos' and '1st Nes' represent sensitivities calculated by central, forward, backward finite difference methods, respectively.

Figure S2. Pseudo isoprene emission scale factor ((a) and (d), uniformly set to 1.0 to generate pseudo observations), the *a priori* isoprene emission scale factor ((b) and (e), uniformly set to 5.0), and the *a posteriori* isoprene emission scale factor ((c) and (f)) in inversion tests (July 1th to 7th, 2007) constrained by pseudo

46 observations of formaldehyde and glyoxal, respectively.

Figure S3. Comparison of the *a priori* and *a posteriori* monthly Chinese NMVOC emission estimates for the year 2007. The bars from left to right for each month represent the *a priori* emission estimates and the *a posteriori* emission estimates from IE-1, IE-2, IE-3, and IE-4, respectively. Color keys for the NMVOC species are shown inset; the suffixes 'an', 'bb', and 'bg' indicate anthropogenic source, biomass burning source, and biogenic source, respectively.

48

56

Figure S4. Change in the normalized cost function $(J(x)_i / J(x)_{i=1})$ over China in the four inversion experiments: (a) E-1, (b) IE-2, (c) IE-3, and (d) IE-4.

60 Reference

61

De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C., 62 Gielen, C., Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J. F., and Van Roozendael, M.: 63 64 Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations, Atmos. Chem. Phys., 15, 12519-12545, 65 doi: 10.5194/acp-15-12519-2015, 2015. 66

67

Lee, H., Ryu, J., Irie, H., Jang, S.-H., Park, J., Choi, W., and Hong, H.: Investigations of the Diurnal
Variation of Vertical HCHO Profiles Based on MAX-DOAS Measurements in Beijing: Comparisons
with OMI Vertical Column Data, Atmosphere, 6, 1816-1832, doi: 10.3390/atmos6111816, 2015.

Li, D., and Bian, J. C.: Observation of a Summer Tropopause Fold by Ozonesonde at Changchun,
China: Comparison with Reanalysis and Model Simulation, Adv. Atmos. Sci., 32, 1354-1364, doi:
10.1007/s00376-015-5022-x, 2015.

75

Li, J., Wang, Z. F., Akimoto, H., Gao, C., Pochanart, P., and Wang, X. Q.: Modeling study of ozone
seasonal cycle in lower troposphere over east Asia, J. Geophys. Res. Atmos., 112, doi:
10.1029/2006JD008209, 2007.

79

82 Chem. Phys., 13, 2133-2151, doi: 10.5194/acp-13-2133-2013, 2013.

⁸⁰ Li, X., Brauers, T., Hofzumahaus, A., Lu, K., Li, Y. P., Shao, M., Wagner, T., and Wahner, A.:
81 MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China, Atmos.

Sun, L., Xue, L. K., Wang, T., Gao, J., Ding, A. J., Cooper, O. R., Lin, M. Y., Xu, P. J., Wang, Z., Wang,
X. F., Wen, L., Zhu, Y. H., Chen, T. S., Yang, L. X., Wang, Y., Chen, J. M., and Wang, W. X.:
Significant increase of summertime ozone at Mount Tai in Central Eastern China, Atmos. Chem. Phys.,
16, 10637-10650, doi: 10.5194/acp-16-10637-2016, 2016.

88

Wang, H. Q., Ma, J. M., Shen, Y. J., and Wang, Y. A.: Assessment of Ozone Variations and
Meteorological Influences at a Rural Site in Northern Xinjiang, Bull. Environ. Contam. Tox., 94,
240-246, doi: 10.1007/s00128-014-1451-y, 2015.

92

Wang, Y., Beirle, S., Lampel, J., Koukouli, M., De Smedt, I., Theys, N., Li, A., Wu, D. X., Xie, P. H.,
Liu, C., Van Roozendael, M., Stavrakou, T., Muller, J. F., and Wagner, T.: Validation of OMI,
GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS
observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and
aerosols on the satellite products, Atmos. Chem. Phys., 17, 5007-5033, doi: 10.5194/acp-17-5007-2017,
2017.

99

Wang, Y., Konopka, P., Liu, Y., Chen, H., Muller, R., Ploger, F., Riese, M., Cai, Z., and Lu, D.:
Tropospheric ozone trend over Beijing from 2002-2010: ozonesonde measurements and modeling
analysis, Atmos. Chem. Phys., 12, 8389-8399, doi: 10.5194/acp-12-8389-2012, 2012.

103

Xu, W. Y., Lin, W. L., Xu, X. B., Tang, J., Huang, J. Q., Wu, H., and Zhang, X. C.: Long-term trends of
surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 1: Overall
trends and characteristics, Atmos. Chem. and Phys., 16, 6191-6205, doi: 10.5194/acp-16-6191-2016,
2016.

108

Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of surface ozone
at a regional background station in eastern China 1991-2006: enhanced variability, Atmos. Chem. Phys.,
8, 2595-2607, doi: 10.5194/acp-8-2595-2008, 2008.

112

Zhang, J. M., Wang, T., Ding, A. J., Zhou, X. H., Xue, L. K., Poon, C. N., Wu, W. S., Gao, J., Zuo, H.
C., Chen, J. M., Zhang, X. C., and Fan, S. J.: Continuous measurement of peroxyacetyl nitrate (PAN) in
suburban and remote areas of western China, Atmos. Environ., 43, 228-237, doi:
10.1016/j.atmosenv.2008.09.070, 2009.

117

Zheng, J. Y., Zhong, L. J., Wang, T., Louie, P. K. K., and Li, Z. C.: Ground-level ozone in the Pearl
River Delta region: Analysis of data from a recently established regional air quality monitoring
network, Atmos. Environ., 44, 814-823, doi: 10.1016/j.atmosenv.2009.11.032, 2010.